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Initial Value Problems for 1st Order Ordinary Example: Constant Birth or Death Rate

Differential Equations

>/ (t) = Ay(t), y(0) = ¢

> Given:
:/ I interval » Corresponds to:
interv:
» D C R? set > ID :_]1%
» f(t,y): I x D — R? function b= 7_)\
> o € I initial time > flty) =X,
» o € D initial value : to =0,
=c
» Sought: Sl 3{0
Differentiable function y(t) : I — D with > Solution:
y'(t) = f(t,y(t)) for all t € I (differential equation) y(t) = ceM
and y(ty) = yo (initial condition)
G/A248 6/ 248
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Example: Damped Oscillation Example: Exploding Solution

> y'(t) = (5 %) u®), y(0) = (&) > o (t) = y(t)% y(0) =1

» Corresponds to: » Corresponds to:
» [ =R, » I =R,
» D=R2, » D=R,
> fty) = (2 ¥) v, > flty) =%,
> =0, > top =0,
> yo = (ci) > yo =1

» Solution: » Solution:

y(t) = e (Ao ) y(t) = 1 explodes for t — 1-
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Example: Many Solutions Differential Equations of Higher Order

> y'(t) = VIy(t)], y(0) =0
» Corresponds to:

» Differential equations of higher order can be transformed

: f)::]% into systems of 1st order by introducing new unknowns.
> f(t,y) 7: /Ty, » Example: mechanical system
» 1 =0, » Mz (t) + Ra'(t) + Kx(t) = F(t), 2(0) = zg, ' (0) = vg
> 5o =0 » Introducing v(t) = 2/(¢) leads to
» Solutions: z'(t) = v(?),
y(t) = 0 V()= M1F(#) - M 1Rv(t) — M~ 1Kz(t),
z(0) =z, v(0) = vg
y(t) = 0 fort <0 » This corresponds to
142 T
gt° fort >0 y(t) = (UEB),
_ 0 0 1
and infinitely many further \ flt,y) = (M_lF(t)) +(_nik —mtR)Y
solutions ‘
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Unique Solvability Dependence on the Initial Values

» If f is twice continuously differentiable w.r.t. the variable
Yy, the solution y of the initial value problem
y'(t) = f(t,y(t)), y(to) = yo is a differentiable function of
the initial value yo, i.e. y(t) = y(t;v0).

» If f is continuously differentiable w.r.t. the variable y,
there is an interval J = (t_,t4) C I with ¢p € J and a
unique function y, which is continuously differentiable on J
and which solves the initial value problem ¢/(t) = f(t,y(t)),
y(to) = ¥o. » The derivative Z(t) of the function vy — y(¢; yo) solves the

» Either J = I or y(t) tends to the boundary of D for ¢t — t. initial value problem

(4 — . _
» If the derivative of f w.r.t. the variable y remains bounded Z'(t) = Dy f(t:y(t:10)) 2 (1), Z(to) = I
on I x D, then J = 1. Here D, f(t,y) denotes the Jacobian of f w.r.t. the variable

y and [ is the identity matrix.
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Example: Damped Oscillation Numerical Methods for Initial Value Problems
> /() = (5 3) y(t), y(0) = (&)
At [ c1cos(wt)—ca sin(wt)
> y(t) =e <cl sin(wt)+ca cos(wt) )
» Dyf(ty) = (3 ,\w) » Basic idea
» Z(t) = 21,1(t) 21,2(t) » Runge-Kutta methods
22’1(t) 22,2(t)
> Z(t) = (X ¥) 2(), 2(0) = I > Order
, 20 ’ » Stability
> 211(t) = Az1,1(f) —w221(t), 21,1(0) =1
212(t) = Az1,2(t) — w22.2(t), 21,2(0) =0
z31(t) = wz11(t) + Az2,1(2), 221(0) =0
25(t) = w212(t) + Az,2(t), 222(0) =1
13/ 248 14/ 248
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Basic Idea The Simplest Methods
» Approximate the solution y of the initial value problem at
discrete times tg < t1 < tg9 < .... » Explicit Euler Scheme:
» Denote by h; = t; .1 — t; the i-th time step size. o = Yo; haf (6.0 ™~
» The simplest scheme corresponds to h; = h for all 4, i.e. ZHII —_tm—:_h A
_ ; i+l =t i
b = to + th. o » Implicit Euler Scheme:
» Denote by 7; the approximation for y(¢;). no = Yo, ~
» Compute 7;+1 using f and 7; (single step methods) or Nir1 = N + hi f(tit1, Miv1), {
using f and 7;, ..., 9i_m (multi step methods). tiv1 =t +h
» Many methods, in particular Runge-Kutta methods, are » Trapezoidal Rule alias Crank-Nicolson Scheme:
obtained by applying a suitable quadrature formula to the "o = Yo, hy ™~
integral in the identity Mit1 = 1 + % [f (i m) + F(tig1, 1)), /
tiv1 =1+ h

tit1
Nit1 — i = Y(tiyr) —y(t) = /t f(s,y(s))ds.
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Runge-Kutta Methods Order
> 70 = Yo
" ) > A single step method is said to have the order p > 0, if
n’i,j :n2+h1;a’]kf(tl+ckh,nz7k) fOI'] = ].,...,7" |y(t1)_771| :O(hzl)—i-l)
r » The order is a measure for the error committed by
Nit+1 =i + I Z bif(ti + cih,mik) performing a single step of the method.
k=1 » If a single step method has order p and if f is continuously
tiyy =t + hy differentiable w.r.t. the variable y with a bounded
»0<c<...<¢ <1 derivative, then |y(t;) —n;| = O<(1I§a§' hj)p) for all i.
> r is called the stage number of the Runge-Kutta method. ==
T ol i PR ng 05 » Both Euler schemes are of order 1.
> e method is called explicit, if a;; = 0 for a .
) ) P S F =/ » The Crank-Nicolson scheme has order 2.
» The method is called implicit, if a; # 0 for at least one
k> 7.
17/ 248 18/ 248
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Stability Example: Damped Oscillation
—0.9 —6.3
. : N > ' (t) = (%5 Zos) u(t)
» The numerical method should yield a qualitatively correct y(0) = ()
solution for a large as possible range of step sizes. » Solution:
» For the initial value problem y/(t) = —100y(t), y(0) = 1 y(t) = e=0% <095(6~3t)>
with exact solution y(t) = e~ 0% we obtain: sin(6.3¢)
» The explicit Euler scheme yields a decaying numerical > 100 ist.eps of
solution only if h; < 5—10 for all 7. explicit Euler,
» The implicit Euler and the Crank-Nicolson scheme both implicit Euler,
yield a decaying numerical solution for every step size. Crank-Nicolson,

» Explicit schemes cannot be stable. )
SDIRK order 3,

SDIRK order 4
with h; = 0.1 for all ¢

» There are stable implicit Runge-Kutta schemes of arbitrary
order.
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Example: Undamped Oscillation

> /() = (63 ) y(®)
y(0) = ()

» Solution:
y(t) = (2?5((2.'33 )

» 100 steps of
explicit Euler,
implicit Euler,
Crank-Nicolson,

SDIRK order 3,
SDIRK order 4
with h; = 0.1 for all ¢

Boundary Value Problems

» Examples

» Existence and uniqueness of solutions

21/ 248
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Boundary Value Problems for 1st Order
Differential Equations

» Given:
> [ interval
a,b € I two different points
D C RY set
f(t,y) : I x D — R9 function
r(u,v) : R? x R? — R? function
» Sought:
Differentiable function y(t) : I — D with
y'(t) = f(t,y(t)) for all t € I (differential equation)
and r(y(a),y(b)) = 0 (boundary condition)

vV vy VY

Example: Damped Oscillation

> ' (1) = () y(®), y1(0) =1, yi(g5) =0
» Corresponds to:

| 4 I:R,

» D =R?,

» fhy) = (2,

> a=0,

> b:%’

» r(u,v) = (58)u+(98)v—(5)
» Solution:

y(t) = ()

23/ 248
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Example: Mechanical System Example: Eigenvalue Problem
» Mz"(t) + R2'(t) + Kx(t) = F(t), 2(0) = zo, x(L) = 2,
» Introducing v(t) = 2/(¢) leads to Sorehi bR and A\ € B with
> :la, b — €
2 () = v(t), j)ug are u : [a, b] an wi
V'(t) = M~YF(t) — M~'Ru(t) — M~ Kx(t), u'(t) = g(t, u(t)), p(u(a),ud), ) =0

» Corresponds to:

z(0) = xg, z(L) = 2, . y(t) = (u(t))
= (),

» This corresponds to

[zt » f(t,y) = (g(t(’)yl))7
y(t) = o(t) ) > r(u,v) = p(ug, vy, v2)
0 1

fty) = (M—lF(t)) + (—M*lK —M*lR) Y,

r(uv) = (§8) u+ (70) v — (&)
25/ 248 26/ 248
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Example: Free Boundary Problem Unique Solvability

» For boundary value problems there is no general existence
and uniqueness result similar to the one for initial value

blems.
» Sought are 5 > 0 and u : [0, 5] — R with problems

W/ (s) = g(s, u(s)), p(u(0), u(B)) = 0

» Corresponds to:

» The solvability and the the number of eventual solutions
depends on the particular example and the interplay of
differential equation and boundary condition.

> y(t) = <u(2’6))7 » Example: Oscillation

> =g >y () = () u®), (68)y(0) + (§)y(L) = (3)
» f(t,y) = (929“3273’1) ) » General solution of the differential equation:

> 7(,0) = plu, 1) y(t) = (& sienennen)

» L= 27”, a =0, 8 =1 leads to the contradictory conditions
ci=0and ¢; = 1.

» L= %’r, a =0, =0 leads to the single condition ¢; =0
such that co is arbitrary.
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» Denote by y(t; s) the solution of the initial value problem
y'(t) = ft,y()), y(a; s) = s.
» Then y(t; s) solves the boundary value problem
y() = £t y(®), r(y(a), y(b) = 0 i r(s, y(b; s)) = 0.
o » Using Newton’s method compute a zero of the function
> Basic idea F(s) = (s, y(b; 5)).
» Properties » The derivative DF'(s) of F' at the point s is
DF(s) = Dyr(s,y(b;s)) + Dyr(s,y(b;s))Z(b; s), where Z
solves the initial value problem
Z'(t;s) = Dy f(t,y(t; 5)Z(t; 5), Z(a;s) = I.
» Solve the initial value problems for y(¢;s) and Z(t; s)
approximately by a numerical method for initial value
problems using the same discrete times t; for both

Simple Shooting

problems.
29/ 248 30/ 248
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Simple Shooting Properties
0. Given an initial guess s(©) € R%. Set i = 0.
1. Compute an approximation 1")(¢) for the solution y® of » The initial value problems in step 1 have d unknowns.
the initial value problem y®'(t) = f(t,49 (1)), » The initial value problems in step 2 have d? unknowns.
J e initial value problems in step 2 are linear.
2. Using the same scheme and the same discrete times as in » The linear systems of equations in step 2 have d equations

step 1 compute an approximation ¢(*)(t) for the solution
Z® of the initial value problem

ZO'(t) = Dy f(t,nD () ZD(t), ZO)(a) = I. Set

DG — Dur(s(i) n(z‘)(b)) + Dvr(s(i) n(i)(b))g‘(i)(b). » If Newton’s method converges, the convergence speed is
7 ’ quadratic.

and unknowns.

» Newton’s method should be damped.

3. Solve the linear system of equations D As() = —F() Set
s+ = () 4 As() increase i by 1 and return to step 1.

31/ 248 32/ 248
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A Warning Example Multiple Shooting

» Boundary value problem:
y'(t) = (1% 1) y®), 31(0) = 1, 31(10) = 1

» Solution:
_ —10t ( 1 11¢
y(t) = cre™ (o) +c2e (1)
110 —100
. e —1 1—e L

Wlth Ccl1 = m, Cy = m > Ba.SlC 1dea
» The solution of the initial value problem with initial value > Properties

s is:

11s1 — s9 _ 10s1 + s2
y(t;s) = 7 ¢ 1ot (o) + Tellt(ﬁ)

» Exact initial vritlue:

* ~100
§* = 1—
(‘10"'21'61710?67100 )

» The wrong initial value s = (710 +110_9) with a relative
error of 10719 yields y;(10;5) ~ 1037,

33/ 248 34/ 248
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Observation
» Subdivide the interval [a, b] by choosing intermediate
pointsa=7 <7y <...<T, =b.
» For s1,...,5, € R denote by y(t; 7%, ;) the solution of
the initial value problem v/(t) = f(t,y(t)), y(7k; k) = Sk-
» Define the piecewise function y by setting y(t) = y(¢; 7, Sk.)
for i, <t <7py1 and 1 <k <m—1and y(7,,) = sp.

» Simple shooting breaks down since solutions corresponding
to different initial values may run away with an exponential

rate. » Then ¥ solves the boundary value problem
» This effect can be avoided by solving the initial value y'(t) = f(t,y(@®), r(y(a),y(b)) = 0 iff y(Thi1; Tk, Sk) = Skt
problems only on small time intervals. for 1 <k <m—1and r(s1, $p) = 0.
» This corresponds to a system of equations
F(s1,...,8y) =0 which can be solved with Newton’s
method.

» The evaluation of the derivative of F' requires the solution
of initial value problems on the intervals [7%, Tx11].
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Structure of DF Multiple Shooting I
G1 -1
Go —1 0
- DT loe Hlae STOGie 0 G. o 0. Given m points a =71, < ... < T, = b and m vectors
m—1 —
A 0 0 B sgo),.. ()eRd Setz—O
» Hence ever}.f Newton step requires the solution of a system 1. Compute approximations 709 (t), 1 < j < m — 1, to the
of the form: solutions y(*9) of the initial value problems
GIAS:[ - ASQ = _F]_; ey GmflASmfl - Asm = — m—1, y(lv.])/(t) f— f(t’y(lﬂ) (t))7 y(’h]) (7—]) — sg”b) for 1 SJ S m — 1
AA BAs,, = —F, 3 y ;
51+ Sm m Set Fj(z) = n(Z,J)(Tj+1) — 55'21 for1<j<m-—1
» Successive elimination of Assy, ..., As,, leads to

and F = r(sgi), 85,?).

m—1 m-—1

(A+ BGm-1...G1)As1 = —Fn—B > _( [] G)F;
j=1 i=j+1

37/ 248 38/ 248
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Multiple Shooting II Multiple Shooting III
3. Compute the matrix 4
2. Using the same scheme and discrete times as in step 1, HO = A0 4 B6) G(Z) . ng)
compute approximations (/) (t) for the solutions Z () of ‘ m—1 m—
the initial value problems and the vector ) = - BY Z H G(l
269 (8) = Dy (1,109 () 209)(t), 209)(z5) = I for =
1<j<m-1 Solve the linear system of equations
Set Gg-):C(W)(TjH) for1<j<m-—1 HOAs” = o0
dAG = Doy g )) and recursively compute the vectors
and AW = Dyr(s, ', sm As) =GN + B for 1 <k <m—1.
B® = Dyr(s{, s0). +(lz+1> o0 4 Al )
Set s, + As for 1 < k < m, increase ¢ by 1 and

return to step 1.
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Properties Finite Difference Methods

» With the same number of grid points on the total interval
[a, b], the initial value problems for the simple and multiple
shooting require the same amount of work.

v

Sturm-Liouville problem

v

Difference quotients
» The initial value problems on the sub-intervals can be

solved in parallel .

Difference discretization

v

) ] ] ] ) ) > Properties
» Lacking any further information, the intermediate points
Ti,...,Tm May be chosen equidistant.
41/ 248 42/ 248
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Sturm-Liouville Problem Generalization
. » Every Sturm-Liouville problem of the form
» Given: y ) 5 .
» p:[0,1] — R continuously differentiable function with —(pu)' +qu = f in (a,0), ula) = o, u(b) = B
p= min p(x) >0 can be transformed into an equivalent one with:
= o<
» ¢: [0, 1] — R continuous function with a=0,b=1,a=0,8=0.
q= r<n$11<11q( r) >0 » Look for a u of the form
o -« T —a
» Sought: u(r) = a+ ﬂb (x —a)+ v( 2 )
Twice continuously differentiable function u : [0,1] — R . —a —a
with with v(0) =0, v(1) =0
—(pu’) + qu = f in (0,1) (differential equation) and introduce a new variable by
and u(0) = 0, u(1) = 0 (boundary condition) T —a
b—a’
43/ 248 44/ 248
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Symmetric Difference Quotient

» The symmetric difference quotient is given by

h

Bup(e) = 3 (o + 2) — oo — )]

» Taylor’s formula yields for every sufficiently differentiable

function:

h2
Onp() = ¢'(2) + 5 ¢" (@ + Oh)
with a suitable 6 € (—3, 3).

45/ 248
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Finite Difference Discretization

Choose a mesh size h = ——

n+1°
For 1 <i<mnset f; = f(ih), ¢; = q(ih), Pix1 =p(ih £ %)
Compute ug, .. ., U1 such that

uo :07 Un+1 =0

and for 1 <i<n

1 1 1
fi= *ﬁpi,%ui—l + (ﬁ [Pi,% +Pi+%] +Qi) Ui — ﬁpi+%ui+1
Denote by wuj, the continuous piecewise linear function
which coincides at ¢h with u;.

AN
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= jlote 30— 5) —pte + e+ 3)
~ %[p(x = g)ahu(x — g) —p(x + g)ﬁhu(x + g)]
= % [p(a — g)(u(x) —u(z —h)) —plz+ g)(u(w +h) = u(z))]

» Impose the resulting equations only in grid points ih with
h:n%rlandlgign.

46/ 248
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Properties

» The difference discretization gives rise to a linear system of
equations with n equations for the n unknowns w1, ..., u,.

» The matrix is symmetric, positive definite and tridiagonal
with positive diagonal elements and non-positive
off-diagonal elements.

» The linear system admits a unique solution.

» The solution of the linear system with Gaussian elimination
or Cholesky decomposition requires O(n) operations.
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Error Estimate Variational Methods

» Suppose that:
» p is three times continuously differentiable.
» The solution u of the Sturm-Liouville problem is four times
continuously differentiable.

Basic idea

v

Weak derivatives

v

v

» Then the following error estimate is valid Sobolev spaces

max |u(x) — up(x)| < ch?. » Finite element spaces
0<z<1 .
» The constant ¢ depends on the lower bound g for ¢, the > Properties
derivatives up to order 3 of p and the derivatives up to
order 4 of u.
49/ 248 50/ 248
Numerical Methods | ] ) 1 Numerical Methods
LOrdinary Differential Equations @ S 2 LOrdinary Differential Equations M
LVariational Methods | 1 : x| LVariational Methods
Idea of the Variational Formulation Problems

» Multiply the differential equation with a continuously
differentiable function v with v(0) =0, v(1) =0
—(pu") (x)v(z) + q(z)u(z)v(z) = f(z)v(x) for 0 <z < 1.

- Titersete the vesull G 0 o i » The properties of the functions v and v must be stated

more precisely to obtain a well-posed variational problem.

1 1
/0 [—(pu’)’(:c)v(g:) + q(a:)u(m)v(w)]dx = /0 f(@)v(z)dz. » Classical properties such as ‘continuously differentiable’ are
» Use integration by parts for the term containing derivatives too restrictive.
1 » The notion ‘derivative’ must be generalised.
- /0 (pu) (x)v(z)dz » In view of the discrete problems, piecewise differentiable

functions should be differentiable in the new weaker sense.

1
= p(0)«/(0)v(0) — p(1)u'(1)v(1) + /0 p(x)u' (z)v' (z)dx
1
:/0 p(x)u (x)v (z)d.
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Weak Derivative Examples
» Every function which is continuously differentiable in the
» Integration by parts yields for continuously differentiable classical sense is weakly differentiable and its classical
functions v and v with v(0) = 0, v(1) = 0: derivative coincides with the weak derivative.

/1 Al = o)1) — w0 — /1 el () » Every continuous piecewise differentiable function is weakly
0 i ; 0 ’ differentiable and its weak derivative is the piecewise
1 . classical derivative.
- /0 Uzl {z)de. » u(x) =1— |22 — 1| is weakly differentiable with weak
» The function u is said to be weakly differentiable with 2 for0<z < %

. . . . . derivative w(z) = .
weak derivative w, if every continuously differentiable (=) —2 for % <z<l1

function v with v(0) = 0, v(1) = 0 satisfies

1 1
/ w(z)v(z)dr = —/ u(z)v' (z)dz. (Notice: The value w(3) is arbitrary.). A
0 0
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Sobolev Spaces Examples

» Every bounded function is in L?(0,1).

1 1 » v(z) = - is not in L?(0,1), since the integral of + = v(z)?
|v]| = {/ |v(m)|2dac}2 denotes the L2-norm. Ve ’
0

> . o
is not finite.
» L%(0,1) is the Lebesgue space of all functions v with finite > Every continuously differentiable function is in #(0,1).
L2-norm |v]|. » Every continuous piecewise differentiable function is in
» H'(0,1) is the Sobolev space of all functions v in L?(0,1) HY(0,1).
which admit a weak derivative that is contained in L?(0,1). > o(z) =1 — |2 — 1] is in H2(0, 1). N\

» H{(0,1) is the Sobolev space of all functions v in H*(0, 1)

» v(x) = 2/z is not in H'(0, 1), since the integral of
with v(0) = 0 und v(1) = 0. l( ) vz (0,1) g

1 = (v/(z))? is not finite.
» Univariate functions in H'(0,1) are always continuous
contrary to multivariate functions.
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Variational Problem Properties of the Variational Problem
Find u € H}(0,1) such that for all v € H}(0, 1) » The variational problem admits a unique solution.
1 1 » The solution of the variational problem is the unique
/ [p(x)u'(x)v'(x) + q(m)u(a:)v(x)]dm — / f(@)v(z)dz. minimum in H}(0,1) of the energy function
0 0 1

1 1
2/0 [p(m)u (:U)2 +q(x)u(x)2]dx /0 f(z)u(x)dz.
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Finite Element Spaces Finite Element Problem

» 7 denotes an arbitrary partition of the interval (0,1) into

non-overlapping sub-intervals. Find ur € S¢°(T) (trial function) such that for all

vr € SEO(T) (test function)

> k > 1 denotes an arbitrary polynomial degree.

. . . 1 1
» SKO(T) is the finite element space of all continuous / [p(:c)uir(x)v’T(ac) 1 q(x)uT(x)vT(x)]dw _ / F(@)vr(z)dz.
functions which are piecewise polynomials of degree at 0 0

most k£ on the intervals in 7T .

» SO(T) is the finite element space of all functions v in
S%0(T) with v(0) = 0 and v(1) = 0.
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Properties of the Finite Element Problem Nodal Basis Functions

» The finite element problem admits a unique solution. > Linear elements: Those functions which take the value 1 at
exactly one endpoint of an interval and which vanish at all
other endpoints of intervals.

» The solution of the finite element problem is the unique
minimum in S(A;'O(T) of the energy function.

» After choosing a basis for Sg 0(T), the finite element
problem amounts to a linear system of equations with
k- 47 — 1 unknowns and a symmetric positive definite
tridiagonal matrix (stiffness matrix).

» Quadratic elements: Those functions which take the value
1 at exactly one endpoint of an interval or midpoint of an
interval and which vanish at all other endpoints and
midpoints of intervals.

(quadratic elements).
> One usually uses a nodal basis for S5°(T). /\ /\

» Standard choices of k are 1 (linear elements) or 2
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Error Estimates Prerequisites for Finite Element and Finite

Volume Methods

» Denote by h7 the maximal length of the intervals in 7.

» Then the following error estimates hold for the solutions
of the variational problem and wy of the finite element

problem: » Sobolev Spaces

|u" — w'r| < crhr » Finite Element Methods
2

lu—ur| < e2hi » Finite Volume Methods

» The constants ¢; and ¢z only depend on the lower bound p
for p, derivatives up to order 1 of p, the maximal value of ¢
and derivatives up to order 2 of u.
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Sobolev Spaces

Basic idea

v

v

Integration by parts

Weak derivatives

v

v

Sobolev spaces

v

Properties of Sobolev spaces

v

Supplements
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Divergence Theorem

» Divergence:
d
. dw;
divw = g
T
i=1
» Divergence Theorem:

/divwd:p:/w-nds
Q I
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Reaction-Diffusion Equation

—div(AVu) +au=f inQ

u=0 onI

» O a polyhedron in R? withd =2 ord =3

» A(z) a symmetric positive definite, d x d matrix for every x
in ©

» «(z) a non-negative number for every x in 2
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Integration by Parts in Several Dimensions 1

» The divergence theorem applied to w = v(AVu) yields
/ vdiv(AVu)dx + / Vv - AVudx
Q Q

:/div(vAVu)dxz/divwdﬂcz/w-ndS
Q Q r
:/vn~AVudS.

r

> If v =0 on I, this implies
/ Vv - AVudzr = —/ vdiv(AVu)dz.
Q Q

68/ 248



Numerical Methods 1 / Numerical Methods
L Finite Element and Finite Volume Methods d L Finite Element and Finite Volume Methods
LSobolev Spaces J LSobolev Spaces

Idea of the Variational Formulation Problems

» Multiply the differential equation with a continuously
differentiable function v with v = 0 on I » The properties of the functions v and v must be stated
— div(AVu)(2)v(z) + a(z)u(z)v(z) = f(z)v(z) for z € Q. more precisely to obtain a well-posed variational problem.
» Classical properties such as ‘continuously differentiable’ are
too restrictive.

/Q[_ div(AVu)v + auv] dz = /Qf vdz. » The notion ‘derivative’ must be generalised.

» Use integration by parts for the term containing derivatives > In view of the discrete problems, piecewise differentiable

. functions should be differentiable in the new weaker sense.
—/ div(AVu)vdzr = / Vo - AVudz.
Q Q

» Integrate the result over (2
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Integration by Parts in Several Dimensions 11 Weak Derivative

» The divergence theorem applied to w = uve; (e; i-th unit
vector with ¢-th component 1 and vanishing remaining

components) yields » The function v is said to be weakly differentiable w.r.t. x;
" Ou " v with weak derivative w;, if every continuously differentiable
9 vdz + s -dz function v with v = 0 on T’ satisfies
Q 0% Q ox; 9
O(uv) / wivdr = — | usdz.
—/a'dm—/divwdw—/w-ndS a q Ox;
2 i @ r > If u is weakly differentiable w.r.t. to all variables
= / uvn;ds. x1,...,xq, we call u weakly differentiable and write Vu for
r the vector (wq, ..., wy) of the weak derivatives.

> If wu=0orv=0on I'| this implies

o vdr = — / U o dz.
Ja 0x; Jo Ox;
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Examples Sobolev Spaces

» Every function which is continuously differentiable in the
classical sense is weakly differentiable and its classical
derivative coincides with the weak derivative.

v

1
lv|| = {/ |v|2dav}2 denotes the L2-norm.

Q
» L%(Q) is the Lebesgue space of all functions v with finite
» Every continuous piecewise dif- L?-norm ||v||.

ierent%age fungti.on is Wial({ily fiif' » H'(Q) is the Sobolev space of all functions v in L?(Q),
e.zrent.la ian ; 155 wea 1 erl.va—l which are weakly differentiable and for which |Vv|, the
tive 1s the piecewlse classica Euclidean norm of Vv, is in L2(Q).

derivative.
» H1(Q) is the Sobolev space of all functions v in H'(Q)
with v =0 on I'.
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Examples Example: Radially Symmetric Functions in R?

v

Q) circle with radius 1 centred at the origin

Vo(Z,y) = (:L'2 + yQ)% with a € R

1
/ vidrdy = 277/ r2%rdr < 0o
Q 0

<= 2a0+1>-1 <= a>-1

1
/ Ve |?dedy = 271'/ ?r? 2rdr < 0o
Q 0
<— 2a—-1>-1 <= a>0
ve € HY(Q) <= a>0
v(x) = In(|In(y/22 + y2)|) is in H'(Q) but has no finite

value at the origin.

v

v

Every bounded function is in L?(Q).

Every continuously differentiable function is in H*(€2).

v
v

v

A piecewise differentiable function is in H'(Q), if and only
if it is globally continuous.

v
v

Functions in H'(Q) must not admit point values.

v

v
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Example: Radially Symmetric Functions in R? Variational Problem
>  ball with radius 1 centred at the origin
> U (z,y,2) = (22 +y* 4+ 2%)? witha eR
1
> / v2drdydz = 47r/ r2r2dr < oo Find u € H}() such that for all v € H(Q)
Q 0

20+2>—1 —3
<~ 2a-+2> — a>—5 /[Vv-AVu—i—auv]dx:/fvdﬂU-
Q Q

v

1
/|Vva\2da:dy = 47r/ ?r?* 2y < 0o
Q 0

= 2a>-1 < a>-3
va € HY(Q) <= a> -3

v

_1
v(z) = (2% + y* +y?) " 8 is in H'(Q) but has no finite value
at the origin.

v
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Properties of the Variational Problem Convective Derivatives

» The variational problem admits a unique solution. » A convective derivative a - Vu gives rise to the additional

» The solution of the variational problem is the unique term / a - Vuw on the left-hand side of the variational
minimum in H} () of the energy function problerﬁ.
1
3 / [Vu - AVu + auQ] dx — / fudzx. » Then the solution of the variational problem cannot be
Q Q

interpreted as the minimum of an energy function.
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Neumann Boundary Condition Weak Divergence

» A vector-field u: Q ¢ RY — R? is said to have the weak

» The boundary condition n - AVu = g on I'y C T is called divergence w : 2 — R if every continuously differentiable
Neumann or natural boundary condition. scalar function v satisfies
» It prescribes the flux or traction. / o — _/ "o
» [t gives rise to the additional term gv on the g 2
'y

right-hand side of the variational problem. » If u has the weak divergence w, one writes w = div u.

» If u is continuously differentiable, it has a weak divergence
which coincides with the classical divergence.
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; Q) Finite Element Spaces

» Partitions
» H(div;Q) ={u:Q = R :uc L2(Q)¢ and divu € L?(Q)}

» A piecewise differentiable vector-field is in H (div; 2), if and
only if its normal component is continuous across interfaces.

» Finite element spaces
» Local and global degrees of freedom

Nodal basis functi
» The space H(div;{2) plays a crucial role in mixed > hodal basis unctions

formulations of linearized elasticity which avoid the locking
phenomenon. » Evaluation of integrals

» Evaluation of the nodal basis functions

» Supplements
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Reaction-Diffusion Equation Basic Idea

» Subdivide €2 into non-overlapping simple sub-domains
called elements such as triangles, parallelograms,

Find u € H}(2) such that for all v € H}(Q2) tetrahedra of parallelepipeds, ... (partition).
» In the variational problem replace the space /}(Q) by a
/ [VU - AVu + ozuv] dr = / fudx. finite dimensional subspace consisting of continuous
Q Q functions which are element-wise polynomials (finite

element space).

» This gives rise to a linear system of equations for the
approximation w7 of the solution u of the differential

equation.
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Partition Remarks
7T ={K;:1<i< Ny} denotes a partition of Q with the » Curved boundaries can be approximated by piecewise
following properties: straight lines or planes.
> (2 is the union of all elements K in 7. » The admissibility is necessary to ensure the continuity of
» Admissibility: Any two elements K and in T are either the finite element functions and thus the inclusion of the
disjoint or share a vertex or a complete edge or, if d =3, a finite element spaces in Hg ().
complete face. » If the admissibility is violated, the continuity of the finite
el ‘ not admissible elemer}t funcjcions must b‘e enforced which leads to a more
complicated implementation.
» Affine equivalence: Every element K is a triangle or » Partitions can also consist of general quadrilaterals or
parallelogram, if d = 2, or a tetrahedron or parallelepiped, hexahedra which leads to a more complicated
if d = 3. implementation.
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Finite Element Spaces Remarks

span{z{"' - ... 2y a1+ ...+ g < k}
K reference simplex
> B(K)= span{z{* - ... -J:IZ” smax{ai,...,aq} <k} L 50 0
~ g - » The global continuity ensures that S™"(7) C H* ().
K reference cube }
IR » The polynomial degree k may vary from element to
> R (K) ={po Fg :D € Ry} element; this leads to a more complicated implementation.
> SPTHT)={v: Q= R:v|, € Re(K) forall K € T}
» ST =S"HT)nC@)
> SPUT) = SM(T) n Hy()
={vesS*T):v=00nT}
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Discrete Problem Properties of the Discrete Problem

» The discrete problem admits a unique solution.

: k0 : .
Find ur € §57(T) (trial function) such that for all » The solution of the discrete problem is the unique

k, .
T €5 %(T) (test function) minimum in Sg Y(T) of the energy function
1
= / [Vu - AVu + auQ] dx — / fudzx.
/ [Vur - AVur + aurvr|de = / forda. 2 Jq Q
Q Q

» After choosing a basis for Sg (T the discrete problem
amounts to a linear system of equations with ~ kN1
(N7 = #T) equations and unknowns.

91/ 248 92/ 248



Numerical Methods
L Finite Element and Finite Volume Methods

LFinite Element Spaces

Element-Wise Degrees of Freedom Nk

IS5
ZER0
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Nodal Basis Functions

The nodal basis function associated
with a vertex z € N is uniquely
defined by he conditions

> )\z,k' (S Sk’O(T),

> )\Z,k(z) = 1,
» A k(y) =0 for all
y € N7\ {z}.
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Global Degrees of Freedom N7

>

>

Nrw= | Mick kzlv.\
k=2 '

The functions in S¥9(T) are uniquely defined by their
values in N7 j thanks to the admissibility of T.
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Properties

v

v

v

v

{\.k : 2 € N34} is a basis for S¥O(T).
{M\ok: 2 € Nrj, \T'} is a basis for Sp°(T).
(Degrees of freedom on the boundary I' are suppressed.)

A. i vanishes outside the union of all elements that share
the vertex z.

The stiffness matrix is sparse.
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Evaluation of the Nodal Basis Functions by Examples for \;;
Transformation to a Reference Element > Reference triangle [\
» k=1 Verticesl —z—y, x, y
—— » k=2
N Vertices (1 — 2z — y)(1 — 2z — 2y), z(2x — 1), y(2y — 1)
» Reference elements K Midpoints of edges 4x(1 — x — y), 4zy, dy(1 — 2z — y)
» Determine the nodal basis functions /):g,k for the reference » Reference square |:|
element K. » k=1 Vertices (1 —2)(1 —y), (1 —y), zy, (1 —z)y
» k=2

» Determine an affine transformation of the reference element

Konto the current element K Vertices (1 — QI)((l z)(1-2y)(1-y),

z(2x —1)(1 - 2y)(1 —y), z(2z — L)y(2y — 1),

K>Zw— r=bg+ Bgr € K. (1—22)(1 —2)y(2y — 1)
» Express . ; in terms of A;  using the affine transformation i/hépomtls) O(fledge)s 4z(1 —z)(1 —y)(1 — 2y),
o (22 —1)y(1 — y),
Az k(T) = Az (@) 4o (1 — 2)y(2y — 1), dy(1 — y)(1 — 22)(1 — z)
Barycentre
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Examples for Affine Transformations Evaluation Using the Element Geometry (k = 1)
a Q2 a2 det(z — aj41, aj42 — aj41)

1
l
D

s & )‘aul(l’) -

ag ap ap ai ag —ay det(ai — A1, A2 — ai-‘rl)
bi = a0, Bk = (a1 — a0, a2 — ag) , (e) = det(x — a2, ai43 — Ai42)
. a2—> vk ag a; 2l det(ay — airz, airs — ait2)
ag A ag—a; . det(x —ajt9, Aj41 — ai+2)
bxg = ag, Bx = (a1 —ap, az — ao) a det(ai — Qj4+2, Aj41 — ai+2)
as N 3 Doy 1(z) = det(x — a;41,ai42 — A1, 8,43 — A;41)
g det(a; — a;4+1,ai+2 — A;41,8i43 — Ai41)
m a H-oA .
> 32—> z » Parallelepipeds similarly with 3 factors corresponding to 3
a a a; tetrahedra
bx = ag, Bk = (al —ap,az —ap, az — ao) » All indices must be taken modulo the number of element
» Similar formulae hold for parallelepipeds. vertices.
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Evaluation Using the Element Geometry (k > 2) Evaluation of Integrals
» Every A, can be represented as a suitable product of first » The exact evaluation of the integrals appearing in the
order nodal basis functions Ag, 1 associated with the entries of the stiffness matrix and load vector often is too
element vertices. expensive or even impossible.
» Example: triangle, k = 2 » The integrals are therefore approximately evaluated using a
» Vertex a; suitable quadrature formula:
)‘3172 = )‘ai [)\ai, - )\ai+l )‘az+2] . ) ) o
» Midpoint z of the edge with endpoints a; und a;;1 P pdz = Qk(p) = Z cqgo(q).
)\2,2 - 4)\a1 Aa7’+l q€QK

» In order to avoid that this spoils the accuracy of the finite

» Example: parallelogram, k = 2 ) R
element discretization, the quadrature formula must have

» Vertex a;

M2 = Aoy [Py — Aapes + Aaves — Aaps] the order 2k — 2 (k element degree):
a;, i i i+1 i+2 i+3
» Midpoint z of the edge with endpoints a; und a; / pdr = Qk(p) for all p € Ro2(K).
AZ,Q - 4)\87 [Aa,,Jrl - )\37,+2] K
» Barycentre =z » Order 0 is sufficient for linear elements; order 2 is sufficient
Az2 = 16Xa,Aa, for quadratic elements.
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Examples of Quadrature Formulae Neumann Boundary Condition
» Triangle:
» order 1:

» The Neumann boundary condition n- AVu =g on 'y CT

: ?K_T%Tcentre of K, gives rise to
» order q?: » an additional term gvdS on the right-hand side of the
: chK:r?ﬁ?r ifgisa(l)lf qedges of K, variational problem, o
» Parallelogram: » an additional term / gudS on the right-hand side of the
> ord»ergl K barycentre of K discrete problem. o
> ¢, = |K| 7 » The additional entries of the load vector are taken into
» order 3: account when sweeping through the elements.

» Of vertices, midpoints of edges and barycentre of K,

LK if g i . » Degrees of freedom associated with points on the Neumann
36 1I g 1S a vertex

A . . boundary 'y are additional unknowns.
> ¢g = 35|K]| if ¢ is a midpoint of an edge

18|K| if q is the barycentre
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Convective Derivatives Finite Volume Methods

» Convective derivatives lead to a non-symmetric stiffness
matrix.

v

Systems in divergence form

Finite volume discretization

v

» They often give rise to unphysical oscillations of the

numerical solution. Finite volume meshes

v

Numerical fluxes

v

» To avoid these oscillations special modifications such as
upwinding or streamline Petrov-Galerkin stabilization must
be introduced.

Relation to finite element methods

v
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Systems in Divergence Form Advective and Viscous Fluxes
» Domain: Q c R?
» Source: g: R™ x Q x (0,00) = R™
» Mass: M : R™ — R™ » The flux F splits into two components:
o . Rm mxd
> FIUX F:R™"—>R F = Eadv + Evisc'
» Initial value: Ugy: Q — R™ . . .
> Problem: Find U : @ X (0,00) — R™ such that under » F. ., is called advective flux and does not contain any
. . ) S derivatives.
suitable boundary conditions
OM(U) » F . is called viscous flux and contains spatial derivatives.
ot + divE(U) = g(U, z, ) in 2 x (0, 00) » The advective flux models transport or convection
U(-,0) = Uy in Q phenomena.

» The viscous flux models diffusion phenomena.

d
0 ij
» divE(U) = (§ : Ea(TUj)J)KKm
=1 o
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Examples Finite Volume Discretization
First Step
» Linear parabolic equations of 2nd order: .
1n arup : 1¢ equation na oraer » Choose a time step 7 > 0.
" o div(AVu) +a-Vu+au = f » Choose a partition 7 of Q into arbitrary non-overlapping
> E =1 polyhedra.
> =
> M(U) = u » FixneN*and K € T.
» F,4,(U)=au » Integrate the system over K x [(n — 1)7,n7]:
< Evisc(tj) = —-AVu
» g(U) = f—au+ (diva)u (91\/[ .
g(U) =/ (diva) / / M) gt + div F(U)dzdt
» Euler equations (n—1)T (n—1)7 JK
» Compressible Navier-Stokes equations _ / / (U, z,t)dxdt
» Burger’s equation (n—1
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Finite Volume Discretization Finite Volume Discretization
Second Step Third Step

» Assume that U is piecewise constant w.r.t space and time.

1 q
Apply integration by parts to the terms on the left-hand side: > Denote by Uy and U the value of U on K at times nt

and (n —1)7:
/(n_m/x al\f?(tU)dxdt =/ M(U(z, n7))dz / M(U(z, n7))dz ~ | K|M(UT)
) - [ MU 07 | MU, (n = Dr))da ~ [KMUS)
/(n . / div F(U)dzdt = / / ) - ngdSdt /(n 1)7_/8KE(U)'anSdt%T/aKF(U?<1)'anS

/ / g(U, z, t)dadt = 7|K|g(U%, zx, (n — 1)7)
(n—1)T
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Finite Volume Discretization Resulting Finite Volume Method

Fourth Step » For every element K € T compute

1
Uoz—/Ux.
TR Sy o

» For n =1,2,... successively compute for every element
T/ F(UXY)  ngdS KeT
0K
M(U%) = M(UR )

Approximate the boundary integral for the flux by a numerical
flux:

T Y, |0KNoK'[Fr(UE", UL

!/
K'eT |aKﬂaK ’ n—1 n—1
OKNOK'€E -7 Z TRl Fr(Uy UL )
K'eT
OKNOK'eE
+Tg(U"K71, i, (n—1)7).
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Possible Modifications Open Tasks
» The time step may be variable. » Construct the partition 7.
» The partition of 2 may differ from time step to time step. » Construct the numerical flux F+.
» The approximation of U% may not be constant. » Take boundary conditions into account.
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Construction of the Partition Perpendicular Bisectors and Barycentres
Perpendicular Bisectors Barycentres
» Often the partition 7 is constructed as a dual mesh
corresponding to an admissible primal finite element mesh
T.
» In two space dimensions (d = 2) there are two major
approaches for the construction of dual meshes:
» For every element K € T draw the perpendicular bisectors.
» Connect the barycentre of every element K € T with the
midpoints of its edges.
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Properties of Dual Meshes Advantages and Disadvantages of Perpendicular
Bisectors
» Every element in » The line segment g 1 Tg 2 and the edge £ are
K € T corresponds to perpendicular.
an element vertex x » The perpendicular bisectors of a triangle may intersect in a
of 7 and vice versa. point outside of the triangle. The intersection of the
» For every edge I/ of T perpendicular bisectors is inside the triangle, if and only if
there are two element the triangle is acute.
vertices xg 1, vp2 of T » The perpendicular bisectors of a quadrilateral may not
such that the line intersect at all. The perpendicular bisectors of a
segment Tg 1 TE,2 quadrilateral intersect in a common point, if and only if the
intersects E. quadrilateral is a rectangle.

» The construction with perpendicular bisectors is restricted
to two space dimensions.
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Construction of the Numerical Fluxes Approximation of Viscous Fluxes

Notations and Assumptions

» Assume that 7 is a dual mesh corresponding to a primal > Introduce a local coord%nate Eslisin 772T/171
Bt bt moesi 71, -..,Mq such that 7, is parallel to
Z1 22 and such that the remaining

» For every edge or face E of T denote by coordinates are tangential to £

» K; and K, the adjacent volumes,

> Uy, U, the values Up. " and Uy, > Express all‘ derivatives in F_ ;. ip terms of derivatives
> 11, 7o the element vertices in 7 such that the line segment corresponding to the new coordinate system.
71 T intersects E. » Suppress all derivatives except those corresponding to 7.
» Split the numerical flux F-(U;, U,) into a viscous » Replace derivatives corresponding to 7; by difference

numerical flux F7 ;..(U, Uz) and an advective numerical quotients of the form £1=£%

lz1—2|”
ﬂllX ET,adV(U17 UQ)
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Spectral Decomposition of Advective Fluxes Approximation of Advective Fluxes

» Denote by C'(V) = D(F,q.(V) - ng,) € R™*™ the
derivative of F

F, (V) -ng, wrt. V.
» Assume that this matrix can be diagonalized (Euler and T 00 ) = T 4 GO
Navier-Stokes equations fulfil this assumption.)

> Steger-Warming

QV)TIC(V)Q(V) = A(V)

» van Leer
with an invertible matrix Q(V) € R™*™ and a diagonal

matrix A(V) € Rm*™, Fr adav(U1, Us)
» Set 2" = max{z,0}, 2~ = min{z,0} and — [%C(Ul) + C’(%(Ul +Uy)) T — C(%(Ul + Ug))_}Ul

A(V)* = diag(A(V)iis-- - AV)EL).

mm

C(V)E = Q(V)A(V)FQ(V)™! + [%C(UQ) - C(%(Ul + Ut + C(%(Ul i Ug))‘}UQ
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Properties A One-Dimensional Example
» Burger’s equation: éLu + ua—u =0
ot ox
» Both approximations require the computation of > Fog(u) = %U2> C(u) = u, C(u)* = u*
DF ;. (V) - ng, together with its eigenvalues and » Steger-Warming:
eigenvectors for suitable values of V.
u% if ug > 0,us >0

» The approach of van Leer usually is more costly than the ) 5 .
uf +ujy ifug >0,u2 <0

one of Steger-Warming since it requires three evaluations of For a0 (U1, ug) =
. =T ,adv ) 2 q
C(V) instead of two. uj if ug <0,u2 <0
» This extra cost can be avoided for the Euler and 0 if up <0,u2 >0
Navier-Stokes equations since these have the particular
» van Leer:
structure F,4,(V) -ng, = C(V)V.
u% if Ul Z —Uug
ET,adv(U’l? u) = 2 .
us if ug < —ug
125/ 248 126/ 248
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TVD and ENO Schemes Relation to Finite Element Methods

» Suppose that 7 is a dual mesh corresponding to a primal
finite element mesh 7.

» The convergence analysis of finite volume methods is based
on compactness arguments, in particular the concept of
compensated compactness. » Then there is a one-to-one correspondence between
piecewise constant functions associated with 7 and

» This requires to bound the total variation of the numerical _
continuous piecewise linear functions associated with 7:

approximation and to avoid unphysical oscillations.

» This leads to the concept of total variation diminishing 0,—1/\m == 1,0 /54\m
SUTHT)" 2 U0r < Uz e ST
TVD and essentially non-oscillating ENO schemes. (7) T O (7)

UT|K = I~J7~.(xK) forall K € T.

» Corresponding material may be found under the names of
Enquvist, LeVeque, Osher, Roe, Tadmor, .. ..
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Efficient Solvers for Linear Systems of Equations Properties of Direct and Iterative Solvers

v

Properties of Direct and Iterative Solvers
» A typical model problem

» Classical Iterative Solvers
» Conjugate Gradient Methods » Properties of the stiffness matrix
» Multigrid Methods » Consequences for direct and iterative solvers

Indefinite Problems

v
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A Typical Model Problem Properties of the Stiffness Matrix

» Poisson equation
—Au=finQu=0onT

» Q=(0,1)2

» Courant triangulation
consisting of 2n? isosceles
right-angled triangles with
short sides of length
h=n"t

» Linear finite elements

v

It is symmetric positive definite.

v

It has 5 non-zero elements per row.
It has bandwidth /' ~ Nz,

Gaussian elimination requires N2 operations.

v

v

v

A matrix-vector multiplication requires 5/N operations.

v

Its smallest eigenvalue is of order 1.

Its largest eigenvalue is of order h=2 ~ N.

v

» Number N of unknowns is
of order n? = h=2.
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Typical Properties of Direct Solvers Typical Properties of Classical Iterative Solvers
» They require O(N) storage.
» They require O(N 275) storage for a discrete problem with » They require O(IV) operations per iteration.
N unknowns in d space dimensions. » Their convergence rate deteriorates with an increasing
» They require O( N3—§) operations. condition numeer of the discrete problem which usually is
» They yield the exact solution of the discrete problem up to O(h™*) = O(Na). o
onehn > In order to reduce an initial error by a factor 0.1 one
g errors. . .
] ] ) ) ) ) usually needs the following numbers of operations:
> They yield ail approxnilgtlon for the .dlfferentlal equation » O(N+%) with the GauB-Seidel algorithm,
with an O(h®) = O(N™ ) error (typically: a € {1,2}). > O(Nl+711) with the conjugate gradient (CG-) algorithm,
» O(N'*t22) with the CG-algorithm with Gauf-Seidel
preconditioning.
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Comparison of Solvers Comparison of Solvers
Arithmetic Operations Iterations
Example: Linear finite elements on a Courant triangulation for Example: Linear finite elements on a Courant triangulation for
the Poisson equation in the unit square; initial error is reduced the Poisson equation in the unit square; initial error is reduced
by the factor 0.05 by the factor 0.05
h | Gaussian el. GS CG PCG MG h GS | CG | PCG | MG
+ 7.6-10° | 2.6-10° | 2.7-10* | 1.6-10* | 1.2-10* | 236 12 41 1
2 2.8-107 | 4.5-10° | 2.2-10° | 8.6-10* | 4.9-10* 5 | 954 | 23 50 2
= 9.9-10% | 7.6-107 | 1.9-10% | 5.0-10° | 2.1-10° & | 3820 47 7| 2
5 3.3-10'° | 1.2-10° | 1.5-107 | 3.2-10° | 8.4- 10° 55 | 15287 | 94| 11 1
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Comparison of Solvers Conclusion

Iterations and Convergence Rates

Example: Adaptively refined linear finite element discretization
of a reaction-diffusion equation in the unit square with an
interior layer; initial error is reduced by the factor 0.05 » Direct solvers need too much storage and computer time.

» It suffices to compute an approximate solution of the

Oe LG, e discrete problem which, compared to the solution of the
DOF | It. Kk | It. Kk | It. K . . . P
differential equation, has an error similar in size to the one
9 410101 3lo02!] 4]03 of the exact solution of the discrete problem.
47 10 | 0.60 71 0.5 310.3 » Iterative solvers are superior if one arrives at improving
185 2410801121071 5102 their convergence rate and at finding good initial guesses.
749 49 1090 | 21 |08 | 5|04
2615 94 1095|3709 | 6|04
5247 | 130 | 096 | 55| 0.9 | 5| 0.4
137/ 248 138/ 248
Numerical Methods | 1 ) 1 Numerical Methods
LLinear Systems of Equations @ S ~ LLinear Systems of Equations M
LClassicsnl Iterative Solvers | & X LClenssical Iterative Solvers

Classical Iterative Solvers Nested Grids

» Often one has to solve a sequence of discrete problems
Lpup = fp corresponding to increasingly more accurate
discretizations.

» Usually there is a natural interpolation operator Ij_1 j
which maps functions associated with the (k — 1)-st
discrete problem into those corresponding to the k-th

» Comparisons discrete problem.

» Taking advantage of nested grids

» Richardson, Jacobi and Gauss-Seidel algorithms

» Then the interpolate of any reasonable approximate
solution of the (k — 1)-st discrete problem is a good initial
guess for any iterative solver applied to the k-th discrete
problem.

» Often it suffices to reduce the initial error by a factor 0.1.
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Nested Iteration The Setting

» Compute
Uy = Ug = Lalfo.

» For k=1, ... compute an approximate solution 1, for » We have to solve a linear system Lu = f with N unknowns.
U = lelfk by applying m;. iterations of an iterative solver » [ is symmetric positive definite.
for the problem » x denotes the condition number of L, i.e. the ratio of the
Lyug = fx largest over the smallest eigenvalue of L.
with starting value I, jug—1. > ke~ N3

> my, is implicitly determined by the stopping criterion

Ilfe — Lrtr|l < ellfx — Li(Tr—1,xUr—1)]|-
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Richardson Iteration Jacobi Iteration

» Tteration step: u +— u+ D~L(f — Lu)

» Iteration step: u — u + %(f — Lu) » D is the diagonal of L.

> w is called relaxation parameter. » The convergence rate is ’;—j& ~1—N-i.

» w must be comparable in size to the largest eigenvalue of L. » The algorithm corresponds to sweeping through the

» The convergence rate is % ~1—N—3. equations and solving the ¢-th equation for the i-th
unknown without modifying previous or subsequent

equations.
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Gauf3-Seidel Iteration SSOR Iteration

> [teration step:

» Sweep through the equations first in increasing order, then

in decreasing order.

Solve the i-th equation for the i-th unknown and write the
result in the form “old value plus increment”.

The new approximation for the i-th unknown then is the
old one plus a factor (usually 1.5) times the increment.

Immediately insert the new value of the i-th unknown in all
subsequent equations.

Iteration step: Sweep through the equations, solve the i-th
equation for the i-th unknown and immediately insert the
new value of the i-th unknown in all subsequent equations. .
» The convergence rate is :—j& ~1— N4

» The convergence rate is S+ ~ 1 — N~

2
P d.
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Comparison of Classical Iterative Solvers

Numerical Methods

LLineam Systems of Equations
L Classical Iterative Solvers

Comparison of Classical Iterative Solvers
Poisson equation on the unit square, Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = 6i4 linear finite elements on Courant triangulation with h = 6l4
Richardson Jacobi Gaufl-Seidel SSOR
convergence rate 0.992 convergence rate 0.837

convergence rate 0.752

convergence rate 0.513

g & 8 8
—
g 2
8

o o
" \ oo AN
. \ \ E
“ o . oo .
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Conjugate Gradient Methods The Setting

v

We have to solve a linear system Lu = f with N unknowns.

v

Gradient algorithm
» [ is symmetric positive definite.

» Conjugate gradient algorithm
» Preconditioning » x denotes the condition number of L, i.e. the ratio of the
largest over the smallest eigenvalue of L.
» Examples 2
» Kk~ Nd
149/ 248 150/ 248
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Idea of the Gradient Algorithm Gradient Algorithm
» The solution of Lu = f is equivalent to the minimization of > [teration step: Given the actual iterate u
the quadratic functional J(u) = Ju - (Lu) — f - w. » compute the residual r = f — Lu,
» The negative gradient —V.J(v) = f — Lv of J at v gives the > replace u by u + 77
direction of the steepest descent. » The gradient algorithm corresponds to a Richardson

iteration with an automatic and optimal choice of the

» Given an approximation v and a search direction d # 0, J )
relaxation parameter.

attains its minimum on the line ¢ — v + td at the point

_ (f-Lv)d s k=l 1 _2
t* = ST » The convergence rate is 73 ~ 1 — N~ d.
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Comparison of Richardson and Gradient

Algo
Po

rithms

isson equation on the unit square,

linear finite elements on Courant triangulation with A = é

Ppogogogogog oz e o=

Richardson Gradient
convergence rate 0.992 convergence rate 0.775

| AN ey
5l /\ﬁ/

B 0§ F E OB ¢
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The CG-Algorithm

0.

1.
2.

3.

Given: an initial guess ug for the solution, and a tolerance
e > 0.

Compute ro = f — Lug, dg = 10, Yo =70 - T0- Set i = 0.

If v; < €? return u; as approximate solution; stop.
Otherwise go to step 3.

Compute s; = Ld;, a; = %, Uil = u; + oid;,
Titl = Ti — Qi8i, Vil = Tit1 - Titl, i = 2t

Yi
di41 = ri41 + Bid;. Increase ¢ by 1 and go to step 2.
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Idea of the CG-Algorithm

> The gradient algorithm slows down since the search
directions become nearly parallel.

» The algorithm speeds up when choosing the successive
search directions L-orthogonal, i.e. d; - (Ld;—1) = 0.

» L-orthogonal search directions can be computed during the
algorithm by a suitable three-term recursion.
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Properties

» The CG-algorithm only requires matrix-vector
multiplications and inner products.

. 1 _1
» The convergence rate is Vil o1 - N-a.

VE+HL
» The CG-algorithm can only be applied to symmetric
positive definite matrices, it breaks down for
non-symmetric or indefinite matrices.
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The Idea of Pre-Conditioning The PCG-Algorithm
> Instead of the original system Lu = f solve the equivalent 0. Given: an initial guess ug for the solution, and a tolerance
system Lt = f with L= H'LHt, f = H-1f, 1= H'u e>0.
and an 1nvert1ble' square matrix H. 1. Compute rg = f — Luyg, solve C'zp = ry and compute
> Choose the matrix H such that: do = z0, Y0 =70 * 20. Set ¢ = 0.
» The condition number of L is much smaller than the one of 2 . .
I 2. If v; < e” return u; as approximate solution; stop.
» Systems of the form Cv = d with C = HH® are much easier Otherwise go to step 3.
to solve than the original system Lu = f. 3. Compute s; = Ld;, a; = dzz;%’ Uip1 = U; + ayd;,
» Apply the conjugate gradient algorithm to the new system Titl = Ti — 045, solve CZf”" = ri+1 and compute
Lu = f and express everything in terms of the original Vil = Titl - Zit1, Pi = %1’ di+1 = Ziy1 + Bidi. Increase ¢
quantities L, f, and u. by 1 and go to step 2.
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Properties SSOR-Preconditioning

0. Given: r and a relaxation parameter w € (0, 2).
Sought: z = C~lr.

1. Set z =0.

2. Fori=1,...,N comlj)vute

» The convergence rate of the PCG-algorithm is g: where

% is the condition number of L.

» Good clhoices of C, e.g. SSOR-preconditioning, yield ) 2z =z + wLi_il{ri — Z szl
k = Nd and corresponding convergence rates of 1 — N~ 2d. j=1
3. For v = N,...,1 compute
N
2i = Z; wL;l{n = Z Liij}.
j=1
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Comparison of CG and PCG Algorithms Comparison of CG and PCG Algorithms
Poisson equation on the unit square, Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = é linear finite elements on Courant triangulation with h = 1;—8
CG SSOR-PCG CG SSOR-PCG
convergence rate 0.712 convergence rate 0.376 convergence rate 0.723 convergence rate 0.377
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The Multigrid Algorithm The Basic Idea of the Multigrid Algorithm

Numerical Methods

» Classical iterative methods such as the Gauf-Seidel
» The multigrid idea algorithm quickly reduce highly oscillatory error
Multierid aleorith components.
> igrid algorithm
! g ) 5 ) . » Classical iterative methods such as the Gauf-Seidel
> Westimision, prelemzsiion £me Smest g algorithm are very poor in reducing slowly oscillatory error
» Convergence components.

» Slowly oscillating error components can well be resolved on
coarser meshes with fewer unknowns.
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The Basic Two-Grid Algorithm Schematic Form
N N
» Perform several steps of a classical iterative method on the :
. Two-Grid Rl TP
current grid.
» Correct the current approximation as follows: e
» Compute the current residual. G G
> Restrict the residual to the next coarser grid. — —
» Exactly solve the resulting problem on the coarse grid.
» Prolongate the coarse-grid solution to the next finer grid. Rl TP
» Perform several steps of a classical iterative method on the Multigrid _g__) _g__)
current grid.
R | |7
£
-
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Basic Ingredients The Multigrid Algorithm

0. Given: the actual level k, parameters u, v1, and o, the
matrix Ly, the right-hand side f, an initial guess ug.

» A sequence 7 of increasingly refined meshes with Sought: improved approximate solution wy.

associated discrete problems Lipuyg = f. 1. If k = 0 compute ug = L_lfo' stop
. _— - 0 -~ .

v

A smoothing operator My, which should be easy to

) ] i 2. (Pre-smoothing) Perform v steps of the iterative
evaluate and which at the same time should give a

procedure ug — up + My (frx — Liug).

. . 1
reasonable approximation to L, . 3. (Coarse grid correction)
» A restriction operator Ry x—1, which maps functions on a 3.1 Compute fy_1 = Rgx_1(fx — Lruy) and set uj,_y = 0.
fine mesh 7 to the next coarser mesh 7T;_1. 3.2 Perform p iterations of the MG-algorithm with parameters
» A prolongation operator Ix_; , which maps functions from k=1, u, v1, v2, L1, fe-1, up—1 and denote the result by
Up—1-

a coarse mesh 7,_1 to the next finer mesh 7. 3.3 Update we — we + To_1 ptte_1.

4. (Post-smoothing) Perform vy steps of the iterative
procedure ug — up + My (frx — Lipug).

167/ 248 168/ 248



Numerical Methods | ] /] Numerical Methods
LLinear Systems of Equations A LLineaur Systems of Equations
L The Multigrid Algorithm s N L The Multigrid Algorithm

Typical Choices of Parameters Prolongation and Restriction

» The prolongation is typically determined by the natural
inclusion of the finite element spaces, i.e. a finite element
function corresponding to a coarse mesh is expressed in

> p=1 V-cycle or terms of the finite element basis functions corresponding to
u =2 W-cycle the fine mesh.

> V] =Vy =V Or 0 0
vi =v,vy=0o0r % 0
v1=0,1n=vr ; 2 0 ; 0

» 1 <v <4 2

» The restriction is typically determined by inserting finite
element basis functions corresponding to the coarse mesh
in the variational form of the discrete problem
corresponding to the fine mesh.
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Smoothing Number of Operations

» GaufBl-Seidel iteration

» SSOR iteration: » Assume that
» Perform a forward GauB-Seidel sweep with over-relaxation » one smoothing step requires O(Nj) operations,
as pre-smoothing,. » the prolongation requires O(Ny) operations,
» Perform a backward Gauf3-Seidel sweep with over-relaxation » the restriction requires O(Ny) operations,
as post-smoothing. > u <2,
» [LU smoothing: » N > uNg_1,
» Perform an incomplete lower upper decomposition of L by » then one iteration of the multlgrld algorithm requires
suppressing all fill-in. O(Ny) operations.

» The result is an approximate decomposition LUy ~ Ly,.
» Compute vy = Myuy by solving the system LpUrvr = ug.
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Convergence Rate

» The convergence rate is uniformly less than 1 for all
meshes.

> The convergence rate is bounded by - with a » CG-type algorithms

constant which only depends on the shape parameter of the
meshes.

» Multigrid algorithms

» Numerical experiments yield convergence rates less than
0.1.
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CG Algorithm for Non-Symmetric or Indefinite Bi-CG-Stab Algorithm
Problems

0. Given: an initial guess ug and a tolerance £ > 0.

» The CG algorithm typically breaks down when applied to
non-symmetric or indefinite problems (stiffness matrix has

1. Compute rg = b — Lug and set 79 = rg, v—_1 =0, p_1 =0,
a1=1,p1=1, w1 =1 and i =0.

eigenvalues with positive as well as negative real part). 2. If r; - 7; < €2 return u; as approximate solution; stop.
» A naive solution is to apply the CG algorithm to the Otherwise go to step 3.
symmetric positive definite system of normal equations 3. Compute p; =T; - 15, Bi_1 = 2%=1_ If |B;_1| < ¢ there
> e Pi—1wi—1" -

LTLu=1L"f.

» This doubles the number of iterations since the passage to

may be a break-down; stop. Otherwise compute
pi =1+ Bica{pic1 — wi1via}, v = Lpy, o = 25 If

Tov; "

the normal equations squares the condition number.

A preferable solution are specialised variants of the CG
algorithm such as the stabilised bi-conjugate gradient
algorithm (Bi-CG-Stab algorithm).

175/ 248

|| < e there may be a break-down; stop. Otherwise
compute s; = 1; — oV, t; = Ls;, w; = %24,

7 1

Uil = U; + Q;D; + w;iSs, Tir1 = S — wit;. Augment 4 by 1

and go to step 2.
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Properties Multigrid Algorithms for Non-Symmetric or

Indefinite Problems

» The Bi-CG-Stab algorithm aims at a simultaneous solution
of the original problem Lu = f as well of the adjoint

problem LTv = f. » Multigrid algorithms can directly be applied to

> The algorithm only needs the stiffness matrix L of the non-symmetric or indefinite problems.
original problem. » Eventually one as to resort to a specialised smoother.

» It only requires inner products and matrix vector » The Richardson iteration applied to the normal equations
multiplications. is a robust smoother which however yields convergence

» The Bi-CG-Stab algorithm may be preconditioned; possible rates of about 0.8.
methods for preconditioning are the SSOR iteration or the » The ILU decomposition is a robust smoother too, but more
ILU decomposition applied to the symmetric part costly and yields convergence rates of about 0.5.

$(L+LT) of L.
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Linear and Non-Linear Optimization Problems Linear Optimization Problems

» Linear Optimization Problems

v

Motivation
» Unconstrained Non-Linear Optimization Problems

v

Forms of linear optimization problems
» Constrained Non-Linear Optimization Problems.
Optimality

v

The Simplex algorithm

v

. . . Dual problems
» Constrained Non-Linear Optimization Problems.

Algorithms

v

Complexity of the Simplex algorithm

v

» Global Optimization Problems atpexien peuth masilhods
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A Motivating Example Geometric Interpretation of the Example

> A small company produces two models of shoes.
» The net profit is 16 $ and 32 $, resp. per shoe.

» The required material is 6dm? and 15dm?, resp. per shoe;
there are 4500dm? available per month.

v

The required machine-time is 4h and 5h, resp. per shoe;
the available total time is 2000h per month.

The required man-time is 20h and 10h, resp. per shoe; the
available total time is 8000h per month.

v

v

The company wants to maximize its profit, this lead to the
optimization problem:

maximize 16z + 32y subject to the constraints

62 + 15y < 4500, 4z + 5y < 2000, 20z + 10y < 8000, = > 0,
y > 0. 162 + 32y = const  set of constraints
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General Form of Linear Optimization Problems Standard Form of Linear Optimization Problems
> Given: > Given:
> two integers 1 <m < n > two integers 1 <m < n
» a vector c € R” » a vector c € R”
» a matrix A € Rm*" » a matrix A € Rm*"
» vectors b, b € [RU {—o0, 00}|™ » vector b € R™
» vectors £, u € [RU {—00, c0}]” » Sought:
> Sought: a minimum of the function R" > z — clx € R
a mlnlmum Of the funCtiOl’l R’I’L ST Ctx € R Subject to the Constraints
subject to the constraints » Az = b
» b< Az <b » x>0
>»l<z<u » Theset P={z €R": Az =b, x > 0} is called the set of
» All inequalities have to hold for all components of the admissible vectors associated with the optimization
corresponding vectors. problem.
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Simplex Form of Linear Optimization Problems Equivalence of the Various Forms of Linear
Optimization Problems

> Given:
» two integers 1 <m <n
» a vector ¢ € R » The function = +— c'z is minimal, if and only if the function
» a matrix 4 € R™*" x +— (—c)tr is maximal.
> vector b € R™ Hence, it is sufficient to consider minimization problems.
> Sought: » The equality y = b is equivalent to the two inequalities
a maximum of the function R 5 z — 2z € R y < bandy >0
subject to the constraints > An inequality y < b is equivalent to equality vy + z = b plus
> Az =1b the inequality z > 0.
» clx+2=0 .
The vector z is called slack vector.
» x>0
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Properties Basic Idea of the Simplex Algorithm

> Given a vertex of P find a neighbouring vertex with a

» The set P of admissible vectors is a simplex. smaller value for ¢tz

> If the set P is empty, the optimization problem is not

» If such a neighbour does not exist, the current vertex solves
solvable.

the optimization problem.
» If the function z — c'z is not bounded from below on P,

o i > A vector z € R™ is a vertex of P, if it has m non-negative
the optimization problem is not solvable.

components and n — m vanishing components and solves
> If the set P is not empty and bounded, the optimization the system Az = b.

problem admits a solution. > When freezing n — m components of = to zero, the system

» The solution may not be unique. Az = b reduces to a linear system of m equations and m

» Every solution is attained at a vertex of the set P. unknowns involving only those columns of A which
correspond to the unfrozen components of z.
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Tasks Finding a Vertex

» Given an index set J = {j1,...,Jm} C {1,...,n}.
» Set T, =0forall k & J.
Denote by A; the m x m matrix which is obtained by
discarding all columns of A corresponding to indices not
» Find a vertex of P. contained in J.
» Solve the linear system of equations A ;y = b.
» Set T;, =y; fori=1,...,m.
» If 7; > 0 for all j € J, T is a vertex of P.

v

» Decide whether a given vertex is optimal.

» Find a neighbouring vertex with a smaller value of c‘z.

> If
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Checking for Optimality and Solvability Finding a Neighbour with a Larger Value of c'z

» Given a vertex T of P which is not optimal and which
guarantees the solvability of the optimization problem.

» Choose an index s ¢ J such that ¢; < 0 and such that @,
the s-th column of A, has a positive entry.

» Find an index r € {1,...,m} such that @, > 0 and such

» Given a vertex T of P.
» If ¢, > 0 for all k & J, T solves the optimization problem.

» If, for all s & J with ¢, < 0, the corresponding column of A

By oo . [T .
is non-positive, the optimization problem has no solution. CoEl G 19 smilatimeel exontg £l B shone a; VA TPeSBNE

denominator.

» Remove the r-th entry from the index set J and put s into
J.

» Update 7, 4, b, 8 and ¢.
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Comments Complexity of the Simplex Algorithm

» The update can be performed by dividing the r-th row of

the matrix by @, and subtracting the result from the other > Every step of the Simplex algorithm requires

rows of that matrix. O((m +1)(n+ 1 —m)) operations.
» The simplex algorithm may run into a cycle since different

» The Simplex algorithm stops after at most (:1) iterations
index sets J may lead to the same value of c'z.

with a solution or the information that the optimization
» The cycling can be avoided by introducing a suitable problem has no solution.

ordering of the vectors . » In the worst case the overall complexity is 0(2% (%)2)

» The first index set J can be determined by applying the operations.
simplex algorithm to a suitable auxiliary optimization
problem which has unit vectors as vertices.
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Dual Problem Idea of Interior Point Methods

- ey wertiess yelds s e b for e Sueon @ » The Simplex algorithm sweeps through the boundary of P.

) . » Interi int method th h the interi fp.
» To obtain a lower bound for ¢!z one has to consider the nterior point methods sweep throug © Mmierior Gif 17

dual optimization problem: » They try to simultaneously solve the original and the dual

Find a maximum of the function R™ 3 y + b'y € R subject Gt eslsl Sk

to the constraint Aly < c.

The minimal value of ¢z and the maximal value of b’y are
identical.

The dual problem can be solved with a variant of the
Simplex algorithm which works with the original data A, b
and c.

195/ 248

They reformulate both problems as a system of algebraic
equations to which Newton’s method is applied.

They yield an approximation with error € with a
complexity of O(y/nIn(”)) operations.
This approximation is projected to a close-by vertex of P

and a few steps of the Simplex algorithm then yield the
exact solution.
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Basic Form of Interior Point Methods Improved Form of Interior Point Methods

» Given a vector x denote by X the diagonal matrix which

has the components of x as its diagonal entries. o )
» The derivative DW¥q(x,y, s) becomes nearly singular when

» Consider the optimization problem (z, 1, 5) approaches the solution (z*,y*, s*).

min{c'x : Ar = b,z > 0} and the corresponding dual

problem max{bly : Aly + s = ¢, s > 0}. » To stabilize the derivative, apply Newton’s method to

» Then (z*,y*, s*) solves both problems if and only if S — 1
Vo (z*, y*, s*) = 0 where Aly+s—c
U, (x,y,s) = 1
Ax —b Xs—p ( : >
Uo(z,y,8) = | Aly +s—¢ i
Xs and let tend p to 0 in a judicious way.

» Apply Newton’s method to this system of algebraic

equations.
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Unconstrained Non-Linear Optimization Problem Setting
Problems
> Given:

» a non-empty set D,
» a function f: D - R

v

Problem setting

. , ) > Sought:

> Newton’s method » a minimizer of f, i.e. z € D with
» Minimization methods in one dimension f(x) < f(y) forally € D

» Minimization methods in several dimensions » Short-hand notation:

min{f(z) : x € D}
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Local vs. Global Minima Optimality Conditions

° » If f is differentiable, then every local minimum is a critical
point, i.e. satisfies D f(x) = 0.
» If f is twice differentiable, x is a critical point and the
Hessian D?f is positive definite, then z is a local minimum.

> Ideally, we are looking for a global minimum.

» In most cases we have to be satisfied with a local minimum.
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D) . .
Newton’s Method Difficulties

0. Given: initial guess x¢ and tolerance &.

Set n = 0. Newton’s method at best yields a critical point, its result
1. If | Df(zy)| < e, go to step (3). may be a maximum or a saddle-point.

v

2. Solve the linear system
DQf(xn)Zn = —Df(l‘n),
set

v

The algorithm requires second order derivatives.

v

Checking the positive definiteness of a matrix is expensive.

A critical point may be a local minimum although D?f is

Tntl = Tn + 2n, only positive semi-definite, e.g. f(x) = 2*.

increase n by 1 and got to step (1).
3. Check whether D?f(x,,) is positive definite.

v
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Goals One-Dimensional Minimization by Bisection
Idea
» Assume that the function f : [a,b] — R is continuous and
» Develop algorithms which at least find a local minimum. that there is a point = € (a,b) with f(z) < min{f(a), f(b)}.
» Develop algorithms which need as few derivatives as
possible.
» Embed Newton’s method into a larger class of algorithms
to gain more flexibility and insight.
» In view of future applications, develop efficient algorithms
for line search, i.e. for the minimization of functions of one » Then f admits a local minimum 7 € (a,b) and f'(n) = 0 if
variable. f is differentiable.
» Determine the midpoint w of the smaller one of the two
intervals [a, z] and [z, b] and suitably choose three points
out of {a,z,u,b}.
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One-Dimensional Minimization by Bisection One-Dimensional Minimization by Bisection
Algorithm Properties

0. Given: points ag < zg < by with f(z¢) < min{ f(ao), f(bo},

tolerance € < 0. Set k = 0. > @ <y < g o el

1. Combpute 1. — %(bk"!‘xk) e xkf%(ak"!‘bk)y b f(xk) < min{f(ak)’ f(bk)} for all k.
' PURC U = Latan) if 2> 1 (antbe). > by, —ag < (3)* ! (bo — ao) for all k.
If f(xg) < f(ug), set xx+1 = zx and » For every prescribed tolerance, the algorithm yields an
a e if 2p< (art+br), b e if <3 (aptby), interval with length less than the tolerance which contains
R up, i @ >4 (ap+by), 7 R by if 25> 4 (ag+by). a local minimum of f.
If f(ug) < f(xg), set Tx41 = ug and » If f is differentiable, the common limit point 7 of the
a _ St @, <3 (ar+by), b _ ) bwif 25 <3 (ap+by), sequences ag, by and xj. is a critical point of f, i.e.
fonL ay, if $k>%(ak+bk), 9 Ul xy if $k>%(ak+bk)~ f’(n) = 0.
2. Increzxs; k by 1. If by, — ag < € stop. Otherwise return to » If f is twice differentiable f” (1) > 0.
step (1).
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General Descent Algorithm Choice of the Search Direction

» Smaller values of v give more flexibility in the choice of the

0. Given: parameters 0 < ¢; < ¢y <1, 0 < v <1 and initial L arr

guess g € R™. Set k = 0.

» In the limiting case v — 0, the only condition is that the
1. If Df(zx) = 0 stop, otherwise proceed with step (2).

search direction must not be orthogonal to the negative

2. Choose a search direction s € R™ with ||sx|| = 1 and gradient —D f(xy,).
—Df(zk)sk = YD f(zk)ll- » The choice s = ||Df(:r ) Df xy) is feasible for all values
3. Choose a step size A\, > 0 such that of v and corresponds to tLe damped Newton method.
f ("’fk + Mesk) < flak) + ).\kchf (x))sk and » When applied to f(z) = 32’ Az — b'a with a symmetric
D f(xr + Ars)sk = 2D f (k) sk positive definite matrix A, the general descent algorithm
4. Set xy11 = x) + A\iSk, increase k by 1 and return to step with a suitable choice of search directions covers the
(D). gradient algorithm and (preconditioned) conjugate gradient
algorithms.
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Choice of the Step Size Properties of the General Descent Algorithm

» Exact line search: The step size A is chosen such that it
minimizes the function ¢ — f(zy + tsg) on the positive real

line.
» The sequence f(zj) is monotonically decreasing.

» Armijo line search: Fix a constant o > 0, determine k0
such that A; o > o||Df(zy)| and determine the smallest
integer ji satisfying
flzp+2~ Jk/\k Osk) < f(zg) + 27 c1 D f () 5%, point of f.
Set A\, =2~ Jk)\k:() or
A =27 & O with
flzg +275 X OSk) = min; f(zx + 2_i)\z,05k)-

» The sequence x; admits at least one accumulation point.

» Every accumulation point of the sequence zy, is a critical
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Optimality
» A set C C R" is called convex, if for all 2,y € C and all
A € [0, 1] the point Az 4 (1 — A\)y is contained in C' too.
» Convex optimization problems
» Optimality conditions for convex optimization problems
» General non-linear optimization problems convex: set non-convex set
p p » A function f: C — R™ on a convex set is called convex, if
» Optimality conditions for general non-linear optimization for all z,y € C and all X € [0,1] the inequality
problems FOz 4+ (1= A)y) < Af(x) + (1= N) f(y) is valid.
convex function non-convex function
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Convex Optimization Problems Karush-Kuhn-Tucker Conditions for Convex
Optimization Problems
> Gi : .
lee.nt S sondl o i (2 » Assume that C' = R" and that the functions f and
» integers m > 1 and p wi <p<m, . .
> a convex set (' C R™. fi,-.., fm are differentiable.
» a convex function f: C — R, » Then z* € R™ solves the convex optimization problem, if
» convex functions fi,..., f, : C = R, and only if there is a y* € R™ such that
» affine functions f,41,..., fm :C = R. "
> Sought: Df(x*)‘f'ZZ/;ksz(CU*) :O’
» a minimum of f under i1
» the inequality constraints f;(z) < 0 for 1 <i < p and Fila =0, 1<i<p,

» the equality constraints fj(z) =0for p+1<j<m
fi(z")<0, 1<i<p,

y; 20, 1<i<p,
fi(z*)=0, p+1<j<m

» The particular cases p = 0, no inequality constraints, and
p = m, no equality constraints, are admitted.
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Lagrange Function General Non-Linear Optimization Problems
> Given:
» Set D={yeR™:y; >0for 1 <i<p}. > integers m > 1 and p with 0 < p <m,
» The function £ : C x D — R with > a.dlffererlltlable fun.ctlon f:R" > R,
m » differentiable functions f1,..., f, : R = R,
L(z,y) = f(x)+ Z yifi(x) » differentiable functions f,1,..., [, : R” = R.
J=1 > Sought:
is called the Lagrange function of the convex optimization R
problem. » the inequality constraints f;(z) <0 for 1 <7 < p and
» z* € C is a solution of the convex optimization problem if > the equality constraints f;j(z) =0forp+1<j<m
and only if there is y* € D such that (z*, y*) is saddle » The particular cases p = 0, no inequality constraints, and
point of L, i.e. p = m, no equality constraints, are admitted.
* * * *
L(xz,y*) > L(z*,y*) > L(z*,y) for all (z,y) € C x D. > Set S={zeR": fi(z) <0,1<i<p f;(x) =0,p+1<
j<m}.
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Tangent Cones Cone Condition

» The tangent cone T'(S;z) of a set S C R™ at a point © € S
is the collection of all vectors v € R™ for which there is a
sequence A of non-negative real numbers and a sequence
xy, of points in S such that zy — = and A\g(zr — z) — v.

> Assume that z* € S is a local minimum of f and that f is
differentiable at z*, then D f(xz*)v > 0 holds for all

veT(S;z).
— I — » The cone condition is the sharpest condition for solutions
// / of general non-linear optimization problems.
/ / » The cone condition is of limited practical use since in
/ A4 . .

i < 7 general the computation of the tangent cone is too

expensive, hence it is replaced by weaker more practical
» T(S;x) = R™ if x is an interior point of S. conditions.

» T(S;x) is the classical tangent space if x is a boundary
point of S and if the boundary of S is smooth at x.
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Karush-Kuhn-Tucker Conditions for General Constrained Non-Linear Optimization Problems.
Non-Linear Optimization Problems Algorithms

» Assume that:
» z* € S is a local minimum of f,
» the gradients D f, 1 (z"),..., Df, (2*) are linearly
independent,

» there is a vector s € R” with Df;(z")s = 0 for all > Projection methods
p+1<j<mand Df;(z*)s <0 for all those ¢ with » Penalty methods
1<i<mand f;(z*) = 0.
Stst . » SQP methods
» Then there is a vector y* € R™ such that (z*,y*) is a Q o
saddle point of the Lagrange function £ and > Derivative-free methods
> Df(2*) + 3L, yi Dfi(z*) =0,
> fl(x*)yz*zoa ]-SZSpa
> fi(z*) <0, 1<i<p,
»y; 20, 1<i<p,
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Projection onto Convex Sets Projection Method
> Assume that S C R™ is convex 0. Given: a convex set S C R", an initial guess xg € S and

» For every x € R™ there is a unique parameters 3, u € (0,1) and vy > 0.
point Pg(z) € S, its projection, 5 Set k= 0.
which is closest to z, i.e. 1. Compute D f(zy).

— < — .
|lz—Ps(z)|| < ||z —y| forall y € S 2. If Df(xp)v >0 for all v € T(S;xx) stop, otherwise proceed

» The projection Ps(x) is uniquely characterized by the with step (3)
property ] )
(z — Ps(z))!(y — Ps(z)) < 0 for all y € S. 3. Flnjl ;Dhe smallesfklnteger my, su‘ch that
. ] 2z = Ps(xp, — 8™~y D f(xy)) satisfies
» The projection Ps(x) satisfies F(zk) < f(xr) + pDf(z) (25 — k).

(Ps(y) — Ps(x))(y — ) > ||Ps(y) — Ps(x)|* and

IPs(y) — Ps(2)| < ||z — ]| for all z,y € R™ Set xp11 = z, increase k by 1 and return to step (1).
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Properties Basic Idea of Penalty Methods

‘Penalize’ the constraints.

v

v

Solve unconstrained optimization problems incorporating

» The algorithm is a damped Newton’s method combined . T
the ‘penalization’.

with a projection onto the set S.

v

If the penalty vanishes for the solution of the auxiliary
unconstrained problem we have found a solution of the
original constrained problem.

» The practicability of the algorithm hinges on the
computability of the tangent cones and the ability to check
the cone condition D f(xg)v > 0.

» Every accumulation point z* of the generated sequence xj
satisfies the cone condition D f(z*)v > 0 for all

v

Successively increase the penalty and hope that the
solutions of the auxiliary problems converge to a solution of
the original constrained problem.

v eT(S;z*).
» Either all constraints are penalized by a penalty function
or only inequality constraints are penalized by a barrier
function.
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Penalty Functions Penalty Algorithm with General Penalty
Function

» A function ¢ : R™ — R is called a penalty function for the

non-empty set S C R™ if /(z) > 0 for all z ¢ S and
((x) =0 for all z € S. 0. Given: initial guesses g € R™ and 79 > 0, a continuous

function f :R™ — R, a non-empty closed set S C R" and a

» The functi
e tunction penalty function ¢ for S.

0 P e Ui N Set k= 0.
(z) = Z(fz(x) )+ Z | f5 ()] 1. Compute an approximation zj for a local minimum of
=1 j=p+1
p(z, ) = f(x) + ril(x)
with @ > 0 and 2" = max{z,0} is a penalty function for 2. If x;, € S stop.
the set 5 = {z € R": fi(z) < 0,1 <i <p, fj(z) = Otherwise set ry11 = 2rg, increase k by 1 and return to
0,p+ 1 < j < m} associated with a general non-linear step (1).

optimization problem.
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Properties Augmented Lagrange Function

» inequality constraints: f;(z) < 0for 1 <i<p
> equality constraints: f;(z) =0forp+1<j<m
» 2T = max{z,0}

» For sufficiently large r the function p(x,r) admits a local > Augmented Lagrange function

minimum. » 112
» The sequence xj converges to a local minimum z* € S of Az, y,7) = flz) + Z lm [(fz(x) + %) ]
the function f. i=1 2 Ti
m 1 y 2
+ Z 9" fix) + =%
= Ty
j=p+1
Pt 27
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Penalty Algorithm with Augmented Lagrange Properties
Function
0. Given: a vector r € (R%)™ and an initial guess
Yo € (Ry)P x R™7P.
Set k = 0. » If r = (p,..., p)! with a sufficiently large p, the algorithm
1. Determine a local minimum x; of the augmented Lagrange converges to a saddle point of the Lagrange function L.
function x — A(z, yg,r). » The convergence is linear.
2. If (xg, yx) satisfies the Karush-Kuhn-Tucker conditions » Convergence speed improves with increasing p.
stop. Otherwise proceed with step (3).
3. Set

ki1, = (rifi(mr) + yra) " for 1 <i < p,
Yrt1,j =75 fi(@k) + ypj for p+1 <5 <m.
Increase k by 1 and return to step (1).
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Barrier Functions Barrier Algorithm for Convex Optimization
. . . .. 0. Given: convex functions f and and affine
» A function B: R — RU {oo} is called barrier function if it . f . fi, ’_fp .
functions f,11, ..., fm, a barrier function B and an initial

has the following properties:

B(t) = oo for all ¢ < 0. guess zg € R™ with fj(xzg) =0 for p+1<j < m.

Choose 19 > 0 and dp € (R )P with f;(x0) < d; o for

v

» B is monotonically decreasing. :
» B is convex. 1<i<np.
» Bis continuously differentiable on R . Set k= 0.
g tL”%l B(t) = oo. 1. Choose A\; € (0,1) with fj(xy) < Apd; for 1 < i < p. Set
> t£%1+3’( ) = —0c0. Phtl = Mgk, A1 = Apdk.
It fort>0 =0 fort>0 2. Starting with xk apply a line search to the problem
» B(t) = and B(t) = with _
0 for t <0 oo fort<0 mln{f —i—,uZBd — fi(z)) : fij(x) =0, p+1<j5<m}
a > 0 are barrier functions.
with result $k+1 Increase k by 1 and return to (1).
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Basic Idea of the Sequential Quadratic SQP Algorithm
Programming Algorithm 0. Given: initial guesses zg € R", yg € (R%)? x R™7P.
m
Compute By = DQf(.’E()) + Z y()’,‘D2fZ‘(.’E0) and set k = 0.
i=1
» Replace the Lagrange Function £ by a second order L. Flnd.a. solution (s, y)‘f‘0r e Iawmel-Rulm-= ek
q q conditions of the auxiliary problem
approximation. 1
q t » 3 .
» Linearize the constraints. HlSIU{Df(l'k)S + 25 Bys : fi(zr) + Dfi(wr)s < 0,1 < <
> Successively solve constrained optimization problems with D, fi(zk) + Dfj(zr)s =0,p+1 <5 < m}.
dratic object functi d affi traints.
a quadratic object function and affine constraints 2. Set Tpa1 = Th - 5 Yrsl = Yk + -

m
3. Compute Byy1 = D*f(zps1) + Y ypr1,i D> fi(@rs1),
i=1
increase k by 1 and return to step (1).
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Properties Basic Idea of the Simplex Method of Nelder and
Mead

» Minimize a function f over R".

» Take into account eventual constraints by setting f(z) = oo
» The SQP algorithm is locally quadratically convergent. S el etes e cometra .
» If the By are replaced by approximations in a suitable =

Choose n + 1 points zq, ..., z, generating R".
quasi Newton type, the convergence still is linear.

» Sort these points by increasing size of f.

» Reflect z,, at the barycentre of xg, ..., z,—1 and eventually
expand or contract the image 2’ depending on the values

f($0)) coog f(mn) and f(.%‘l)

» Replace an appropriate member of the list xq, ..., z, by 2’.
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Simplex Method of Nelder and Mead. Properties

0. Given: points xg,...,x, € R” generating R™ sorted by
increasing size of f, tolerance € > 0.

1. If the standard deviation of the f-values is less than € stop. - e el e e dheep gimes o dos wof megme dhe

1 —1
2. Compute ¢ = 37" z;, T = 2¢ — zpn and f(z;). computation of any derivative.
4 Deedlde . » The algorithm is very slow.

3.1 If f(xo) < f(z,) < f(xp—1) replace x,, by x, (reflection). )

3.2 If f(z,) < f(xo) compute z. = 2z, — c and f(z.). If > There is no convergence proof.
f(xe) < f(z,) replace z, by .. » The algorithm is very robust.
Replace z;, by z; (expansion). et 1 (@n—c) if f(zn)>f(on) » The algorithm may yield suitable initial guesses for the

3.3 If f(x;) > f(zn—1) compute z. = { e+ 1(zp—c) if f(zr)<f(zn) algorithms presented previously.
and f(z.).

If f(z.) < min{f(x,), f(z,)} replace x,, by z., otherwise
compute x; = %(:co + x;) for 1 < ¢ < n (contraction).
4. Re-sort xo,...,x, by increasing size of f and return to (1).
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Global Optimization Problems Problem Setting

» All algorithms considered so far at best yield a local
minimum.

» We want to find a global minimum of even all of them.

v

Problem setting

v

Structure of global optimization algorithms

v

Ingredients

v

Concluding remarks
()

» This difficulty only arises for non-convex optimization
problems since a convex function has at most one local
minimum which is the global minimum.
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Structure of Global Optimization Algorithms Initial Choice of Candidates
» Try several candidates for a global minimum. L )
. » Deterministic: Cover the domain Va N
» Eventually replace candidates by the result of a local n . .
. . . S C R" of admissible points x by
search, i.e. apply one of the previously described a uniform mesh Va
algorithms with a given candidate as initial guess. ’ \N
» Eventually iterate on lists of candidates. » Random: Cover the domain S C R"
» Eventually perturb candidates. of admissible points x by a random
> Algorithms differ by mesh according to a chosen proba-
» the initial choice of candidates, bility measure, ¢.g- tmiform: distri-
» the method for updating the list of candidates, bution. .
» the form of perturbation » In both approaches eventually construct several lists of
» the amount of randomness, candidates by iteratively reducing the mesh size.
» the work invested in local searches.
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Updating Lists of Candidates

» Replace candidates by the result of a local search.
» Replace candidates by a perturbation.

» With a small probability also accept candidates with a

larger value of f, e.g. simulated annealing;:

2’ with f(z') > f(x) is allowed to replace x with
f@)—f(')

probability e 7 .

» Update lists by branch and bound techniques.
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Concluding Remarks

» Kach algorithm has its own benefits and drawbacks.

» The choice of an efficient algorithm requires knowledge of

the particular structure of the given optimization problem.

» There is no efficient black-box algorithm.
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Perturbation of Candidates

» Normalize all points such that all their co-ordinates are

represented by an NN-bit string.

Given a candidate pick one of its components by random
and flip one of its bits by random.

Example: N =4, z=15=1-234+1-2241-21 +1.20,

' =11=1-2340-224+1.2! +1.2%is a perturbation of
' =7=0-224+1-224+1-2 4120 is a perturbation of
T=9=1-2240-22+0-2" +1-2%is no perturbation of x
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