DOI: 10.1002/ejic.200800046

Organometallic Access to Intermetallic θ -CuE₂ (E = Al, Ga) and Cu_{1-x}Al_x Phases

Mirza Cokoja,^[a] Balaji R. Jagirdar,^[b] Harish Parala,^[a] Alexander Birkner,^[c] and Roland A. Fischer^{*[a]}

Keywords: Alloys / Intermetallic phases / Copper / Aluminum / Nanotechnology

In this work, we compare different precursor approaches for the mild decomposition to copper-aluminum and -gallium powder materials in nonaqueous solution. Referring to previous work on the preparation of Cu-Al alloy materials from $[(AlCp^*)_4]$ and $[CpCu(PMe_3)]$, the amine-stabilized metal trihydrides [(Me₃N)AlH₃] and [(quinuclidine)GaH₃] were used as alternative sources for Al and Ga. In a comparative study, $[(Me_3N)AlH_3]$ and $[(AlCp^*)_4]$ were treated with the Cu precursors [CpCu(PMe₃)] and [{Cu(mesityl)}₅] in mesitylene solution in various molar ratios at 150 $^{\circ}$ C and 3 bar H₂ to give metallic precipitates of the composition $Cu_{1-x}Al_x$ (x = 0.67, 0.50, 0.31). Whereas the combination $[(AlCp^*)_4]$ with $[{Cu(mesityl)}_5]$ did not yield an intermetallic phase, all other Cu/Al precursor combinations led to alloyed Cu-Al materials. For x = 0.67, the θ -CuAl₂ phase formed, as shown by X-ray powder diffraction (XRD) and solid-state magic-anglespinning (MAS)NMR spectroscopic studies. Similarly, the reaction of [{Cu(mesityl)}₅] with [(quinuclidine)GaH₃] immediately led to the precipitation of a gray powder, without the addition of hydrogen. The powder was identified by means of XRD as θ -CuGa₂. At x = 0.50 and below, the reactions were less phase selective depending on the precursor combination. [CpCu(PMe₃)] combined with both Al precursors afforded a mixture of several Cu–Al phases, whereas [{Cu(mesityl)}₅] was treated with [(Me₃N)AlH₃] to yield a material whose X-ray signature was assigned to the monoclinic Cu_{0.51}Al_{0.49} phase. The γ -Cu₉Al₄ phase could not be obtained from [CpCu(PMe₃)]; instead, solid solutions of α -Cu were obtained. The treatment of [{Cu(mesityl)}₅] with [(Me₃N)AlH₃] in the Cu/Al molar ratio of 9:4 (x = 0.31) gave a gray powder, which could be identified by XRD as γ -Cu₉Al₄.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)