ARTICLE IN PRESS

Available online at www.sciencedirect.com

SCIENCE DIRECT®

Microporous and Mesoporous Materials xxx (2005) 158-163

MICROPOROUS AND MESOPOROUS MATERIALS

www.elsevier.com/locate/micromeso

Gold nano-particles stabilized in mesoporous MCM-48 as active CO-oxidation catalyst

M. Bandyopadhyay ^a, O. Korsak ^a, M.W.E. van den Berg ^b, W. Grünert ^b, A. Birkner ^c, W. Li ^d, F. Schüth ^d, H. Gies ^{a,*}

^a Institut für Geologie, Mineralogie und Geophysik, Lehrstuhl Kristallographie, Fakultät für Chemie, Ruhr-Universität Bochum, Universitätsstr., D-44780 Bochum, Germany

^b Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, Universitätsstr., D-44780 Bochum, Germany

^c Lehrstuhl für Physikalische Chemie 1, Ruhr-Universität Bochum, Universitätsstr., D-44780 Bochum, Germany ^d MPI für Kohlenforschung, Kaiser-Wilhelmplatz 1, D-45470 Mühlheim, Germany

Received 31 May 2005; received in revised form 15 September 2005; accepted 18 September 2005

Abstract

Gold in nano-crystal size is known as highly active CO-oxidation catalyst. Using simple deposition techniques gold has been deposited as \sim 3 nm particles inside the channels of mesoporous silica–TiO₂–MCM-48. In the presence of gold nano-particles the catalyst converts CO to CO₂ at 50% level at -20 °C. The composite is stable against sintering up to at least 200 °C. XANES and EXAFS confirm the coexistence of elementary and ionic gold during the catalytic activity. © 2005 Elsevier Inc. All rights reserved.

-

Keywords: Au/TiO2-MCM-48; Au/TiO2; CO oxidation; Au XANES; Au EXAFS