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Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Initial Value Problems for 1st Order Ordinary
Differential Equations

I Given:
I I interval
I D ⊂ Rd set
I f(t, y) : I ×D → Rd function
I t0 ∈ I initial time
I y0 ∈ D initial value

I Sought:

Differentiable function y(t) : I → D with
y′(t) = f(t, y(t)) for all t ∈ I (differential equation)
and y(t0) = y0 (initial condition)
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Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Example: Constant Birth or Death Rate

I y′(t) = λy(t), y(0) = c

I Corresponds to:
I I = R,
I D = R,
I f(t, y) = λy,
I t0 = 0,
I y0 = c

I Solution:

y(t) = ceλt
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Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Example: Damped Oscillation

I y′(t) =
(
λ −ω
ω λ

)
y(t), y(0) = ( c1c2 )

I Corresponds to:
I I = R,
I D = R2,
I f(t, y) =

(
λ −ω
ω λ

)
y,

I t0 = 0,
I y0 = ( c1c2 )

I Solution:

y(t) = eλt
(
c1 cos(ωt)−c2 sin(ωt)
c1 sin(ωt)+c2 cos(ωt)

)
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Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Example: Exploding Solution

I y′(t) = y(t)2, y(0) = 1

I Corresponds to:
I I = R,
I D = R,
I f(t, y) = y2,
I t0 = 0,
I y0 = 1

I Solution:

y(t) =
1

1− t
explodes for t→ 1−
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Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Example: Many Solutions
I y′(t) =

√
|y(t)|, y(0) = 0

I Corresponds to:
I I = R,
I D = R,
I f(t, y) =

√
|y|,

I t0 = 0,
I y0 = 0

I Solutions:

y(t) = 0

y(t) =

{
0 for t < 0
1
4 t

2 for t ≥ 0

and infinitely many further
solutions

-

6

9/ 248

Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Differential Equations of Higher Order

I Differential equations of higher order can be transformed
into systems of 1st order by introducing new unknowns.

I Example: mechanical system
I Mx′′(t) +Rx′(t) +Kx(t) = F (t), x(0) = x0, x′(0) = v0

I Introducing v(t) = x′(t) leads to
x′(t) = v(t),
v′(t) = M−1F (t)−M−1Rv(t)−M−1Kx(t),
x(0) = x0, v(0) = v0

I This corresponds to

y(t) =
(
x(t)
v(t)

)
,

f(t, y) =
(

0
M−1F (t)

)
+
(

0 1
−M−1K −M−1R

)
y

10/ 248

Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Unique Solvability

I If f is continuously differentiable w.r.t. the variable y,
there is an interval J = (t−, t+) ⊂ I with t0 ∈ J and a
unique function y, which is continuously differentiable on J
and which solves the initial value problem y′(t) = f(t, y(t)),
y(t0) = y0.

I Either J = I or y(t) tends to the boundary of D for t→ t±.

I If the derivative of f w.r.t. the variable y remains bounded
on I ×D, then J = I.
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Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Dependence on the Initial Values

I If f is twice continuously differentiable w.r.t. the variable
y, the solution y of the initial value problem
y′(t) = f(t, y(t)), y(t0) = y0 is a differentiable function of
the initial value y0, i.e. y(t) = y(t; y0).

I The derivative Z(t) of the function y0 7→ y(t; y0) solves the
initial value problem

Z ′(t) = Dyf(t, y(t; y0))Z(t), Z(t0) = I.

Here Dyf(t, y) denotes the Jacobian of f w.r.t. the variable
y and I is the identity matrix.
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Numerical Methods

Ordinary Differential Equations

Initial Value Problems

Example: Damped Oscillation

I y′(t) =
(
λ −ω
ω λ

)
y(t), y(0) = ( c1c2 )

I y(t) = eλt
(
c1 cos(ωt)−c2 sin(ωt)
c1 sin(ωt)+c2 cos(ωt)

)
I Dyf(t, y) =

(
λ −ω
ω λ

)
I Z(t) =

(
z1,1(t) z1,2(t)
z2,1(t) z2,2(t)

)
I Z ′(t) =

(
λ −ω
ω λ

)
Z(t), Z(0) = I

I z′1,1(t) = λz1,1(t)− ωz2,1(t), z1,1(0) = 1

z′1,2(t) = λz1,2(t)− ωz2,2(t), z1,2(0) = 0

z′2,1(t) = ωz1,1(t) + λz2,1(t), z2,1(0) = 0

z′2,2(t) = ωz1,2(t) + λz2,2(t), z2,2(0) = 1

13/ 248

Numerical Methods

Ordinary Differential Equations

Numerical Methods for Initial Value Problems

Numerical Methods for Initial Value Problems

I Basic idea

I Runge-Kutta methods

I Order

I Stability

14/ 248

Numerical Methods

Ordinary Differential Equations

Numerical Methods for Initial Value Problems

Basic Idea

I Approximate the solution y of the initial value problem at
discrete times t0 < t1 < t2 < . . ..

I Denote by hi = ti+1 − ti the i-th time step size.

I The simplest scheme corresponds to hi = h for all i, i.e.
ti = t0 + ih.

I Denote by ηi the approximation for y(ti).

I Compute ηi+1 using f and ηi (single step methods) or
using f and ηi, . . ., ηi−m (multi step methods).

I Many methods, in particular Runge-Kutta methods, are
obtained by applying a suitable quadrature formula to the
integral in the identity

ηi+1 − ηi ≈ y(ti+1)− y(ti) =

∫ ti+1

ti

f(s, y(s))ds.
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Numerical Methods

Ordinary Differential Equations

Numerical Methods for Initial Value Problems

The Simplest Methods

I Explicit Euler Scheme:
η0 = y0,
ηi+1 = ηi + hif(ti, ηi),
ti+1 = ti + hi -

6

I Implicit Euler Scheme:
η0 = y0,
ηi+1 = ηi + hif(ti+1, ηi+1),
ti+1 = ti + hi -

6

I Trapezoidal Rule alias Crank-Nicolson Scheme:
η0 = y0,
ηi+1 = ηi + hi

2

[
f(ti, ηi) + f(ti+1, ηi+1)

]
,

ti+1 = ti + hi -

6 ��

16/ 248



Numerical Methods

Ordinary Differential Equations

Numerical Methods for Initial Value Problems

Runge-Kutta Methods

I η0 = y0

ηi,j = ηi + hi

r∑
k=1

ajkf(ti + ckh, ηi,k) for j = 1, . . . , r

ηi+1 = ηi + hi

r∑
k=1

bkf(ti + ckh, ηi,k)

ti+1 = ti + hi

I 0 ≤ c1 ≤ . . . ≤ cr ≤ 1

I r is called the stage number of the Runge-Kutta method.

I The method is called explicit, if ajk = 0 for all k ≥ j.
I The method is called implicit, if aj,k 6= 0 for at least one
k ≥ j.
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Numerical Methods

Ordinary Differential Equations

Numerical Methods for Initial Value Problems

Order

I A single step method is said to have the order p > 0, if
|y(t1)− η1| = O(hp+1

1 ).

I The order is a measure for the error committed by
performing a single step of the method.

I If a single step method has order p and if f is continuously
differentiable w.r.t. the variable y with a bounded

derivative, then |y(ti)− ηi| = O
((

max
1≤j≤i

hj
)p)

for all i.

I Both Euler schemes are of order 1.

I The Crank-Nicolson scheme has order 2.

18/ 248

Numerical Methods

Ordinary Differential Equations

Numerical Methods for Initial Value Problems

Stability

I The numerical method should yield a qualitatively correct
solution for a large as possible range of step sizes.

I For the initial value problem y′(t) = −100y(t), y(0) = 1
with exact solution y(t) = e−100t we obtain:

I The explicit Euler scheme yields a decaying numerical
solution only if hi ≤ 1

50 for all i.
I The implicit Euler and the Crank-Nicolson scheme both

yield a decaying numerical solution for every step size.

I Explicit schemes cannot be stable.

I There are stable implicit Runge-Kutta schemes of arbitrary
order.
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Numerical Methods

Ordinary Differential Equations

Numerical Methods for Initial Value Problems

Example: Damped Oscillation

I y′(t) =
(−0.9 −6.3

6.3 −0.9

)
y(t)

y(0) = ( 1
0 )

I Solution:
y(t) = e−0.9t

(
cos(6.3t)
sin(6.3t)

)
I 100 steps of

explicit Euler,
implicit Euler,
Crank-Nicolson,
classical Runge-Kutta,
SDIRK order 3,
SDIRK order 4
with hi = 0.1 for all i
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Numerical Methods

Ordinary Differential Equations

Numerical Methods for Initial Value Problems

Example: Undamped Oscillation

I y′(t) =
(

0 −6.3
6.3 0

)
y(t)

y(0) = ( 1
0 )

I Solution:
y(t) =

(
cos(6.3t)
sin(6.3t)

)
I 100 steps of

explicit Euler,
implicit Euler,
Crank-Nicolson,
classical Runge-Kutta,
SDIRK order 3,
SDIRK order 4
with hi = 0.1 for all i
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Boundary Value Problems

I Examples

I Existence and uniqueness of solutions
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Numerical Methods

Ordinary Differential Equations

Boundary Value Problems

Boundary Value Problems for 1st Order
Differential Equations

I Given:
I I interval
I a, b ∈ I two different points
I D ⊂ Rd set
I f(t, y) : I ×D → Rd function
I r(u, v) : Rd × Rd → Rd function

I Sought:

Differentiable function y(t) : I → D with
y′(t) = f(t, y(t)) for all t ∈ I (differential equation)
and r(y(a), y(b)) = 0 (boundary condition)
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Numerical Methods

Ordinary Differential Equations

Boundary Value Problems

Example: Damped Oscillation

I y′(t) =
(
λ −ω
ω λ

)
y(t), y1(0) = 1, y1( π

2ω ) = 0

I Corresponds to:
I I = R,
I D = R2,
I f(t, y) =

(
λ −ω
ω λ

)
y,

I a = 0,
I b = π

2ω ,
I r(u, v) = ( 1 0

0 0 )u+ ( 0 0
1 0 ) v − ( 1

0 )

I Solution:

y(t) = eλt
(

cos(ωt)
sin(ωt)

)
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Numerical Methods

Ordinary Differential Equations

Boundary Value Problems

Example: Mechanical System

I Mx′′(t) +Rx′(t) +Kx(t) = F (t), x(0) = x0, x(L) = xL
I Introducing v(t) = x′(t) leads to

x′(t) = v(t),

v′(t) = M−1F (t)−M−1Rv(t)−M−1Kx(t),

x(0) = x0, x(L) = xL
I This corresponds to

y(t) =
(
x(t)
v(t)

)
,

f(t, y) =
(

0
M−1F (t)

)
+
(

0 1
−M−1K −M−1R

)
y,

r(u, v) =
(
I 0
0 0

)
u+

(
0 0
I 0

)
v − ( x0xL )
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Numerical Methods

Ordinary Differential Equations

Boundary Value Problems

Example: Eigenvalue Problem

I Sought are u : [a, b]→ R and λ ∈ R with

u′(t) = g(t, u(t)), ρ(u(a), u(b), λ) = 0

I Corresponds to:

I y(t) =
(
u(t)
λ

)
,

I f(t, y) =
(
g(t,y1)

0

)
,

I r(u, v) = ρ(u1, v1, v2)
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Numerical Methods

Ordinary Differential Equations

Boundary Value Problems

Example: Free Boundary Problem

I Sought are β > 0 and u : [0, β]→ R with

u′(s) = g(s, u(s)), ρ(u(0), u(β)) = 0

I Corresponds to:

I y(t) =
(
u(tβ)
β

)
,

I t = s
y2

,

I f(t, y) =
(
y2g(ty2,y1)

0

)
,

I r(u, v) = ρ(u1, v1)
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Numerical Methods

Ordinary Differential Equations

Boundary Value Problems

Unique Solvability

I For boundary value problems there is no general existence
and uniqueness result similar to the one for initial value
problems.

I The solvability and the the number of eventual solutions
depends on the particular example and the interplay of
differential equation and boundary condition.

I Example: Oscillation
I y′(t) =

(
0 −ω
ω 0

)
y(t), ( 1 0

0 0 ) y(0) + ( 0 0
1 0 ) y(L) = ( αβ )

I General solution of the differential equation:

y(t) =
(
c1 cos(ωt)−c2 sin(ωt)
c1 sin(ωt)+c2 cos(ωt)

)
I L = 2π

ω , α = 0, β = 1 leads to the contradictory conditions
c1 = 0 and c1 = 1.

I L = 2π
ω , α = 0, β = 0 leads to the single condition c1 = 0

such that c2 is arbitrary.
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Ordinary Differential Equations

Simple Shooting

Simple Shooting

I Basic idea

I Properties
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Numerical Methods

Ordinary Differential Equations

Simple Shooting

Idea
I Denote by y(t; s) the solution of the initial value problem
y′(t) = f(t, y(t)), y(a; s) = s.

I Then y(t; s) solves the boundary value problem
y′(t) = f(t, y(t)), r(y(a), y(b)) = 0 iff r(s, y(b; s)) = 0.

I Using Newton’s method compute a zero of the function
F (s) = r(s, y(b; s)).

I The derivative DF (s) of F at the point s is
DF (s) = Dur(s, y(b; s)) +Dvr(s, y(b; s))Z(b; s), where Z
solves the initial value problem
Z ′(t; s) = Dyf(t, y(t; s))Z(t; s), Z(a; s) = I.

I Solve the initial value problems for y(t; s) and Z(t; s)
approximately by a numerical method for initial value
problems using the same discrete times ti for both
problems.
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Numerical Methods

Ordinary Differential Equations

Simple Shooting

Simple Shooting

0. Given an initial guess s(0) ∈ Rd. Set i = 0.

1. Compute an approximation η(i)(t) for the solution y(i) of
the initial value problem y(i)′(t) = f(t, y(i)(t)),
y(i)(a) = s(i). Set F (i) = r(s(i), η(i)(b)).

2. Using the same scheme and the same discrete times as in
step 1 compute an approximation ζ(i)(t) for the solution
Z(i) of the initial value problem
Z(i)′(t) = Dyf(t, η(i)(t))Z(i)(t), Z(i)(a) = I. Set
D(i) = Dur(s

(i), η(i)(b)) +Dvr(s
(i), η(i)(b))ζ(i)(b).

3. Solve the linear system of equations D(i)∆s(i) = −F (i). Set
s(i+1) = s(i) + ∆s(i), increase i by 1 and return to step 1.
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Numerical Methods

Ordinary Differential Equations

Simple Shooting

Properties

I The initial value problems in step 1 have d unknowns.

I The initial value problems in step 2 have d2 unknowns.

I The initial value problems in step 2 are linear.

I The linear systems of equations in step 2 have d equations
and unknowns.

I Newton’s method should be damped.

I If Newton’s method converges, the convergence speed is
quadratic.
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Numerical Methods

Ordinary Differential Equations

Simple Shooting

A Warning Example
I Boundary value problem:

y′(t) = ( 0 1
110 1 ) y(t), y1(0) = 1, y1(10) = 1

I Solution:

y(t) = c1e
−10t

(
1
−10

)
+ c2e

11t ( 1
11 )

with c1 =
e110 − 1

e110 − e−100
, c2 =

1− e−100

e110 − e−100

I The solution of the initial value problem with initial value
s is:

y(t; s) =
11s1 − s2

21
e−10t

(
1
−10

)
+

10s1 + s2

21
e11t ( 1

11 )

I Exact initial value:

s∗ =
( 1

−10+21· 1−e−100

e110−e−100

)
I The wrong initial value s̃ =

(
1

−10+10−9

)
with a relative

error of 10−10 yields y1(10; s̃) ≈ 1037.
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Ordinary Differential Equations

Multiple Shooting

Multiple Shooting

I Basic idea

I Properties
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Numerical Methods

Ordinary Differential Equations

Multiple Shooting

Observation

I Simple shooting breaks down since solutions corresponding
to different initial values may run away with an exponential
rate.

I This effect can be avoided by solving the initial value
problems only on small time intervals.
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Numerical Methods

Ordinary Differential Equations

Multiple Shooting

Idea
I Subdivide the interval [a, b] by choosing intermediate

points a = τ1 < τ2 < . . . < τm = b.
I For s1, . . . , sm ∈ Rd denote by y(t; τk, sk) the solution of

the initial value problem y′(t) = f(t, y(t)), y(τk; sk) = sk.
I Define the piecewise function ỹ by setting ỹ(t) = y(t; τk, sk)

for τk ≤ t < τk+1 and 1 ≤ k ≤ m− 1 and ỹ(τm) = sm.
I Then ỹ solves the boundary value problem
y′(t) = f(t, y(t)), r(y(a), y(b)) = 0 iff y(τk+1; τk, sk) = sk+1

for 1 ≤ k ≤ m− 1 and r(s1, sm) = 0.
I This corresponds to a system of equations
F (s1, . . . , sm) = 0 which can be solved with Newton’s
method.

I The evaluation of the derivative of F requires the solution
of initial value problems on the intervals [τk, τk+1].
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Ordinary Differential Equations

Multiple Shooting

Structure of DF

I DF has the structure


G1 −I

G2 −I 0

0
. . .

. . .
Gm−1 −I

A 0 0 B


I Hence every Newton step requires the solution of a system

of the form:

G1∆s1 −∆s2 = −F1, . . ., Gm−1∆sm−1 −∆sm = −Fm−1,
A∆s1 +B∆sm = −Fm

I Successive elimination of ∆s2, . . ., ∆sm leads to

(A+BGm−1 . . . G1)∆s1 = −Fm −B
m−1∑
j=1

(
m−1∏
i=j+1

Gi)Fj
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Numerical Methods

Ordinary Differential Equations

Multiple Shooting

Multiple Shooting I

0. Given m points a = τ1 < . . . < τm = b and m vectors

s
(0)
1 , . . . , s

(0)
m ∈ Rd. Set i = 0.

1. Compute approximations η(i,j)(t), 1 ≤ j ≤ m− 1, to the
solutions y(i,j) of the initial value problems

y(i,j)′(t) = f(t, y(i,j)(t)), y(i,j)(τj) = s
(i)
j for 1 ≤ j ≤ m− 1.

Set F
(i)
j = η(i,j)(τj+1)− s(i)

j+1 for 1 ≤ j ≤ m− 1

and F
(i)
m = r(s

(i)
1 , s

(i)
m ).
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Ordinary Differential Equations

Multiple Shooting

Multiple Shooting II

2. Using the same scheme and discrete times as in step 1,
compute approximations ζ(i,j)(t) for the solutions Z(i,j) of
the initial value problems
Z(i,j)′(t) = Dyf(t, η(i,j)(t))Z(i,j)(t), Z(i,j)(τj) = I for
1 ≤ j ≤ m− 1.

Set G
(i)
j = ζ(i,j)(τj+1) for 1 ≤ j ≤ m− 1

and A(i) = Dur(s
(i)
1 , s

(i)
m ),

B(i) = Dvr(s
(i)
1 , s

(i)
m ).
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Numerical Methods

Ordinary Differential Equations

Multiple Shooting

Multiple Shooting III

3. Compute the matrix

H(i) = A(i) +B(i)G
(i)
m−1 · . . . ·G

(i)
1

and the vector ϕ(i) = −F (i)
m −B(i)

m−1∑
j=1

(
m−1∏
l=j+1

G
(i)
l )F

(i)
j .

Solve the linear system of equations

H(i)∆s
(i)
1 = ϕ(i)

and recursively compute the vectors

∆s
(i)
k+1 = G

(i)
k ∆s

(i)
k + F

(i)
k for 1 ≤ k ≤ m− 1.

Set s
(i+1)
k = s

(i)
k + ∆s

(i)
k for 1 ≤ k ≤ m, increase i by 1 and

return to step 1.
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Ordinary Differential Equations

Multiple Shooting

Properties

I With the same number of grid points on the total interval
[a, b], the initial value problems for the simple and multiple
shooting require the same amount of work.

I The initial value problems on the sub-intervals can be
solved in parallel .

I Lacking any further information, the intermediate points
τ1, . . . , τm may be chosen equidistant.
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Numerical Methods

Ordinary Differential Equations

Finite Difference Methods

Finite Difference Methods

I Sturm-Liouville problem

I Difference quotients

I Difference discretization

I Properties
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Numerical Methods

Ordinary Differential Equations

Finite Difference Methods

Sturm-Liouville Problem

I Given:
I p : [0, 1]→ R continuously differentiable function with
p = min

0≤x≤1
p(x) > 0

I q : [0, 1]→ R continuous function with
q = min

0≤x≤1
q(x) > 0

I Sought:

Twice continuously differentiable function u : [0, 1]→ R
with
−(pu′)′ + qu = f in (0, 1) (differential equation)
and u(0) = 0, u(1) = 0 (boundary condition)
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Numerical Methods

Ordinary Differential Equations

Finite Difference Methods

Generalization

I Every Sturm-Liouville problem of the form

−(pu′)′ + qu = f in (a, b), u(a) = α, u(b) = β

can be transformed into an equivalent one with:

a = 0, b = 1, α = 0, β = 0.

I Look for a u of the form

u(x) = α+
β − α
b− a

(x− a) + v(
x− a
b− a

)

with v(0) = 0, v(1) = 0

and introduce a new variable by

t =
x− a
b− a

.
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Ordinary Differential Equations

Finite Difference Methods

Symmetric Difference Quotient

I The symmetric difference quotient is given by

∂hϕ(x) =
1

h

[
ϕ(x+

h

2
)− ϕ(x− h

2
)
]
.

I Taylor’s formula yields for every sufficiently differentiable
function:

∂hϕ(x) = ϕ′(x) +
h2

24
ϕ′′′(x+ θh)

with a suitable θ ∈ (−1
2 ,

1
2).
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Ordinary Differential Equations

Finite Difference Methods

Idea

I Replace derivatives by difference quotients ∂h(
−(pu′)′

)
(x)

≈
(
−∂h(pu′)

)
(x)

=
1

h

[
p(x− h

2
)u′(x− h

2
)− p(x+

h

2
)u′(x+

h

2
)
]

≈ 1

h

[
p(x− h

2
)∂hu(x− h

2
)− p(x+

h

2
)∂hu(x+

h

2
)
]

=
1

h2

[
p(x− h

2
)(u(x)− u(x− h))− p(x+

h

2
)(u(x+ h)− u(x))

]
I Impose the resulting equations only in grid points ih with
h = 1

n+1 and 1 ≤ i ≤ n.
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Ordinary Differential Equations

Finite Difference Methods

Finite Difference Discretization

I Choose a mesh size h = 1
n+1 .

I For 1 ≤ i ≤ n set fi = f(ih), qi = q(ih), pi± 1
2

= p(ih± h
2 )

I Compute u0, . . . , un+1 such that

u0 = 0, un+1 = 0

and for 1 ≤ i ≤ n

fi = − 1

h2
pi− 1

2
ui−1 +

( 1

h2

[
pi− 1

2
+pi+ 1

2

]
+qi

)
ui−

1

h2
pi+ 1

2
ui+1

I Denote by uh the continuous piecewise linear function
which coincides at ih with ui.

�
��
��� XXX

Z
ZZ

× × ×
× ×
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Ordinary Differential Equations

Finite Difference Methods

Properties

I The difference discretization gives rise to a linear system of
equations with n equations for the n unknowns u1, . . . , un.

I The matrix is symmetric, positive definite and tridiagonal
with positive diagonal elements and non-positive
off-diagonal elements.

I The linear system admits a unique solution.

I The solution of the linear system with Gaussian elimination
or Cholesky decomposition requires O(n) operations.
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Finite Difference Methods

Error Estimate

I Suppose that:
I p is three times continuously differentiable.
I The solution u of the Sturm-Liouville problem is four times

continuously differentiable.

I Then the following error estimate is valid

max
0≤x≤1

|u(x)− uh(x)| ≤ ch2.

I The constant c depends on the lower bound q for q, the
derivatives up to order 3 of p and the derivatives up to
order 4 of u.
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Ordinary Differential Equations

Variational Methods

Variational Methods

I Basic idea

I Weak derivatives

I Sobolev spaces

I Finite element spaces

I Properties
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Ordinary Differential Equations

Variational Methods

Idea of the Variational Formulation
I Multiply the differential equation with a continuously

differentiable function v with v(0) = 0, v(1) = 0

−(pu′)′(x)v(x) + q(x)u(x)v(x) = f(x)v(x) for 0 ≤ x ≤ 1.
I Integrate the result from 0 to 1∫ 1

0

[
−(pu′)′(x)v(x) + q(x)u(x)v(x)

]
dx =

∫ 1

0
f(x)v(x)dx.

I Use integration by parts for the term containing derivatives

−
∫ 1

0
(pu′)′(x)v(x)dx

= p(0)u′(0)v(0)− p(1)u′(1)v(1) +

∫ 1

0
p(x)u′(x)v′(x)dx

=

∫ 1

0
p(x)u′(x)v′(x)dx.
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Ordinary Differential Equations

Variational Methods

Problems

I The properties of the functions u and v must be stated
more precisely to obtain a well-posed variational problem.

I Classical properties such as ‘continuously differentiable’ are
too restrictive.

I The notion ‘derivative’ must be generalised.

I In view of the discrete problems, piecewise differentiable
functions should be differentiable in the new weaker sense.
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Variational Methods

Weak Derivative

I Integration by parts yields for continuously differentiable
functions u and v with v(0) = 0, v(1) = 0:∫ 1

0
u′(x)v(x)dx = u(1)v(1)− u(0)v(0)−

∫ 1

0
u(x)v′(x)dx.

= −
∫ 1

0
u(x)v′(x)dx.

I The function u is said to be weakly differentiable with
weak derivative w, if every continuously differentiable
function v with v(0) = 0, v(1) = 0 satisfies∫ 1

0
w(x)v(x)dx = −

∫ 1

0
u(x)v′(x)dx.
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Ordinary Differential Equations

Variational Methods

Examples

I Every function which is continuously differentiable in the
classical sense is weakly differentiable and its classical
derivative coincides with the weak derivative.

I Every continuous piecewise differentiable function is weakly
differentiable and its weak derivative is the piecewise
classical derivative.

I u(x) = 1− |2x− 1| is weakly differentiable with weak

derivative w(x) =

{
2 for 0 < x < 1

2

−2 for 1
2 < x < 1

.

(Notice: The value w(1
2) is arbitrary.). ��@@
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Ordinary Differential Equations

Variational Methods

Sobolev Spaces

I ‖v‖ =
{∫ 1

0
|v(x)|2dx

} 1
2

denotes the L2-norm.

I L2(0, 1) is the Lebesgue space of all functions v with finite
L2-norm ‖v‖.

I H1(0, 1) is the Sobolev space of all functions v in L2(0, 1)
which admit a weak derivative that is contained in L2(0, 1).

I H1
0 (0, 1) is the Sobolev space of all functions v in H1(0, 1)

with v(0) = 0 und v(1) = 0.
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Ordinary Differential Equations

Variational Methods

Examples

I Every bounded function is in L2(0, 1).

I v(x) = 1√
x

is not in L2(0, 1), since the integral of 1
x = v(x)2

is not finite.

I Every continuously differentiable function is in H1(0, 1).

I Every continuous piecewise differentiable function is in
H1(0, 1).

I v(x) = 1− |2x− 1| is in H1
0 (0, 1). ��@@

I v(x) = 2
√
x is not in H1(0, 1), since the integral of

1
x =

(
v′(x))2 is not finite.

I Univariate functions in H1(0, 1) are always continuous
contrary to multivariate functions.
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Variational Methods

Variational Problem

Find u ∈ H1
0 (0, 1) such that for all v ∈ H1

0 (0, 1)∫ 1

0

[
p(x)u′(x)v′(x) + q(x)u(x)v(x)

]
dx =

∫ 1

0
f(x)v(x)dx.
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Ordinary Differential Equations

Variational Methods

Properties of the Variational Problem

I The variational problem admits a unique solution.

I The solution of the variational problem is the unique
minimum in H1

0 (0, 1) of the energy function
1

2

∫ 1

0

[
p(x)u′(x)2 + q(x)u(x)2

]
dx−

∫ 1

0
f(x)u(x)dx.
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Variational Methods

Finite Element Spaces

I T denotes an arbitrary partition of the interval (0, 1) into
non-overlapping sub-intervals.

I k ≥ 1 denotes an arbitrary polynomial degree.

I Sk,0(T ) is the finite element space of all continuous
functions which are piecewise polynomials of degree at
most k on the intervals in T .

I Sk,00 (T ) is the finite element space of all functions v in
Sk,0(T ) with v(0) = 0 and v(1) = 0.
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Variational Methods

Finite Element Problem

Find uT ∈ Sk,00 (T ) (trial function) such that for all

vT ∈ Sk,00 (T ) (test function)∫ 1

0

[
p(x)u′T (x)v′T (x) + q(x)uT (x)vT (x)

]
dx =

∫ 1

0
f(x)vT (x)dx.
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Variational Methods

Properties of the Finite Element Problem

I The finite element problem admits a unique solution.

I The solution of the finite element problem is the unique
minimum in Sk,00 (T ) of the energy function.

I After choosing a basis for Sk,00 (T ), the finite element
problem amounts to a linear system of equations with
k · ]T − 1 unknowns and a symmetric positive definite
tridiagonal matrix (stiffness matrix).

I Standard choices of k are 1 (linear elements) or 2
(quadratic elements).

I One usually uses a nodal basis for Sk,00 (T ).
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Ordinary Differential Equations

Variational Methods

Nodal Basis Functions

I Linear elements: Those functions which take the value 1 at
exactly one endpoint of an interval and which vanish at all
other endpoints of intervals.

�
��

@
@@

I Quadratic elements: Those functions which take the value
1 at exactly one endpoint of an interval or midpoint of an
interval and which vanish at all other endpoints and
midpoints of intervals.
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Variational Methods

Error Estimates

I Denote by hT the maximal length of the intervals in T .

I Then the following error estimates hold for the solutions u
of the variational problem and uT of the finite element
problem:

‖u′ − u′T ‖ ≤ c1hT

‖u− uT ‖ ≤ c2h
2
T

I The constants c1 and c2 only depend on the lower bound p
for p, derivatives up to order 1 of p, the maximal value of q
and derivatives up to order 2 of u.
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Finite Element and Finite Volume Methods

Prerequisites for Finite Element and Finite
Volume Methods

I Sobolev Spaces

I Finite Element Methods

I Finite Volume Methods
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Finite Element and Finite Volume Methods

Sobolev Spaces

Sobolev Spaces

I Basic idea

I Integration by parts

I Weak derivatives

I Sobolev spaces

I Properties of Sobolev spaces

I Supplements
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Sobolev Spaces

Reaction-Diffusion Equation

−div(A∇u) + αu = f in Ω

u = 0 on Γ

I Ω a polyhedron in Rd with d = 2 or d = 3

I A(x) a symmetric positive definite, d× d matrix for every x
in Ω

I α(x) a non-negative number for every x in Ω
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Sobolev Spaces

Divergence Theorem

I Divergence:

div w =
d∑
i=1

∂wi
∂xi

I Divergence Theorem:∫
Ω

div wdx =

∫
Γ

w · ndS
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Sobolev Spaces

Integration by Parts in Several Dimensions I

I The divergence theorem applied to w = v(A∇u) yields∫
Ω
v div(A∇u)dx+

∫
Ω
∇v ·A∇udx

=

∫
Ω

div(vA∇u)dx =

∫
Ω

div wdx =

∫
Γ

w · ndS

=

∫
Γ
vn ·A∇udS.

I If v = 0 on Γ, this implies∫
Ω
∇v ·A∇udx = −

∫
Ω
v div(A∇u)dx.
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Sobolev Spaces

Idea of the Variational Formulation

I Multiply the differential equation with a continuously
differentiable function v with v = 0 on Γ

−div(A∇u)(x)v(x) + α(x)u(x)v(x) = f(x)v(x) for x ∈ Ω.

I Integrate the result over Ω∫
Ω

[
−div(A∇u)v + αuv

]
dx =

∫
Ω
fvdx.

I Use integration by parts for the term containing derivatives

−
∫

Ω
div(A∇u)vdx =

∫
Ω
∇v ·A∇udx.
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Sobolev Spaces

Problems

I The properties of the functions u and v must be stated
more precisely to obtain a well-posed variational problem.

I Classical properties such as ‘continuously differentiable’ are
too restrictive.

I The notion ‘derivative’ must be generalised.

I In view of the discrete problems, piecewise differentiable
functions should be differentiable in the new weaker sense.
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Sobolev Spaces

Integration by Parts in Several Dimensions II

I The divergence theorem applied to w = uvei (ei i-th unit
vector with i-th component 1 and vanishing remaining
components) yields∫

Ω

∂u

∂xi
vdx+

∫
Ω
u
∂v

∂xi
dx

=

∫
Ω

∂(uv)

∂xi
dx =

∫
Ω

div wdx =

∫
Γ

w · ndS

=

∫
Γ
uvnidS.

I If u = 0 or v = 0 on Γ, this implies∫
Ω

∂u

∂xi
vdx = −

∫
Ω
u
∂v

∂xi
dx.
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Sobolev Spaces

Weak Derivative

I The function u is said to be weakly differentiable w.r.t. xi
with weak derivative wi, if every continuously differentiable
function v with v = 0 on Γ satisfies∫

Ω
wivdx = −

∫
Ω
u
∂v

∂xi
dx.

I If u is weakly differentiable w.r.t. to all variables
x1, . . . , xd, we call u weakly differentiable and write ∇u for
the vector (w1, . . . , wd) of the weak derivatives.

72/ 248



Numerical Methods

Finite Element and Finite Volume Methods

Sobolev Spaces

Examples

I Every function which is continuously differentiable in the
classical sense is weakly differentiable and its classical
derivative coincides with the weak derivative.

I Every continuous piecewise dif-
ferentiable function is weakly dif-
ferentiable and its weak deriva-
tive is the piecewise classical
derivative.
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Sobolev Spaces

Sobolev Spaces

I ‖v‖ =
{∫

Ω
|v|2dx

} 1
2

denotes the L2-norm.

I L2(Ω) is the Lebesgue space of all functions v with finite
L2-norm ‖v‖.

I H1(Ω) is the Sobolev space of all functions v in L2(Ω),
which are weakly differentiable and for which |∇v|, the
Euclidean norm of ∇v, is in L2(Ω).

I H1
0 (Ω) is the Sobolev space of all functions v in H1(Ω)

with v = 0 on Γ.
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Sobolev Spaces

Examples

I Every bounded function is in L2(Ω).

I Every continuously differentiable function is in H1(Ω).

I A piecewise differentiable function is in H1(Ω), if and only
if it is globally continuous.

I Functions in H1(Ω) must not admit point values.

75/ 248

Numerical Methods

Finite Element and Finite Volume Methods

Sobolev Spaces

Example: Radially Symmetric Functions in R2

I Ω circle with radius 1 centred at the origin

I vα(x, y) =
(
x2 + y2

)α
2 with α ∈ R

I

∫
Ω
v2
αdxdy = 2π

∫ 1

0
r2αrdr <∞

⇐⇒ 2α+ 1 > −1 ⇐⇒ α > −1

I

∫
Ω
|∇vα|2dxdy = 2π

∫ 1

0
α2r2α−2rdr <∞

⇐⇒ 2α− 1 > −1 ⇐⇒ α > 0

I vα ∈ H1(Ω) ⇐⇒ α > 0

I v(x) = ln(|ln(
√
x2 + y2)|) is in H1(Ω) but has no finite

value at the origin.
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Sobolev Spaces

Example: Radially Symmetric Functions in R3

I Ω ball with radius 1 centred at the origin

I vα(x, y, z) =
(
x2 + y2 + z2

)α
2 with α ∈ R

I

∫
Ω
v2
αdxdydz = 4π

∫ 1

0
r2αr2dr <∞

⇐⇒ 2α+ 2 > −1 ⇐⇒ α > −3
2

I

∫
Ω
|∇vα|2dxdy = 4π

∫ 1

0
α2r2α−2r2dr <∞

⇐⇒ 2α > −1 ⇐⇒ α > −1
2

I vα ∈ H1(Ω) ⇐⇒ α > −1
2

I v(x) =
(
x2 + y2 + y2

)− 1
8 is in H1(Ω) but has no finite value

at the origin.
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Sobolev Spaces

Variational Problem

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω)∫
Ω

[
∇v ·A∇u+ αuv

]
dx =

∫
Ω
fvdx.
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Sobolev Spaces

Properties of the Variational Problem

I The variational problem admits a unique solution.

I The solution of the variational problem is the unique
minimum in H1

0 (Ω) of the energy function
1

2

∫
Ω

[
∇u ·A∇u+ αu2

]
dx−

∫
Ω
fudx.

79/ 248

Numerical Methods

Finite Element and Finite Volume Methods

Sobolev Spaces

Convective Derivatives

I A convective derivative a · ∇u gives rise to the additional

term

∫
Ω

a · ∇uv on the left-hand side of the variational

problem.

I Then the solution of the variational problem cannot be
interpreted as the minimum of an energy function.
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Sobolev Spaces

Neumann Boundary Condition

I The boundary condition n ·A∇u = g on ΓN ⊂ Γ is called
Neumann or natural boundary condition.

I It prescribes the flux or traction.

I It gives rise to the additional term

∫
ΓN

gv on the

right-hand side of the variational problem.
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Finite Element and Finite Volume Methods

Sobolev Spaces

Weak Divergence

I A vector-field u : Ω ⊂ Rd → Rd is said to have the weak
divergence w : Ω→ R if every continuously differentiable
scalar function v satisfies∫

Ω
wv = −

∫
Ω

u · ∇v

I If u has the weak divergence w, one writes w = div u.

I If u is continuously differentiable, it has a weak divergence
which coincides with the classical divergence.
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Finite Element and Finite Volume Methods

Sobolev Spaces

H(div; Ω)

I H(div; Ω) = {u : Ω→ Rd : u ∈ L2(Ω)d and div u ∈ L2(Ω)}
I A piecewise differentiable vector-field is in H(div; Ω), if and

only if its normal component is continuous across interfaces.

I The space H(div; Ω) plays a crucial role in mixed
formulations of linearized elasticity which avoid the locking
phenomenon.
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Finite Element Spaces

Finite Element Spaces

I Partitions

I Finite element spaces

I Local and global degrees of freedom

I Nodal basis functions

I Evaluation of the nodal basis functions

I Evaluation of integrals

I Supplements
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Finite Element Spaces

Reaction-Diffusion Equation

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω)∫
Ω

[
∇v ·A∇u+ αuv

]
dx =

∫
Ω
fvdx.
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Finite Element Spaces

Basic Idea

I Subdivide Ω into non-overlapping simple sub-domains
called elements such as triangles, parallelograms,
tetrahedra of parallelepipeds, . . . (partition).

I In the variational problem replace the space H1
0 (Ω) by a

finite dimensional subspace consisting of continuous
functions which are element-wise polynomials (finite
element space).

I This gives rise to a linear system of equations for the
approximation uT of the solution u of the differential
equation.
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Finite Element Spaces

Partition

T = {Ki : 1 ≤ i ≤ NT } denotes a partition of Ω with the
following properties:

I Ω is the union of all elements K in T .

I Admissibility: Any two elements K and K ′ in T are either
disjoint or share a vertex or a complete edge or, if d = 3, a
complete face.

admissible •@@
��

��

@@

��

@@

@@

��

not admissible ��

@@

@@

I Affine equivalence: Every element K is a triangle or
parallelogram, if d = 2, or a tetrahedron or parallelepiped,
if d = 3.
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Finite Element Spaces

Remarks

I Curved boundaries can be approximated by piecewise
straight lines or planes.

I The admissibility is necessary to ensure the continuity of
the finite element functions and thus the inclusion of the
finite element spaces in H1

0 (Ω).

I If the admissibility is violated, the continuity of the finite
element functions must be enforced which leads to a more
complicated implementation.

I Partitions can also consist of general quadrilaterals or
hexahedra which leads to a more complicated
implementation.
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Finite Element Spaces

Finite Element Spaces

I Rk(K̂) =


span{xα1

1 · . . . · x
αd
d : α1 + . . .+ αd ≤ k}

K̂ reference simplex
span{xα1

1 · . . . · x
αd
d : max{α1, . . . , αd} ≤ k}

K̂ reference cube

I Rk(K) = {p̂ ◦ F−1
K : p̂ ∈ R̂k}

I Sk,−1(T ) = {v : Ω→ R : v
∣∣
K
∈ Rk(K) for all K ∈ T }

I Sk,0(T ) = Sk,−1(T ) ∩ C(Ω)

I Sk,00 (T ) = Sk,0(T ) ∩H1
0 (Ω)

= {v ∈ Sk,0(T ) : v = 0 on Γ}
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Finite Element Spaces

Remarks

I The global continuity ensures that Sk,0(T ) ⊂ H1(Ω).

I The polynomial degree k may vary from element to
element; this leads to a more complicated implementation.
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Finite Element Spaces

Discrete Problem

Find uT ∈ Sk,00 (T ) (trial function) such that for all

vT ∈ Sk,00 (T ) (test function)∫
Ω

[
∇vT ·A∇uT + αuT vT

]
dx =

∫
Ω
fvT dx.
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Finite Element and Finite Volume Methods

Finite Element Spaces

Properties of the Discrete Problem

I The discrete problem admits a unique solution.

I The solution of the discrete problem is the unique
minimum in Sk,00 (T ) of the energy function
1

2

∫
Ω

[
∇u ·A∇u+ αu2

]
dx−

∫
Ω
fudx.

I After choosing a basis for Sk,00 (T ) the discrete problem
amounts to a linear system of equations with ≈ kdNT
(NT = ]T ) equations and unknowns.
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Finite Element Spaces

Element-Wise Degrees of Freedom NK,k

I k = 1 �
�
��

@
@

@@

• •

•

�
�
��

�
�
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• •

••

I k = 2 �
�
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@

@@
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•

•
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�
�
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�
�
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I k = 4 �
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Finite Element Spaces

Global Degrees of Freedom NT ,k

I NT ,k =
⋃
K∈T

NK,k k = 1 �
��

@
@@

@
@@

• •

• •

• • •

• • •

k = 2 �
��

@
@@

@
@@

• • •
• • •

• • •

• • • • •
• • • • •
• • • • •

I The functions in Sk,0(T ) are uniquely defined by their
values in NT ,k thanks to the admissibility of T .
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Finite Element Spaces

Nodal Basis Functions

The nodal basis function associated
with a vertex z ∈ NT ,k is uniquely
defined by he conditions

I λz,k ∈ Sk,0(T ),

I λz,k(z) = 1,

I λz,k(y) = 0 for all
y ∈ NT ,k \ {z}.
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Finite Element Spaces

Properties

I {λz,k : z ∈ NT ,k} is a basis for Sk,0(T ).

I {λz,k : z ∈ NT ,k \ Γ} is a basis for Sk,00 (T ).
(Degrees of freedom on the boundary Γ are suppressed.)

I λz,k vanishes outside the union of all elements that share
the vertex z.

I The stiffness matrix is sparse.
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Finite Element Spaces

Evaluation of the Nodal Basis Functions by
Transformation to a Reference Element

I Reference elements K̂ @
@@

@
@@

��

H
HHH

��

����

I Determine the nodal basis functions λ̂ẑ,k for the reference

element K̂.

I Determine an affine transformation of the reference element
K̂onto the current element K

K̂ 3 x̂ 7→ x= bK +BK x̂ ∈ K.

I Express λz,k in terms of λ̂ẑ,k using the affine transformation

λz,k(x) = λ̂ẑ,k(x̂).

97/ 248

Numerical Methods

Finite Element and Finite Volume Methods

Finite Element Spaces

Examples for λ̂ẑ,k
I Reference triangle @@

I k = 1 Vertices 1− x− y, x, y
I k = 2

Vertices (1− x− y)(1− 2x− 2y), x(2x− 1), y(2y − 1)
Midpoints of edges 4x(1− x− y), 4xy, 4y(1− x− y)

I Reference square
I k = 1 Vertices (1− x)(1− y), x(1− y), xy, (1− x)y
I k = 2

Vertices (1− 2x)(1− x)(1− 2y)(1− y),
x(2x− 1)(1− 2y)(1− y), x(2x− 1)y(2y − 1),
(1− 2x)(1− x)y(2y − 1)
Midpoints of edges 4x(1− x)(1− y)(1− 2y),
4x(2x− 1)y(1− y),

4x(1− x)y(2y − 1), 4y(1− y)(1− 2x)(1− x)
Barycentre 16x(1− x)y(1− y)
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Examples for Affine Transformations

I
@
@

â0 â1

â2
−→

�
�
@
@

a0 a1

a2

bK = a0, BK =
(
a1 − a0 , a2 − a0

)
I

â0 â1

â2â3
−→

�
�
�
�

a0 a1

a2a3

bK = a0, BK =
(
a1 − a0 , a3 − a0

)

I @
@@

��

H
HHH

â0 â1
â2

â3

−→
�
�
�
�
�

A
A
A
A
A

��
�

Z
Z
Z
ZZ

a0 a1

a2

a3

bK = a0, BK =
(
a1 − a0 , a2 − a0 , a3 − a0

)
I Similar formulae hold for parallelepipeds.
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Evaluation Using the Element Geometry (k = 1)

I
@
@

a0 a1

a2
λai,1(x) =

det(x− ai+1 , ai+2 − ai+1)

det(ai − ai+1 , ai+2 − ai+1)

I

a0 a1

a2a3
λai,1(x) =

det(x− ai+2 , ai+3 − ai+2)

det(ai − ai+2 , ai+3 − ai+2)
·

· det(x− ai+2 , ai+1 − ai+2)

det(ai − ai+2 , ai+1 − ai+2)

I

@
@@

��

HHHH
a0 a1

a2

a3

λai,1(x) =
det(x− ai+1,ai+2 − ai+1,ai+3 − ai+1)

det(ai − ai+1,ai+2 − ai+1,ai+3 − ai+1)

I Parallelepipeds similarly with 3 factors corresponding to 3
tetrahedra

I All indices must be taken modulo the number of element
vertices.
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Evaluation Using the Element Geometry (k ≥ 2)

I Every λz,k can be represented as a suitable product of first
order nodal basis functions λai,1 associated with the
element vertices.

I Example: triangle, k = 2
I Vertex ai
λai,2 = λai

[λai
− λai+1

− λai+2
]

I Midpoint z of the edge with endpoints ai und ai+1

λz,2 = 4λaiλai+1

I Example: parallelogram, k = 2
I Vertex ai
λai,2 = λai [λai − λai+1 + λai+2 − λai+3 ]

I Midpoint z of the edge with endpoints ai und ai+1

λz,2 = 4λai
[λai+1

− λai+2
]

I Barycentre z
λz,2 = 16λa0λa2
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Evaluation of Integrals
I The exact evaluation of the integrals appearing in the

entries of the stiffness matrix and load vector often is too
expensive or even impossible.

I The integrals are therefore approximately evaluated using a
suitable quadrature formula:∫
K
ϕdx ≈ Qk(ϕ) =

∑
q∈QK

cqϕ(q).

I In order to avoid that this spoils the accuracy of the finite
element discretization, the quadrature formula must have
the order 2k − 2 (k element degree):∫
K
ϕdx = QK(ϕ) for all ϕ ∈ R2k−2(K).

I Order 0 is sufficient for linear elements; order 2 is sufficient
for quadratic elements.
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Examples of Quadrature Formulae
I Triangle:

I order 1:
I QK barycentre of K,
I cq = |K|

I order 2:
I QK midpoints of edges of K,
I cq =

1
3
|K| for all q

I Parallelogram:
I order 1:

I QK barycentre of K,
I cq = |K|

I order 3:
I QK vertices, midpoints of edges and barycentre of K,

I cq =


1
36
|K| if q is a vertex

4
36
|K| if q is a midpoint of an edge

16
36
|K| if q is the barycentre
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Neumann Boundary Condition

I The Neumann boundary condition n ·A∇u = g on ΓN ⊂ Γ
gives rise to

I an additional term

∫
ΓN

gvdS on the right-hand side of the

variational problem,

I an additional term

∫
ΓN

gvT dS on the right-hand side of the

discrete problem.

I The additional entries of the load vector are taken into
account when sweeping through the elements.

I Degrees of freedom associated with points on the Neumann
boundary ΓN are additional unknowns.
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Convective Derivatives

I Convective derivatives lead to a non-symmetric stiffness
matrix.

I They often give rise to unphysical oscillations of the
numerical solution.

I To avoid these oscillations special modifications such as
upwinding or streamline Petrov-Galerkin stabilization must
be introduced.
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Finite Volume Methods

I Systems in divergence form

I Finite volume discretization

I Finite volume meshes

I Numerical fluxes

I Relation to finite element methods
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Systems in Divergence Form
I Domain: Ω ⊂ Rd
I Source: g : Rm × Ω× (0,∞)→ Rm
I Mass: M : Rm → Rm
I Flux: F : Rm → Rm×d
I Initial value: U0 : Ω→ Rm
I Problem: Find U : Ω× (0,∞)→ Rm such that under

suitable boundary conditions

∂M(U)

∂t
+ div F(U) = g(U, x, t) in Ω× (0,∞)

U(·, 0) = U0 in Ω

I div F(U) =
( d∑
j=1

∂F(U)i,j
∂xj

)
1≤i≤m
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Advective and Viscous Fluxes

I The flux F splits into two components:

F = Fadv + Fvisc.

I Fadv is called advective flux and does not contain any
derivatives.

I Fvisc is called viscous flux and contains spatial derivatives.

I The advective flux models transport or convection
phenomena.

I The viscous flux models diffusion phenomena.
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Examples

I Linear parabolic equations of 2nd order:

I
∂u

∂t
− div(A∇u) + a · ∇u+ αu = f

I m = 1
I U = u
I M(U) = u
I Fadv(U) = au
I Fvisc(U) = −A∇u
I g(U) = f − αu+ (div a)u

I Euler equations

I Compressible Navier-Stokes equations

I Burger’s equation
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Finite Volume Discretization
First Step

I Choose a time step τ > 0.

I Choose a partition T of Ω into arbitrary non-overlapping
polyhedra.

I Fix n ∈ N∗ and K ∈ T .

I Integrate the system over K × [(n− 1)τ, nτ ]:∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
dxdt+

∫ nτ

(n−1)τ

∫
K

div F(U)dxdt

=

∫ nτ

(n−1)τ

∫
K

g(U, x, t)dxdt
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Finite Volume Discretization
Second Step

Apply integration by parts to the terms on the left-hand side:∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
dxdt =

∫
K

M(U(x, nτ))dx

−
∫
K

M(U(x, (n− 1)τ))dx∫ nτ

(n−1)τ

∫
K

div F(U)dxdt =

∫ nτ

(n−1)τ

∫
∂K

F(U) · nKdSdt
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Finite Volume Discretization
Third Step

I Assume that U is piecewise constant w.r.t space and time.

I Denote by Un
K and Un−1

K the value of U on K at times nτ
and (n− 1)τ :∫

K
M(U(x, nτ))dx ≈ |K|M(Un

K)∫
K

M(U(x, (n− 1)τ))dx ≈ |K|M(Un−1
K )∫ nτ

(n−1)τ

∫
∂K

F(U) · nKdSdt ≈ τ
∫
∂K

F(Un−1
K ) · nKdS∫ nτ

(n−1)τ

∫
K

g(U, x, t)dxdt ≈ τ |K|g(Un−1
K , xK , (n− 1)τ)
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Finite Volume Discretization
Fourth Step

Approximate the boundary integral for the flux by a numerical
flux:

τ

∫
∂K

F(Un−1
K ) · nKdS

≈ τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|FT (Un−1
K ,Un−1

K′ )
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Resulting Finite Volume Method

I For every element K ∈ T compute

U0
K =

1

|K|

∫
K

U0(x).

I For n = 1, 2, . . . successively compute for every element
K ∈ T

M(Un
K) = M(Un−1

K )

−τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|
|K|

FT (Un−1
K ,Un−1

K′ )

+τg(Un−1
K , xK , (n− 1)τ).
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Possible Modifications

I The time step may be variable.

I The partition of Ω may differ from time step to time step.

I The approximation of Un
K may not be constant.
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Open Tasks

I Construct the partition T .

I Construct the numerical flux FT .

I Take boundary conditions into account.
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Construction of the Partition

I Often the partition T is constructed as a dual mesh
corresponding to an admissible primal finite element mesh
T̃ .

I In two space dimensions (d = 2) there are two major
approaches for the construction of dual meshes:

I For every element K̃ ∈ T̃ draw the perpendicular bisectors.
I Connect the barycentre of every element K̃ ∈ T̃ with the

midpoints of its edges.
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Perpendicular Bisectors and Barycentres

Perpendicular Bisectors
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Properties of Dual Meshes

I Every element in
K ∈ T corresponds to
an element vertex xK
of T̃ and vice versa.

I For every edge E of T
there are two element
vertices xE,1, xE,2 of T̃
such that the line
segment xE,1 xE,2
intersects E.
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A
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H
A
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A
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��H

HH
A
AA ••

119/ 248

Numerical Methods

Finite Element and Finite Volume Methods

Finite Volume Methods

Advantages and Disadvantages of Perpendicular
Bisectors

I The line segment xE,1 xE,2 and the edge E are
perpendicular.

I The perpendicular bisectors of a triangle may intersect in a
point outside of the triangle. The intersection of the
perpendicular bisectors is inside the triangle, if and only if
the triangle is acute.

I The perpendicular bisectors of a quadrilateral may not
intersect at all. The perpendicular bisectors of a
quadrilateral intersect in a common point, if and only if the
quadrilateral is a rectangle.

I The construction with perpendicular bisectors is restricted
to two space dimensions.
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Construction of the Numerical Fluxes
Notations and Assumptions

I Assume that T is a dual mesh corresponding to a primal
finite element mesh T̃ .

I For every edge or face E of T denote by
I K1 and K2 the adjacent volumes,
I U1, U2 the values Un−1

K1
and Un−1

K2
,

I x1, x2 the element vertices in T̃ such that the line segment
x1 x2 intersects E.

I Split the numerical flux FT (U1,U2) into a viscous
numerical flux FT ,visc(U1,U2) and an advective numerical
flux FT ,adv(U1,U2).
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Approximation of Viscous Fluxes

I Introduce a local coordinate system
η1, . . . , ηd such that η1 is parallel to
x1 x2 and such that the remaining
coordinates are tangential to E. �

�
�
��

•

•
η1η2
���6

I Express all derivatives in Fvisc in terms of derivatives
corresponding to the new coordinate system.

I Suppress all derivatives except those corresponding to η1.

I Replace derivatives corresponding to η1 by difference
quotients of the form ϕ1−ϕ2

|x1−x2| .
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Spectral Decomposition of Advective Fluxes

I Denote by C(V) = D(Fadv(V) · nK1) ∈ Rm×m the
derivative of Fadv(V) · nK1 w.r.t. V.

I Assume that this matrix can be diagonalized (Euler and
Navier-Stokes equations fulfil this assumption.)

Q(V)−1C(V)Q(V) = ∆(V)

with an invertible matrix Q(V) ∈ Rm×m and a diagonal
matrix ∆(V) ∈ Rm×m.

I Set z+ = max{z, 0}, z− = min{z, 0} and

∆(V)± = diag
(
∆(V)±11, . . . ,∆(V)±mm

)
,

C(V)± = Q(V)∆(V)±Q(V)−1.
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Approximation of Advective Fluxes

I Steger-Warming

FT ,adv(U1,U2) = C(U1)+U1 + C(U2)−U2

I van Leer

FT ,adv(U1,U2)

=
[1

2
C(U1) + C(

1

2
(U1 + U2))+ − C(

1

2
(U1 + U2))−

]
U1

+
[1

2
C(U2)− C(

1

2
(U1 + U2))+ + C(

1

2
(U1 + U2))−

]
U2
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Properties

I Both approximations require the computation of
DFadv(V) · nK1 together with its eigenvalues and
eigenvectors for suitable values of V.

I The approach of van Leer usually is more costly than the
one of Steger-Warming since it requires three evaluations of
C(V) instead of two.

I This extra cost can be avoided for the Euler and
Navier-Stokes equations since these have the particular
structure Fadv(V) · nK1 = C(V)V.
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A One-Dimensional Example

I Burger’s equation:
∂u

∂t
+ u

∂u

∂x
= 0

I Fadv(u) = 1
2u

2, C(u) = u, C(u)± = u±

I Steger-Warming:

FT ,adv(u1, u2) =


u2

1 if u1 ≥ 0, u2 ≥ 0

u2
1 + u2

2 if u1 ≥ 0, u2 ≤ 0

u2
2 if u1 ≤ 0, u2 ≤ 0

0 if u1 ≤ 0, u2 ≥ 0

I van Leer:

FT ,adv(u1, u2) =

{
u2

1 if u1 ≥ −u2

u2
2 if u1 ≤ −u2
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TVD and ENO Schemes

I The convergence analysis of finite volume methods is based
on compactness arguments, in particular the concept of
compensated compactness.

I This requires to bound the total variation of the numerical
approximation and to avoid unphysical oscillations.

I This leads to the concept of total variation diminishing
TVD and essentially non-oscillating ENO schemes.

I Corresponding material may be found under the names of
Enquvist, LeVeque, Osher, Roe, Tadmor, . . ..
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Relation to Finite Element Methods

I Suppose that T is a dual mesh corresponding to a primal
finite element mesh T̃ .

I Then there is a one-to-one correspondence between
piecewise constant functions associated with T and
continuous piecewise linear functions associated with T̃ :

S0,−1(T )m 3 UT ↔ ŨT̃ ∈ S
1,0(T̃ )m

UT |K = ŨT̃ (xK) for all K ∈ T .
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Efficient Solvers for Linear Systems of Equations

I Properties of Direct and Iterative Solvers

I Classical Iterative Solvers

I Conjugate Gradient Methods

I Multigrid Methods

I Indefinite Problems
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Properties of Direct and Iterative Solvers

I A typical model problem

I Properties of the stiffness matrix

I Consequences for direct and iterative solvers
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A Typical Model Problem
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I Poisson equation
−∆u = f in Ω, u = 0 on Γ

I Ω = (0, 1)2

I Courant triangulation
consisting of 2n2 isosceles
right-angled triangles with
short sides of length
h = n−1

I Linear finite elements

I Number N of unknowns is
of order n2 = h−2.
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Properties of the Stiffness Matrix

I It is symmetric positive definite.

I It has 5 non-zero elements per row.

I It has bandwidth h−1 ≈ N
1
2 .

I Gaussian elimination requires N2 operations.

I A matrix-vector multiplication requires 5N operations.

I Its smallest eigenvalue is of order 1.

I Its largest eigenvalue is of order h−2 ≈ N .
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Typical Properties of Direct Solvers

I They require O(N2− 1
d ) storage for a discrete problem with

N unknowns in d space dimensions.

I They require O(N3− 2
d ) operations.

I They yield the exact solution of the discrete problem up to
rounding errors.

I They yield an approximation for the differential equation
with an O(hα) = O(N−

α
d ) error (typically: α ∈ {1, 2}).
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Typical Properties of Classical Iterative Solvers

I They require O(N) storage.

I They require O(N) operations per iteration.

I Their convergence rate deteriorates with an increasing
condition number of the discrete problem which usually is
O(h−2) = O(N

2
d ).

I In order to reduce an initial error by a factor 0.1 one
usually needs the following numbers of operations:

I O(N1+ 2
d ) with the Gauß-Seidel algorithm,

I O(N1+ 1
d ) with the conjugate gradient (CG-) algorithm,

I O(N1+ 1
2d ) with the CG-algorithm with Gauß-Seidel

preconditioning.
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Comparison of Solvers
Arithmetic Operations

Example: Linear finite elements on a Courant triangulation for
the Poisson equation in the unit square; initial error is reduced
by the factor 0.05

h Gaussian el. GS CG PCG MG

1
16 7.6 · 105 2.6 · 105 2.7 · 104 1.6 · 104 1.2 · 104

1
32 2.8 · 107 4.5 · 106 2.2 · 105 8.6 · 104 4.9 · 104

1
64 9.9 · 108 7.6 · 107 1.9 · 106 5.0 · 105 2.1 · 105

1
128 3.3 · 1010 1.2 · 109 1.5 · 107 3.2 · 106 8.4 · 105
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Comparison of Solvers
Iterations

Example: Linear finite elements on a Courant triangulation for
the Poisson equation in the unit square; initial error is reduced
by the factor 0.05

h GS CG PCG MG

1
16 236 12 4 1

1
32 954 23 5 2

1
64 3820 47 7 2

1
128 15287 94 11 1
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Comparison of Solvers
Iterations and Convergence Rates

Example: Adaptively refined linear finite element discretization
of a reaction-diffusion equation in the unit square with an
interior layer; initial error is reduced by the factor 0.05

CG PCG MG
DOF It. κ It. κ It. κ

9 4 0.10 3 0.2 4 0.3
47 10 0.60 7 0.5 3 0.3
185 24 0.80 12 0.7 5 0.2
749 49 0.90 21 0.8 5 0.4
2615 94 0.95 37 0.9 6 0.4
5247 130 0.96 55 0.9 5 0.4
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Conclusion

I Direct solvers need too much storage and computer time.

I It suffices to compute an approximate solution of the
discrete problem which, compared to the solution of the
differential equation, has an error similar in size to the one
of the exact solution of the discrete problem.

I Iterative solvers are superior if one arrives at improving
their convergence rate and at finding good initial guesses.

138/ 248

Numerical Methods

Linear Systems of Equations

Classical Iterative Solvers

Classical Iterative Solvers

I Taking advantage of nested grids

I Richardson, Jacobi and Gauss-Seidel algorithms

I Comparisons
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Nested Grids

I Often one has to solve a sequence of discrete problems
Lkuk = fk corresponding to increasingly more accurate
discretizations.

I Usually there is a natural interpolation operator Ik−1,k

which maps functions associated with the (k − 1)-st
discrete problem into those corresponding to the k-th
discrete problem.

I Then the interpolate of any reasonable approximate
solution of the (k − 1)-st discrete problem is a good initial
guess for any iterative solver applied to the k-th discrete
problem.

I Often it suffices to reduce the initial error by a factor 0.1.
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Nested Iteration

I Compute
ũ0 = u0 = L−1

0 f0.

I For k = 1, . . . compute an approximate solution ũk for
uk = L−1

k fk by applying mk iterations of an iterative solver
for the problem

Lkuk = fk

with starting value Ik−1,kũk−1.

I mk is implicitly determined by the stopping criterion

‖fk − Lkũk‖ ≤ ε‖fk − Lk(Ik−1,kũk−1)‖.
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Classical Iterative Solvers

The Setting

I We have to solve a linear system Lu = f with N unknowns.

I L is symmetric positive definite.

I κ denotes the condition number of L, i.e. the ratio of the
largest over the smallest eigenvalue of L.

I κ ≈ N
2
d
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Classical Iterative Solvers

Richardson Iteration

I Iteration step: u 7→ u+ 1
ω (f − Lu)

I ω is called relaxation parameter.

I ω must be comparable in size to the largest eigenvalue of L.

I The convergence rate is κ−1
κ+1 ≈ 1−N−

2
d .
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Jacobi Iteration

I Iteration step: u 7→ u+D−1(f − Lu)

I D is the diagonal of L.

I The convergence rate is κ−1
κ+1 ≈ 1−N−

2
d .

I The algorithm corresponds to sweeping through the
equations and solving the i-th equation for the i-th
unknown without modifying previous or subsequent
equations.
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Gauß-Seidel Iteration

I Iteration step: Sweep through the equations, solve the i-th
equation for the i-th unknown and immediately insert the
new value of the i-th unknown in all subsequent equations.

I The convergence rate is κ−1
κ+1 ≈ 1−N−

2
d .
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SSOR Iteration

I Iteration step:
I Sweep through the equations first in increasing order, then

in decreasing order.
I Solve the i-th equation for the i-th unknown and write the

result in the form “old value plus increment”.
I The new approximation for the i-th unknown then is the

old one plus a factor (usually 1.5) times the increment.
I Immediately insert the new value of the i-th unknown in all

subsequent equations.

I The convergence rate is κ−1
κ+1 ≈ 1−N−

2
d .
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Comparison of Classical Iterative Solvers
Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = 1

64

Richardson
convergence rate 0.992

Jacobi
convergence rate 0.837
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Comparison of Classical Iterative Solvers
Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = 1

64

Gauß-Seidel
convergence rate 0.752

SSOR
convergence rate 0.513
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Conjugate Gradient Methods

I Gradient algorithm

I Conjugate gradient algorithm

I Preconditioning

I Examples
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Conjugate Gradient Methods

The Setting

I We have to solve a linear system Lu = f with N unknowns.

I L is symmetric positive definite.

I κ denotes the condition number of L, i.e. the ratio of the
largest over the smallest eigenvalue of L.

I κ ≈ N
2
d
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Idea of the Gradient Algorithm

I The solution of Lu = f is equivalent to the minimization of
the quadratic functional J(u) = 1

2u · (Lu)− f · u.

I The negative gradient −∇J(v) = f −Lv of J at v gives the
direction of the steepest descent.

I Given an approximation v and a search direction d 6= 0, J
attains its minimum on the line t 7→ v + td at the point
t∗ = (f−Lv)·d

d·(Ld) .
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Gradient Algorithm

I Iteration step: Given the actual iterate u
I compute the residual r = f − Lu,
I replace u by u+ r·r

r·Lr r.

I The gradient algorithm corresponds to a Richardson
iteration with an automatic and optimal choice of the
relaxation parameter.

I The convergence rate is κ−1
κ+1 ≈ 1−N−

2
d .
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Comparison of Richardson and Gradient
Algorithms

Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = 1

64

Richardson
convergence rate 0.992

Gradient
convergence rate 0.775
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Idea of the CG-Algorithm

I The gradient algorithm slows down since the search
directions become nearly parallel.

I The algorithm speeds up when choosing the successive
search directions L-orthogonal, i.e. di · (Ldi−1) = 0.

I L-orthogonal search directions can be computed during the
algorithm by a suitable three-term recursion.
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The CG-Algorithm

0. Given: an initial guess u0 for the solution, and a tolerance
ε > 0.

1. Compute r0 = f − Lu0, d0 = r0, γ0 = r0 · r0. Set i = 0.

2. If γi < ε2 return ui as approximate solution; stop.
Otherwise go to step 3.

3. Compute si = Ldi, αi = γi
di·si , ui+1 = ui + αidi,

ri+1 = ri − αisi, γi+1 = ri+1 · ri+1, βi = γi+1

γi
,

di+1 = ri+1 + βidi. Increase i by 1 and go to step 2.

155/ 248

Numerical Methods

Linear Systems of Equations

Conjugate Gradient Methods

Properties

I The CG-algorithm only requires matrix-vector
multiplications and inner products.

I The convergence rate is
√
κ−1√
κ+1
≈ 1−N−

1
d .

I The CG-algorithm can only be applied to symmetric
positive definite matrices, it breaks down for
non-symmetric or indefinite matrices.
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The Idea of Pre-Conditioning

I Instead of the original system Lu = f solve the equivalent
system L̂û = f̂ with L̂ = H−1LH−t, f̂ = H−1f , û = Htu
and an invertible square matrix H.

I Choose the matrix H such that:
I The condition number of L̂ is much smaller than the one of
L.

I Systems of the form Cv = d with C = HHt are much easier
to solve than the original system Lu = f .

I Apply the conjugate gradient algorithm to the new system
L̂û = f̂ and express everything in terms of the original
quantities L, f , and u.
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The PCG-Algorithm

0. Given: an initial guess u0 for the solution, and a tolerance
ε > 0.

1. Compute r0 = f − Lu0, solve Cz0 = r0 and compute
d0 = z0, γ0 = r0 · z0. Set i = 0.

2. If γi < ε2 return ui as approximate solution; stop.
Otherwise go to step 3.

3. Compute si = Ldi, αi = γi
di·si , ui+1 = ui + αidi,

ri+1 = ri − αisi, solve Czi+1 = ri+1 and compute
γi+1 = ri+1 · zi+1, βi = γi+1

γi
, di+1 = zi+1 + βidi. Increase i

by 1 and go to step 2.
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Properties

I The convergence rate of the PCG-algorithm is
√
κ̂−1√
κ̂+1

where

κ̂ is the condition number of L̂.

I Good choices of C, e.g. SSOR-preconditioning, yield
κ̂ = N

1
d and corresponding convergence rates of 1−N−

1
2d .
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SSOR-Preconditioning

0. Given: r and a relaxation parameter ω ∈ (0, 2).
Sought: z = C−1r.

1. Set z = 0.

2. For i = 1, . . . , N compute

zi = zi + ωL−1
ii {ri −

N∑
j=1

Lijzj}.

3. For i = N, . . . , 1 compute

zi = zi + ωL−1
ii {ri −

N∑
j=1

Lijzj}.
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Comparison of CG and PCG Algorithms

Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = 1

64

CG
convergence rate 0.712

SSOR-PCG
convergence rate 0.376
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Comparison of CG and PCG Algorithms
Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = 1

128

CG
convergence rate 0.723

SSOR-PCG
convergence rate 0.377
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The Multigrid Algorithm

I The multigrid idea

I Multigrid algorithm

I Restriction, prolongation and smoothing

I Convergence
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The Multigrid Algorithm

The Basic Idea of the Multigrid Algorithm

I Classical iterative methods such as the Gauß-Seidel
algorithm quickly reduce highly oscillatory error
components.

I Classical iterative methods such as the Gauß-Seidel
algorithm are very poor in reducing slowly oscillatory error
components.

I Slowly oscillating error components can well be resolved on
coarser meshes with fewer unknowns.
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The Basic Two-Grid Algorithm

I Perform several steps of a classical iterative method on the
current grid.

I Correct the current approximation as follows:
I Compute the current residual.
I Restrict the residual to the next coarser grid.
I Exactly solve the resulting problem on the coarse grid.
I Prolongate the coarse-grid solution to the next finer grid.

I Perform several steps of a classical iterative method on the
current grid.
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The Multigrid Algorithm

Schematic Form

Two-Grid

G−−−−→ G−−−−→

R
y xP

E−−−−→

Multigrid

G−−−−→ G−−−−→

R
y xP

G−−−−→ G−−−−→

R
y xP

E−−−−→
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The Multigrid Algorithm

Basic Ingredients

I A sequence Tk of increasingly refined meshes with
associated discrete problems Lkuk = fk.

I A smoothing operator Mk, which should be easy to
evaluate and which at the same time should give a
reasonable approximation to L−1

k .

I A restriction operator Rk,k−1, which maps functions on a
fine mesh Tk to the next coarser mesh Tk−1.

I A prolongation operator Ik−1,k, which maps functions from
a coarse mesh Tk−1 to the next finer mesh Tk.
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The Multigrid Algorithm

0. Given: the actual level k, parameters µ, ν1, and ν2, the
matrix Lk, the right-hand side fk, an initial guess uk.
Sought: improved approximate solution uk.

1. If k = 0 compute u0 = L−1
0 f0; stop.

2. (Pre-smoothing) Perform ν1 steps of the iterative
procedure uk 7→ uk +Mk(fk − Lkuk).

3. (Coarse grid correction)
3.1 Compute fk−1 = Rk,k−1(fk − Lkuk) and set uk−1 = 0.
3.2 Perform µ iterations of the MG-algorithm with parameters

k − 1, µ, ν1, ν2, Lk−1, fk−1, uk−1 and denote the result by
uk−1.

3.3 Update uk 7→ uk + Ik−1,kuk−1.

4. (Post-smoothing) Perform ν2 steps of the iterative
procedure uk 7→ uk +Mk(fk − Lkuk).
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Typical Choices of Parameters

I µ = 1 V-cycle or

µ = 2 W-cycle

I ν1 = ν2 = ν or

ν1 = ν, ν2 = 0 or

ν1 = 0, ν2 = ν

I 1 ≤ ν ≤ 4.
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Prolongation and Restriction

I The prolongation is typically determined by the natural
inclusion of the finite element spaces, i.e. a finite element
function corresponding to a coarse mesh is expressed in
terms of the finite element basis functions corresponding to
the fine mesh.
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I The restriction is typically determined by inserting finite
element basis functions corresponding to the coarse mesh
in the variational form of the discrete problem
corresponding to the fine mesh.
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Smoothing

I Gauß-Seidel iteration

I SSOR iteration:
I Perform a forward Gauß-Seidel sweep with over-relaxation

as pre-smoothing.
I Perform a backward Gauß-Seidel sweep with over-relaxation

as post-smoothing.

I ILU smoothing:
I Perform an incomplete lower upper decomposition of Lk by

suppressing all fill-in.
I The result is an approximate decomposition LkUk ≈ Lk.
I Compute vk = Mkuk by solving the system LkUkvk = uk.
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The Multigrid Algorithm

Number of Operations

I Assume that
I one smoothing step requires O(Nk) operations,
I the prolongation requires O(Nk) operations,
I the restriction requires O(Nk) operations,
I µ ≤ 2,
I Nk > µNk−1,

I then one iteration of the multigrid algorithm requires
O(Nk) operations.
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Convergence Rate

I The convergence rate is uniformly less than 1 for all
meshes.

I The convergence rate is bounded by c
c+ν1+ν2

with a
constant which only depends on the shape parameter of the
meshes.

I Numerical experiments yield convergence rates less than
0.1.
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Indefinite Problems

I CG-type algorithms

I Multigrid algorithms

174/ 248

Numerical Methods

Linear Systems of Equations

Indefinite Problems

CG Algorithm for Non-Symmetric or Indefinite
Problems

I The CG algorithm typically breaks down when applied to
non-symmetric or indefinite problems (stiffness matrix has
eigenvalues with positive as well as negative real part).

I A naive solution is to apply the CG algorithm to the
symmetric positive definite system of normal equations
LTLu = LT f .

I This doubles the number of iterations since the passage to
the normal equations squares the condition number.

I A preferable solution are specialised variants of the CG
algorithm such as the stabilised bi-conjugate gradient
algorithm (Bi-CG-Stab algorithm).
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Bi-CG-Stab Algorithm

0. Given: an initial guess u0 and a tolerance ε > 0.

1. Compute r0 = b− Lu0 and set r0 = r0, v−1 = 0, p−1 = 0,
α−1 = 1, ρ−1 = 1, ω−1 = 1, and i = 0.

2. If ri · ri < ε2 return ui as approximate solution; stop.
Otherwise go to step 3.

3. Compute ρi = ri · ri, βi−1 = ρiαi−1

ρi−1ωi−1
. If |βi−1| < ε there

may be a break-down; stop. Otherwise compute
pi = ri + βi−1{pi−1 − ωi−1vi−1}, vi = Lpi, αi = ρi

r0·vi . If
|αi| < ε there may be a break-down; stop. Otherwise
compute si = ri − αivi, ti = Lsi, ωi = ti·si

ti·ti ,
ui+1 = ui + αipi + ωisi, ri+1 = si − ωiti. Augment i by 1
and go to step 2.
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Properties

I The Bi-CG-Stab algorithm aims at a simultaneous solution
of the original problem Lu = f as well of the adjoint
problem LT v = f .

I The algorithm only needs the stiffness matrix L of the
original problem.

I It only requires inner products and matrix vector
multiplications.

I The Bi-CG-Stab algorithm may be preconditioned; possible
methods for preconditioning are the SSOR iteration or the
ILU decomposition applied to the symmetric part
1
2(L+ LT ) of L.
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Multigrid Algorithms for Non-Symmetric or
Indefinite Problems

I Multigrid algorithms can directly be applied to
non-symmetric or indefinite problems.

I Eventually one as to resort to a specialised smoother.

I The Richardson iteration applied to the normal equations
is a robust smoother which however yields convergence
rates of about 0.8.

I The ILU decomposition is a robust smoother too, but more
costly and yields convergence rates of about 0.5.
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Linear and Non-Linear Optimization Problems

I Linear Optimization Problems

I Unconstrained Non-Linear Optimization Problems

I Constrained Non-Linear Optimization Problems.
Optimality

I Constrained Non-Linear Optimization Problems.
Algorithms

I Global Optimization Problems
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Linear Optimization Problems

I Motivation

I Forms of linear optimization problems

I The Simplex algorithm

I Dual problems

I Complexity of the Simplex algorithm

I Interior point methods
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A Motivating Example

I A small company produces two models of shoes.

I The net profit is 16 $ and 32 $, resp. per shoe.

I The required material is 6dm2 and 15dm2, resp. per shoe;
there are 4500dm2 available per month.

I The required machine-time is 4h and 5h, resp. per shoe;
the available total time is 2000h per month.

I The required man-time is 20h and 10h, resp. per shoe; the
available total time is 8000h per month.

I The company wants to maximize its profit, this lead to the
optimization problem:

maximize 16x+ 32y subject to the constraints
6x+ 15y ≤ 4500, 4x+ 5y ≤ 2000, 20x+ 10y ≤ 8000, x ≥ 0,
y ≥ 0.
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Geometric Interpretation of the Example
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16x+ 32y = const set of constraints

182/ 248

Numerical Methods

Optimization Problems

Linear Optimization Problems

General Form of Linear Optimization Problems

I Given:
I two integers 1 ≤ m < n
I a vector c ∈ Rn
I a matrix A ∈ Rm×n
I vectors b, b ∈ [R ∪ {−∞,∞}]m
I vectors `, u ∈ [R ∪ {−∞,∞}]n

I Sought:

a minimum of the function Rn 3 x 7→ ctx ∈ R
subject to the constraints

I b ≤ Ax ≤ b
I ` ≤ x ≤ u

I All inequalities have to hold for all components of the
corresponding vectors.
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Standard Form of Linear Optimization Problems

I Given:
I two integers 1 ≤ m < n
I a vector c ∈ Rn
I a matrix A ∈ Rm×n
I vector b ∈ Rm

I Sought:

a minimum of the function Rn 3 x 7→ ctx ∈ R
subject to the constraints

I Ax = b
I x ≥ 0

I The set P = {x ∈ Rn : Ax = b , x ≥ 0} is called the set of
admissible vectors associated with the optimization
problem.
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Simplex Form of Linear Optimization Problems

I Given:
I two integers 1 ≤ m < n
I a vector c ∈ Rn
I a matrix A ∈ Rm×n
I vector b ∈ Rm

I Sought:

a maximum of the function R 3 z 7→ z ∈ R
subject to the constraints

I Ax = b
I ctx+ z = 0
I x ≥ 0
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Equivalence of the Various Forms of Linear
Optimization Problems

I The function x 7→ ctx is minimal, if and only if the function
x 7→ (−c)tx is maximal.

Hence, it is sufficient to consider minimization problems.

I The equality y = b is equivalent to the two inequalities
y ≤ b and y ≥ b.

I An inequality y ≤ b is equivalent to equality y + z = b plus
the inequality z ≥ 0.

The vector z is called slack vector.
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Properties

I The set P of admissible vectors is a simplex.

I If the set P is empty, the optimization problem is not
solvable.

I If the function x 7→ ctx is not bounded from below on P,
the optimization problem is not solvable.

I If the set P is not empty and bounded, the optimization
problem admits a solution.

I The solution may not be unique.

I Every solution is attained at a vertex of the set P.
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Basic Idea of the Simplex Algorithm

I Given a vertex of P find a neighbouring vertex with a
smaller value for ctx.

I If such a neighbour does not exist, the current vertex solves
the optimization problem.

I A vector x ∈ Rn is a vertex of P, if it has m non-negative
components and n−m vanishing components and solves
the system Ax = b.

I When freezing n−m components of x to zero, the system
Ax = b reduces to a linear system of m equations and m
unknowns involving only those columns of A which
correspond to the unfrozen components of x.
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Tasks

I Find a vertex of P.

I Decide whether a given vertex is optimal.

I Find a neighbouring vertex with a smaller value of ctx.
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Finding a Vertex

I Given an index set J = {j1, . . . , jm} ⊂ {1, . . . , n}.
I Set xk = 0 for all k 6∈ J .
I Denote by AJ the m×m matrix which is obtained by

discarding all columns of A corresponding to indices not
contained in J .

I Solve the linear system of equations AJy = b.
I Set xji = yi for i = 1, . . . ,m.
I If xj ≥ 0 for all j ∈ J , x is a vertex of P.

I If x is a vertex of P, set
I A = A−1

J A,
I b = A−1

J b,
I β = −ctx,
I c̃i = cji , 1 ≤ i ≤ m, and ct = −c̃tA+ ct.
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Checking for Optimality and Solvability

I Given a vertex x of P.

I If ck ≥ 0 for all k 6∈ J , x solves the optimization problem.

I If, for all s 6∈ J with cs < 0, the corresponding column of A
is non-positive, the optimization problem has no solution.
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Finding a Neighbour with a Larger Value of ctx

I Given a vertex x of P which is not optimal and which
guarantees the solvability of the optimization problem.

I Choose an index s 6∈ J such that cs < 0 and such that a,
the s-th column of A, has a positive entry.

I Find an index r ∈ {1, . . . ,m} such that ar > 0 and such

that br
ar

is minimal among all fractions
bj
aj

with positive

denominator.

I Remove the r-th entry from the index set J and put s into
J .

I Update x, A, b, β and c.
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Comments

I The update can be performed by dividing the r-th row of
the matrix by ar and subtracting the result from the other
rows of that matrix.

I The simplex algorithm may run into a cycle since different
index sets J may lead to the same value of ctx.

I The cycling can be avoided by introducing a suitable
ordering of the vectors x.

I The first index set J can be determined by applying the
simplex algorithm to a suitable auxiliary optimization
problem which has unit vectors as vertices.
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Complexity of the Simplex Algorithm

I Every step of the Simplex algorithm requires
O((m+ 1)(n+ 1−m)) operations.

I The Simplex algorithm stops after at most
(
n
m

)
iterations

with a solution or the information that the optimization
problem has no solution.

I In the worst case the overall complexity is O(2
n
2

(
n
2

)2
)

operations.
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Dual Problem

I Every vertex yields an upper bound for the function ctx.

I To obtain a lower bound for ctx one has to consider the
dual optimization problem:

Find a maximum of the function Rm 3 y 7→ bty ∈ R subject
to the constraint Aty ≤ c.

I The minimal value of ctx and the maximal value of bty are
identical.

I The dual problem can be solved with a variant of the
Simplex algorithm which works with the original data A, b
and c.
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Idea of Interior Point Methods

I The Simplex algorithm sweeps through the boundary of P.

I Interior point methods sweep through the interior of P.

I They try to simultaneously solve the original and the dual
optimization problem.

I They reformulate both problems as a system of algebraic
equations to which Newton’s method is applied.

I They yield an approximation with error ε with a
complexity of O(

√
n ln(nε )) operations.

I This approximation is projected to a close-by vertex of P
and a few steps of the Simplex algorithm then yield the
exact solution.
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Basic Form of Interior Point Methods

I Given a vector x denote by X the diagonal matrix which
has the components of x as its diagonal entries.

I Consider the optimization problem
min{ctx : Ax = b, x ≥ 0} and the corresponding dual
problem max{bty : Aty + s = c, s ≥ 0}.

I Then (x∗, y∗, s∗) solves both problems if and only if
Ψ0(x∗, y∗, s∗) = 0 where

Ψ0(x, y, s) =

 Ax− b
Aty + s− c

Xs


I Apply Newton’s method to this system of algebraic

equations.
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Improved Form of Interior Point Methods

I The derivative DΨ0(x, y, s) becomes nearly singular when
(x, y, s) approaches the solution (x∗, y∗, s∗).

I To stabilize the derivative, apply Newton’s method to

Ψµ(x, y, s) =


Ax− b

Aty + s− c

Xs− µ
( 1

...
1

)


and let tend µ to 0 in a judicious way.
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Unconstrained Non-Linear Optimization
Problems

I Problem setting

I Newton’s method

I Minimization methods in one dimension

I Minimization methods in several dimensions
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Problem Setting

I Given:
I a non-empty set D,
I a function f : D → R

I Sought:
I a minimizer of f , i.e. x ∈ D with
f(x) ≤ f(y) for all y ∈ D

I Short-hand notation:

min{f(x) : x ∈ D}
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Local vs. Global Minima

•

•

I Ideally, we are looking for a global minimum.

I In most cases we have to be satisfied with a local minimum.
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Optimality Conditions

I If f is differentiable, then every local minimum is a critical
point, i.e. satisfies Df(x) = 0.

I If f is twice differentiable, x is a critical point and the
Hessian D2f is positive definite, then x is a local minimum.
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Newton’s Method

0. Given: initial guess x0 and tolerance ε.
Set n = 0.

1. If ‖Df(xn)‖ ≤ ε, go to step (3).

2. Solve the linear system
D2f(xn)zn = −Df(xn),

set
xn+1 = xn + zn,
increase n by 1 and got to step (1).

3. Check whether D2f(xn) is positive definite.
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Difficulties

I Newton’s method at best yields a critical point, its result
may be a maximum or a saddle-point.

I The algorithm requires second order derivatives.

I Checking the positive definiteness of a matrix is expensive.

I A critical point may be a local minimum although D2f is
only positive semi-definite, e.g. f(x) = x4.
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Goals

I Develop algorithms which at least find a local minimum.

I Develop algorithms which need as few derivatives as
possible.

I Embed Newton’s method into a larger class of algorithms
to gain more flexibility and insight.

I In view of future applications, develop efficient algorithms
for line search, i.e. for the minimization of functions of one
variable.
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One-Dimensional Minimization by Bisection
Idea

I Assume that the function f : [a, b]→ R is continuous and
that there is a point x ∈ (a, b) with f(x) ≤ min{f(a), f(b)}.

•
•

•

I Then f admits a local minimum η ∈ (a, b) and f ′(η) = 0 if
f is differentiable.

I Determine the midpoint u of the smaller one of the two
intervals [a, x] and [x, b] and suitably choose three points
out of {a, x, u, b}.
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One-Dimensional Minimization by Bisection
Algorithm

0. Given: points a0 < x0 < b0 with f(x0) ≤ min{f(a0), f(b0},
tolerance ε < 0. Set k = 0.

1. Compute uk =

{
1
2

(bk+xk) if xk≤ 1
2

(ak+bk),
1
2

(ak+xk) if xk>
1
2

(ak+bk).

If f(xk) ≤ f(uk), set xk+1 = xk and

ak+1 =

{
ak if xk≤ 1

2
(ak+bk),

uk if xk>
1
2

(ak+bk),
, bk+1 =

{
uk if xk≤ 1

2
(ak+bk),

bk if xk>
1
2

(ak+bk).

If f(uk) < f(xk), set xk+1 = uk and

ak+1 =

{
xk if xk≤ 1

2
(ak+bk),

ak if xk>
1
2

(ak+bk),
, bk+1 =

{
bk if xk≤ 1

2
(ak+bk),

xk if xk>
1
2

(ak+bk).

2. Increase k by 1. If bk − ak < ε stop. Otherwise return to
step (1).
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One-Dimensional Minimization by Bisection
Properties

I ak < xk < bk for all k.

I f(xk) ≤ min{f(ak), f(bk)} for all k.

I bk − ak ≤ (3
4)k−1(b0 − a0) for all k.

I For every prescribed tolerance, the algorithm yields an
interval with length less than the tolerance which contains
a local minimum of f .

I If f is differentiable, the common limit point η of the
sequences ak, bk and xk is a critical point of f , i.e.
f ′(η) = 0.

I If f is twice differentiable f ′′(η) ≥ 0.
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General Descent Algorithm

0. Given: parameters 0 < c1 ≤ c2 < 1, 0 < γ ≤ 1 and initial
guess x0 ∈ Rn. Set k = 0.

1. If Df(xk) = 0 stop, otherwise proceed with step (2).

2. Choose a search direction sk ∈ Rn with ‖sk‖ = 1 and
−Df(xk)sk ≥ γ‖Df(xk)‖.

3. Choose a step size λk > 0 such that
f(xk + λksk) ≤ f(xk) + λkc1Df(xk)sk and
Df(xk + λksk)sk ≥ c2Df(xk)sk.

4. Set xk+1 = xk + λksk, increase k by 1 and return to step
(1).
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Choice of the Search Direction

I Smaller values of γ give more flexibility in the choice of the
search direction.

I In the limiting case γ → 0, the only condition is that the
search direction must not be orthogonal to the negative
gradient −Df(xk).

I The choice sk = − 1
‖Df(xk)‖Df(xk) is feasible for all values

of γ and corresponds to the damped Newton method.

I When applied to f(x) = 1
2x

tAx− btx with a symmetric
positive definite matrix A, the general descent algorithm
with a suitable choice of search directions covers the
gradient algorithm and (preconditioned) conjugate gradient
algorithms.
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Choice of the Step Size

I Exact line search: The step size λk is chosen such that it
minimizes the function t 7→ f(xk + tsk) on the positive real
line.

I Armijo line search: Fix a constant σ > 0, determine λ∗k,0
such that λ∗k,0 ≥ σ‖Df(xk)‖ and determine the smallest
integer jk satisfying
f(xk + 2−jkλ∗k,0sk) ≤ f(xk) + 2−jkc1Df(xk)sk.

Set λk = 2−jkλ∗k,0 or

λk = 2−i
∗
λ∗k,0 with

f(xk + 2−i
∗
λ∗k,0sk) = mini f(xk + 2−iλ∗k,0sk).
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Properties of the General Descent Algorithm

I The sequence f(xk) is monotonically decreasing.

I The sequence xk admits at least one accumulation point.

I Every accumulation point of the sequence xk is a critical
point of f .
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Constrained Non-Linear Optimization Problems.
Optimality

I Convex optimization problems

I Optimality conditions for convex optimization problems

I General non-linear optimization problems

I Optimality conditions for general non-linear optimization
problems
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Convex Sets and Functions

I A set C ⊂ Rn is called convex, if for all x, y ∈ C and all
λ ∈ [0, 1] the point λx+ (1− λ)y is contained in C too.

convex set non-convex set
I A function f : C → Rn on a convex set is called convex, if

for all x, y ∈ C and all λ ∈ [0, 1] the inequality
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) is valid.

convex function non-convex function
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Convex Optimization Problems

I Given:
I integers m ≥ 1 and p with 0 ≤ p ≤ m,
I a convex set C ⊂ Rn,
I a convex function f : C → R,
I convex functions f1, . . . , fp : C → R,
I affine functions fp+1, . . . , fm : C → R.

I Sought:
I a minimum of f under
I the inequality constraints fi(x) ≤ 0 for 1 ≤ i ≤ p and
I the equality constraints fj(x) = 0 for p+ 1 ≤ j ≤ m

I The particular cases p = 0, no inequality constraints, and
p = m, no equality constraints, are admitted.
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Karush-Kuhn-Tucker Conditions for Convex
Optimization Problems

I Assume that C = Rn and that the functions f and
f1, . . . , fm are differentiable.

I Then x∗ ∈ Rn solves the convex optimization problem, if
and only if there is a y∗ ∈ Rm such that

Df(x∗) +
m∑
i=1

y∗iDfi(x
∗) = 0,

fi(x
∗)y∗i = 0, 1 ≤ i ≤ p,

fi(x
∗)≤ 0, 1 ≤ i ≤ p,
y∗i≥ 0, 1 ≤ i ≤ p,

fj(x
∗)= 0, p+ 1 ≤ j ≤ m
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Lagrange Function

I Set D = {y ∈ Rm : yi ≥ 0 for 1 ≤ i ≤ p}.
I The function L : C ×D → R with

L(x, y) = f(x) +
m∑
j=1

yjfj(x)

is called the Lagrange function of the convex optimization
problem.

I x∗ ∈ C is a solution of the convex optimization problem if
and only if there is y∗ ∈ D such that (x∗, y∗) is saddle
point of L, i.e.
L(x, y∗) ≥ L(x∗, y∗) ≥ L(x∗, y) for all (x, y) ∈ C ×D.
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General Non-Linear Optimization Problems

I Given:
I integers m ≥ 1 and p with 0 ≤ p ≤ m,
I a differentiable function f : Rn → R,
I differentiable functions f1, . . . , fp : Rn → R,
I differentiable functions fp+1, . . . , fm : Rn → R.

I Sought:
I a minimum of f under
I the inequality constraints fi(x) ≤ 0 for 1 ≤ i ≤ p and
I the equality constraints fj(x) = 0 for p+ 1 ≤ j ≤ m

I The particular cases p = 0, no inequality constraints, and
p = m, no equality constraints, are admitted.

I Set S = {x ∈ Rn : fi(x) ≤ 0, 1 ≤ i ≤ p, fj(x) = 0, p+ 1 ≤
j ≤ m}.
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Tangent Cones

I The tangent cone T (S;x) of a set S ⊂ Rn at a point x ∈ S
is the collection of all vectors v ∈ Rn for which there is a
sequence λk of non-negative real numbers and a sequence
xk of points in S such that xk → x and λk(xk − x)→ v.

• •

I T (S;x) = Rn if x is an interior point of S.

I T (S;x) is the classical tangent space if x is a boundary
point of S and if the boundary of S is smooth at x.
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Cone Condition

I Assume that x∗ ∈ S is a local minimum of f and that f is
differentiable at x∗, then Df(x∗)v ≥ 0 holds for all
v ∈ T (S;x).

I The cone condition is the sharpest condition for solutions
of general non-linear optimization problems.

I The cone condition is of limited practical use since in
general the computation of the tangent cone is too
expensive, hence it is replaced by weaker more practical
conditions.
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Karush-Kuhn-Tucker Conditions for General
Non-Linear Optimization Problems

I Assume that:
I x∗ ∈ S is a local minimum of f ,
I the gradients Dfp+1(x∗), . . . , Dfm(x∗) are linearly

independent,
I there is a vector s ∈ Rn with Dfj(x

∗)s = 0 for all
p+ 1 ≤ j ≤ m and Dfi(x

∗)s < 0 for all those i with
1 ≤ i ≤ m and fi(x

∗) = 0.

I Then there is a vector y∗ ∈ Rm such that (x∗, y∗) is a
saddle point of the Lagrange function L and

I Df(x∗) +
∑m
i=1 y

∗
iDfi(x

∗) = 0,
I fi(x

∗)y∗i = 0, 1 ≤ i ≤ p,
I fi(x

∗) ≤ 0, 1 ≤ i ≤ p,
I y∗i ≥ 0, 1 ≤ i ≤ p,
I fj(x

∗) = 0, p+ 1 ≤ j ≤ m.
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Constrained Non-Linear Optimization Problems.
Algorithms

I Projection methods

I Penalty methods

I SQP methods

I Derivative-free methods
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Projection onto Convex Sets

I Assume that S ⊂ Rn is convex

I For every x ∈ Rn there is a unique
point PS(x) ∈ S, its projection,
which is closest to x, i.e.
‖x−PS(x)‖ ≤ ‖x− y‖ for all y ∈ S.

• ×

I The projection PS(x) is uniquely characterized by the
property
(x− PS(x))t(y − PS(x)) ≤ 0 for all y ∈ S.

I The projection PS(x) satisfies
(PS(y)− PS(x))t(y − x) ≥ ‖PS(y)− PS(x)‖2 and
‖PS(y)− PS(x)‖ ≤ ‖x− y‖ for all x, y ∈ Rn.
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Projection Method

0. Given: a convex set S ⊂ Rn, an initial guess x0 ∈ S and
parameters β, µ ∈ (0, 1) and γ > 0.
Set k = 0.

1. Compute Df(xk).

2. If Df(xk)v ≥ 0 for all v ∈ T (S;xk) stop, otherwise proceed
with step (3).

3. Find the smallest integer mk such that
zk = PS(xk − βmkγDf(xk)) satisfies
f(zk) ≤ f(xk) + µDf(xk)(zk − xk).
Set xk+1 = zk, increase k by 1 and return to step (1).
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Properties

I The algorithm is a damped Newton’s method combined
with a projection onto the set S.

I The practicability of the algorithm hinges on the
computability of the tangent cones and the ability to check
the cone condition Df(xk)v ≥ 0.

I Every accumulation point x∗ of the generated sequence xk
satisfies the cone condition Df(x∗)v ≥ 0 for all
v ∈ T (S;x∗).
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Basic Idea of Penalty Methods

I ‘Penalize’ the constraints.

I Solve unconstrained optimization problems incorporating
the ‘penalization’.

I If the penalty vanishes for the solution of the auxiliary
unconstrained problem we have found a solution of the
original constrained problem.

I Successively increase the penalty and hope that the
solutions of the auxiliary problems converge to a solution of
the original constrained problem.

I Either all constraints are penalized by a penalty function
or only inequality constraints are penalized by a barrier
function.
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Penalty Functions

I A function ` : Rn → R is called a penalty function for the
non-empty set S ⊂ Rn if `(x) > 0 for all x 6∈ S and
`(x) = 0 for all x ∈ S.

I The function

`(x) =

p∑
i=1

(fi(x)+)α +
m∑

j=p+1

|fj(x)|α

with α > 0 and z+ = max{z, 0} is a penalty function for
the set S = {x ∈ Rn : fi(x) ≤ 0, 1 ≤ i ≤ p, fj(x) =
0, p+ 1 ≤ j ≤ m} associated with a general non-linear
optimization problem.
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Penalty Algorithm with General Penalty
Function

0. Given: initial guesses x0 ∈ Rn and r0 > 0, a continuous
function f : Rn → R, a non-empty closed set S ⊂ Rn and a
penalty function ` for S.
Set k = 0.

1. Compute an approximation xk for a local minimum of
p(x, rk) = f(x) + rk`(x)

2. If xk ∈ S stop.

Otherwise set rk+1 = 2rk, increase k by 1 and return to
step (1).

228/ 248



Numerical Methods

Optimization Problems

Constrained Non-Linear Optimization Problems. Algorithms

Properties

I For sufficiently large r the function p(x, r) admits a local
minimum.

I The sequence xk converges to a local minimum x∗ ∈ S of
the function f .
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Augmented Lagrange Function

I inequality constraints: fi(x) ≤ 0 for 1 ≤ i ≤ p
I equality constraints: fj(x) = 0 for p+ 1 ≤ j ≤ m
I z+ = max{z, 0}
I Augmented Lagrange function

Λ(x, y, r) = f(x) +

p∑
i=1

1

2
ri

[(
fi(x) +

yi
ri

)+
]2

+
m∑

j=p+1

1

2
rj

[
fj(x) +

yj
rj

]2

−
m∑
k=1

1

2

y2
k

rk
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Penalty Algorithm with Augmented Lagrange
Function

0. Given: a vector r ∈ (R∗+)m and an initial guess
y0 ∈ (R+)p × Rm−p.
Set k = 0.

1. Determine a local minimum xk of the augmented Lagrange
function x 7→ Λ(x, yk, r).

2. If (xk, yk) satisfies the Karush-Kuhn-Tucker conditions
stop. Otherwise proceed with step (3).

3. Set
yk+1,i = (rifi(xk) + yk,i)

+ for 1 ≤ i ≤ p,
yk+1,j = rjfj(xk) + yk,j for p+ 1 ≤ j ≤ m.
Increase k by 1 and return to step (1).
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Properties

I If r = (ρ, . . . , ρ)t with a sufficiently large ρ, the algorithm
converges to a saddle point of the Lagrange function L.

I The convergence is linear.

I Convergence speed improves with increasing ρ.
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Barrier Functions

I A function B : R→ R ∪ {∞} is called barrier function if it
has the following properties:

I B(t) =∞ for all t ≤ 0.
I B is monotonically decreasing.
I B is convex.
I B is continuously differentiable on R∗+.
I lim

t→0+
B(t) =∞.

I lim
t→0+

B′(t) = −∞.

I B(t) =

{
− ln t for t > 0

∞ for t ≤ 0
and B(t) =

{
t−α for t > 0

∞ for t ≤ 0
with

α > 0 are barrier functions.
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Barrier Algorithm for Convex Optimization

0. Given: convex functions f and f1, . . ., fp and affine
functions fp+1, . . ., fm, a barrier function B and an initial
guess x0 ∈ Rn with fj(x0) = 0 for p+ 1 ≤ j ≤ m.
Choose µ0 > 0 and d0 ∈ (R∗+)p with fi(x0) < di,0 for
1 ≤ i ≤ p.
Set k = 0.

1. Choose λk ∈ (0, 1) with fi(xk) < λkdi,k for 1 ≤ i ≤ p. Set
µk+1 = λkµk, dk+1 = λkdk.

2. Starting with xk apply a line search to the problem

min
x
{f(x) + µ

p∑
i=1

B(di − fi(x)) : fj(x) = 0 , p+ 1 ≤ j ≤ m}

with result xk+1. Increase k by 1 and return to (1).
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Basic Idea of the Sequential Quadratic
Programming Algorithm

I Replace the Lagrange Function L by a second order
approximation.

I Linearize the constraints.

I Successively solve constrained optimization problems with
a quadratic object function and affine constraints.
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SQP Algorithm

0. Given: initial guesses x0 ∈ Rn, y0 ∈ (R∗+)p × Rm−p.

Compute B0 = D2f(x0) +

m∑
i=1

y0,iD
2fi(x0) and set k = 0.

1. Find a solution (s, y) for the Karush-Kuhn-Tucker
conditions of the auxiliary problem

min
s

{
Df(xk)s+

1

2
stBks : fi(xk) +Dfi(xk)s ≤ 0, 1 ≤ i ≤

p, fj(xk) +Dfj(xk)s = 0, p+ 1 ≤ j ≤ m
}

.

2. Set xk+1 = xk + s, yk+1 = yk + y.

3. Compute Bk+1 = D2f(xk+1) +
m∑
i=1

yk+1,iD
2fi(xk+1),

increase k by 1 and return to step (1).
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Properties

I The SQP algorithm is locally quadratically convergent.

I If the Bk are replaced by approximations in a suitable
quasi Newton type, the convergence still is linear.
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Basic Idea of the Simplex Method of Nelder and
Mead

I Minimize a function f over Rn.

I Take into account eventual constraints by setting f(x) =∞
if x violates the constraints.

I Choose n+ 1 points x0, . . . , xn generating Rn.

I Sort these points by increasing size of f .

I Reflect xn at the barycentre of x0, . . . , xn−1 and eventually
expand or contract the image x′ depending on the values
f(x0), . . . , f(xn) and f(x′).

I Replace an appropriate member of the list x0, . . . , xn by x′.
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Simplex Method of Nelder and Mead.

0. Given: points x0, . . . , xn ∈ Rn generating Rn sorted by
increasing size of f , tolerance ε > 0.

1. If the standard deviation of the f -values is less than ε stop.

2. Compute c = 1
n

∑n−1
i=0 xi, xr = 2c− xn and f(xr).

3. Decide:
3.1 If f(x0) ≤ f(xr) ≤ f(xn−1) replace xn by xr (reflection).
3.2 If f(xr) < f(x0) compute xe = 2xr − c and f(xe). If

f(xe) < f(xr) replace xr by xe.
Replace xn by xr (expansion).

3.3 If f(xr) > f(xn−1) compute xc =
{
c+ 1

2 (xn−c) if f(xr)≥f(xn)

c+ 1
2 (xr−c) if f(xr)<f(xn)

and f(xc).
If f(xc) < min{f(xn), f(xr)} replace xn by xc, otherwise
compute xi = 1

2 (x0 + xi) for 1 ≤ i ≤ n (contraction).

4. Re-sort x0, . . . , xn by increasing size of f and return to (1).
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Properties

I The algorithm is very cheap since it does not require the
computation of any derivative.

I The algorithm is very slow.

I There is no convergence proof.

I The algorithm is very robust.

I The algorithm may yield suitable initial guesses for the
algorithms presented previously.
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Global Optimization Problems

I Problem setting

I Structure of global optimization algorithms

I Ingredients

I Concluding remarks
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Problem Setting

I All algorithms considered so far at best yield a local
minimum.

I We want to find a global minimum of even all of them.

•

•
I This difficulty only arises for non-convex optimization

problems since a convex function has at most one local
minimum which is the global minimum.
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Structure of Global Optimization Algorithms

I Try several candidates for a global minimum.

I Eventually replace candidates by the result of a local
search, i.e. apply one of the previously described
algorithms with a given candidate as initial guess.

I Eventually iterate on lists of candidates.

I Eventually perturb candidates.

I Algorithms differ by
I the initial choice of candidates,
I the method for updating the list of candidates,
I the form of perturbation,
I the amount of randomness,
I the work invested in local searches.
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Initial Choice of Candidates

I Deterministic: Cover the domain
S ⊂ Rn of admissible points x by
a uniform mesh.

I Random: Cover the domain S ⊂ Rn
of admissible points x by a random
mesh according to a chosen proba-
bility measure, e.g. uniform distri-
bution.

•

•

•
•
• •

I In both approaches eventually construct several lists of
candidates by iteratively reducing the mesh size.
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Updating Lists of Candidates

I Replace candidates by the result of a local search.

I Replace candidates by a perturbation.

I With a small probability also accept candidates with a
larger value of f , e.g. simulated annealing:

x′ with f(x′) > f(x) is allowed to replace x with

probability e
f(x)−f(x′)

T .

I Update lists by branch and bound techniques.
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Perturbation of Candidates

I Normalize all points such that all their co-ordinates are
represented by an N -bit string.

I Given a candidate pick one of its components by random
and flip one of its bits by random.

I Example: N = 4, x = 15 = 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20,

x′ = 11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 is a perturbation of x

x′′ = 7 = 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20 is a perturbation of x

x̃ = 9 = 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 is no perturbation of x
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Concluding Remarks

I Each algorithm has its own benefits and drawbacks.

I The choice of an efficient algorithm requires knowledge of
the particular structure of the given optimization problem.

I There is no efficient black-box algorithm.
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