PAPER

The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy

Heshmat Noei,^{*a*} Hengshan Qiu,^{*b*} Yuemin Wang,^{*ab*} Elke Löffler,^{*a*} Christof Wöll^{*b*} and Martin Muhler^{*a*}

Received 28th June 2008, Accepted 8th September 2008 First published as an Advance Article on the web 17th October 2008 DOI: 10.1039/b811029h

The interaction of water with ZnO nanoparticles has been studied by means of diffuse reflectance infrared spectroscopy (DRIFTS) and ultra-high vacuum FTIR spectroscopy (UHV-FTIRS). Exposing clean ZnO powder to water at 323 K leads to both molecular and dissociative adsorption of H₂O forming a number of hydroxyl species. All the OH bands are clearly identified by the adsorption of D₂O showing the expected isotopic shifts. According to the vibrational and thermal stability data obtained from single crystal surfaces, the OH species observed on ZnO nanoparticles are identified as follows: (1) OH group (3620 cm⁻¹) on the polar O–ZnO(000Ī) surface formed *via* dissociation of water on oxygen vacancy sites; (2) partial dissociation of water on the mixed-terminated ZnO(10Ī0) surface yielding coexistent H₂O (~3150 and 3687 cm⁻¹) and OH species (3672 cm⁻¹), where the molecularly adsorbed H₂O is further identified by the characteristic scissoring mode at 1617 cm⁻¹; (3) isolated OH species (3639 and 3656 cm⁻¹) formed on the mixed-terminated ZnO(10Ī0) surface; (4) interaction of water with defects forming hydroxyl (or O–H···O) species (3564 and 3448 cm⁻¹).