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CHAPTER I

Fundamentals

I.1. Modelization

I.1.1. Lagrangian and Eulerian representation. Consider a
volume Ω occupied by a fluid which moves under the influence of in-
terior and exterior forces. We denote by η ∈ Ω the position of an
arbitrary particle at time t = 0 and by

x = Φ(η, t)

its position at time t > 0. The basic assumptions are:

• Φ(·, t) : Ω → Ω is for all times t ≥ 0 a bijective
differentiable mapping,
• its inverse mapping is differentiable,
• the transformation Φ(·, t) is orientation-preserving,
• Φ(·, 0) is the identity.

There are two ways to look at the fluid flow:

(1) We fix η and look at the trajectory t 7→ Φ(η, t). This is
the Lagrangian representation. Correspondingly η is called
Lagrangian coordinate. The Langrangian coordinate system
moves with the fluid.

(2) We fix the point x and look at the trajectory t 7→ Φ(·, t)−1(x)
which passes through x. This is the Eulerian representation.
Correspondingly x is called Eulerian coordinate. The Eulerian
coordinate system is fixed.

I.1.2. Velocity. We denote by

DΦ =
(∂Φi

∂ηj

)
1≤i,j≤3

the Jacobian matrix of Φ(·, t) and by

J = detDΦ

its Jacobian determinant. The preservation of orientation is equivalent
to

J(η, t) > 0 for all t > 0 and all η ∈ Ω.

The velocity of the flow at point x = Φ(η, t) is defined by

7



8 I. FUNDAMENTALS

v(x, t) =
∂

∂t
Φ(η, t), x = Φ(η, t).

I.1.3. Transport theorem. Consider an arbitrary volume V ⊂ Ω
and denote by

V (t) = Φ(·, t)(V ) = {Φ(η, t) : η ∈ V }

its shape at time t > 0. Then the following transport theorem holds for
all differentiable mappings f : Ω× (0,∞)→ R

d

dt

∫
V (t)

f(x, t)dx =

∫
V (t)

{∂f
∂t

(x, t) + div(fv)(x, t)
}

dx.

Example I.1.1. We consider a one-dimensional model situation,
i.e. Ω = (a, b) is an interval and x and η are real numbers. Then V =
(α, β) and V (t) = (α(t), β(t)) are intervals, too. The transformation
rule for integrals gives∫

V (t)

f(x, t)dx =

∫ β(t)

α(t)

f(x, t)dx

=

∫ β

α

f(Φ(η, t), t)
∂Φ

∂η
(η, t)dη.

Differentiating this equality and using the transformation rule we get

d

dt

∫
V (t)

f(x, t)dx =

∫ β

α

d

dt

{
f(Φ(η, t), t)

∂Φ

∂η
(η, t)

}
dη

=

∫ β

α

∂

∂t
f(Φ(η, t), t)

∂Φ

∂η
(η, t)dη︸ ︷︷ ︸

=
∫
V (t)

∂
∂t
f(x,t) dx

+

∫ β

α

∂

∂x
f(Φ(η, t), t)

∂Φ

∂t
(η, t)︸ ︷︷ ︸

=v(Φ(η,t),t)

∂Φ

∂η
(η, t)dη

︸ ︷︷ ︸
=
∫
V (t)

∂
∂x
f(x,t)v(x,t)dx

+

∫ β

α

f(Φ(η, t), t)
∂

∂t

∂

∂η
Φ(η, t)︸ ︷︷ ︸

= ∂
∂η

v(Φ(η,t),t)= ∂
∂x

v(Φ(η,t),t) ∂Φ
∂η

(η,t)

dη

︸ ︷︷ ︸
=
∫
V (t) f(x,t) ∂

∂x
v(x,t)dx
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=

∫
V (t)

∂

∂t
f(x, t)dx

+

∫
V (t)

∂

∂x
f(x, t)v(x, t)dx

+

∫
V (t)

f(x, t)
∂

∂x
v(x, t)dx

=

∫
V (t)

∂

∂t
f(x, t) +

∂

∂x
{f(x, t)v(x, t)} dx.

This proves the transport theorem in one dimension.

I.1.4. Conservation of mass. We denote by ρ(x, t) the density
of the fluid. Then ∫

V (t)

ρ(x, t)dx

is the total mass of the volume V (t). The conservation of mass and the
transport theorem therefore imply that

0 =
d

dt

∫
V (t)

ρ(x, t)dx

=

∫
V (t)

{∂ρ
∂t

(x, t) + div(ρv)(x, t)
}

dx.

This gives the equation for the conservation of mass :

∂ρ

∂t
+ div(ρv) = 0 in Ω× (0,∞).

I.1.5. Cauchy theorem. Fluid and continuum mechanics are
based on three fundamental assumptions concerning the interior forces:

• interior forces act via the surface of a volume V (t),
• interior forces only depend on the normal direction

of the surface of the volume,
• interior forces are additive and continuous.

Due to the Cauchy theorem these assumptions imply that the interior
forces acting on a volume V (t) must be of the form∫

∂V (t)

T · ndS

with a tensor T : Ω→ R3×3. Here, as usual, ∂V (t) denotes the bound-
ary of the volume V (t), n is the unit outward normal, and dS denotes
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the surface element.
The integral theorem of Gauß then yields∫

∂V (t)

T · ndS =

∫
V (t)

div Tdx.

I.1.6. Conservation of momentum. The total momentum of a
volume V (t) in the fluid is given by∫

V (t)

ρ(x, t)v(x, t)dx.

Due to the transport theorem its temporal variation equals

d

dt

∫
V (t)

ρ(x, t)v(x, t)dx

=
( d
dt

∫
V (t)

ρ(x, t)vi(x, t)dx
)

1≤i≤3

=
(∫

V (t)

{ ∂
∂t

(ρvi)(x, t) + div(ρviv)(x, t)
}

dx
)

1≤i≤3

=

∫
V (t)

{ ∂
∂t

(ρv)(x, t) + div(ρv ⊗ v)(x, t)
}

dx

where

v ⊗ u = (viuj)1≤i,j≤3.

Due to the conservation of momentum this quantity must be balanced
by exterior and interior forces. Exterior forces must be of the form∫

V (t)

ρfdx.

The Cauchy theorem tells that the interior forces are of the form∫
V (t)

div Tdx.

Hence the conservation of momentum takes the integral form∫
V (t)

{ ∂
∂t

(ρv) + div(ρv ⊗ v)
}

dx =

∫
V (t)

{
ρf + div T

}
dx.

This gives the equation for the conservation of momentum:

∂

∂t
(ρv) + div(ρv ⊗ v) = ρf + div T in Ω× (0,∞).
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I.1.7. Conservation of energy. We denote by e the total energy.
The transport theorem implies that its temporal variation is given by

d

dt

∫
V (t)

edx =

∫
V (t)

{∂e
∂t

(x, t) + div(ev)(x, t)
}

dx.

Due to the conservation of energy this quantity must be balanced by
the energies due to the exterior and interior forces and by the change
of the internal energy.
The contributions of the exterior and interior forces are given by∫

V (t)

ρf · vdx

and ∫
∂V (t)

n ·T · vdS =

∫
V (t)

div(T · v)dx.

Due to the Cauchy theorem and the integral theorem of Gauß, the
change of internal energy must be of the form∫

∂V (t)

σ · ndS =

∫
V (t)

divσdx

with a vector-field σ : Ω→ R3.
Hence the conservation of energy takes the integral form∫

V (t)

{ ∂
∂t
e+ div(ev)

}
dx =

∫
V (t)

{
ρf · v + div(T · v) + divσ

}
dx.

This gives the equation for the conservation of energy :

∂

∂t
e+ div(ev) = ρf · v + div(T · v) + divσ in Ω× (0,∞).

I.1.8. Constitutive laws. The equations for the conservation of
mass, momentum and energy must be complemented by constitutive
laws. These are based on the following fundamental assumptions:

• T only depends on the gradient of the velocity.
• The dependence on the velocity gradient is linear.
• T is symmetric. (Due to the Cauchy theorem this

is a consequence of the conservation of angular mo-
mentum.)
• In the absence of internal friction, T is diagonal

and proportional to the pressure, i.e. all interior
forces act in normal direction.
• e = ρε+ 1

2
ρ|v|2. (ε is called internal energy and is

often identified with the temperature.)
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• σ is proportional to the variation of the internal
energy, i.e. σ = α∇ε.

The conditions on T imply that it must be of the form

T = 2λD(v) + µ(div v) I− pI.

Here,

I = (δij)1≤i,j≤3

denotes the unit tensor,

D(v) =
1

2
(∇v +∇vt) =

1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
1≤i,j≤3

is the deformation tensor,

p = p(ρ, ε)

denotes the pressure and λ, µ ∈ R are the dynamic viscosities of the
fluid.
The equation for the pressure is also called equation of state. For an
ideal gas, e.g., it takes the form p(ρ, ε) = (γ − 1)ρε with γ > 1.
Note that div v is the trace of the deformation tensor D(v).

Example I.1.2. The physical dimension of the dynamic viscosities
λ and µ is kg m−1s−1 and is called Poise; the one of the density ρ is
kg m−3. In §I.1.12 (p. 15) we will introduce the kinematic viscosity
ν = λ

ρ
. Its physical dimension is m2 s−1 and is called Stokes. Table

I.1.1 gives some relevant values of these quantities.

Table I.1.1. Viscosities of some fluids and gazes

λ ρ ν
Water 20◦ C 1.005 10−3 1000 1.005 10−6

Alcohol 20◦ C 1.19 10−3 790 1.506 10−6

Ether 20◦ C 2.43 10−5 716 3.394 10−8

Glycerine 20◦ C 1.499 1260 1.190 10−3

Air 0◦ C 1 atm 1.71 10−5 1.293 1.322 10−5

Hydrogen 0◦ C 8.4 10−6 8.99 10−2 9.344 10−5

I.1.9. Compressible Navier-Stokes equations in conserva-
tive form. Collecting all results we obtain the compressible Navier-
Stokes equations in conservative form:
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∂ρ

∂t
+ div(ρv) = 0

∂(ρv)

∂t
+ div(ρv ⊗ v) = ρf + 2λ div D(v)

+ µ grad div v − grad p

= ρf + λ∆v

+ (λ+ µ) grad div v − grad p

∂e

∂t
+ div(ev) = ρf · v + 2λ div[D(v) · v]

+ µ div[div v · v]

− div(pv) + α∆ε

= {ρf + 2λ div D(v) + µ grad div v

− grad p} · v
+ λD(v) : D(v) + µ(div v)2

− p div v + α∆ε

p = p(ρ, ε)

e = ρε+
1

2
ρ|v|2.

I.1.10. Euler equations. In the inviscid case, i.e. λ = µ = 0, the
compressible Navier-Stokes equations in conservative form reduce to
the so-called Euler equations for an ideal gas:

∂ρ

∂t
+ div(ρv) = 0

∂(ρv)

∂t
+ div(ρv ⊗ v + pI) = ρf

∂e

∂t
+ div(ev + pv) = ρf · v + α∆ε

p = p(ρ, ε)

e = ρε+
1

2
ρ|v|2.

I.1.11. Compressible Navier-Stokes equations in non-con-
servative form. Inserting the first equation of §I.1.9 in the left-hand
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side of the second equation yields

∂(ρv)

∂t
+ div(ρv ⊗ v)

=

(
∂ρ

∂t

)
v + ρ

∂v

∂t
+ (div(ρv))v + ρ(v · ∇)v

= ρ

[
∂v

∂t
+ (v · ∇)v

]
.

Inserting the first two equations of §I.1.9 in the left-hand side of the
third equation implies

λD(v) : D(v) + µ(div v)2 − p div v + α∆ε

= −{ρf + 2λ div D(v) + µ grad div v − grad p} · v

+
∂(ρε+ 1

2
ρ|v|2)

∂t
+ div

(
ρεv +

1

2
ρ|v|2v

)
= −

{
∂(ρv)

∂t
+ div(ρv ⊗ v)

}
· v

+ ε
∂ρ

∂t
+ ε div(ρv) + ρ

∂ε

∂t
+ ρv · grad ε

+
1

2
|v|2∂ρ

∂t
+

1

2
|v|2 div(ρv) + ρ

1

2

∂|v|2

∂t
+ ρv · grad

(
1

2
|v|2
)

= −ρv ·
[
∂v

∂t
+ (v · ∇)v

]
+ ρ

∂ε

∂t
+ ρv · grad ε

+ ρv · ∂v

∂t
+ ρv · [(v · ∇)v]

= ρ
∂ε

∂t
+ ρv · grad ε.

With these simplifications we obtain the compressible Navier-Stokes
equations in non-conservative form

∂ρ

∂t
+ div(ρv) = 0

ρ

[
∂v

∂t
+ (v · ∇)v

]
= ρf + λ∆v + (λ+ µ) grad div v

− grad p

ρ

[
∂ε

∂t
+ ρv · grad ε

]
= λD(v) : D(v) + µ(div v)2 − p div v

+ α∆ε

p = p(ρ, ε).
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I.1.12. Instationary incompressible Navier-Stokes equa-
tions. Next we assume that the density ρ is constant, replace p by
p
ρ
, denote by

ν =
λ

ρ

the kinematic viscosity, and suppress the third equation in §I.1.11
(conservation of energy). This yields the instationary incompressible
Navier-Stokes equations :

div v = 0

∂v

∂t
+ (v · ∇)v = f + ν∆v − grad p.

Remark I.1.3. We say that a fluid is incompressible if the volume
of any sub-domain V ⊂ Ω remains constant for all times t > 0, i.e.∫

V (t)

dx =

∫
V

dx for all t > 0.

The transport theorem then implies that

0 =
d

dt

∫
V (t)

dx =

∫
V (t)

div vdx.

Hence, incompressibility is equivalent to the equation

div v = 0.

Remark I.1.4. The incompressible Navier-Stokes equations are of-
ten re-scaled to a non-dimensional form. To this end we introduce a
reference length L, a reference time T , a reference velocity U , a refer-
ence pressure P , and a reference force F and introduce new variables
and quantities by x = Ly, t = Tτ , v = Uu, p = Pq, f = Fg. Phys-
ical reasons suggest to fix T = L

U
. When re-writing the momentum

equation in the new quantities we obtain

Fg = f =
U

T

∂u

∂τ
+
U2

L
(u · ∇y)u−

νU

L2
∆yu +

P

L
∇yq

=
νU

L2

{
L2

νT

∂u

∂τ
+
LU

ν
(u · ∇y)u−∆yu +

PL

νU
∇yq

}
.

The physical dimension of F and νU
L2 is m s−2. The quantities L2

νT
, PL
νU

,

and LU
ν

are dimensionless. The quantities L, U , and ν are determined
by the physical problem. The quantities F and P are fixed by the con-
ditions F = νU

L2 and PL
νU

= 1. Thus there remains only the dimensionless
parameter
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Re =
LU

ν
.

It is called Reynolds’ number and is a measure for the complexity of
the flow. It was introduced in 1883 by Osborne Reynolds (1842 – 1912).

Example I.1.5. Consider an airplane at cruising speed and an oil-
vessel. The relevant quantities for the airplane are

U ≈ 900km h−1 ≈ 250m s−1

L ≈ 50m

ν ≈ 1.322 10−5m2 s−1

Re ≈ 9.455 108.

The corresponding quantities for the oil-vessel are

U ≈ 20knots ≈ 36km h−1 ≈ 10m s−1

L ≈ 300m

ν ≈ 1.005 10−6m2 s−1

Re ≈ 2.985 109.

I.1.13. Stationary incompressible Navier-Stokes equations.
As a next step of simplification, we assume that we are in a stationary
regime, i.e. all temporal derivatives vanish. This yields the stationary
incompressible Navier-Stokes equations :

div v = 0

−ν∆v + (v · ∇)v + grad p = f .

I.1.14. Stokes equations. In a last step we linearize the Navier-
Stokes equations at velocity v = 0 and re-scale the viscosity ν to 1.
This gives the Stokes equations :

div v = 0

−∆v + grad p = f .

Remark I.1.6. All CFD algorithms solve complicated flow prob-
lems via a nested sequence of simplification steps similar to the de-
scribed procedure. Therefore it is mandatory to dispose of efficient
discretization schemes and solvers for simplified problems as, e.g., the
Stokes equations, which are at the heart in the inmost loop.
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I.1.15. Initial and boundary conditions. The equations of §§
I.1.9 – I.1.12 are time-dependent. They must be complemented by
initial conditions for the velocity v, the internal energy ε and – for the
problems of §§I.1.9 – I.1.11 – the density ρ.

The Euler equations of §I.1.10 (p. 13) are hyperbolic and require
boundary conditions on the inflow-boundary.

The problems of §§I.1.9 and I.1.11 – I.1.14 are of second order in
space and require boundary conditions everywhere on the boundary
Γ = ∂Ω. For the energy-equations in §§I.1.9 (p. 12) and I.1.11 (p. 13)
one may choose either Dirichlet (prescribed energy) or Neumann (pre-
scribed energy flux) boundary conditions. A mixture of both conditions
is also possible.

The situation is less evident for the mass and momentum equations
in §§I.1.9 and I.1.11 – I.1.14. Around 1845, Sir George Gabriel Stokes
(1819 – 1903) suggested that – due to the friction – the fluid will adhere
at the boundary. This leads to the Dirichlet boundary condition

v = 0 on Γ.

More generally one can impose the condition v = vΓ with a given
boundary velocity vΓ.

Around 1827, Pierre Louis Marie Henri Navier (1785 – 1836) had
suggested the more general boundary condition

λnv · n + (1− λn)n ·T · n = 0

λt[v − (v · n)n] + (1− λt)[T · n− (n ·T · n)n] = 0

on Γ with parameters λn, λt ∈ [0, 1] that depend on the actual flow-
problem. More generally one may replace the homogeneous right-hand
sides by given known functions.
The first equation of Navier refers to the normal components of v and
n · T, the second equation refers to the tangential components of v
and n · T. The special case λn = λt = 1 obviously yields the no-slip
condition of Stokes. The case λn = 1, λt = 0 on the other hand gives
the slip condition

v · n = 0

T · n− (n ·T · n)n = 0.

The question, which boundary condition is a better description of the
reality, was decided in the 19th century by experiments with pendulums
submerged into a viscous fluid. They were in favour of the no-slip
condition of Stokes. The viscosities of the fluids, however, were similar
to that of honey and the velocities were only a few meters per second.
When dealing with much higher velocities or much smaller viscosities,
the slip condition of Navier is more appropriate. A particular example
for this situation is the re-entry of a space vehicle. Other examples are
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coating problems where the location of the boundary is an unknown
and is determined by the interaction of capillary and viscous forces.

I.2. Notations and basic results

I.2.1. Domains and functions. The following notations concern-
ing domains and functions will frequently be used:

Ω open, bounded, connected set in Rn, n ∈ {2, 3};
Γ boundary of Ω supposed to be Lipschitz-continuous;

n exterior unit normal to Ω;

p, q, r, . . . scalar functions with values in R;

u,v,w, . . . vector-fields with values in Rn;

S,T, . . . tensor-fields with values in Rn×n;

I unit tensor;

∇ gradient;

div divergence;

div u =
n∑
i=1

∂ui
∂xi

;

div T =

(
n∑
i=1

∂Tij
∂xi

)
1≤j≤n

;

∆ = div∇ Laplace operator;

D(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
1≤i,j≤n

deformation tensor;

u · v inner product;

S : T dyadic product (inner product of tensors);

u⊗ v = (uivj)1≤i,j≤n tensorial product.

I.2.2. Differentiation of products. The product formula for dif-
ferentiation yields the following formulae for the differentiation of prod-
ucts of scalar functions, vector-fields and tensor-fields:

div(pu) = ∇p · u + p div u,

div(T · u) = (div T) · u + T : D(u),

div(u⊗ v) = (div u)v + (u · ∇)v.

I.2.3. Integration by parts formulae. The above product for-
mulae and the Gauß theorem for integrals give rise to the following
integration by parts formulae:
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∫
Γ

pu · ndS =

∫
Ω

∇p · udx+

∫
Ω

p div udx,∫
Γ

n ·T · udS =

∫
Ω

(div T) · udx+

∫
Ω

T : D(u)dx,∫
Γ

n · (u⊗ v)dS =

∫
Ω

(div u)vdx+

∫
Ω

(u · ∇)vdx.

I.2.4. Weak derivatives. Recall that A denotes the closure of a
set A ⊂ Rn.

Example I.2.1. For the sets

A = {x ∈ R3 : x2
1 + x2

2 + x2
3 < 1} open unit ball

B = {x ∈ R3 : 0 < x2
1 + x2

2 + x2
3 < 1} punctuated open unit ball

C = {x ∈ R3 : 1 < x2
1 + x2

2 + x2
3 < 2} open annulus

we have

A = {x ∈ R3 : x2
1 + x2

2 + x2
3 ≤ 1} closed unit ball

B = {x ∈ R3 : x2
1 + x2

2 + x2
3 ≤ 1} closed unit ball

C = {x ∈ R3 : 1 ≤ x2
1 + x2

2 + x2
3 ≤ 2} closed annulus.

Given a continuous function ϕ : Rn → R, we denote its support by

suppϕ = {x ∈ Rn : ϕ(x) 6= 0}.
The set of all functions that are infinitely differentiable and have their
support contained in Ω is denoted by C∞0 (Ω):

C∞0 (Ω) = {ϕ ∈ C∞(Ω) : suppϕ ⊂ Ω}.

Remark I.2.2. The condition “suppϕ ⊂ Ω” is a non trivial one,
since suppϕ is closed and Ω is open. Functions satisfying this condition
vanish at the boundary of Ω together with all their derivatives.

Given a sufficiently smooth function ϕ and a multi-index α ∈ Nn,
we denote its partial derivatives by

Dαϕ =
∂α1+...+αnϕ

∂xα1
1 . . . ∂xαnn

.

Given two function ϕ, ψ ∈ C∞0 (Ω), the Gauß theorem for integrals
yields for every multi-index α ∈ Nn the identity∫

Ω

Dαϕψdx = (−1)α1+...+αn

∫
Ω

ϕDαψdx.
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This identity motivates the definition of the weak derivatives:

Given two integrable function ϕ, ψ ∈ L1(Ω) and a multi-
index α ∈ Nn, ψ is called the α-th weak derivative of ϕ if
and only if the identity∫

Ω

ψρdx = (−1)α1+...+αn

∫
Ω

ϕDαρdx

holds for all functions ρ ∈ C∞0 (Ω). In this case we write

ψ = Dαϕ.

Remark I.2.3. For smooth functions, the notions of classical and
weak derivatives coincide. Yet, there are functions which are not dif-
ferentiable in the classical sense but which have a weak derivative (cf.
Example I.2.4 below).

Example I.2.4. The function |x| is not differentiable in (−1, 1),
but it is differentiable in the weak sense. Its weak derivative is the
piecewise constant function which equals −1 on (−1, 0) and 1 on (0, 1).

I.2.5. Sobolev spaces and norms. We will frequently use the
following Sobolev spaces and norms:

Hk(Ω) = {ϕ ∈ L2(Ω) : Dαϕ ∈ L2(Ω) for all α ∈ Nn

with α1 + . . .+ αn ≤ k},

|ϕ|k =


∑
α∈Nn

α1+...+αn=k

‖Dαϕ‖2
L2(Ω)


1/2

,

‖ϕ‖k =

{
k∑
l=0

|ϕ|2l

}1/2

=


∑
α∈Nn

α1+...+αn≤k

‖Dαϕ‖2
L2(Ω)


1/2

,

H1
0 (Ω) = {ϕ ∈ H1(Ω) : ϕ = 0 on Γ},

L2
0(Ω) =

{
p ∈ L2(Ω) :

∫
Ω

p = 0

}
,

H
1
2 (Γ) =

{
ψ ∈ L2(Γ) : ψ = ϕ

∣∣∣
Γ

for some ϕ ∈ H1(Ω)
}
,

‖ψ‖ 1
2
,Γ = inf

{
‖ϕ‖1 : ϕ ∈ H1(Ω), ϕ

∣∣∣
Γ

= ψ
}
.

Note that all derivatives are to be understood in the weak sense.
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Remark I.2.5. The space H
1
2 (Γ) is called trace space of H1(Ω),

its elements are called traces of functions in H1(Ω). Except in one
dimension, n = 1, H1 functions are in general not continuous and do
not admit point values (cf. Example I.2.6 below). A function, however,
which is piecewise differentiable is in H1(Ω) if and only if it is globally
continuous. This is crucial for finite element functions.

Example I.2.6. The function |x| is not differentiable, but it is

in H1((−1, 1)). In two dimension, the function ln(ln(
√
x2

1 + x2
2)) is

an example of an H1-function that is not continuous and which does
not admit a point value in the origin. In three dimensions, a similar
example is given by ln(

√
x2

1 + x2
2 + x2

3).

Example I.2.7. Consider the open unit ball

Ω = {x ∈ Rn : x2
1 + . . .+ x2

n < 1}

in Rn and the functions

ϕα(x) = {x2
1 + . . .+ x2

n}
α
2 α ∈ R.

Then we have

ϕα ∈ H1(Ω) ⇐⇒

{
α ≥ 0 if n = 2,

α > 1− n
2

if n > 2.

I.2.6. Friedrichs and Poincaré inequalities. The following in-
equalities are fundamental:

‖ϕ‖0 ≤ cΩ|ϕ|1 for all ϕ ∈ H1
0 (Ω),

Friedrichs inequality

‖ϕ‖0 ≤ c′Ω|ϕ|1 for all ϕ ∈ H1(Ω) ∩ L2
0(Ω)

Poincaré inequality.

The constants cΩ and c′Ω depend on the domain Ω and are propor-
tional to its diameter.

I.2.7. Finite element partitions. The finite element discretiza-
tions are based on partitions of the domain Ω into non-overlapping
simple sub-domains. The collection of these sub-domains is called a
partition and is labeled T . The members of T , i.e. the sub-domains,
are called elements and are labeled K.

Any partition T has to satisfy the following conditions:

• Ω ∪ Γ is the union of all elements in T .
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• (Affine equivalence) Each K ∈ T is either a trian-
gle or a parallelogram, if n = 2, or a tetrahedron
or a parallelepiped, if n = 3.
• (Admissibility) Any two elements in T are either

disjoint or share a vertex or a complete edge or –
if n = 3 – a complete face.
• (Shape-regularity) For any element K, the ratio of

its diameter hK to the diameter ρK of the largest
ball inscribed into K is bounded independently of
K.

Remark I.2.8. In two dimensions, n = 2, shape regularity means
that the smallest angles of all elements stay bounded away from zero.
In practice one usually not only considers a single partition T , but
complete families of partitions which are often obtained by successive
local or global refinements. Then, the ratio hK/ρK must be bounded
uniformly with respect to all elements and all partitions.

For any partition T we denote by hT or simply h the maximum of
the element diameters:

h = hT = max{hK : K ∈ T }.

Remark I.2.9. In two dimensions triangles and parallelograms may
be mixed (cf. Figure I.2.1). In three dimensions tetrahedrons and
parallelepipeds can be mixed provided prismatic elements are also in-
corporated. The condition of affine equivalence may be dropped. It,
however, considerably simplifies the analysis since it implies constant
Jacobians for all element transformations.

@
@
@
@@

�
�
�
��

Figure I.2.1. Mixture of triangular and quadrilateral elements

I.2.8. Finite element spaces. For any multi-index α ∈ Nn we
set for abbreviation

|α|1 = α1 + . . .+ αn,
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|α|∞ = max{αi : 1 ≤ i ≤ n},
xα = xα1

1 · . . . · xαnn .

Denote by

K̂ = {x̂ ∈ Rd : x1 + . . .+ xn ≤ 1, xi ≥ 0, 1 ≤ i ≤ n}
the reference simplex for a partition into triangles or tetrahedra and
by

K̂ = [0, 1]n

the reference cube for a partition into parallelograms or parallelepipeds.

Then every element K ∈ T is the image of K̂ under an affine mapping
FK . For every integer number k set

Rk(K̂) =

{
span{xα : |α|1 ≤ k} if K is the reference simplex,

span{xα : |α|∞ ≤ k} if K is the reference cube

and set
Rk(K) =

{
p̂ ◦ F−1

K : p̂ ∈ R̂k

}
.

With this notation we define finite element spaces by

Sk,−1(T ) =
{
ϕ : Ω→ R : ϕ

∣∣∣
K
∈ Rk(K) for all K ∈ T

}
,

Sk,0(T ) = Sk,−1(T ) ∩ C(Ω),

Sk,00 (T ) = Sk,0(T ) ∩H1
0 (Ω) = {ϕ ∈ Sk,0(T ) : ϕ = 0 on Γ}.

Note, that k may be 0 for the first space, but must be at least 1 for
the second and third space.

Example I.2.10. For the reference triangle, we have

R1(K̂) = span{1, x1, x2},

R2(K̂) = span{1, x1, x2, x
2
1, x1x2, x

2
2}.

For the reference square on the other hand, we have

R1(K̂) = span{1, x1, x2, x1x2},

R2(K̂) = span{1, x1, x2, x1x2, x
2
1, x

2
1x2, x

2
1x

2
2, x1x

2
2, x

2
2}.

I.2.9. Approximation properties. The finite element spaces de-
fined above satisfy the following approximation properties:

inf
ϕT ∈Sk,−1(T )

‖ϕ− ϕT ‖0 ≤ chk+1|ϕ|k+1 ϕ ∈ Hk+1(Ω), k ∈ N,

inf
ϕT ∈Sk,0(T )

|ϕ− ϕT |j ≤ chk+1−j|ϕ|k+1 ϕ ∈ Hk+1(Ω),

j ∈ {0, 1}, k ∈ N∗,
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inf
ϕT ∈Sk,00 (T )

|ϕ− ϕT |j ≤ chk+1−j|ϕ|k+1 ϕ ∈ Hk+1(Ω) ∩H1
0 (Ω),

j ∈ {0, 1}, k ∈ N∗.

I.2.10. Nodal shape functions. N denotes the set of all element
vertices.

For any vertex x ∈ N the associated nodal shape function is denoted
by λx. It is the unique function in S1,0(T ) that equals 1 at vertex x
and that vanishes at all other vertices y ∈ N\{x}.

The support of a nodal shape function λx is denoted by ωx and
consists of all elements that share the vertex x (cf. Figure I.2.2).
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Figure I.2.2. Some examples of domains ωx

The nodal shape functions can easily be computed elementwise from
the coordinates of the element’s vertices.
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a0 a0a1 a1

a2 a2a3

Figure I.2.3. Enumeration of vertices of triangles and
parallelograms

Example I.2.11. (1) Consider a triangle K with vertices a0, . . . , a2

numbered counterclockwise (cf. Figure I.2.3). Then the restrictions to
K of the nodal shape functions λa0 , . . . , λa2 are given by

λai(x) =
det(x− ai+1 , ai+2 − ai+1)

det(ai − ai+1 , ai+2 − ai+1)
i = 0, 1, 2,

where all indices have to be taken modulo 3.
(2) Consider a parallelogramK with vertices a0, . . . , a3 numbered coun-
terclockwise (cf. Figure I.2.3). Then the restrictions to K of the nodal
shape functions λa0 , . . . , λa3 are given by

λai(x) =
det(x− ai+2 , ai+3 − ai+2)

det(ai − ai+2 , ai+3 − ai+2)
· det(x− ai+2 , ai+1 − ai+2)

det(ai − ai+2 , ai+1 − ai+2)
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i = 0, . . . , 3,

where all indices have to be taken modulo 4.
(3) Consider a tetrahedron K with vertices a0, . . . , a3 enumerated as in
Figure I.2.4. Then the restrictions to K of the nodal shape functions
λa0 , . . . , λa3 are given by

λai(x) =
det(x− ai+1 , ai+2 − ai+1 , ai+3 − ai+1)

det(ai − ai+1 , ai+2 − ai+1 , ai+3 − ai+1)
i = 0, . . . , 3,

where all indices have to be taken modulo 4.
(4) Consider a parallelepiped K with vertices a0, . . . , a7 enumerated as
in Figure I.2.4. Then the restrictions to K of the nodal shape functions
λa0 , . . . , λa7 are given by

λai(x) =
det(x− ai+1 , ai+3 − ai+1 , ai+5 − ai+1)

det(ai − ai+1 , ai+3 − ai+1 , ai+5 − ai+1)
·

det(x− ai+2 , ai+3 − ai+2 , ai+6 − ai+2)

det(ai − ai+2 , ai+3 − ai+2 , ai+6 − ai+2)
·

det(x− ai+4 , ai+5 − ai+4 , ai+6 − ai+4)

det(ai − ai+4 , ai+5 − ai+4 , ai+6 − ai+4)

i = 0, . . . , 7,

where all indices have to be taken modulo 8.
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a5

Figure I.2.4. Enumeration of vertices of tetrahedra
and parallelepipeds (The vertex a2 of the parallelepiped
is hidden.)

Remark I.2.12. For every element (triangle, parallelogram, tetra-
hedron, or parallelepiped) the sum of all nodal shape functions corre-
sponding to the element’s vertices is identical equal to 1 on the element.

The functions λx, x ∈ N , form a bases of S1,0(T ). The bases
of higher-order spaces Sk,0(T ), k ≥ 2, consist of suitable products of
functions λx corresponding to appropriate vertices x.
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Example I.2.13. (1) Consider a again a triangle K with its vertices

numbered as in example I.2.11 (1). Then the nodal basis of S2,0(T )
∣∣∣
K

consists of the functions

λai [λai − λai+1
− λai+2

] i = 0, 1, 2

4λaiλai+1
i = 0, 1, 2,

where the functions λa` are as in example I.2.11 (1) and where all

indices have to be taken modulo 3. An other basis of S2,0(T )
∣∣∣
K

, called

hierarchical basis, consists of the functions

λai i = 0, 1, 2

4λaiλai+1
i = 0, 1, 2.

(2) Consider a again a parallelogram K with its vertices numbered as

in example I.2.11 (2). Then the nodal basis of S2,0(T )
∣∣∣
K

consists of

the functions

λai [λai − λai+1
+ λai+2

− λai+3
] i = 0, . . . , 3

4λai [λai+1
− λai+2

] i = 0, . . . , 3

16λa0λa2

where the functions λa` are as in example I.2.11 (2) and where all

indices have to be taken modulo 4. The hierarchical basis of S2,0(T )
∣∣∣
K

consists of the functions

λai i = 0, . . . , 3

4λai [λai+1
− λai+2

] i = 0, . . . , 3

16λa0λa2 .

(3) Consider a again a tetrahedron K with its vertices numbered as in

example I.2.11 (3). Then the nodal basis of S2,0(T )
∣∣∣
K

consists of the

functions

λai [λai − λai+1
− λai+2

− λai+3
] i = 0, . . . , 3

4λaiλaj 0 ≤ i < j ≤ 3,

where the functions λa` are as in example I.2.11 (3) and where all
indices have to be taken modulo 4. The hierarchical basis consists of
the functions

λai i = 0, . . . , 3

4λaiλaj 0 ≤ i < j ≤ 3.
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I.2.11. A quasi-interpolation operator. We will frequently use
the quasi-interpolation operator RT : L1(Ω)→ S1,0

D (T ) which is defined
by

RT ϕ =
∑

x∈NΩ∪NΓN

λx
1

|ωx|

∫
ωx

ϕdx.

Here, |ωx| denotes the area, if n = 2, respectively volume, if n = 3,
of the set ωx. The operator RT has the following local approximation
properties

‖ϕ−RT ϕ‖L2(K) ≤ c1hK‖ϕ‖H1(ω̃K),

‖ϕ−RT ϕ‖L2(∂K) ≤ c2h
1/2
K ‖ϕ‖H1(ω̃K).

Here, ω̃K denotes the set of all elements that share at least a vertex
with K (cf. Figure I.2.5).

@
@
@

@
@
@
@
@
@

@
@
@
@
@
@
@
@
@

@
@
@
@
@
@K K

@
@
@

Figure I.2.5. Examples of domains ω̃K

Remark I.2.14. The operator RT is called a quasi-interpolation
operator since it does not interpolate a given function ϕ at the vertices
x ∈ N . In fact, point values are not defined for H1-functions. For func-
tions with more regularity which are at least in H2(Ω), the situation
is different. For those functions point values do exist and the classical
nodal interpolation operator IT : H2(Ω) ∩ H1

0 (Ω) → S1,0
0 (T ) can be

defined by the relation (IT (ϕ))(x) = ϕ(x) for all vertices x ∈ N .

I.2.12. Bubble functions. For any element K ∈ T we define an
element bubble function by

ψK = αK
∏
x∈NK

λx ,

αK =


27 if K is a triangle,

256 if K is a tetrahedron,

16 if K is a parallelogram,

64 if K is a parallelepiped,
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where NK is the set of all vertices of K. It has the following properties:

0 ≤ ψK(x) ≤ 1 for all x ∈ K,
ψK(x) = 0 for all x 6∈ K,

max
x∈K

ψK(x) = 1.

We denote by E the set of all edges, if n = 2, and of all faces, if n = 3, of
all elements in T . With each edge respectively face E ∈ E we associate
an edge respectively face bubble function by

ψE = βE
∏
x∈NE

λx ,

βE =


4 if E is a line segment,

27 if E is a triangle,

16 if E is a parallelogram,

where NE is the set of all vertices of E. It has the following properties:

0 ≤ ψE(x) ≤ 1 for all x ∈ ωE,
ψE(x) = 0 for all x 6∈ ωE,

max
x∈ωE

ψE(x) = 1.

Here ωE is the union of all elements that share E (cf. Figure I.2.6).
Note that ωE consists of two elements, if E is not contained in the
boundary Γ, and of exactly one element, if E is a subset of Γ.
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Figure I.2.6. Examples of domains ωE (E is marked bold.)

With each edge respectively face E ∈ E we finally associate a unit
vector nE orthogonal to E and denote by JE(·) the jump across E in
direction nE. If E is contained in the boundary Γ the orientation of
nE is fixed to be the one of the exterior normal. Otherwise it is not
fixed.

Remark I.2.15. JE(·) depends on the orientation of nE but quan-
tities of the form JE(nE · ϕ) are independent of this orientation.



CHAPTER II

Stationary linear problems

II.1. Discretization of the Stokes equations. A first attempt

II.1.1. The Poisson equation revisited. We recall the Poisson
equation

−∆ϕ = f in Ω

ϕ = 0 on Γ

and its variational formulation: Find ϕ ∈ H1
0 (Ω) such that∫

Ω

∇ϕ∇ψdx =

∫
Ω

fψdx

holds for all ψ ∈ H1
0 (Ω).

The Poisson equation and this variational formulation are equiva-
lent in the sense that any solution of the Poisson equation is a solution
of the variational problem and that conversely any solution of the vari-
ational problem which is twice continuously differentiable is a solution
of the Poisson equation. Moreover, one can prove that the variational
problem admits a unique solution.

Standard finite element discretizations simply choose a partition
T of Ω and an integer k ≥ 1 and replace in the variational problem
H1

0 (Ω) by the finite dimensional space Sk,00 (T ). This gives rise to a
linear system of equations with a symmetric, positive definite, square
matrix, called stiffness matrix. If, e.g. k = 1, the size of the resulting
discrete problem is given by the number of vertices in T which do not
lie on the boundary Γ.

II.1.2. A variational formulation of the Stokes equations.
Now we look at the Stokes equations of §I.1.14 (p. 16) with no-slip
boundary condition

−∆u + grad p = f in Ω

div u = 0 in Ω

u = 0 on Γ.

The space

V = {u ∈ H1
0 (Ω)n : div u = 0}

is a sub-space of H1
0 (Ω)n which has similar properties. For every p ∈

H1(Ω) and any u ∈ V the integration by parts formulae of §I.2.3 (p. 18)

29
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imply that ∫
Ω

∇p · udx = −
∫

Ω

p div udx = 0.

We therefore obtain the following variational formulation of the Stokes
equations: Find u ∈ V such that∫

Ω

∇u : ∇udx =

∫
Ω

f · vdx

holds for all v ∈ V .
As for the Poisson problem, any velocity field which solves the

Stokes equations also solves this variational problem. Moreover, one
can prove that the variational problem admits a unique solution. Yet,
we have lost the pressure! This is an apparent gap between differential
equation and variational problem which is not present for the Poisson
equation.

II.1.3. A naive discretization of the Stokes equations. Al-
though the variational problem of the previous section does not incor-
porate the pressure, it nevertheless gives information about the velocity
field. Therefore one may be attempted to use it as a starting point for
a discretization process similar to the Poisson equation. This would
yield a symmetric, positive definite system of linear equations for a
discrete velocity field. This would have the appealing side-effect that
standard solvers such as preconditioned conjugate gradient algorithms
were available. The following example shows that this approach leads
to a dead-end road.
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Figure II.1.1. Courant triangulation

Example II.1.1. We consider the unit square Ω = (0, 1)2 and divide
it into N2 squares of equal size. Each square is further divided into two
triangles by connecting its top-left corner with its bottom-right corner
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(cf. Figure II.1.1). This partition is known as Courant triangulation.
The length of the triangles’ short sides is h = 1

N−1
. For the discretiza-

tion of the Stokes equations we replace V by V (T ) = S1,0
0 (T )2 ∩ V ,

i.e. we use continuous, piecewise linear, solenoidal finite element func-
tions. Choose an arbitrary function vT ∈ V (T ). We first consider the
triangle K0 which has the origin as a vertex. Since all its vertices are
situated on the boundary, we have vT = 0 on K0. Next we consider
the triangle K1 which shares its longest side with K0. Denote by z1 the
vertex of K1 which lies in the interior of Ω. Taking into account that
vT = 0 on Γ and div vT = 0 in K1, applying the integration by parts
formulae of §I.2.3 (p. 18) and evaluating line integrals with the help of
the trapezoidal rule, we conclude that

0 =

∫
K1

div vT dx

=

∫
∂K1

vT · nK1dS

=
h

2
vT (z1) · {e1 + e2}.

Here nK1 is the unit exterior normal to K1 and e1, e2 denote the
canonical bases vectors in R2. Next we consider the triangle K2, which
is adjacent to the vertical boundary of Ω and to K1. With the same
arguments as for K1 we conclude that

0 =

∫
K2

div vT dx

=

∫
∂K2

vT · nK2dS

=
h

2
vT (z1) · {e1 + e2}︸ ︷︷ ︸

=0

−h
2

vT (z1) · e2

= −h
2

vT (z1) · e2.

Since vT (z1) · e1 = −vT (z1) · e2 we obtain

vT (z1) = 0

and consequently vT = 0 on K0 ∪K1 ∪K2. Repeating this argument,
we first conclude that vT vanishes on all squares that are adjacent to
the left boundary of Ω and then that vT vanishes on all of Ω. Hence we
have V (T ) = {0}. Thus this space is not suited for the approximation
of V .

Remark II.1.2. One can prove that Sk,00 (T )2 ∩ V is suited for the
approximation of V only if k ≥ 5. This is no practical choice.
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II.1.4. Possible remedies. The previous sections show that the
Poisson and Stokes equations are fundamentally different and that the
discretization of the Stokes problem is a much more delicate task than
for the Poisson equation.

There are several possible remedies for the difficulties presented
above:

• Relax the divergence constraint: This leads to mixed finite
elements.
• Add consistent penalty terms: This leads to stabilized Petrov-

Galerkin formulations.
• Relax the continuity condition: This leads to non-conforming

methods.
• Look for an equivalent differential equation without the diver-

gence constraint: This leads to the stream-function formula-
tion.

In the following sections we will investigate all these possibilities
and will see that each has its particular pitfalls.

II.2. Mixed finite element discretizations of the Stokes
equations

II.2.1. Saddle-point formulation of the Stokes equations.
We recall the Stokes equations with no-slip boundary condition

−∆u + grad p = f in Ω

div u = 0 in Ω

u = 0 on Γ.

If p is any pressure solving the Stokes equations and if c is any
constant, obviously p + c is also an admissible pressure for the Stokes
equations. Hence, the pressure is at most unique up to an additive
constant. We try to fix this constant by the normalization∫

Ω

pdx = 0.

If v ∈ H1
0 (Ω)n and p ∈ H1(Ω) are arbitrary, the integration by

parts formulae of §I.2.3 (p. 18) imply that∫
Ω

∇p · vdx =

∫
Γ

pv · n︸︷︷︸
=0

dS −
∫

Ω

p div vdx

= −
∫

Ω

p div vdx.

These observations lead to the following mixed variational formu-
lation of the Stokes equations :
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Find u ∈ H1
0 (Ω)n and p ∈ L2

0(Ω) such that∫
Ω

∇u : ∇vdx−
∫

Ω

p div vdx =

∫
Ω

f · vdx for all v ∈ H1
0 (Ω)n∫

Ω

q div udx = 0 for all q ∈ L2
0(Ω).

It has the following properties:

• Any solution u, p of the Stokes equations is a solution of the
above variational problem.
• Any solution u, p of the variational problem which is suffi-

ciently smooth is a solution of the Stokes equations.
• The variational problem is the Euler-Lagrange equation cor-

responding to the constrained minimization problem

Minimize
1

2

∫
Ω

|∇u|2dx−
∫

Ω

f · udx

subject to

∫
Ω

q div udx = 0 for all q ∈ L2
0(Ω).

Hence it is a saddle-point problem, i.e. u is a minimizer, p is
a maximizer and is the Lagrange multiplicator corresponding
the constraint div u = 0.

A deep mathematical result is:

The mixed variational formulation of the Stokes equations
admits a unique solution u, p. This solution depends con-
tinuously on the force f , i.e.

|u|1 + ‖p‖0 ≤ cΩ‖f‖0

with a constant cΩ which only depends on the domain Ω.

II.2.2. General structure of mixed finite element discreti-
zations of the Stokes equations. We choose a partition T of Ω and
two associated finite element spaces X(T ) ⊂ H1

0 (Ω)n for the velocity
and Y (T ) ⊂ L2

0(Ω) for the pressure. Then we replace in the mixed
variational formulation of the Stokes equations the space H1

0 (Ω)n by
X(T ) and the space L2

0(Ω) by X(T ).
This gives rise to the following general mixed finite element dis-

cretization of the Stokes equations :
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Find uT ∈ X(T ) and pT ∈ Y (T ) such that∫
Ω

∇uT : ∇vT dx−
∫

Ω

pT div vT dx =

∫
Ω

f · vT dx

for all vT ∈ X(T )∫
Ω

qT div uT dx = 0 for all qT ∈ Y (T ).

Remark II.2.1. Obviously, any particular mixed finite element dis-
cretization of the Stokes equations is determined by specifying the par-
tition T and the spaces X(T ) and Y (T ). The condition X(T ) ⊂
H1

0 (Ω)n implies that the discrete velocities are globally continuous and
vanish on the boundary. The condition Y (T ) ⊂ L2

0(Ω) implies that the
discrete pressures have vanishing mean value, i.e.

∫
Ω
pT dx = 0 for all

pT ∈ Y (T ). The condition
∫

Ω
qT div uT dx = 0 for all qT ∈ Y (T ) in

general does not imply div uT = 0.

II.2.3. A first attempt. We consider the unit square Ω = (0, 1)2

and the Courant triangulation of Example II.1.1 (p. 30). We choose

X(T ) = S1,0
0 (T )2

Y (T ) = S0,−1(T ) ∩ L2
0(T )

i.e. a continuous, piecewise linear velocity approximation and a piece-
wise constant pressure approximation on a triangular grid. Assume
that uT , pT is a solution of the discrete problem. Then div uT is piece-
wise constant. The condition

∫
Ω
qT div uT dx = 0 for all qT ∈ Y (T )

therefore implies div uT = 0. Hence we conclude from Example II.1.1
that uT = 0. Thus this mixed finite element discretization has the
same defects as the one of Example II.1.1.

II.2.4. A necessary condition for a well-posed mixed dis-
cretization. We consider an arbitrary mixed finite element discretiza-
tion of the Stokes equations with spaces X(T ) for the velocity and
Y (T ) for the pressure. A minimal requirement for such a discretiza-
tion obviously is its well-posedness, i.e. that it admits a unique solution.
Hence the stiffness matrix must be invertible.

Denote by nu the dimension of X(T ) and by np the one of Y (T )
and choose arbitrary bases for these spaces. Then the stiffness matrix
has the form (

A B
BT 0

)
with a symmetric positive definite nu×nu matrix A and a rectangular
nu × np matrix B. Since A is symmetric positive definite, the stiffness
matrix is invertible if and only if the matrix B has rank np. Since the
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rank of a rectangular k×m matrix is at most min{k,m}, this leads to
the following necessary condition for a well-posed mixed discretization:

nu ≥ np.

Let’s have a look at the example of the previous section in the light
of this condition. Denote by N2 the number of the squares. An easy
calculation then yields nu = 2(N − 1)2 and np = 2N2 − 1. Hence we
have np > nu and the discretization cannot be well-posed.

II.2.5. A second attempt. As in §II.2.3 (p. 34) we consider the
unit square and divide it into N2 squares of equal size with N even.
Contrary to §II.2.3 the squares are not further sub-divided. We choose
the spaces

X(T ) = S1,0
0 (T )2

Y (T ) = S0,−1(T ) ∩ L2
0(T )

i.e. a continuous, piecewise bilinear velocity approximation and a piece-
wise constant pressure approximation on a quadrilateral grid. This
discretization is often refered to as Q1/Q0 element.

A simple calculation yields the dimensions nu = 2(N − 1)2 and
np = N2 − 1. Hence the condition nu ≥ np of the previous section is
satisfied provided N ≥ 4.

+1 +1

+1 +1

+1 +1

+1 +1

−1 −1

−1 −1

−1 −1

−1 −1

Figure II.2.1. Checkerboard mode

Denote by Ki,j, 0 ≤ i, j ≤ N − 1, the square which has the lower
left corner (ih, jh) where h = 1

N−1
. We now look at the particular

pressure p̂T ∈ Y (T ) which has the constant value (−1)i+j on Ki,j (cf.
Figure II.2.1). It is frequently called checkerboard mode. Consider an
arbitrary velocity vT ∈ X(T ). Using the integration by parts formulae
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of §I.2.3 (p. 18) and evaluating line integrals with the trapezoidal rule
we obtain∫

Kij

p̂T div vT dx

= (−1)i+j
∫
Kij

div vT dx

= (−1)i+j
∫
∂Kij

vT · nKijdS

= (−1)i+j
h

2

{
(vT · e1)((i+ 1)h, jh) + (vT · e1)((i+ 1)h, (j + 1)h)

− (vT · e1)(ih, (j + 1)h)− (vT · e1)(ih, jh)

+ (vT · e2)((i+ 1)h, (j + 1)h) + (vT · e2)(ih, (j + 1)h)

− (vT · e2)(ih, jh)− (vT · e2)((i+ 1)h, jh)
}
.

Due to the homogeneous boundary condition, summation with respect
to all indices i, j yields ∫

Ω

p̂T div vT dx = 0.

Since vT was arbitrary, the solution of the discrete problem cannot be
unique: One may add p̂T to any pressure solution and obtains a new
one.

This phenomenon is known as checkerboard instability. It shows
that the condition of the previous section is only a necessary one and
does not imply the well-posedness of the discrete problem.

II.2.6. The inf-sup condition. In 1974 Franco Brezzi published
the following necessary and sufficient condition for the well-posedness
of a mixed finite element discretization of the Stokes equations:

inf
pT ∈Y (T )\{0}

sup
uT ∈X(T )\{0}

∫
Ω
pT div uT dx

|uT |1‖pT ‖0

≥ β > 0.

A pair X(T ), Y (T ) of finite element spaces satisfying this condition is
called stable. The same notion refers to the corresponding discretiza-
tion.

Remark II.2.2. In practice one usually not only considers a sin-
gle partition T , but complete families of partitions which are often
obtained by successive local or global refinements. Usually they are
labeled Th where the index h indicates that the mesh-size gets smaller
and smaller. In this situation, the above condition of Franco Brezzi
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must be satisfied uniformly, i.e. the number β must be independent of
the mesh-size.

Remark II.2.3. The above condition is known under various
names. A prosaic one is inf-sup condition. Another one, mainly used
in western countries, is Babuška-Brezzi condition. A third one, which
is popular in eastern Europe and Russia, is Ladyzhenskaya-Babuška-
Brezzi condition in short LBB-condition. The additional names hon-
our older results of Olga Ladyzhenskaya and Ivo Babuška which, in a
certain sense, lay the ground for the result of Franco Brezzi.

In the following sections we give a catalogue of various stable ele-
ments. It incorporates the most popular elements, but it is not com-
plete. We distinguish between discontinuous and continuous pressure
approximations. The first variant sometimes gives a better approxima-
tion of the incompressibility condition; the second variant often leads to
smaller discrete systems while retaining the accuracy of a comparable
discontinuous pressure approximation.

II.2.7. A stable low-order element with discontinuous pres-
sure approximation. This discretization departs from the unstable
Q1/Q0-element. It is based on the observation that the instability of
the Q1/Q0-element is due to the fact that the velocity space cannot
balance pressure jumps across element boundaries. As a remedy the
velocity space is enriched by edge respectively face bubble functions
(cf. §I.2.12 (p. 27)) which give control on the pressure jumps.

The pair

X(T ) = S1,0
0 (T )n ⊕ span{ψEnE : E ∈ E}

Y (T ) = S0,−1(T ) ∩ L2
0(Ω)

is stable.

Since the bubble functions ψE are contained in Sn,0(T ) we obtain as a
corollary:

The pair

X(T ) = Sn,00 (T )n

Y (T ) = S0,−1(T ) ∩ L2
0(Ω)

is stable.

II.2.8. Stable higher-order elements with discontinuous
pressure approximation. For the following result we assume that
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T exclusively consists of triangles or tetrahedrons. Moreover, we de-
note for every positive integer ` by

P` = span{xα1
1 · . . . · xαnn : α1 + . . .+ αn = `}

the space of homogeneous polynomials of degree `. With these restric-
tions and notations the following result can be proven:

For every m ≥ n the pair

X(T ) =
[
Sm,00 (T )⊕ span{ψKϕ : K ∈ T , ϕ ∈ Pm−2}

]n
Y (T ) = Sm−1,−1(T ) ∩ L2

0(Ω)

is stable.

Since the element-bubble functions ψK are polynomials of degree n+ 1
we obtain as a corollary:

For every m ≥ n the pair

X(T ) = Sn+m−1,0
0 (T )n

Y (T ) = Sm−1,−1(T ) ∩ L2
0(Ω)

is stable.

II.2.9. Stable low-order elements with continuous pressure
approximation. Given a partition T we denote by T 1

2
the refined par-

tition which is obtained by connecting in every element the midpoints
of its edges. With this notation the following results were established
in the early 1980s:

The mini element

X(T ) =
[
S1,0

0 (T )⊕ span{ψK : K ∈ T }
]n

Y (T ) = S1,0(T ) ∩ L2
0(Ω)

is stable.

The Hood-Taylor element

X(T ) = S2,0
0 (T )n

Y (T ) = S1,0(T ) ∩ L2
0(Ω)

is stable.
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The modified Hood-Taylor element

X(T ) = S1,0
0 (T 1

2
)n

Y (T ) = S1,0(T ) ∩ L2
0(Ω)

is stable.

II.2.10. Stable higher-order elements with continuous pres-
sure approximation. The stability of higher order elements with con-
tinuous pressure approximation was established only in the early 1990s:

For every k ≥ 3 the higher order Hood-Taylor element

X(T ) = Sk,00 (T )n

Y (T ) = Sk−1,0(T ) ∩ L2
0(Ω)

is stable.

II.2.11. A priori error estimates. We consider a partition T
with mesh-size h and a stable pair X(T ), Y (T ) of corresponding finite
element spaces for the discretization of the Stokes equations. We de-
note by ku and kp the maximal polynomial degrees k and m such that

Sk,00 (T )n ⊂ X(T ) and either Sm,−1(T ) ∩ L2
0(Ω) ⊂ Y (T ) when using

a discontinuous pressure approximation or Sm,0(T ) ∩ L2
0(Ω) ⊂ Y (T )

when using a continuous pressure approximation. Set

k = min{ku − 1, kp}.

Further we denote by u, p the unique solution of the saddle-point for-
mulation of the Stokes equations (cf. §II.2.1 (p. 32)) and by uT , pT
the unique solution of the discrete problem under consideration.

With these notations the following a priori error estimates can be
proven:

Assume that u ∈ Hk+2(Ω)n ∩ H1
0 (Ω)n and p ∈ Hk+1(Ω) ∩

L2
0(Ω), then

|u− uT |1 + ‖p− pT ‖0 ≤ c1h
k+1‖f‖k.

If in addition Ω is convex, then

‖u− uT ‖0 ≤ c2h
k+2‖f‖k.

The constants c1 and c2 only depend on the domain Ω.

Example II.2.4. Table II.2.1 collects the numbers ku, kp, and k for
the examples of the previous sections.
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Table II.2.1. Parameters of various stable elements

pair ku kp k
§II.2.7 1 0 0
§II.2.8 m m− 1 m− 1
mini element 1 1 0
Hood-Taylor element 2 1 1
modified Hood-Taylor element 1 1 0
higher order Hood-Taylor element k k − 1 k − 1

Remark II.2.5. The above regularity assumptions are not realistic.
For a convex polygonal domain, one in general only has u ∈ H2(Ω)n ∩
H1

0 (Ω)n and p ∈ H1(Ω)∩L2(Ω). Therfore, independently of the actual
discretization, one in general only gets an O(h) error estimate. If Ω
is not convex, but has re-entrant corners, the situation is even worse:
One in general only gets an O(hα) error estimate with an exponent
1
2
≤ α < 1 which depends on the largest interior angle at a boundary

vertex of Ω. This poor convergence behaviour can only be remedied by
an adaptive grid refinement based on an a posteriori error control.

Remark II.2.6. The differentiation index of the pressure always
is one less than the differentiation index of the velocity. Therefore,
discretizations with kp = ku − 1 are optimal in that they do not waste
degrees of freedom by choosing too large a velocity space or too small
a pressure space.

II.3. Petrov-Galerkin stabilization

II.3.1. Motivation. The results of §II.2 show that one can stabi-
lize a given pair of finite element spaces by either reducing the num-
ber of degrees of freedom in the pressure space or by increasing the
number of degrees of freedom in the velocity space. This result is
reassuring but sometimes not practical since it either reduces the accu-
racy of the pressure or increases the number of unknowns and thus the
computational work. Sometimes one would prefer to stick to a given
pair of spaces and to have at hand a different stabilization process
which does neither change the number of unknowns nor the accuracy
of the finite element spaces. A particular example for this situation
is the popular equal order interpolation where X(T ) = Sm.00 (T )n and
Y (T ) = Sm,0(T ) ∩ L2

0(Ω).
In this section we will devise a stabilization process with the desired

properties. For its motivation we will have another look at the mini
element of §II.2.9 (p. 38).

II.3.2. The mini element revisited. We consider a triangula-
tion T of a two dimensional domain Ω and set for abbreviation

B(T ) =
[
span{ψK : K ∈ T }

]2
.
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The discretization of the Stokes equations with the mini element of
§II.2.9 (p. 38) then takes the form:
Find uT ∈ S1,0

0 (T )2 ⊕B(T ) and pT ∈ S1,0(T ) ∩ L2
0(Ω) such that∫

Ω

∇uT : ∇vT dx−
∫

Ω

pT div vT dx =

∫
Ω

f · vT dx

for all vT ∈ S1,0
0 (T )2 ⊕B(T )∫

Ω

qT div uT dx = 0

for all qT ∈ S1,0(T ) ∩ L2
0(Ω).

For simplicity we assume that f ∈ L2(Ω)2.
We split the velocity uT in a “linear part” uT ,L ∈ S1,0

0 (T )2 and a
“bubble part” uT ,B ∈ B(T ):

uT = uT ,L + uT ,B.

Since uT ,B vanishes on the element boundaries, integration by parts

element-wise yields for every vT ∈ S1,0
0 (T )2∫

Ω

∇uT ,B : ∇vT dx =
∑
K∈T

∫
K

∇uT ,B : ∇vT dx

= −
∑
K∈T

∫
K

uT ,B ·∆vT︸︷︷︸
=0

dx

= 0.

Hence, we have∫
Ω

∇uT ,L : ∇vT dx−
∫

Ω

pT div vT dx =

∫
Ω

f · vT dx

for all vT ∈ S1,0
0 (T )2.

The bubble part of the velocity has the representation

uT ,B =
∑
K∈T

αKψK

with coefficients αK ∈ R2. Inserting the test function vT = eiψK with
i ∈ {1, 2} and K ∈ T in the momentum equation, we obtain∫

K

f · eiψKdx

=

∫
Ω

f · (ψKei)dx
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=

∫
Ω

∇uT ,L : ∇(ψKei)dx︸ ︷︷ ︸
=0

+

∫
Ω

∇uT ,B : ∇(ψKei)dx︸ ︷︷ ︸
=αK,i

∫
K |∇ψK |2dx

−
∫

Ω

pT div(ψKei)dx︸ ︷︷ ︸
=−

∫
K

∂pT
∂xi

ψKdx

= αK,i

∫
K

|∇ψK |2dx+

∫
K

∂pT
∂xi

ψKdx, i = 1, 2,

and thus

αK =

{∫
K

[f −∇pT ]ψKdx

}{∫
K

|∇ψK |2dx

}−1

for all K ∈ T .

For abbreviation we set

γ̃K =

{∫
K

|∇ψK |2dx

}−1

.

Next we insert the representation of uT ,B in the continuity equation.
This yields for all qT ∈ S1,0(T ) ∩ L2

0(Ω)

0 =

∫
Ω

qT div uT dx

=

∫
Ω

qT div uT ,Ldx+
∑
K∈T

∫
K

qT div(αKψK)dx︸ ︷︷ ︸
=−

∫
K ψKαK ·∇qT dx

=

∫
Ω

qT div uT ,Ldx

−
∑
K∈T

γ̃K

{∫
K

ψK∇qT dx

}
·
{∫

K

ψK [f −∇pT ]dx

}
.

This proves that uT ,L ∈ S1,0
0 (T )2, pT ∈ S1,0(T ) ∩ L2

0(Ω) solve the
modified problem∫

Ω

∇uT ,L : ∇vT dx−
∫

Ω

pT div vT dx =

∫
Ω

f · vT dx

for all vT ∈ S1,0
0 (T )2∫

Ω

qT div uT ,Ldx+ cT (pT , qT ) = χT (qT )

for all qT ∈ S1,0(T ) ∩ L2
0(Ω)
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where

cT (pT , qT ) =
∑
K∈T

γK

∫
K

∇pT · ∇qT dx

χT (qT ) =
∑
K∈T

γ̃K

{∫
K

ψK∇qT dx

}
·
{∫

K

ψKfdx

}

γK = γ̃K |K|−1

{∫
K

ψKdx

}2

.

Note that γK is proportional to h2
K .

The new problem can be interpreted as a P1/P1 discretization of
the differential equation

−∆u + grad p = f in Ω

div u− α∆p = −α div f in Ω

u = 0 on Γ

with a suitable penalty parameter α. Taking into account that ∆uT
vanishes elementwise, the discrete problem does not change if we also
add the term α∆ div u to the left-hand side of the second equation.
This shows that in total we may add the divergence of the momentum
equation as a penalty. Since the penalty vanishes for the exact solution
of the Stokes equations, this approach is also called consistent penalty.

II.3.3. General form of Petrov-Galerkin stabilizations. Gi-
ven a partition T of Ω we choose two corresponding finite element
spaces X(T ) ⊂ H1

0 (Ω)n and Y (T ) ⊂ L2
0(Ω). For every element K ∈ T

and every edge respectively face E ∈ E we further choose non-negative
parameters δK and δE.

Recalling that JE(·) denotes the jump across E, we therefore con-
sider the following discrete problem:

Find uT ∈ X(T ) and pT ∈ Y (T ) such that∫
Ω

∇uT : ∇vT dx−
∫

Ω

pT div vT dx =

∫
Ω

f · vT dx∫
Ω

qT div uT dx

+
∑
K∈T

δKh
2
K

∫
K

[−∆uT +∇pT ] · ∇qT dx

+
∑
E∈E

δEhE

∫
E

JE(pT )JE(qT )dS =
∑
K∈T

δKh
2
K

∫
K

f · ∇qT dx

for all vT ∈ X(T ) and all qT ∈ Y (T ).
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Remark II.3.1. The terms involving δK correspond to the equation

div[−∆u +∇p] = div f .

The terms involving δE are only relevant for discontinuous pressure
approximations. When using a continuous pressure approximation they
vanish.

II.3.4. Choice of stabilization parameters. With the nota-
tions of the previous section we set

δmax = max

{
max
K∈T

δK , max
E∈E

δE

}
,

δmin =

min

{
min
K∈T

δK , min
E∈E

δE

}
if pressures are discontinuous,

min
K∈T

δK if pressures are continuous.

A good choice of the stabilization parameters then is determined by
the condition

δmax ≈ δmin.

II.3.5. Choice of spaces. The a priori error estimates are opti-
mal when the polynomial degree of the pressure approximation is one
less than the polynomial degree of the velocity approximation. Hence
a standard choice is

X(T ) = Sk,00 (T )

Y (T ) =


Sk−1,0(T ) ∩ L2

0(Ω) continuous pressure

approximation

Sk−1,−1(T ) ∩ L2
0(Ω) discontinuous pressure

approximation

where k ≥ 1 for discontinuous pressure approximations and k ≥ 2 for
continuous pressure approximations. These choices yield O(hk) error
estimates provided the solution of the Stokes equations is sufficiently
smooth.

II.3.6. Structure of the discrete problem. The stiffness ma-
trix of a Petrov-Galerkin scheme has the form(

A B
−BT C

)
with symmetric, positive definite, square matrices A and C and a rect-
angular matrix B. The entries of C are by a factor of h2 smaller than
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those of A.
Recall that C = 0 for the discretizations of §II.2.

II.4. Non-conforming methods

II.4.1. Motivation. Up to now we have always imposed the con-
dition X(T ) ⊂ H1

0 (Ω)n, i.e. the discrete velocities had to be continuous.
Now, we will relax this condition. We hope that we will be rewarded
by less difficulties with respect to the incompressibility constraint.

One can prove that, nevertheless, the velocities must enjoy some
minimal continuity: On each edge the mean value of the velocity jump
across this edge must vanish. Otherwise the consistency error will be
at least of order O(1).

II.4.2. The Crouzeix-Raviart element. We consider a trian-
gulation T of a two dimensional domain Ω and set

X(T ) =
{

vT : Ω→ R2 : vT

∣∣∣
K
∈ R1(K) for all K ∈ T ,

is continuous at mid-points,

of interior edges,

vanishes at mid-points

of boundary edges
}

Y (T ) = S0,−1(T ) ∩ L2
0(Ω).

This pair of spaces is called Crouzeix-Raviart element. Its degrees of
freedom are the velocity-vectors at the mid-points of interior edges
and the pressures at the barycentres of elements. The corresponding
discrete problem is:

Find uT ∈ X(T ) and pT ∈ Y (T ) such that∑
K∈T

∫
K

∇uT : ∇vT dx−
∑
K∈T

∫
K

pT div vT dx =

∫
Ω

f · vT dx

∑
K∈T

∫
K

qT div uT dx = 0

for all vT ∈ X(T ) and all qT ∈ Y (T ).

The following results can be proven:

The Crouzeix-Raviart discretization admits a unique solu-
tion uT , pT .
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The continuity equation div uT = 0 is satisfied element-
wise.
If Ω is convex, the following error estimates hold{∑

K∈T

|u− uT |2H1(K)

}1/2

+ ‖p− pT ‖0 = O(h),

‖u− uT ‖0 = O(h2).

Yet, the Crouzeix-Raviart discretization has several drawbacks too:

• Its accuracy deteriorates drastically in the presence
of re-entrant corners.
• It has no higher order equivalent.

II.4.3. Construction of a local solenoidal bases. One of the
main attractions of the Crouzeix-Raviart element is the fact that it
allows the construction of a local solenoidal bases for the velocity space
and that in this way the computation of the velocity and pressure can
be decoupled.

For the construction of the solenoidal bases we assume that Ω is
simply connected, ie. Γ has only one component, and denote by

• NT the number of triangles,
• NE0 the number of interior edges,
• NV0 the number of interior vertices,
• V (T ) = {uT ∈ X(T ) : div uT = 0} the space of solenoidal

velocities.

The quantities NT , NE0, and NV0 are connected via Euler’s formula

NT −NE0 +NV0 = 1.

Since X(T ) and Y (T ) satisfy the inf-sup condition, an elementary
calculation using this formula yields

dimV (T ) = dimX(T )− dimY (T )

= 2NE0 − (NT − 1)

= NE0 +NV0.

With every edge E ∈ E we associate a unit tangential vector tE
and a piecewise linear function ϕE which equals 1 at the midpoint of E
and which vanishes at all other midpoints of edges. With this notation
we set

wE = ϕEtE for all E ∈ E .
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These functions obviously are linearly independent. For every triangle
K and every edge E we have∫

K

div wEdx =

∫
∂K

nK ·wEdS = 0.

Since div wE is piecewise constant, this implies that the functions wE

are contained in V (T ).
With every vertex x ∈ N we associate the set Ex of all edges which

have x as an endpoint. Starting with an arbitrary edge in Ex we enu-
merate the remaining edges in Ex consecutively in counter-clockwise
orientation. For E ∈ Ex we denote by tE,x and nE,x two orthogonal
unit vectors such that tE,x is tangential to E, points away from x, and
satisfies det(tE,x,nE,x) > 0. With these notations we set (cf. Figure
II.4.1)

wx =
∑
E∈Ex

1

|E|
ϕEnE,x.

The functions wx obviously are linearly independent. Since the wE are
tangential to the edges and the wx are normal to the edges, both sets
of functions are linearly independent.
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Figure II.4.1. The function wx

Next consider a triangle K ∈ T and a vertex x of K and denote by
E1, E2 the two edges of K sharing the vertex x. Denote by mEi the
midpoint of Ei, i = 1, 2. Using the integration by parts formulae of
§I.2.3 (p. 18) and evaluating line integrals with the help of the midpoint
formula, we conclude that∫

K

div wxdx =

∫
∂K

wx · nKdS

=
2∑
i=1

|Ei|wx(mEi) · nK

=
2∑
i=1

nEi,x · nK

= 0.
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This proves that wx ∈ V (T ).
Hence we have

V (T ) = span{wx ,wE : x ∈ N , E ∈ E}

and the discrete velocity field of the Crouzeix-Raviart discretization is
given by the problem:

Find uT ∈ V (T ) such that∑
K∈T

∫
K

∇uT : ∇vT dx =

∫
Ω

f · vT dx

for all vT ∈ V (T ).

This is a linear system of equations with NE0 + NV0 equations and
unknowns and with a symmetric, positive definite stiffness matrix. The
stiffness matrix, however, has a condition of O(h−4) compared with a
condition of O(h−2) of the larger, symmetric, but indefinite stiffness
matrix of the original mixed problem.

The above problem only yields the velocity. The pressure, however,
can be computed by a simple post-processing process. To describe it,
denote by mE the midpoint of any edge E ∈ E . Using the integration
by parts formulae of §I.2.3 (p. 18) and evaluating line integrals with
the help of the midpoint formula, we conclude that∫

Ω

f · ϕEnEdx−
∑
K∈T

∫
K

∇uT : ∇ϕEnEdx

= −
∑
K∈T

∫
K

pT divϕEnEdx

= −
∫
E

JE(ϕEpT )dS

= −|E|JE(ϕE(mE)pT )

= −|E|JE(pT ).

Hence, we can compute the pressure jumps edge by edge by evaluating
the left-hand side of this equation. Starting with a triangle K which has
an edge on the boundary Γ, we set p̃T = 0 on this triangle and compute
it on the remaining triangles by passing through adjacent triangles and
adding the pressure jump corresponding to the common edge. Finally,
we compute

P =
∑
K∈Th

|K|
|Ω|

p̃T

∣∣∣
K
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and subtract P from p̃T . This yields the pressure pT of the Crouzeix-
Raviart discretization which has mean-value zero. This process is real-
ized by Algorithm II.4.1.

Algorithm II.4.1 Pressure Computation

Require: uT solenoidal Crouzeix-Raviart solution
Provide: p = pT corresponding pressure

1: p← 0
2: choose an element K ∈ T having an edge on the boundary of Ω
3: M ← K, U ← EΩ

4: while U 6= ∅ do
5: choose an edge E ∈ U with ωE ∩M 6= ∅
6: pωE\M ← pωE\M +

∫
ωE

∇T uT : ∇T (ϕEnE)−
∫
ωE

f · (ϕEnE).

7: M ←M ∪ ωE, U ← U \ {E}
8: end while

9: p← p−
∑
K∈T

|K|
|Ω|

pK .

II.5. Stream-function formulation

II.5.1. Motivation. The methods of the previous sections all dis-
cretize the variational formulation of the Stokes equations of §II.1.2
(p. 29) and yield simultaneously approximations for the velocity and
pressure. The discrete velocity fields in general are not solenoidal,
i.e. the incompressibility constraint is satisfied only approximately. In
§II.4 we obtained an exactly solenoidal approximation but had to pay
for this by abandoning the conformity. In this section we will consider
another variational formulation of the Stokes equations which leads to
conforming solenoidal discretizations. As we will see this advantage
has to be paid for by other drawbacks.

Throughout this section we assume that Ω is a two dimensional,
simply connected polygonal domain.

II.5.2. The curl operators. The subsequent analysis is based
on two curl-operators which correspond to the rot-operator in three
dimensions and which are defined as follows:

curlϕ =

(
−∂ϕ
∂y
∂ϕ
∂x

)
,

curl v =
∂v1

∂y
− ∂v2

∂x
.

They fulfill the following chain rule
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curl(curlϕ) = −∆ϕ for all ϕ ∈ H2(Ω)

curl(curl v) = −∆v +∇(div v) for all v ∈ H2(Ω)2

and the following integration by parts formula∫
Ω

v · curlϕdx =

∫
Ω

curl vϕdx+

∫
Γ

ϕv · tdS

for all v ∈ H1(Ω)2, ϕ ∈ H1(Ω).

Here t denotes a unit tangent vector to the boundary Γ.
The following deep mathematical result is fundamental:

A vector-field v : Ω→ R2 is solenoidal, i.e. div v = 0, if and
only if there is a unique stream-function ϕ : Ω → R such
that v = curlϕ in Ω and ϕ = 0 on Γ.

II.5.3. Stream-function formulation of the Stokes equa-
tions. Let u, p be the solution of the Stokes equations with exterior
force f and homogeneous boundary conditions and denote by ψ the
stream function corresponding to u. Since

u · t = 0 on Γ,

we conclude that in addition

∂ψ

∂n
= t · curlψ = 0 on Γ.

Inserting this representation of u in the momentum equation and ap-
plying the operator curl we obtain

curl f = curl{−∆u +∇p}
= −∆(curl u) + curl(∇p)︸ ︷︷ ︸

=0

= −∆(curl(curlψ))

= ∆2ψ.

This proves that the stream function ψ solves the biharmonic equation

∆2ψ = curl f in Ω

ψ = 0 on Γ

∂ψ

∂n
= 0 on Γ.
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Conversely, one can prove: If ψ solves the above biharmonic equation,
there is a unique pressure p with mean-value 0 such that u = curlψ
and p solve the Stokes equations. In this sense, the Stokes equations
and the biharmonic equation are equivalent.

Remark II.5.1. Given a solution ψ of the biharmonic equation and
the corresponding velocity u = curlψ the pressure is determined by
the equation f + ∆u = ∇p. Yet there is no constructive way to solve
this problem. Hence, the biharmonic equation is only capable to yield
the velocity field of the Stokes equations.

II.5.4. Variational formulation of the biharmonic equation.
With the help of the Sobolev space

H2
0 (Ω) =

{
ϕ ∈ H2(Ω) : ϕ =

∂ϕ

∂n
= 0 on Γ

}

the variational formulation of the biharmonic equation of the previous
section is given by

Find ψ ∈ H2
0 (Ω) such that∫

Ω

∆ψ∆ϕdx =

∫
Ω

curl fϕdx

for all ϕ ∈ H2
0 (Ω).

Remark II.5.2. The above variational problem is the Euler-La-
grange equation corresponding to the minimization problem

J(ψ) =
1

2

∫
Ω

(∆ψ)2dx−
∫

Ω

curl fψdx→ min in H2
0 (Ω).

Therefore it is tempting to discretize the biharmonic equation by re-
placing in its variational formulation the space H2

0 (Ω) by a finite ele-
ment space X(T ) ⊂ H2

0 (Ω). Yet, this would require C1-elements ! The
lowest polynomial degree for which C1-elements exist, is five!

II.5.5. A non-conforming discretization of the biharmonic
equation. One possible remedy to the difficulties described in Remark
II.5.2 is to drop the C1-continuity of the finite element functions. This
leads to non-conforming discretizations of the biharmonic equation.
The most popular one is based on the so-called Morley element. It is a
triangular element, i.e. the partition T exclusively consists of triangles.
The corresponding finite element space is given by

M(T ) =
{
ϕ ∈ S2,−1(T ) : ϕ is continuous at the vertices,
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nE · ∇ϕ is continuous at

the midpoints of edges
}
.

The degrees of freedom are

• the values of ϕ at the vertices and
• the values of nE · ∇ϕ at the midpoints of edges.

The discrete problem is given by:

Find ψT ∈M(T ) such that∑
K∈T

∫
K

∆ψT∆ϕT dx =
∑
K∈T

∫
K

curl fϕT dx

for all ϕT ∈M(T ).

One can prove that this discrete problem admits a unique solution.
The stiffness matrix is symmetric, positive definite and has a condition
of O(h−4).

There is a close relation between this problem and the Crouzeix-
Raviart discretization of §II.4 (p. 45):

If ψT ∈ M(T ) is the solution of the Morley element dis-
cretization of the biharmonic equation, then uT = curlψT
is the solution of the Crouzeix-Raviart discretization of the
Stokes equations.

II.5.6. Mixed finite element discretizations of the bihar-
monic equation. Another remedy to the difficulties described in Re-
mark II.5.2 (p. 51) is to use a saddle-point formulation of the bihar-
monic equation and a corresponding mixed finite element discretiza-
tion. This saddle-point formulation is obtained by introducing the
vorticity ω = curl u. It is given by:

• Find ψ ∈ H1
0 (Ω), ω ∈ L2(Ω) and λ ∈ H1(Ω) such that∫

Ω

curlλ · curlϕdx =

∫
Ω

f · curlϕdx∫
Ω

ωθdx−
∫

Ω

λθdx = 0∫
Ω

curlψ · curlµdx−
∫

Ω

ωµdx = 0

for all ϕ ∈ H1
0 (Ω), θ ∈ L2(Ω) and µ ∈ H1(Ω)
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• and find p ∈ H1(Ω) ∩ L2
0(Ω) such that∫

Ω

∇p · ∇qdx =

∫
Ω

(f − curlλ) · ∇qdx

for all q ∈ H1(Ω) ∩ L2
0(Ω).

Remark II.5.3. Compared with the saddle-point formulation of
the Stokes equations of §II.1.2 (p. 29), the above problem imposes
weaker regularity conditions on the velocity u = curlψ and stronger
regularity conditions on the pressure p. The two quantities ω and λ
are both vorticities. The second equation means that they are equal
in a weak sense. Yet, this equality is not a point-wise one since both
quantities have different regularity properties. The computation of the
pressure is decoupled from the computation of the other quantities.

For the mixed finite element discretization we depart from a trian-
gulation T of Ω and choose an integer ` ≥ 1 and set k = max{1, `−1}.
Then the discrete problem is given by:

Find ψT ∈ S`,00 (T ), ωT ∈ S`,−1(T ) and λT ∈ S`,0(T ) such
that ∫

Ω

curlλT · curlϕT dx =

∫
Ω

f · curlϕT dx∫
Ω

ωT θT dx−
∫

Ω

λT θT dx = 0∫
Ω

curlψT · curlµT dx−
∫

Ω

ωT µT dx = 0

for all ϕT ∈ S`,00 (T ), θT ∈ S`,−1(T ) and µT ∈ S`,0(T )
and find pT ∈ Sk,0(T ) ∩ L2

0(Ω) such that∫
Ω

∇pT · ∇qT dx =

∫
Ω

(f − curlλT ) · ∇qT dx

for all qT ∈ Sk,0(T ) ∩ L2
0(Ω)

One can prove that this discrete problem is well-posed and that its
solution satisfies the following a priori error estimate

‖ψ − ψT ‖1 + ‖ω − ωT ‖0 + ‖p− pT ‖0

≤ c
{
hm−1

[
‖ψ‖m+1 + ‖∆ψ‖m + ‖p‖max{1,m−1}

]
+ hm‖∆ψ‖m

}
,

where 1 ≤ m ≤ ` depends on the regularity of the solution of the
biharmonic equation. In the lowest order case ` = 1 this estimate does
not imply convergence. Yet, using a more sophisticated analysis, one
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can prove in this case an O(h
1
2 )-error estimate provided ψ ∈ H3(Ω),

i.e. u ∈ H2(Ω)2.

II.6. Solution of the discrete problems

II.6.1. General structure of the discrete problems. For the
discretization of the Stokes equations we choose a partition T of the
domain Ω and finite element spaces X(T ) and Y (T ) for the approxima-
tion of the velocity and the pressure, respectively. With these choices
we either consider a mixed method as in §II.2 (p. 32) or a Petrov-
Galerkin one as in §II.3 (p. 40). Denote by

• nu the dimension of X(T ) and by
• np the dimension of Y (T ) respectively.

Then the discrete problem has the form

(II.6.1)

(
A B
BT −δC

)(
u
p

)
=

(
f
δg

)
with

• δ = 0 for the mixed methods of §II.2,
• δ > 0 and δ ≈ 1 for the Petrov-Galerkin methods of §II.3,
• a square, symmetrix, positive definite nu × nu matrix A with

condition of O(h−2),
• a rectangular nu × np matrix B,
• a square, symmetric, positive definite np × np matrix C with

condition of O(1),
• a vector f of dimension nu discretizing the exterior force, and
• a vector g of dimension np which equals 0 for the mixed meth-

ods of §II.2 and which results from the stabilization terms on
the right-hand sides of the methods of §II.3.

Remark II.6.1. For simplicity, we drop in this section the index
T indicating the discretization. Moreover, we identify finite element
functions with their coefficient vectors with respect to a nodal bases.
Thus, u and p are now vectors of dimension nu and np, respectively.

The stiffness matrix (
A B
BT −δC

)
of the discrete problem (II.6.1) is symmetric, but indefinite, i.e. it has
positive and negative real eigenvalues. Correspondingly, well-estab-
lished methods such as the conjugate gradient algorithm cannot be
applied. This is the main difficulty in solving the linear systems arising
from the discretization of the Stokes equations.

Remark II.6.2. The indefiniteness of the stiffness matrix results
from the saddle-point structure of the Stokes equations. This cannot
be remedied by any stabilization procedure.
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II.6.2. The Uzawa algorithm. The Uzawa algorithm II.6.1
probably is the simplest algorithm for solving the discrete problem
(II.6.1).

Algorithm II.6.1 Uzawa algorithm

Require: initial guess p, tolerance ε > 0, relaxation parameter ω > 0,
maximal number of iterations N .

Provide: approximate solution u, p of (II.6.1).
1: E ←∞, n← 0
2: while E > ε and n ≤ N do
3: Apply a few Gauß-Seidel iterations to Au = f −Bp; result u.
4: p← p+ ω{BTu− δg − δCp}
5: E ← ‖Au +Bp− f‖+ ‖BTu− δCp− δg‖, n← n+ 1
6: end while

Remark II.6.3. (1) The relaxation parameter ω usually is chosen
in the interval (1, 2); a typical choice is ω = 1.5.
(2) ‖ · ‖ denotes any vector norm. A popular choice is the scaled

Euclidean norm, i.e. ‖v‖ =
√

1
nu

v · v for the velocity part and ‖q‖ =√
1
np
q · q for the pressure part.

(3) The problem Au = f−Bpi is a discrete version of two, if Ω ⊂ R2, or
three, if Ω ⊂ R3, Poisson equations for the components of the velocity
field.
(4) The Uzawa algorithm iterates on the pressure. Therefore it is
sometimes called a pressure correction scheme.

The Uzawa algorithm is very simple, but extremely slow. Therefore
it cannot be recommended for practical use. We have given it never-
theless, since it is the basis for the more efficient algorithm of §II.6.4
(p. 56).

II.6.3. The conjugate gradient algorithm revisited. The al-
gorithm of the next section is based on the conjugate gradient algorithm
(CG algorithm) II.6.2.

Algorithm II.6.2 Conjugate gradient algorithm

Require: matrix L, right-hand side b, initial guess x, tolerance ε, max-
imal number of iterations N .

Provide: approximate solution x with ‖Lx− b‖ ≤ ε.
1: r ← b− Lx, d← r, γ ← r · r, n← 0
2: while γ > ε2 und n ≤ N do
3: s← Ld, α← γ

d·s , x← x+ αd, r ← r − αs
4: β ← r·r

γ
, γ ← r · r, d← r + βd, n← n+ 1

5: end while
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The convergence rate of the CG-algorithm is given by (
√
κ−1)

(
√
κ+1)

where

κ is the condition of L and equals the ratio of the largest to the smallest
eigenvalue of L.

II.6.4. An improved Uzawa algorithm. Since the matrix A is
positive definite, we may solve the first equation in the system (II.6.1)
for the unknown u

u = A−1(f −Bp)
and insert the result in the second equation

BTA−1(f −Bp)− δCp = δg.

This gives a problem which only incorporates the pressure

(II.6.2) [BTA−1B + δC]p = BTA−1f − δg.
One can prove that the matrix BTA−1B + δC is symmetric, positive
definite and has a condition of O(1), i.e. the condition does not increase
when refining the mesh. Therefore one may apply the CG-algorithm
to problem (II.6.2). The convergence rate then is independent of the
mesh-size and does not deteriorate when refining the mesh. This ap-
proach, however, requires the evaluation of A−1, i.e. problems of the
form Av = g must be solved in every iteration. These are two, if
Ω ⊂ R2, or three, if Ω ⊂ R3, discrete Poisson equations for the compo-
nents of the velocity v. The crucial idea now is to solve these auxiliary
problems only approximately with the help of a standard multigrid
algorithm for the Poisson equation.

This idea results in Algorithm II.6.3.

Algorithm II.6.3 Improved Uzawa algorithm

Require: initial guess p, tolerance ε > 0, maximal number of itera-
tions N .

Provide: approximate solution u, p of (II.6.1).
1: Apply a multigrid algorithm with starting value zero and tolerance
ε to Av = f −Bp; result u.

2: r ← BTu− δg − δCp, d← r, γ ← r · r
3: u← 0, q ← p, p← 0, n← 0
4: while γ > ε2 and n ≤ N do
5: Apply a multigrid algorithm with starting value u and tolerance
ε to Av = Bd; result u.

6: s← BTu + δCd, α← γ
d·s , p← p+ αd, r ← r − αs

7: β ← r·r
γ

, γ ← r · r, d← r + βd, n← n+ 1

8: end while
9: p← q + p

10: Apply a multigrid algorithm with starting value zero and tolerance
ε to Av = f −Bp; result u.
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Remark II.6.4. The improved Uzawa algorithm is a nested itera-
tion: The outer iteration is a CG-algorithm for problem (II.6.2), the
inner iteration is a standard multigrid algorithm for discrete Poisson
equations. The convergence rate of the improved Uzawa algorithm does
not deteriorate when refining the mesh. It usually lies in the range of
0.5 to 0.8. For the inner loop usually 2 to 4 multigrid iterations are
sufficient.

II.6.5. The multigrid algorithm. The multigrid algorithm is
based on a sequence of meshes T0, . . . , TR, which are obtained by suc-
cessive local or global refinement, and associated discrete problems
Lkxk = bk, k = 0, . . . , R, corresponding to a partial differential equa-
tion. The finest mesh TR corresponds to the problem that we actually
want to solve. In our applications, the differential equation is either
the Stokes problem or the Poisson equation. In the first case Lk is the
stiffness matrix of problem (II.6.1) corresponding to the partition Tk.
The vector xk then incorporates the velocity and the pressure approx-
imation. In the second case Lk is the upper left block A in problem
(II.6.1) and xk only incorporates the discrete velocity.

The multigrid algorithm has three ingredients:

• a smoothing operator Mk, which should be easy to evaluate and
which at the same time should give a reasonable approximation
to L−1

k ,
• a restriction operator Rk,k−1, which maps functions on a fine

mesh Tk to the next coarser mesh Tk−1, and
• a prolongation operator Ik−1,k, which maps functions from a

coarse mesh Tk−1 to the next finer mesh Tk.
For a concrete multigrid algorithm these ingredients must be specified.
This will be done in the next sections. Here, we discuss the general
form II.6.4 of the algorithm and its properties.

G−−−→ G−−−→

R
y xP

G−−−→ G−−−→

R
y xP

E−−−→

Figure II.6.1. Schematic presentation of a multigrid
algorithm with V-cycle and three grids. The labels have
the following meaning: S smoothing, R restriction, P
prolongation, E exact solution.
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Algorithm II.6.4 MG(k, µ, ν1, ν2, Lk, b, x) one multigrid iteration on
mesh Tk
Require: level number k, parameters µ, ν1, ν2, stiffness matrix Lk,

right-hand side b, approximation Mk for L−1
k , initial guess x.

Provide: improved approximate solution x.
1: if k = 0 then
2: x← L−1

0 b, stop
3: end if
4: for i = 1, . . . , ν1 do . Pre-smoothing
5: x← x+Mk(b− Lkx)
6: end for
7: f ← Rk,k−1(b− Lkx), y ← 0 . Coarse grid correction
8: Perform µ iterations of MG(k − 1, µ, ν1, ν2, Lk−1, f, y); result y.
9: x← x+ Ik−1,ky

10: for i = 1, . . . , ν2 do . Post-smoothing
11: x← x+Mk(b− Lkx)
12: end for

Remark II.6.5. (1) The parameter µ determines the complexity
of the algorithm. Popular choices are µ = 1 called V-cycle and µ = 2
called W-cycle. Figure II.6.1 gives a schematic presentation of the
multigrid algorithm for the case µ = 1 and R = 2 (three meshes).
Here, S denotes smoothing, R restriction, P prolongation, and E exact
solution.
(2) The number of smoothing steps per multigrid iteration, i.e. the pa-
rameters ν1 and ν2, should not be chosen too large. A good choice for
positive definite problems such as the Poisson equation is ν1 = ν2 = 1.
For indefinite problems such as the Stokes equations a good choice is
ν1 = ν2 = 2.
(3) If µ ≤ 2, one can prove that the computational work of one multi-
grid iteration is proportional to the number of unknowns of the actual
discrete problem.
(4) Under suitable conditions on the smoothing algorithm, which is de-
termined by the matrix Mk, one can prove that the convergence rate of
the multigrid algorithm is independent of the mesh-size, i.e. it does not
deteriorate when refining the mesh. These conditions will be discussed
in the next section. In practice one observes convergence rates of 0.1 –
0.5 for positive definite problems such as the Poisson equation and of
0.3 – 0.7 for indefinite problems such as the Stokes equations.

II.6.6. Smoothing. The symmetric Gauß-Seidel algorithm is the
most popular smoothing algorithm for positive definite problems such
as the Poisson equation. This corresponds to the choice

Mk = (Dk − UT
k )D−1

k (Dk − Uk),
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where Dk and Uk denote the diagonal and the strictly upper diagonal
part of Lk respectively.

For indefinite problems such as the Stokes equations the most pop-
ular smoothing algorithm is the squared Jacobi iteration. This is the
Jacobi iteration applied to the squared system LTkLkxk = LTk bk and
corresponds to the choice

Mk = ω−2LTk

with a suitable damping parameter satisfying ω > 0 and ω = O(h−2
K ).

Another class of popular smoothing algorithms for the Stokes equa-
tions is given by the so-called Vanka methods. The idea is to loop
through patches of elements and to solve exactly the equations associ-
ated with the nodes inside the actual patch while retaining the current
values of the variables associated with the nodes outside the actual
patch.
There are many possible choices for the patches.
One extreme case obviously consists in choosing exactly one node at
a time. This yields the classical Gauß-Seidel method and is not ap-
plicable to indefinite problems, since it in general diverges for those
problems.
Another extreme case obviously consists in choosing all elements. This
of course is not practicable since it would result in an exact solution of
the complete discrete problem.
In practice, one chooses patches that consist of

• a single element, or
• the two elements that share a given edge or face, or
• the elements that share a given vertex.

II.6.7. Prolongation. Since the partition Tk of level k always is
a refinement of the partition Tk−1 of level k − 1 (cf. §§II.7.6 (p. 70),
II.7.7 (p. 70)), the corresponding finite element spaces are nested, i.e.
finite element functions corresponding to level k−1 are contained in the
finite element space corresponding to level k. Therefore, the values of
a coarse-grid function corresponding to level k − 1 at the nodal points
corresponding to level k are obtained by evaluating the nodal bases
functions corresponding to Tk−1 at the requested points. This defines
the interpolation operator Ik−1,k.

Figures II.6.2 and II.6.3 show various partitions of a triangle and of
a square, respectively (cf. §II.7.6 (p. 70), II.7.7 (p. 70)). The numbers
outside the element indicate the enumeration of the element vertices
and edges. Thus, e.g. edge 2 of the triangle has the vertices 0 and 1 as
its endpoints. The numbers +0, +1 etc. inside the elements indicate
the enumeration of the child elements. The remaining numbers inside
the elements give the enumeration of the vertices of the child elements.
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Figure II.6.2. Partitions of a triangle; expressions of
the form i + 1 have to be taken modulo 3. The num-
bers outside the element indicate the enumeration of the
element vertices and edges. The numbers +0, +1 etc.
inside the elements indicate the enumeration of the child
elements.

Example II.6.6. Consider a piecewise constant approximation, i.e.
S0,−1(T ). The nodal points are the barycentres of the elements. Every
element in Tk−1 is subdivided into several smaller elements in Tk. The
nodal value of a coarse-grid function at the barycentre of a child element
in Tk then is its nodal value at the barycentre of the parent element in
Tk.

Example II.6.7. Consider a piecewise linear approximation, i.e.
S1,0(T ). The nodal points are the vertices of the elements. The re-
finement introduces new vertices at the midpoints of some edges of the
parent element and possibly, when using quadrilaterals, at the barycen-
tre of the parent element. The nodal value at the midpoint of an edge
is the average of the nodal values at the endpoints of the edge. Thus,
e.g. the value at vertex 1 of child +0 is the average of the values at
vertices 0 and 1 of the parent element. Similarly, the nodal value at
the barycentre of the parent element is the average of the nodal values
at the four element vertices.

II.6.8. Restriction. The restriction is computed by expressing
the nodal bases functions corresponding to the coarse partition Tk−1 in
terms of the nodal bases functions corresponding to the fine partition
Tk and inserting this expression in the variational formulation. This
results in a lumping of the right-hand side vector which, in a certain
sense, is the transpose of the interpolation.

Example II.6.8. Consider a piecewise constant approximation, i.e.
S0,−1(T ). The nodal shape function of a parent element is the sum of
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Figure II.6.3. Partitions of a square; expressions of the
form i+ 1 have to be taken modulo 4. The numbers out-
side the element indicate the enumeration of the element
vertices and edges. The numbers +0, +1 etc. inside the
elements indicate the enumeration of the child elements.

the nodal shape functions of the child elements. Correspondingly, the
components of the right-hand side vector corresponding to the child
elements are all added and associated with the parent element.

Example II.6.9. Consider a piecewise linear approximation, i.e.
S1,0(T ). The nodal shape function corresponding to a vertex of a
parent triangle takes the value 1 at this vertex, the value 1

2
at the

midpoints of the two edges sharing the given vertex and the value 0
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on the remaining edges. If we label the current vertex by a and the
midpoints of the two edges emanating form a by m1 and m2, this results
in the following formula for the restriction on a triangle

Rk,k−1ψ(a) = ψ(a) +
1

2
{ψ(m1) + ψ(m2)}.

When considering a quadrilateral, we must take into account that the
nodal shape functions take the value 1

4
at the barycentre b of the parent

quadrilateral. Therefore the restriction on a quadrilateral is given by
the formula

Rk,k−1ψ(a) = ψ(a) +
1

2
{ψ(m1) + ψ(m2)}+

1

4
ψ(b).

Remark II.6.10. An efficient implementation of the prolongation
and restrictions loops through all elements and performs the prolon-
gation or restriction element-wise. This process is similar to the usual
element-wise assembly of the stiffness matrix and the load vector.

II.6.9. Variants of the CG-algorithm for indefinite prob-
lems. The CG-algorithm can only be applied to symmetric positive
definite systems of equations. For non-symmetric or indefinite systems
it in general breaks down. Yet, there are various variants of the CG-
algorithm which can be applied to these problems.

A naive approach consists in applying the CG-algorithm to the
squared system LTkLkxk = LTk bk which is symmetric and positive defi-
nite. This approach cannot be recommended since squaring the systems
squares its condition number and thus at least doubles the required
number of iterations.

A more efficient algorithm is the stabilized bi-conjugate gradient
algorithm II.6.5, shortly Bi-CG-stab. The underlying idea roughly is
to solve simultaneously the original problem Lkxk = bk and its adjoint
LTk yk = bTk .

II.7. A posteriori error estimation and adaptive grid
refinement

II.7.1. Motivation. Suppose we have computed the solution of
a discretization of a partial differential equation such as the Stokes
equations. What is the error of our computed solution?

A priori error estimates do not help in answering this question.
They only describe the asymptotic behaviour of the error. They tell
us how fast it will converge to zero when refining the underlying mesh.
Yet for a given mesh and discretization they give no information on
the actual size of the error.

Another closely related problem is the question about the spatial
distribution of the error. Where is it large, where is it small? Obviously
we want to concentrate our resources in areas of a large error.
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Algorithm II.6.5 Stabilized bi-conjugate gradient algorithm Bi-CG-
stab

Require: matrix L, right-hand side b, initial guess x, tolerance ε, max-
imal number of iterations N .

Provide: approximate solution x with ‖Lx− b‖ ≤ ε.
1: r ← b− Lx, n← 0, γ ← r · r
2: r ← r, r̂ ← r, v ← 0, p← 0, α← 1, ρ← 1, ω ← 1
3: while γ > ε2 and n ≤ N do
4: β ← r·rα

ρω
, ρ← r · r

5: if |β| < ε then
6: stop . Break-down
7: end if
8: p← r + β{p− ωv}, v ← Lp, α← ρ

r̂·v
9: if |α| < ε then

10: stop . Break-down
11: end if
12: s← r − αv, t← Ls, ω ← t·s

t·t
13: x← x+ αp+ ωs, r ← s− ωt, n← n+ 1
14: end while

In summary, we want to compute an approximate solution of the
partial differential equation with a given tolerance and a minimal
amount of work. This task is achieved by adaptive grid refinement
based on a posteriori error estimation.

Throughout this section we denote by X(T ) and Y (T ) finite ele-
ment spaces for the velocity and pressure, respectively associated with
a given partition T of the domain Ω. With these spaces we associate
either a mixed method as in §II.2 (p. 32) or a Petrov-Galerkin method
as in §II.3 (p. 40). The solution of the corresponding discrete problem
is denoted by uT , pT , whereas u, p denotes the solution of the Stokes
equations.

II.7.2. General structure of the adaptive algorithm. The
adaptive algorithm II.7.1 has a general structure which is independent
of the particular differential equation.

In order to make the adaptive algorithm operative we must obvi-
ously specify the following ingredients:

• an algorithm that computes the ηK ’s (a posteriori error esti-
mation),

• a rule that selects the elements in T̃k (marking strategy),

• a rule that refines the elements in T̃k (regular refinement),
• an algorithm that constructs the partition Tk+1 (additional

refinement).
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Algorithm II.7.1 General adaptive algorithm

Require: data of the pde, tolerance ε.
Provide: approximate solution to the pde with error less than ε.

1: Construct an initial admissible partition T0.
2: for k = 0, 1, . . . do
3: Solve the discrete problem corresponding to Tk.
4: for K ∈ Tk do
5: Compute an estimate ηK of the error on K.
6: end for
7: η ←

{∑
K∈TK η

2
K

}1/2

8: if η ≤ ε then
9: stop . Desired accuracy attained

10: end if
11: Based on (ηK)K determine a set T̃k of elements to be refined.

12: Based on T̃k determine an admissible refinement Tk+1 of Tk.
13: end for

Remark II.7.1. The ηK ’s are usually called (a posteriori) error
estimators or (a posteriori) error indicators.

II.7.3. A residual a posteriori error estimator. The simplest
and most popular a posteriori error estimator is the residual error es-
timator. For the Stokes equations it is given by

ηK =

{
h2
K‖f + ∆uT −∇pT ‖2

L2(K) + ‖ div uT ‖2
L2(K)

+
1

2

∑
E∈EK

hE‖JE(nE · (∇uT − pT I))‖2
L2(E)

}1/2

,

where EK is the collection of all edges or faces of K. Note that:

• The first term is the residual of the discrete solution with re-
spect to the momentum equation −∆u +∇p = f in its strong
form.
• The second term is the residual of the discrete solution with

respect to the continuity equation div u = 0 in it strong form.
• The third term contains the boundary terms that appear when

switching from the strong to the weak form of the momentum
equation by using an integration by parts formula element-
wise.
• The pressure jumps vanish when using a continuous pressure

approximation.



II.7. ADAPTIVITY 65

One can prove that the residual error estimator yields the following
upper and lower bounds on the error:

‖u− uT ‖1 + ‖p− pT ‖0 ≤ c∗

{∑
K∈T

η2
K

}1/2

,

ηK ≤ c∗

{
‖u− uT ‖H1(ωK) + ‖p− pT ‖L2(ωK)

+ hK‖f − fT ‖L2(ωK)

}
.

Here, fT is the L2-projection of f onto S0,−1(T ) and ωK denotes the
union of all elements that share an edge with K, if Ω ⊂ R2, or a face,
if Ω ⊂ R3 (cf. Figure II.7.1). The f − fT -term often is of higher order.
The constant c∗ depends on the constant cΩ in the stability result at

the end of §II.2.1 (p. 32) and on the shape parameter max
K∈T

hK
ρK

of the

partition T . The constant c∗ depends on the shape parameter of T
and on the polynomial degree of the spaces X(T ) and Y (T ).
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Figure II.7.1. Domain ωK for a triangle and a parallelogram

Remark II.7.2. The lower bound on the error is a local one whereas
the upper bound is a global one. This is not by chance. The lower error
bound involves the differential operator which is a local one: local vari-
ations in the velocity and pressure result in local variations of the force
terms. The upper error bound on the other hand involves the inverse
of the differential operator which is a global one: local variations of the
exterior forces result in a global change of the velocity and pressure.

Remark II.7.3. An error estimator, which yields an upper bound
on the error, is called reliable. An estimator, which yields a lower bound
on the error, is called efficient. Any decent error estimator must be
reliable and efficient.

II.7.4. Error estimators based on the solution of auxiliary
problems. Two other classes of popular error estimators are based
on the solution of auxiliary discrete local problems with Neumann and
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Dirichlet boundary conditions. For their description we denote by ku
and kp the maximal polynomial degrees k and m such that

• Sk,00 (T )n ⊂ X(T )

and either

• Sm,−1(T )∩L2
0(Ω) ⊂ Y (T ) when using a discontinuous pressure

approximation or
• Sm,0(T ) ∩ L2

0(Ω) ⊂ Y (T ) when using a continuous pressure
approximation.

Set

kT = max{ku + n, kp − 1},
kE = max{ku − 1, kp},

where n is the space dimension, i.e. Ω ⊂ Rn.
For the Neumann-type estimator we introduce for every element

K ∈ T the spaces

X(K) = span{ψKv , ψEw : v ∈ RkT (K)n , w ∈ RkE (E)n ,

E ∈ EK},
Y (K) = span{ψKq : q ∈ Rku−1(K)},

where ψK and ψE are the element and edge respectively face bubble
functions defined in §I.2.12 (p. 27). One can prove that the definition
of kT ensures that the local discrete problem

Find uK ∈ X(K) and pK ∈ Y (K) such that∫
K

∇uK : ∇vKdx

−
∫
K

pK div vKdx =

∫
K

{f + ∆uT −∇pT } · vKdx

+

∫
∂K

J∂K(nK · (∇uT − pT I)) · vKdS∫
K

qK div uKdx =

∫
K

qK div uT dx

for all vK ∈ X(K) and all qK ∈ Y (K).

has a unique solution. With this solution we define the Neumann
estimator by

ηN,K =
{
|uK |2H1(K) + ‖pK‖2

L2(K)

}1/2

.
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The above local problem is a discrete version of the Stokes equations
with Neumann boundary conditions

−∆v + grad q = f̃ in K

div v = g in K

nK · ∇v − qnK = b on ∂K

where the data f̃ , g, and b are determined by the exterior force f and
the discrete solution uT , pT .

For the Dirichlet-type estimator we denote, as in the previous sub-
section, for every element K ∈ T by ωK the union of all elements in
T that share an edge, if n = 2, or a face, if n = 3, (cf. Figure II.7.1
(p. 65)) and set

X̃(K) = span{ψK′v , ψEw : v ∈ RkT (K ′)n , K ′ ∈ T ∩ ωK ,
w ∈ RkE (E)n , E ∈ EK},

Ỹ (K) = span{ψK′q : q ∈ Rku−1(K ′) , K ′ ∈ T ∩ ωK}.

Again, one can prove that the definition of kT ensures that the local
discrete problem

Find ũK ∈ X̃(K) and p̃K ∈ Ỹ (K) such that∫
ωK

∇ũK : ∇vKdx

−
∫
ωK

p̃K div vKdx =

∫
ωK

f · vKdx−
∫
ωK

∇uT : ∇vKdx

+

∫
ωK

pT div vKdx∫
ωK

qK div ũKdx =

∫
ωK

qK div uT dx

for all vK ∈ X̃(K) and all qK ∈ Ỹ (K).

has a unique solution. With this solution we define the Dirichlet esti-
mator by

ηD,K =
{
|ũK |2H1(ωK) + ‖p̃K‖2

L2(ωK)

}1/2

.
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This local problem is a discrete version of the Stokes equations with
Dirichlet boundary conditions

−∆v + grad q = f̃ in ωK

div v = g in ωK

v = 0 on ∂ωK

where the data f̃ and g are determined by the exterior force f and the
discrete solution uT , pT .

One can prove that both estimators are reliable and efficient and
equivalent to the residual estimator:

‖u− uT ‖1 + ‖p− pT ‖0 ≤ c1

{∑
K∈T

η2
N,K

}1/2

,

ηN,K ≤ c2

{
‖u− uT ‖H1(ωK) + ‖p− pT ‖L2(ωK)

+ hK‖f − fT ‖L2(ωK)

}
,

ηK ≤ c3ηN,K ,

ηN,K ≤ c4

{ ∑
K′⊂ωK

η2
K′

}1/2

,

‖u− uT ‖1 + ‖p− pT ‖0 ≤ c5

{∑
K∈T

η2
D,K

}1/2

,

ηD,K ≤ c6

{
‖u− uT ‖H1(ω̃K) + ‖p− pT ‖L2(ω̃K)

+ hK‖f − fT ‖L2(ω̃K)

}
,

ηK ≤ c7ηD,K ,

ηD,K ≤ c8

{ ∑
K′⊂ω̃K

η2
K′

}1/2

.

Here, ω̃K is the union of all elements in T that share at least a vertex
with K (cf. Figure I.2.5 (p. 27)). The constants c1, . . . , c8 only depend
on the shape parameter of the partition T , the polynomial degree of the
discretization, and the stability parameter cΩ of the Stokes equations.

Remark II.7.4. The computation of the estimators ηN,K and ηD,K
obviously is more expensive than the one of the residual estimator ηK .
This is recompensed by a higher accuracy. The residual estimator,
on the other hand, is completely satisfactory for identifying the re-
gions for mesh-refinement. Thus it is recommended to use the cheaper
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residual estimator for refining the mesh and one of the more expensive
Neumann-type or Dirichlet-type estimators for determining the actual
error on the final mesh.

II.7.5. Marking strategies. There are two popular marking

strategies for determining the set T̃k in the general adaptive algorithm:
the maximum strategy II.7.2 and the equilibration strategy II.7.3.

Algorithm II.7.2 Maximum strategy

Require: partition T , error estimates (ηK)K∈T , threshold θ ∈ (0, 1).

Provide: subset T̃ of marked elements that should be refined.
1: T̃ ← ∅
2: η ← maxK∈T ηK
3: for K ∈ T do
4: if ηK ≥ θη then

5: T̃ ← T̃ ∪ {K}
6: end if
7: end for

Algorithm II.7.3 Equilibration strategy

Require: partition T , error estimates (ηK)K∈T , threshold θ ∈ (0, 1).

Provide: subset T̃ of marked elements that should be refined.
1: T̃ ← ∅, Σ← 0, Θ←

∑
K∈T η

2
K

2: while Σ < θΘ do
3: η ← maxK∈T \T̃ ηK

4: for K ∈ T \ T̃ do
5: if ηK = η then

6: T̃ ← T̃ ∪ {K}, Σ← Σ + η2
K

7: end if
8: end for
9: end while

At the end of this algorithm II.7.3 the set T̃ satisfies∑
K∈T̃

η2
K ≥ θ

∑
K∈T

η2
K .

Both marking strategies yield comparable results. The maximum
strategy obviously is cheaper than the equilibration strategy. In the

maximum strategy, a large value of θ leads to small sets T̃ , i.e. very

few elements are marked and a small value of θ leads to large sets T̃ ,
i.e. nearly all elements are marked. In the equilibration strategy on the

contrary, a small value of θ leads to small sets T̃ , i.e. very few elements

are marked and a large value of θ leads to large sets T̃ , i.e. nearly all
elements are marked. A popular and well established choice is θ ≈ 0.5.
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II.7.6. Regular refinement. Elements that are marked for re-
finement usually are refined by connecting their midpoints of edges.
The resulting elements are called red. The corresponding refinement is
called regular.

Triangles and quadrilaterals are thus subdivided into four smaller
triangles and quadrilaterals that are similar to the parent element, i.e.
have the same angles. Thus the shape parameter of the elements does
not change.

This is illustrated by the top-left triangle of Figure II.6.2 (p. 60)
and by the top square of Figure II.6.3 (p. 61). The numbers outside
the elements indicate the local enumeration of edges and vertices of the
parent element. The numbers inside the elements close to the vertices
indicate the local enumeration of the vertices of the child elements.
The numbers +0, +1 etc. inside the elements give the enumeration
of the children. Note that the enumeration of new elements and new
vertices is chosen in such a way that triangles and quadrilaterals may
be treated simultaneously with a minimum of case selections.

Parallelepipeds are also subdivided into eight smaller similar par-
allelepipeds by joining the midpoints of edges.

For tetrahedrons, the situation is more complicated. Joining the
midpoints of edges introduces four smaller similar tetrahedrons at the
vertices of the parent tetrahedron plus a double pyramid in its interior.
The latter one is subdivided into four small tetrahedrons by cutting
it along two orthogonal planes. These tetrahedrons, however, are not
similar to the parent tetrahedron. Yet there are rules which determine
the cutting planes such that a repeated refinement according to these
rules leads to at most four similarity classes of elements originating
from a parent element. Thus these rules guarantee that the shape pa-
rameter of the partition does not deteriorate during a repeated adaptive
refinement procedure.

II.7.7. Additional refinement. Since not all elements are re-
fined regularly, we need additional refinement rules in order to avoid
hanging nodes (cf. Figure II.7.2) and to ensure the admissibility of the
refined partition. These rules are illustrated in Figures II.6.2 (p. 60)
and II.6.3 (p. 61).
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Figure II.7.2. Example of a hanging node

For abbreviation we call the resulting elements green, blue, and
purple. They are obtained as follows:
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• a green element by bisecting exactly one edge,
• a blue element by bisecting exactly two edges,
• a purple quadrilateral by bisecting exactly three edges.

In order to avoid too acute or too abstuse triangles, the blue and
green refinement of triangles obey to the following two rules:

• In a blue refinement of a triangle, the longest one of the re-
finement edges is bisected first.
• Before performing a green refinement of a triangle it is checked

whether the refinement edge is part of an edge which has been
bisected during the last ng generations. If this is the case, a
blue refinement is performed instead.

The second rule is illustrated in Figure II.7.3. The cross in the left part
represents a hanging node which should be eliminated by a green re-
finement. The right part shows the blue refinement which is performed
instead. Here the cross represents the new hanging node which is cre-
ated by the blue refinement. Numerical experiments indicate that the
optimal value of ng is 1. Larger values result in an excessive blow-up
of the refinement zone.
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Figure II.7.3. Forbidden green refinement and substi-
tuting blue refinement

Remark II.7.5. The marked edge bisection is an alternative to the
described red-green-blue-refinement (see [11, §III.1.4]). For time-de-
pendent problems with moving fronts, mesh refinement should be ac-
companied by mesh coarsening as described in §IV.2.4 (p. 106) below
and [11, §III.1.5]. Finally, both mesh refinement and coarsening may
be accompanied by mesh smoothing which retains the number of ele-
ments and vertices and their connectivity but changes the location of
the vertices in order to improve a suitable quality measure for the mesh
such as e.g. the shape parameter (see [11, §III.1.6]).

II.7.8. Required data structures. In this sub-section we shortly
describe the required data structures for a Java, C++, or Python imple-
mentation of an adaptive finite element algorithm. For simplicity we
consider only the two-dimensional case. Note that the data structures
are independent of the particular differential equation and apply to all
engineering problems which require the approximate solution of partial
differential equations.
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The class NODE realizes the concept of a node, i.e. of a vertex of a
grid. It has three members c, t, and d.
The member c stores the co-ordinates in Euclidean 2-space. It is a
double array of length 2.
The member t stores the type of the node. It equals 0 if it is an
interior point of the computational domain. It is k, k > 0, if the node
belongs to the k-th component of the Dirichlet boundary part of the
computational domain. It equals −k, k > 0, if the node is on the k-th
component of the Neumann boundary.
The member d gives the address of the corresponding degree of freedom.
It equals −1 if the corresponding node is not a degree of freedom, e.g.
since it lies on the Dirichlet boundary. This member takes into account
that not every node actually is a degree of freedom.

The class ELEMENT realizes the concept of an element. Its mem-
ber nv determines the element type, i.e. triangle or quadrilateral. Its
members v and e realize the vertex and edge informations, respectively.
Both are integer arrays of length 4.
It is assumed that v[3] = −1 if nv= 3.
A value e[i] = −1 indicates that the corresponding edge is on a straight
part of the boundary. Similarly e[i] = −k − 2, k ≥ 0, indicates that
the endpoints of the corresponding edge are on the k-th curved part of
the boundary. A value e[i] = j ≥ 0 indicates that edge i of the current
element is adjacent to element number j. Thus the member e decribes
the neighbourhood relation of elements.
The members p, c, and t realize the grid hierarchy and give the number
of the parent, the number of the first child, and the refinement type,
respectively. In particular we have

t ∈



{0} if the element is not refined

{1, . . . , 4} if the element is refined green

{5} if the element is refined red

{6, . . . , 24} if the element is refined blue

{25, . . . , 100} if the element is refined purple.

At first sight it may seem strange to keep the information about nodes
and elements in different classes. Yet this approach has several advan-
tages:

• It minimizes the storage requirement. The co-ordinates of a
node must be stored only once. If nodes and elements are rep-
resented by a common structure, these co-ordinates are stored
4− 6 times.
• The elements represent the topology of the grid which is inde-

pendent of the particular position of the nodes. If nodes and
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elements are represented by different structures it is much eas-
ier to implement mesh smoothing algorithms which affect the
position of the nodes but do not change the mesh topology.

When creating a hierarchy of adaptively refined grids, the nodes
are completely hierarchical, i.e. a node of grid Ti is also a node of any
grid Tj with j > i. Since in general the grids are only partly refined,
the elements are not completely hierarchical. Therefore, all elements
of all grids are stored.

The information about the different grids is implemented by the
class LEVEL. Its members nn, nt, nq, and ne give the number of nodes,
triangles, quadrilaterals, and edges, resp. of a given grid. The members
first and last give the addresses of the first element of the current
grid and of the first element of the next grid, respectively. The mem-
ber dof yields the number of degrees of freedom of the corresponding
discrete finite element problems.





CHAPTER III

Stationary nonlinear problems

III.1. Discretization of the stationary Navier-Stokes
equations

III.1.1. Variational formulation. We recall the stationary in-
compressible Navier-Stokes equations of §I.1.13 (p. 16) with no-slip
boundary condition and the re-scaling of Remark I.1.4 (p. 15)

−∆u +Re(u · ∇)u + grad p = f in Ω

div u = 0 in Ω

u = 0 on Γ

where Re > 0 is the Reynolds number. The variational formulation of
this problem is given by

Find u ∈ H1
0 (Ω)n and p ∈ L2

0(Ω) such that∫
Ω

∇u : ∇vdx−
∫

Ω

p div vdx

+

∫
Ω

Re[(u · ∇)u] · vdx =

∫
Ω

f · vdx∫
Ω

q div udx = 0

for all v ∈ H1
0 (Ω)n and all q ∈ L2

0(Ω).

It has the following properties:

• Any solution u, p of the Navier-Stokes equations is a solution
of the above variational problem.
• Any solution u, p of the variational problem, which is suffi-

ciently smooth, is a solution of the Navier-Stokes equations.

III.1.2. Fixed-point formulation. For the mathematical anal-
ysis it is convenient to write the variational formulation of the Navier-
Stokes equations as a fixed-point equation. To this end we denote by
T the Stokes operator which associates with each g the unique solution
v = Tg of the Stokes equations:

75
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Find v ∈ H1
0 (Ω)n and q ∈ L2

0(Ω) such that∫
Ω

∇v : ∇wdx−
∫

Ω

q div wdx =

∫
Ω

g ·wdx∫
Ω

r div vdx = 0

for all w ∈ H1
0 (Ω)n and all r ∈ L2

0(Ω).
Then the variational formulation of the Navier-Stokes equations takes
the equivalent fixed-point form

u = T (f −Re(u · ∇)u).

III.1.3. Existence and uniqueness results. The following ex-
istence and uniqueness results can be proven for the variational formu-
lation of the Navier-Stokes equations:

• The variational problem admits at least one solu-
tion.
• Every solution of the variational problem satisfies

the a priori bound

|u|1 ≤ Re‖f‖0.

• The variational problem admits a unique solution
provided

γRe‖f‖0 < 1,

where the constant γ only depends on the domain
Ω and can be estimated by

γ ≤ diam(Ω)4−n
2 2n−

1
2 .

• Every solution of the variational problem has the
same regularity properties as the solution of the
Stokes equations.
• The mapping, which associates with Re a solution

of the variational problem, is differentiable. Its de-
rivative with respect to Re is a continuous linear
operator which is invertible with a continuous in-
verse for all but countably many values of Re, i.e.
there are only countably many turning or bifurca-
tion points.

III.1.4. Finite element discretization. For the finite element
discretization of the Navier-Stokes equations we choose a partition T
of the domain Ω and corresponding finite element spaces X(T ) and
Y (T ) for the velocity and pressure. These spaces have to satisfy the
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inf-sup condition of §II.2.6 (p. 36). We then replace in the variational
problem the spacesH1

0 (Ω)n and L2
0(Ω) byX(T ) and Y (T ), respectively.

This leads to the following discrete problem:

Find uT ∈ X(T ) and pT ∈ Y (T ) such that∫
Ω

∇uT : ∇vT dx−
∫

Ω

pT div vT dx

+

∫
Ω

Re[(uT · ∇)uT ] · vT dx =

∫
Ω

f · vT dx∫
Ω

qT div uT dx = 0

for all vT ∈ X(T ) and all qT ∈ Y (T ).

III.1.5. Fixed-point formulation of the discrete problem.
The finite element discretization of the Navier-Stokes can be written in
a fixed-point form similar to the variational problem. To this end we
denote by TT the discrete Stokes operator which associates with every
g the solution vT = TT g of the discrete Stokes problem:
Find vT ∈ X(T ) and qT ∈ Y (T ) such that∫

Ω

∇vT : ∇wT dx−
∫

Ω

qT div wT dx =

∫
Ω

g ·wT dx∫
Ω

rT div vT dx = 0

for all wT ∈ X(T ) and all rT ∈ Y (T ).
The discrete Navier-Stokes problem then takes the equivalent fixed-
point form

uT = TT (f −Re(uT · ∇)uT ).

Note that, as for the variational problem, this equation also deter-
mines the pressure via the operator TT .

III.1.6. Properties of the discrete problem. The discrete
problem has similar properties as the variational problem:

• The discrete problem admits at least one solution.
• Every solution of the discrete problem satisfies the

a priori bound

|uT |1 ≤ Re‖f‖0.
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• The discrete problem admits a unique solution pro-
vided

γRe‖f‖0 < 1,

where the constant γ is the same as for the varia-
tional problem.
• The mapping, which associates with Re a solution

of the discrete problem, is differentiable. Its de-
rivative with respect to Re is a continuous linear
operator which is invertible with a continuous in-
verse for all but finitely many values of Re, i.e.
there are only finitely many turning or bifurcation
points.

Remark III.1.1. The number of turning or bifurcation points of
the discrete problem of course depends on the partition T and on the
choice of the spaces X(T ) and Y (T ).

III.1.7. Symmetrization. The integration by parts formulae of
§I.2.3 (p. 18) imply for all u,v,w ∈ H1

0 (Ω)n the identity∫
Ω

[(u · ∇)v] ·wdx = −
∫

Ω

[(u · ∇)w] · vdx+

∫
Ω

v ·w div udx.

If u is solenoidal, i.e. div u = 0, this in particular yields∫
Ω

[(u · ∇)v] ·wdx = −
∫

Ω

[(u · ∇)w] · vdx

for all v,w ∈ H1
0 (Ω)n.

This symmetry in general is violated for the discrete problem since
div uT 6= 0. To enforce the symmetry, one often replaces in the discrete
problem the term ∫

Ω

Re[(uT · ∇)uT ] · vT dx

by

1

2

∫
Ω

Re[(uT · ∇)uT ] · vT dx− 1

2

∫
Ω

Re[(uT · ∇)vT ] · uT dx.

III.1.8. A priori error estimates. As in §II.2.11 (p. 39) we de-
note by ku and kp the maximal polynomial degrees k and m such that

• Sk,00 (T )n ⊂ X(T )

and either

• Sm,−1(T )∩L2
0(Ω) ⊂ Y (T ) when using a discontinuous pressure

approximation or
• Sm,0(T ) ∩ L2

0(Ω) ⊂ Y (T ) when using a continuous pressure
approximation.
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Set

k = min{ku − 1, kp}.

Further we denote by u, p a solution of the variational formulation of
the Navier-Stokes equations and by uT , pT a solution of the discrete
problem.

With these notations the following a priori error estimates can be
proved:

Assume that

• u ∈ Hk+2(Ω)n∩H1
0 (Ω)n and p ∈ Hk+1(Ω)∩L2

0(Ω),
• hRe‖f‖0 is sufficiently small, and
• u is no turning or bifurcation point of the varia-

tional problem,

then
|u− uT |1 + ‖p− pT ‖0 ≤ c1h

k+1Re2‖f‖k.
If in addition Ω is convex, then

‖u− uT ‖0 ≤ c2h
k+2Re2‖f‖k.

The constants c1 and c2 only depend on the domain Ω.

Remark III.1.2. (1) As for the Stokes equations, the above regu-
larity assumptions are not realistic for practical problems.
(2) The condition “hRe‖f‖0 sufficiently small” can in general not be
quantified. Therefore it cannot be checked for a given discretization.
(3) One cannot conclude from the computed discrete solution whether
the analytical solution is a turning or bifurcation point or not.
(4) For most practical examples, the right-hand side of the above er-
ror estimates behaves like O(hRe2) or O(h2Re2). Thus they require
unrealistically small mesh-sizes for large Reynolds numbers.

These observations show that the a priori error estimates are of
purely academic interest. Practical informations can only be obtained
from a posteriori error estimates (cf. §III.3 (p. 89)).

III.1.9. A warning example. We consider the one-dimensional
Navier-Stokes equations

−u′′ +Reuu′ = 0 in I = (−1, 1)

u(−1) = 1

u(1) = −1.

Since

uu′ =

(
1

2
u2

)′
,
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we conclude that

−u′ + Re

2
u2 = c

is constant.
To determine the constant c, we integrate the above equation and

obtain

2c =

∫ 1

−1

cdx =

∫ 1

−1

−u′ + Re

2
u2dx = 2 +

Re

2

∫ 1

−1

u2dx︸ ︷︷ ︸
≥0

.

This shows that c ≥ 1 and that we may write c = γ2 with a differ-
ent constant γ ≥ 1. Hence every solution of the differential equation
satisfies

u′ =
Re

2
u2 − γ2.

Therefore it must be of the form

u(x) = βRe tanh(αRex)

with suitable parameters αRe and βRe depending on Re.
The boundary conditions imply that

βRe = − 1

tanh(αRe)
.

Hence we have

u(x) = −tanh(αRex)

tanh(αRe)
.

Inserting this expression in the differential equation yields

0 =

(
−u′ + Re

2
u2

)′
=

(
αRe

tanh(αRe)
+

[
Re

2
− αRe tanh(αRe)

]
u2

)′
= 2

[
Re

2
− αRe tanh(αα)

]
uu′.

Since neither u nor its derivative u′ vanish identically, we obtain the
defining relation

2αRe tanh(αRe) = Re

for the parameter αRe.
Due to the monotonicity of tanh, this equation admits for every

Re > 0 a unique solution αRe. Since tanh(x) ≈ 1 for x � 1, we have
αRe ≈ Re

2
for Re� 1. Hence, the solution u has a sharp interior layer



III.1. STATIONARY NAVIER-STOKES EQUATIONS 81

at the origin for large values of Re. Figure III.1.1 depicts the solution
u for Re = 100.

Figure III.1.1. Solution of the one-dimensional Na-
vier-Stokes equations for Re = 100

For the discretization, we choose an integer N ≥ 1, divide the
interval (−1, 1) into N small sub-intervals of equal length h = 2

N+1
,

and use continuous piecewise linear finite elements on the resulting
mesh. We denote by ui, 0 ≤ i ≤ N + 1, the value of the discrete
solution at the mesh-point xi = −1 + ih and evaluate all integrals with
the Simpson rule. Since all integrands are piecewise polynomials of
degree at most 2, this is an exact integration. With theses notations,
the discretization results in the following finite difference scheme:

2ui − ui−1 − ui+1

h
+
Re

6
(ui − ui−1)(2ui + ui−1)

+
Re

6
(ui+1 − ui)(2ui + ui+1) = 0 for 1 ≤ i ≤ N

u0 = 1

uN+1 = −1.

For its solution, we try the ansatz

ui =


1 for i = 0

δ for 1 ≤ i ≤ N

−1 for i = N + 1

with an unknown constant δ. When inserting this ansatz in the dif-
ference equations, we see that the equations corresponding to 2 ≤ i ≤
N − 1 are satisfied independently of the value of δ. The equations for
i = 1 and i = N on the other hand result in

0 =
δ − 1

h
+
Re

6
(δ − 1)(2δ + 1) =

δ − 1

h

[
1 +

Reh

6
(2δ + 1)

]
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and

0 =
δ + 1

h
+
Re

6
(−δ − 1)(2δ − 1) =

δ + 1

h

[
1− Reh

6
(2δ − 1)

]
respectively.
If Reh = 6, these equations have the two solutions δ = 1 and δ = −1.
Both solutions obviously have nothing in common with the solution of
the differential equation.
If Reh 6= 6, the above equations have no solution. Hence, our ansatz
does not work. A more detailed analysis, however, shows that for
Reh ≥ 6 the discrete solution has nothing in common with the solu-
tion of the differential equation.
In summary, we see that the finite element discretization yields a qual-
itatively correct approximation only when h < 6

Re
. Hence we have to

expect a prohibitively small mesh-size for real-life problems.
When using a standard symmetric finite difference approximation,

things do not change. The difference equations then take the form

2ui − ui−1 − ui+1

h
+
Re

2
ui(ui+1 − ui−1) = 0 for 1 ≤ i ≤ N

u0 = 1

uN+1 = −1.

When Reh = 2, our ansatz now leads to the same solution as before.
Again, one can prove that one obtains a completely useless discrete
solution when Reh ≥ 2. Thus the principal result does not change in
this case. Only the critical mesh-size is reduced by a factor 3.

Next, we try a backward difference approximation of the first order
derivative. This results in the difference equations

2ui − ui−1 − ui+1

h
+Reui(ui − ui−1) = 0 for 1 ≤ i ≤ N

u0 = 1

uN+1 = −1.

When trying our ansatz, we see that equations corresponding to 2 ≤
i ≤ N − 1 are again satisfied independently of δ. The equations for
i = 0 and i = N now take the form

0 =
δ − 1

h
+Reδ(δ − 1) =

δ − 1

h
[1 +Rehδ]

and

0 =
δ + 1

h
+Reδ0 =

δ + 1

h

respectively. Thus, in the case Reh = 1 we obtain the unique solution
δ = −1. A more refined analysis shows, that we obtain a qualitatively
correct discrete solution only if h ≤ 1

Re
.
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Finally, we try a forward difference approximation of the first order
derivative. This yields the difference equations

2ui − ui−1 − ui+1

h
+Reui(ui+1 − ui) = 0 for 1 ≤ i ≤ N

u0 = 1

uN+1 = −1.

Our ansatz now results in the two conditions

0 =
δ − 1

h
+Reδ0 =

δ − 1

h

and

0 =
δ + 1

h
+Reδ(−1− δ) =

δ + 1

h
[1−Rehδ] .

For Reh = 1 this yields the unique solution δ = 1. A qualitatively
correct discrete solution is obtained only if h ≤ 1

Re
.

These experiences show that we need a true up-winding, i.e. a back-
ward difference approximation when u > 0 and a forward difference
approximation when u < 0. Thus the up-wind direction and – with it
the discretization – depend on the solution of the discrete problem!

III.1.10. Up-wind methods. The previous section shows that
we must modify the finite element discretization of §III.1.4 (p. 76) in
order to obtain qualitatively correct approximations also for “large”
values of hRe.

One possibility to achieve this goal is to use an up-wind difference
approximation for the convective derivative (uT · ∇)uT . To describe
the idea we consider only the lowest order method.

In a first step, we approximate the integral involving the convective
derivative by a one-point quadrature rule∫

Ω

[(uT · ∇)uT ] · vT dx ≈
∑
K∈T

|K|[(uT (xK) · ∇)uT (xK)] · vT (xK).

Here |K| is the area respectively volume of the element K and xK
denotes its barycentre. When using a first order approximation for the
velocity, i.e. X(T ) = S1,0

0 (T )n, this does not deteriorate the asymptotic
convergence rate of the finite element discretization.

In a second step, we replace the convective derivative by a suitable
up-wind difference

(uT (xK) · ∇)uT (xK) ≈ 1

‖xK − yK‖
‖uT (xK)‖(uT (xK)− uT (yK)).

Here ‖ · ‖ denotes the Euclidean norm in Rn and yK is the intersection
of the half-line {xK − suT (xK) : s > 0} with the boundary of K (cf.
Figure III.1.2).
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Figure III.1.2. Up-wind difference

In a last step, we replace uT (yK) by IT uT (yK) where IT uT denotes
the linear interpolate of uT in the vertices of the edge respectively face
of K which contains yK . If in Figure III.1.2, e.g., ‖yK−b‖ = 1

4
‖a−b‖,

we have IT uT (yK) = 1
4
uT (a) + 3

4
uT (b).

For “large” values of hRe, this up-winding yields a better approxi-
mation than the straight-forward discretization of §III.1.4 (p. 76). For
sufficiently small mesh-sizes, the error converges to zero linearly with h.
The up-wind direction depends on the discrete solution. This has the
awkward side-effect that the discrete nonlinear problem is not differen-
tiable and leads to severe complications for the solution of the discrete
problem.

III.1.11. The streamline-diffusion method. The stream-line-
diffusion method has an up-wind effect, but avoids the differentiability
problem of the up-wind scheme of the previous section. In particular,
the resulting discrete problem is differentiable and can be solved with
a Newton method. Moreover, the streamline-diffusion method simul-
taneously has a stabilizing effect with respect to the incompressibility
constraint. In this respect it generalizes the Petrov-Galerkin method
of §II.3 (p. 40).

The idea is to add an artificial viscosity in the streamline direction.
Thus the solution is slightly “smeared” in its smooth direction while
retaining its steep gradient in the orthogonal direction. The artificial
viscosity is added via a suitable penalty term which is consistent in the
sense that it vanishes for any solution of the Navier-Stokes equations.

Recalling that JE(·) denotes the jump across E and retaining the
notations of §III.1.4 (p. 76), the streamline-diffusion discretization is
given by:

Find uT ∈ X(T ) and pT ∈ Y (T ) such that∫
Ω

∇uT : ∇vT dx−
∫

Ω

pT div vT dx
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+

∫
Ω

Re[(uT · ∇)uT ] · vT dx

+
∑
K∈T

δKh
2
K

∫
K

Re[−f −∆uT +∇pT

+Re(uT · ∇)uT ] · [(uT · ∇)vT ]dx

+
∑
K∈T

αKδK

∫
K

div uT div vT dx =

∫
Ω

f · vT dx∫
Ω

qT div uT dx

+
∑
K∈T

δKh
2
K

∫
K

[−∆uT +∇pT

+Re(uT · ∇)uT ] · ∇qT dx

+
∑
E∈E

δEhE

∫
E

JE(pT )JE(qT )dS =
∑
K∈T

δKh
2
K

∫
K

f · ∇qT dx

for all vT ∈ X(T ) and all qT ∈ Y (T ).

The stabilization parameters δK and δE are chosen as described in
§II.3.4 (p. 44). The additional parameter αK has to be non-negative
and can be chosen equal to zero. Computational experiments, however,
suggest that the choice αK ≈ 1 is preferable. When setting Re = 0
and αK = 0 the above discretization reduces to the Petrov-Galerkin
discretization of the Stokes equations presented in §II.3.3 (p. 43).

III.2. Solution of the discrete nonlinear problems

III.2.1. General structure. For the solution of discrete nonlin-
ear problems which result from a discretization of a nonlinear partial
differential equation one can proceed in two ways:

• One applies a nonlinear solver, such as e.g. the Newton
method, to the nonlinear differential equation and then dis-
cretizes the resulting linear partial differential equations.
• One directly applies a nonlinear solver, such as e.g. the New-

ton method, to the discrete nonlinear problems. The resulting
discrete linear problems can then be interpreted as discretiza-
tions of suitable linear differential equations.

Both approaches often are equivalent and yield comparable approxima-
tions. In this section we will follow the first approach since it requires
less notation. All algorithms can easily be re-interpreted in the second
sense described above.
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We recall the fixed-point formulation of the Navier-Stokes equations
of §III.1.2 (p. 75)

(III.2.1) u = T (f −Re(u · ∇)u)

with the Stokes operator T which associates with each g the unique
solution v = Tg of the Stokes equations

−∆v + grad q = g in Ω

div v = 0 in Ω

v = 0 on Γ.

Most of the algorithms require the solution of discrete Stokes equations
or of slight variations thereof. This can be achieved with the methods
of §II.6 (p. 54).

III.2.2. Fixed-point iteration. The fixed-point iteration is given
by

ui+1 = T (f −Re(ui · ∇)ui).

It results in Algorithm III.2.1.

Algorithm III.2.1 Fixed-point iteration

Require: initial guess u, tolerance ε > 0, maximal number of itera-
tions N .

Provide: approximate solution of the stationary incompressible Na-
vier-Stokes equations.

1: D ←∞, n← 0
2: while D > ε and n ≤ N do
3: v← u
4: Solve the Stokes equations

−∆u +∇p = {f −Re(v · ∇)v} in Ω

div u = 0 in Ω

u = 0 on Γ.

5: D ← |u− v|1, n← n+ 1
6: end while

The fixed-point iteration converges if Re2‖f‖0 ≤ 1. The conver-
gence rate approximately is 1−Re2‖f‖0. Therefore this algorithm can
only be recommended for problems with very small Reynolds’ numbers.

III.2.3. Newton iteration. Equation (III.2.1) can be re-written
in the form

F (u) = u− T (f −Re(u · ∇)u) = 0.

We may apply Newton’s method to F . Then we must solve in each
step a linear problem of the form

g = DF (u)v
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= v +ReT ((u · ∇)v + (v · ∇)u).

This results in Algorithm III.2.2.

Algorithm III.2.2 Newton iteration

Require: initial guess u, tolerance ε > 0, maximal number of itera-
tions N .

Provide: approximate solution of the stationary incompressible Na-
vier-Stokes equations.

1: D ←∞, n← 0
2: while D > ε and n ≤ N do
3: v← u
4: Solve the modified Stokes equations

−∆u +∇p+Re(v · ∇)u

+Re(u · ∇)v = {f +Re(v · ∇)v} in Ω

div u = 0 in Ω

u = 0 on Γ.

5: D ← |u− v|1, n← n+ 1
6: end while

The Newton iteration converges quadratically. Yet, the initial guess
must be “close” to the sought solution, otherwise the iteration may di-
verge. To avoid this, one can use a damped Newton iteration. The
modified Stokes problems incorporate convection and reaction terms
which are proportional to the Reynolds’ number. For large Reynolds’
numbers this may cause severe difficulties with the solution of the mod-
ified Stokes problems.

III.2.4. Path tracking. Instead of the single problem (III.2.1) we
now look at a whole family of Navier-Stokes equations with a parameter
λ

uλ = T (f − λ(uλ · ∇)uλ).

Its solutions uλ depend differentiably on the parameter λ. The deriv-
ative vλ = duλ

dλ
solves the modified Stokes equations

vλ = −T (λ(vλ · ∇)uλ + λ(uλ · ∇vλ) + (uλ · ∇)uλ).

If we know the solution uλ0 corresponding to the parameter λ0, we can
compute vλ0 and may use uλ0 + (λ1 − λ0)vλ0 as initial guess for the
Newton iteration applied to the problem with parameter λ1 > λ0. If
λ1−λ0 is not too large, a few Newton iterations will yield a sufficiently
good approximation of vλ1 .

This idea leads to Algorithm III.2.3. It should be combined with a
step-length control: If the Newton algorithm in step 3 does not converge
sufficiently well, the increment ∆λ should be reduced.
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Algorithm III.2.3 Path tracking

Require: Reynolds’ number Re, initial parameter 0 ≤ λ < Re, incre-
ment ∆λ > 0, tolerance ε > 0.

Provide: approximate solution of the stationary incompressible Na-
vier-Stokes equations with Reynolds’ number Re.

1: uλ ← 0
2: while λ < Re do
3: Apply a few Newton iterations to the Navier-Stokes equations

with Reynolds’ number λ, initial guess uλ, and tolerance ε. Denote
the result by uλ.

4: Solve the modified Stokes equations

−∆vλ +∇qλ + λ(uλ · ∇)vλ

+λ(vλ · ∇)uλ = {f − λ(uλ · ∇)uλ} in Ω

div vλ = 0 in Ω

vλ = 0 on Γ.

5: uλ ← uλ + ∆λvλ, λ← min{Re, λ+ ∆λ}
6: end while

III.2.5. Operator splitting. The idea is to decouple the difficul-
ties associated with the nonlinear convection term and with the incom-
pressibility constraint. This leads to Algorithm III.2.4. The nonlinear
problem in step 4 is solved with one of the algorithms presented in
the previous sub-sections. This task is simplified by the fact that the
incompressibility condition and the pressure are now missing.

III.2.6. A nonlinear CG-algorithm. The idea is to apply a
nonlinear CG-algorithm to the least-squares minimization problem

minimize
1

2
|u− T (f −Re(u · ∇)u)|21.

It leads to Algorithm III.2.5 (p. 93). It has the advantage that it only
requires the solution of Stokes problems and thus avoids the difficulties
associated with large convection and reaction terms.

III.2.7. Multigrid algorithms. When applying the multigrid al-
gorithm of §II.6.5 (p. 57) to nonlinear problems one only has to modify
the pre- and post-smoothing steps. This can be done in two possible
ways:

• Apply a few iterations of the Newton algorithm to the nonlin-
ear problem combined with very few iterations of a classical
iterative scheme, such as e.g. Gauß-Seidel iteration, for the
auxiliary linear problems that must be solved during the New-
ton iteration.
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Algorithm III.2.4 Operator splitting

Require: initial guess u, damping parameter ω ∈ (0, 1), tolerance
ε > 0, maximal number of iterations N .

Provide: approximate solution of the stationary incompressible Na-
vier-Stokes equations.

1: D ←∞, n← 0
2: while D > ε and n ≤ N do
3: Solve the Stokes equations

2ωv −∆v +∇q = 2ωu + f −Re(u · ∇)u in Ω

div v = 0 in Ω

v = 0 on Γ.

4: Solve the nonlinear Poisson equation

ωw −∆w +Re(w · ∇)w = ωv + f −∇q in Ω

w = 0 on Γ.

5: Solve the Stokes equations

2ωz−∆z +∇r = 2ωw + f −Re(w · ∇)w in Ω

div z = 0 in Ω

z = 0 on Γ.

6: D ← |u− z|1, u← z, p← r, n← n+ 1
7: end while

• Successively choose a node and the corresponding equation,
freeze all unknowns that do not belong to the current node,
and solve for the current unknown by applying a few Newton
iterations to the resulting nonlinear equation in one unknown.

The second variant is often called nonlinear Gauß-Seidel algorithm.
Alternatively one can apply a variant of the multigrid algorithm

of §II.6.5 (p. 57) to the linear problems that must be solved in the
algorithms described above. Due to the lower costs for implementation,
this variant is often preferred in practice.

III.3. Adaptivity for nonlinear problems

III.3.1. General structure. The general structure of an adap-
tive algorithm as described in §II.7.2 (p. 63) directly applies to nonlin-
ear problems. One only has to adapt the a posteriori error estimator.
The marking strategy, the regular refinement, the additional refine-
ment, and the data structures described in §II.7.5 (p. 69) – §II.7.8
(p. 71) do not change.

Throughout this section we denote by X(T ) and Y (T ) finite ele-
ment spaces for the velocity and pressure, respectively associated with
a given partition T of the domain Ω. With these spaces we associate a
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discretization of the stationary incompressible Navier-Stokes equations
as described in §III.1 (p. 75). The computed solution of the corre-
sponding discrete problem is denoted by uT , pT , whereas u, p denotes
a solution of the Navier-Stokes equations.

III.3.2. A residual a posteriori error estimator. The residual
a posteriori error estimator for the Navier-Stokes equations is given by

ηK =

{
h2
K‖f + ∆uT −∇pT −Re(uT · ∇)uT ‖2

L2(K)

+ ‖ div uT ‖2
L2(K)

+
1

2

∑
E∈EK

hE‖JE(nE · (∇uT − pT I))‖2
L2(E)

}1/2

.

When comparing it with the residual estimator for the Stokes equa-
tions, we observe that the nonlinear convection term has been added
to the element residual.

Under suitable conditions on the solution of the Navier-Stokes equa-
tions, one can prove that, as in the linear case, the residual error esti-
mator is reliable and efficient.

III.3.3. Error estimators based on the solution of auxiliary
problems. The error estimators based on the solution of auxiliary
local discrete problems are very similar to those in the linear case. In
particular the nonlinearity only enters into the data, the local problems
itself remain linear.

We recall the notations of §II.7.4 (p. 65) and set

X(K) = span{ψKv , ψEw : v ∈ RkT (K)n , w ∈ RkE (E)n ,

E ∈ EK},
Y (K) = span{ψKq : q ∈ Rku−1(K)},

X̃(K) = span{ψK′v , ψEw : v ∈ RkT (K ′)n , K ′ ∈ T ∩ ωK ,
w ∈ RkE (E)n , E ∈ EK},

Ỹ (K) = span{ψK′q : q ∈ Rku−1(K ′) , K ′ ∈ T ∩ ωK},

where

kT = max{ku(ku − 1), ku + n, kp − 1},
kE = max{ku − 1, kp},

and ku and kp denote the polynomial degrees of the velocity and pres-
sure approximation respectively. Note that the definition of kT differs



III.3. ADAPTIVITY FOR NONLINEAR PROBLEMS 91

from the one in §II.7.4 (p. 65) and takes into account the polynomial
degree of the nonlinear convection term.

With these notations we consider the following discrete Stokes prob-
lem with Neumann boundary conditions

Find uK ∈ X(K) and pK ∈ Y (K) such that∫
K

∇uK : ∇vKdx

−
∫
K

pK div vKdx =

∫
K

{f + ∆uT −∇pT

−Re(uT · ∇)uT } · vKdx

+

∫
∂K

J∂K(nK · (∇uT − pT I)) · vKdS∫
K

qK div uKdx =

∫
K

qK div uT dx

for all vK ∈ X(K) and all qK ∈ Y (K).

With the solution of this problem, we define the Neumann estimator
by

ηN,K =
{
|uK |2H1(K)+‖pK‖2

L2(K)

}1/2

.

Similarly we can consider the following discrete Stokes problem with
Dirichlet boundary conditions

Find ũK ∈ X̃(K) and p̃K ∈ Ỹ (K) such that∫
ωK

∇ũK : ∇vKdx

−
∫
ωK

p̃K div vKdx =

∫
ωK

f · vKdx−
∫
ωK

∇uT : ∇vKdx

+

∫
ωK

pT div vKdx

−
∫
ωK

Re(uT · ∇)uT · vKdx∫
ωK

qK div ũKdx =

∫
ωK

qK div uT dx

for all vK ∈ X̃(K) and all qK ∈ Ỹ (K).

With the solution of this problem, we define the Dirichlet estimator by
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ηD,K =
{
|ũK |2H1(ωK) + ‖p̃K‖2

L2(ωK)

}1/2

.

As in the linear case, one can prove that both estimators are reliable
and efficient and comparable to the residual estimator. Remark II.7.4
(p. 68) also applies to the nonlinear problem.
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Algorithm III.2.5 Non-linear CG-algorithm of Polak-Ribière

Require: initial guess u, tolerance ε > 0, maximal number of itera-
tions N .

Provide: approximate solution of the stationary incompressible Na-
vier-Stokes equations.

1: Compute the solution z the Stokes problem

−∆z +∇r = Re(u · ∇)u− f in Ω

div z = 0 in Ω

z = 0 on Γ.

2: Compute the solution g̃ the Stokes problem

−∆g̃ +∇s̃ = Re{(u + z) · (∇u)− (u · ∇)(u + z)} in Ω

div g̃ = 0 in Ω

g̃ = 0 on Γ.

3: w← u + z + g̃, g← w, E ← |w|1, n← 0
4: while E > ε and n ≤ N do
5: Compute the solution z1of the Stokes problem

−∆z1 +∇r1 = Re{(u · ∇)w + (w · ∇)u} in Ω

div z1 = 0 in Ω

z1 = 0 on Γ

6: Compute the solution z2 of the Stokes problem

−∆z2 +∇r2 = Re(w · ∇)w in Ω

div z2 = 0 in Ω

z2 = 0 on Γ.

7: α← −
∫

Ω
∇(u + z) : ∇(w + z1)dx

8: β ←
∫

Ω
|∇(w + z1)|2dx+

∫
Ω
∇(u + z) : ∇z2dx

9: γ ← −3
2

∫
Ω
∇(w + z1) : ∇z2dx

10: δ ← 1
2

∫
Ω
|∇z2|2dx

11: Determine the smallest positive zero ρ of α + βx+ γx2 + δx3.
12: u← u− ρw, z← z− ρz1 + 1

2
ρ2z2

13: Compute the solution g̃ of the Stokes problem

−∆g̃ +∇s̃ = Re{(u + z) · (∇u)

− (u · ∇)(u + z)} in Ω

div g̃ = 0 in Ω

g̃ = 0 on Γ

14: ĝ← g, g← g̃ + u + z

15: σ ←
{∫

Ω
|∇g|2dx

}−1 ∫
Ω
∇(g − ĝ) : ∇gdx

16: w← g + σw, E ← |w|1, n← n+ 1
17: end while





CHAPTER IV

Instationary problems

IV.1. Discretization of the instationary Navier-Stokes
equations

IV.1.1. Variational formulation. We recall the instationary in-
compressible Navier-Stokes equations of §I.1.12 (p. 15) with no-slip
boundary condition

∂u

∂t
− ν∆u + (u · ∇)u− grad p = f in Ω× (0, T )

div u = 0 in Ω× (0, T )

u = 0 on Γ× (0, T )

u(·, 0) = u0 in Ω.

Here, T > 0 is given final time and u0 denotes a given initial velocity.
The variational formulation of this problem is given by

Find a velocity field u with

max
0<t<T

∫
Ω

|u(x, t)|2dx+

∫ T

0

∫
Ω

|∇u(x, t)|2dxdt <∞

and a pressure p with∫ T

0

∫
Ω

|p(x, t)|2dxdt <∞

such that∫ T

0

∫
Ω

{
−u(x, t)

∂v(x, t)

∂t
+ ν∇u(x, t) : ∇v(x, t)

+ [(u(x, t) · ∇)u(x, t)] · v(x, t)

− p(x, t) div v(x, t)
}

dxdt

=

∫ T

0

∫
Ω

f(x, t) · v(x, t)dxdt+

∫
Ω

u0(x) · v(x, 0)dx

95
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∫ T

0

∫
Ω

q(x, t) div u(x, t)dxdt

= 0

holds for all v with

max
0<t<T

∫
Ω

{
|∂v(x, t)

∂t
|2dx+ |∇v(x, t)|2

}
dx <∞

and all q with

max
0<t<T

∫
Ω

|q(x, t)|2dx <∞.

IV.1.2. Existence and uniqueness results. The variational
formulation of the instationary incompressible Navier-Stokes equations
admits at least one solution. In two space dimensions, this solution is
unique. In three space dimensions, uniqueness of the solution can only
be guaranteed within a restricted class of more regular functions. Yet,
the existence of such a solution cannot be guaranteed.

Any solution of the instationary incompressible Navier-Stokes equa-
tions behaves like

√
t for small times t. For larger times the smoothness

with respect to time is better. This singular behaviour for small times
must be taken into account for the time-discretization.

IV.1.3. Numerical methods for ordinary differential equa-
tions revisited. Before presenting the various discretization schemes
for the time-dependent Navier-Stokes equations, we shortly recapitu-
late some basic facts on numerical methods for ordinary differential
equations.

Suppose that we have to solve an initial value problem

dy

dt
= F(y, t)

y(0) = y0

(IV.1.1)

in Rn on the time interval (0, T ).
We choose an integer N ≥ 1 and intermediate times 0 = t0 < t1 <

. . . < tN = T and set τi = ti − ti−1, 1 ≤ i ≤ N . The approximation to
y(ti) is denoted by yi.

The simplest and most popular method is the θ-scheme. It is given
by

y0 = y0

yi − yi−1

τi
= θF(yi, ti) + (1− θ)F(yi−1, ti−1), 1 ≤ i ≤ N,
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where θ ∈ [0, 1] is a fixed parameter. The choice θ = 0 yields the
explicit Euler scheme, θ = 1 corresponds to the implicit Euler scheme,
and the choice θ = 1

2
gives the Crank-Nicolson scheme. The θ-scheme

is implicit unless θ = 0. It is A-stable provided θ ≥ 1
2
. The θ-scheme

is of order 1, if θ 6= 1
2
, and of order 2, if θ = 1

2
.

Another class of popular methods is given by the various Runge-
Kutta schemes. They take the form

y0 = y0

yi,j = yi−1 + τi

r∑
k=1

ajkF(ti−1 + ckτi,y
i,k), 1 ≤ j ≤ r,

yi = yi−1 + τi

r∑
k=1

bkF(ti−1 + ckτi,y
i,k), 1 ≤ i ≤ N,

where 0 ≤ c1 ≤ . . . ≤ cr ≤ 1. The number r is called stage number of
the Runge-Kutta scheme. The scheme is called explicit, if ajk = 0 for
all k ≥ j, otherwise it is called implicit.

For the ease of notation one usually collects the numbers ck, ajk, bk
in a table of the form

c1 a11 a12 . . . a1r
...

...
...

. . .
...

cr ar1 ar2 . . . arr
b1 b2 . . . br

The Euler and Crank-Nicolson schemes are Runge-Kutta schemes.
They correspond to the tables

0 0
1

explicit Euler,

1 1
1

implicit Euler,

0 0 0

1 1
2

1
2

1
2

1
2

Crank-Nicolson.

Strongly diagonal implicit Runge-Kutta schemes (in short SDIRK
schemes) are particularly well suited for the discretization of time-
dependent partial differential equations since they combine high order
with good stability properties. The simplest representatives of this
class are called SDIRK 2 and SDIRK 5. They are both A-stable and
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have orders 3 and 4, respectively. They are given by the data

3+
√

3
6

3+
√

3
6

0

3−
√

3
6

−
√

3
3

3+
√

3
6

1
2

1
2

SDIRK2

1
4

1
4

0 0 0 0
3
4

1
2

1
4

0 0 0
11
20

17
50

− 1
25

1
4

0 0
1
2

371
1360

− 137
2720

15
544

1
4

0

1 25
24

−49
48

125
16
−85

12
1
4

25
24

−49
48

125
16
−85

12
1
4

SDIRK5.

IV.1.4. Method of lines. This is the simplest discretization
scheme for time-dependent partial differential equations.

We choose a partition T of the spatial domain Ω and associated
finite element spaces X(T ) and Y (T ) for the velocity and pressure,
respectively. These spaces must satisfy the inf-sup condition of §II.2.6
(p. 36). Then we replace in the variational formulation the velocities u,
v and the pressures p, q by discrete functions uT , vT and pT , qT which
depend upon time and which – for every time t – have their values in
X(T ) and Y (T ), respectively. Next, we choose a bases for the spaces
X(T ) and Y (T ) and identify uT and pT with their coefficient vectors
with respect to the bases. Then we obtain the following differential
algebraic equation for uT and pT

duT
dt

= fT − νAT uT −BT pT −NT (uT )

BT
T uT = 0.

Denoting by wi, 1 ≤ i ≤ dimX(T ), and rj, 1 ≤ j ≤ dimY (T ), the
bases functions of X(T ) and Y (T ) respectively, the coefficients of the
stiffness matrices AT and BT and of the vectors fT and NT (uT ) are
given by

AT ij =

∫
Ω

∇wi(x) : ∇wj(x)dx,

BT ij = −
∫

Ω

rj(x) div wi(x)dx,

fT i =

∫
Ω

f(x, t) ·wi(x)dx,
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NT (uT )i =

∫
Ω

[(u(x, t) · ∇)u(x, t)] ·wi(x)dx.

Formally, this problem can be cast in the form (IV.1.1) by working
with test-functions vT in the space

V (T ) =

{
vT ∈ X(T ) :

∫
Ω

qT div vT dx = 0 for all qT ∈ Y (T )

}
of discretely solenoidal functions. The function F in (IV.1.1) is then
given by

F(y, t) = fT − νAT y −NT (y).

If we apply the θ-scheme and denote by uiT and piT the approximate
values of uT and pT at time ti, we obtain the fully discrete scheme

u0
T = IT u0

uiT − ui−1
T

τi
= −BT piT + θ

{
fT (ti)− νAT uiT −NT (uiT )

}
+ (1− θ)

{
fT (ti−1)− νAT ui−1

T −NT (ui−1
T )
}

BT
T uiT = 0 , 1 ≤ i ≤ N,

where IT : H1
0 (Ω)n → X(T ) denotes a suitable interpolation operator

(cf. §I.2.11 (p. 27)).
The equation for uiT , piT can be written in the form

1

τi
uiT + θνAT uiT +BT p

i
T + θNT (uiT ) = gi

BT
T uiT = 0

with

gi =
1

τi
ui−1
T + θfT (ti) + (1− θ)

{
fT (ti−1)− νAT ui−1

T −NT (ui−1
T )
}
.

Thus it is a discrete version of a stationary incompressible Navier-
Stokes equation. Hence the methods of §III.2 (p. 85) can be used for
its solution.

Due to the condition number of O(h−2) of the stiffness matrix AT ,
one must choose the parameter θ ≥ 1

2
. Due to the singularity of the

solution of the Navier-Stokes equations at time 0, it is recommended to
first perform a few implicit Euler steps, i.e. θ = 1, and then to switch
to the Crank-Nicolson scheme, i.e. θ = 1

2
.

The main drawback of the method of lines is the fixed (w.r.t. time)
spatial mesh. Thus singularities, which move through the domain Ω
in the course of time, cannot be resolved adaptively. This either leads
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to a very poor approximation or to an enormous overhead due to an
excessively fine spatial mesh.

IV.1.5. Rothe’s method. In the method of lines we first dis-
cretize in space and then in time. This order is reversed in Rothe’s
method. We first apply a θ-scheme or a Runge-Kutta method to the
instationary Navier-Stokes equations. This leaves us in every time-step
with a stationary Navier-Stokes equation.

For the θ-scheme, e.g., we obtain the problems

1

τi
ui − νθ∆ui

+θ(ui · ∇)ui − grad pi = θf(·, ti) +
1

τi
ui−1

+ (1− θ){f(·, ti−1)− ν∆ui−1

+ (ui−1 · ∇)ui−1} in Ω

div ui = 0 in Ω

ui = 0 on Γ.

The stationary Navier-Stokes equations are then discretized in space.
The main difference to the method of lines is the possibility to

choose a different partition and spatial discretization at each time-
level. This obviously has the advantage that we may apply an adaptive
mesh-refinement on each time-level separately. The main drawback of
Rothe’s method is the lack of a mathematically sound step-size control
for the temporal discretization. If we always use the same spatial mesh
and the same spatial discretization, Rothe’s method yields the same
discrete solution as the method of lines.

IV.1.6. Space-time finite elements. This approach circum-
vents the drawbacks of the method of lines and of Rothe’s method.
When combined with a suitable space-time adaptivity as described in
the next section, it can be viewed as a Rothe’s method with a mathe-
matically sound step-size control in space and time.

To describe the method we choose as in §IV.1.3 (p. 96) an integer
N ≥ 1 and intermediate times 0 = t0 < t1 < . . . < tN = T and set
τi = ti− ti−1, 1 ≤ i ≤ N . With each time ti we associate a partition Ti
of the spatial domain Ω and corresponding finite element spaces X(Ti)
and Y (Ti) for the velocity and pressure, respectively. These spaces
must satisfy the inf-sup condition of §II.2.6 (p. 36). We denote by
uiT ∈ X(Ti) and piT ∈ Y (Ti) the approximations of the velocity and
pressure, respectively at time ti. The discrete problem is then given by
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Find u0
T ∈ X(T0) such that∫

Ω

u0
T · v0

T dx =

∫
Ω

u0 · v0
T dx

for all v0
T ∈ X(T0) and determine uiT ∈ X(Ti) and piT ∈ Y (Ti) for

i = 1, . . . , N successively such that

1

τi

∫
Ω

uiT · viT dx

+θν

∫
Ω

∇uiT : ∇viT dx

−
∫

Ω

piT div viT dx

+Θ

∫
Ω

[(uiT · ∇)uiT ] · viT dx =
1

τi

∫
Ω

ui−1
T · v

i
T dx

+ θ

∫
Ω

f(x, ti) · viT dx

+ (1− θ)
∫

Ω

f(x, ti−1) · viT dx

+ (1− θ)ν
∫

Ω

∇ui−1
T : ∇viT dx

+ (1−Θ)

∫
Ω

[(ui−1
T · ∇)ui−1

T ] · viT dx∫
Ω

qiT div uiT dx = 0

holds for all viT ∈ X(Ti) and qiT ∈ Y (Ti).

The parameter θ is chosen either equal to 1
2

or equal to 1. The param-
eter Θ is chosen either equal to θ or equal to 1.

Note, that u0
T is the L2-projection of u0 onto X(T0) and that the

right-hand side of the equation for uiT involves the L2-projection of
functions in X(Ti−1) onto X(Ti). Roughly speaking, these projections
make the difference between the space-time finite elements and Rothe’s
method. Up to these projections one also recovers the method of lines
when all partitions and finite element spaces are fixed with respect to
time.

On each time-level we have to solve a discrete version of a stationary
Navier-Stokes equation. This is done with the methods of §III.2 (p. 85).

IV.1.7. The transport-diffusion algorithm. This method is
based on the observation that due to the transport theorem of §I.1.3
(p. 8) the term

∂u

∂t
+ (u · ∇)u
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is the material derivative along the trajectories of the flow. Therefore(∂u

∂t
+ (u · ∇)u

)
(x, t)

is approximated by the backward difference

u(x, t)− u(y(t− τ), t− τ)

τ

where s 7→ y(s) is the trajectory which passes at time t through the
point x. The remaining terms are approximated in a standard finite
element way.

To describe the algorithm more precisely, we retain the notations
of the previous sub-section and introduce in addition on each partition
Ti a quadrature formula∫

Ω

ϕdx ≈
∑
x∈Qi

µxϕ(x)

which is exact at least for piecewise constant functions. The most
important examples are given by

Qi the barycentres xK of the elements in Ti, µxK = |K|,

Qi the vertices x in Ti, µx =
|ωx|

3
,

Qi the midpoints xE of the edges in Ti, µxE =
|ωE|

3
.

Here, |ω| denotes the area, if n = 2, or the volume, if n = 3, of a set
ω ⊂ Rn and ωx and ωE are the unions of all elements that share the
vertex x or the edge E respectively (cf. Figures I.2.2 (p. 24) and I.2.6
(p. 28)).

With these notations the transport-diffusion algorithm is given by:

Find u0
T ∈ X(T0) such that∑
x∈Q0

µxu
0
T (x) · v0

T (x) =
∑
x∈Q0

µxu0(x) · v0
T (x)

for all v0
T ∈ X(T0). For i = 1, . . . , N successively, solve the

initial value problems (transport step)

dyx(t)

dt
= ui−1

T (yx(t), t) for ti−1 < t < ti

yx(ti) = x
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for all x ∈ Qi and find uiT ∈ X(Ti) and piT ∈ Y (Ti) such
that (diffusion step)

1

τi

∑
x∈Qi

µxu
i
T (x) · viT (x)

+θν

∫
Ω

∇uiT : ∇viT dx

−
∫

Ω

piT div viT dx =
1

τi

∑
x∈Qi

µxu
i−1
T (yx(ti−1)) · viT (x)

+ θ

∫
Ω

f(x, ti) · viT dx

+ (1− θ)
∫

Ω

f(x, ti−1) · viT dx

+ (1− θ)ν
∫

Ω

∇ui−1
T : ∇viT dx∫

Ω

qiT div uiT dx = 0

holds for all viT ∈ X(Ti) and qiT ∈ Y (Ti).

In contrast to the previous algorithms we now only have to solve dis-
crete Stokes problems at the different time-levels. This is the reward
for the necessity to solve the initial value problems for the yx and to
evaluate functions in X(Ti) at the points yx(ti−1) which are not nodal
degrees of freedom.

IV.2. Space-time adaptivity

IV.2.1. Overview. When compared to adaptive discretizations of
stationary problems an adaptive discretization scheme for instationary
problems requires some additional features:

• We need an error estimator which gives upper and lower
bounds on the total error, i.e. on both the errors introduced
by the spatial and the temporal discretization.
• The error estimator must allow a distinction between the tem-

poral and spatial part of the error.
• We need a strategy for adapting the time-step size.
• The refinement strategy for the spatial discretization must also

allow the coarsening of elements in order to take account of
singularities which move through the spatial domain in the
course of time.

For the Navier-Stokes equations some special difficulties arise in
addition:
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• The velocities are not exactly solenoidal. This introduces an
additional consistency error which must be properly estimated
and balanced.
• The convection term may be dominant. Therefore the a poste-

riori error estimators must be robust, i.e. the ratio of upper and
lower error bounds must stay bounded uniformly with respect
to large values of Re‖u‖1 or 1

ν
‖u‖1.

IV.2.2. A residual a posteriori error estimator. The error
estimator now consists of two components: a spatial part and a tem-
poral one. The spatial part is a straightforward generalization of the
residual estimator of §III.2.2 (p. 86) for the stationary Navier-Stokes
equation. With the notations of §IV.1.6 (p. 100) the spatial contribu-
tion on time-level i is given by

ηih =

{∑
K∈Ti

h2
K‖θf(·, ti) + (1− θ)f(·, ti−1)− uiT − ui−1

T
τi

+ θν∆uiT + (1− θ)∆νui−1
T −∇p

i
T

−Θ(uiT · ∇)uiT − (1−Θ)(ui−1
T · ∇)ui−1

T ‖
2
L2(K)

+
∑
K∈Ti

‖ div uiT ‖2
L2(K)

+
∑
E∈Ei

hE‖JE(nE · (θν∇uiT + (1− θ)ν∇ui−1
T

− piT I))‖2
L2(E)

} 1
2

.

Recall that Ei denotes the set of all interior edges, if n = 2, respectively
interior faces, if n = 3, in Ti.

In order to obtain a robust estimator, we have to invest some work
in the computation of the temporal part of the estimator. For this
part we have to solve on each time-level the following discrete Poisson
equations:

Find ũiT ∈ S
1,0
0 (Ti)n such that

ν

∫
Ω

∇ũiT : ∇viT dx
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=

∫
Ω

[((ΘuiT + (1−Θ)ui−1
T ) · ∇)(uiT − ui−1

T )] · viT dx

holds for all viT ∈ S
1,0
0 (Ti)n.

The temporal contribution of the error estimator on time-level i then
is given by

ηiτ =

{
ν|uiT − ui−1

T |
2
1 + ν|ũiT |21

+
∑
K∈Ti

h2
K‖((ΘuiT + (1−Θ)ui−1

T ) · ∇)(uiT − ui−1
T )

+ ν∆ũiT ‖2
L2(K)

+
∑
E∈Ei

hE‖JE(ν · ∇ũiT )‖2
L2(E)

}1/2

.

With these ingredients the residual a posteriori error estimator for the
instationary incompressible Navier-Stokes equations takes the form

{
N∑
i=1

τi

[(
ηih
)2

+
(
ηiτ
)2
]}1/2

.

IV.2.3. Time adaptivity. Assume that we have solved the dis-
crete problem up to time-level i − 1 and that we have computed the
error estimators ηi−1

h and ηi−1
τ . Then we set

ti =

{
min{T, ti−1 + τi−1} if ηi−1

τ ≈ ηi−1
h ,

min{T, ti−1 + 2τi−1} if ηi−1
τ ≤ 1

2
ηi−1
h .

In the first case we retain the previous time-step; in the second case
we try a larger time step.

Next, we solve the discrete problem on time-level i with the current
value of ti and compute the error estimators ηih and ηiτ .

If ηiτ ≈ ηih, we accept the current time-step and continue with the
space adaptivity, which is described in the next sub-section.

If ηiτ ≥ 2ηih, we reject the current time-step. We replace ti by
1
2
(ti−1 + ti) and repeat the solution of the discrete problem on time-

level i and the computation of the error estimators.



106 IV. INSTATIONARY PROBLEMS

The described strategy obviously aims at balancing the two contri-
butions ηih and ηiτ of the error estimator.

IV.2.4. Space adaptivity. For time-dependent problems the spa-
tial adaptivity must also allow for a local mesh coarsening (cf. [11,
§III.1.5]). Hence, the marking strategies of §II.7.5 (p. 69) must be
modified accordingly.

Assume that we have solved the discrete problem on time-level i
with an actual time-step τi and an actual partition Ti of the spatial
domain Ω and that we have computed the estimators ηih and ηiτ . More-
over, suppose that we have accepted the current time-step and want to
optimize the partition Ti.

We may assume that Ti currently is the finest partition in a hier-
archy T 0

i , . . . , T `i of nested, successively refined partitions, i.e. Ti = T `i
and T ji is a (local) refinement of T j−1

i , 1 ≤ j ≤ `.
Now, we go backm generations in the grid-hierarchy to the partition

T `−mi . Due to the nestedness of the partitions, each element K ∈ T `−mi

is the union of several elements K ′ ∈ Ti. Each K ′ gives a contribution
to ηih. We add these contributions and thus obtain for every K ∈ T `−mi

an error estimator ηK . With these estimators we then perform M
steps of the marking strategy of §II.7.5 (p. 69). This yields a new
partition T `−m+M

i which usually is different from Ti. We replace Ti by
this partition, solve the corresponding discrete problem on time-level i
and compute the new error estimators ηih and ηiτ .

If the newly calculated error estimators satisfy ηih ≈ ηiτ , we accept
the current partition Ti and proceed with the next time-level.

If ηih ≥ 2ηiτ , we successively refine the partition Ti as described
in §II.7 (p. 62) with the ηih as error estimators until we arrive at a
partition which satisfies ηih ≈ ηiτ . When this goal is achieved we accept
the spatial discretization and proceed with the next time-level.

Typical values for the parameters m and M are 1 ≤ m ≤ 3 and
m ≤M ≤ m+ 2.

IV.3. Discretization of compressible and inviscid problems

IV.3.1. Systems in divergence form. In this section we con-
sider problems of the following form:
Given a domain Ω ⊂ Rn with n = 2 or n = 3, an integer m ≥ n, a
vector field g : Rm × Ω × (0,∞) → Rm, a vector field M : Rm → Rm,
a tensor field F : Rm → Rm×n, and a vector field U0 : Ω→ Rm, we are
looking for a vector field U : Ω× (0,∞)→ Rm such that

∂M(U)

∂t
+ div F(U) = g(U, x, t) in Ω× (0,∞)
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U(·, 0) = U0 in Ω.

Such a problem, which has to be complemented with suitable boundary
conditions, is called a system (of differential equations) in divergence
form.

Note, that the divergence is taken row-wise, i.e.

div F(U) =

(
n∑
j=1

∂F(U)i,j
∂xj

)
1≤i≤m

.

The tensor field F is called the flux of the system. It is often split into
an advective flux Fadv which contains no derivatives and a viscous flux
Fvisc which contains spatial derivatives, i.e

F = F adv + F visc.

Example IV.3.1. The compressible Navier-Stokes equations and
the Euler equations (with α = 0) of §I.1.9 (p. 12) and §I.1.10 (p. 13)
fit into this framework. For both equations we have

m = n+ 2

U = (ρ,v, e)T

M(U) =

 ρ
ρv
e


Fadv(U) =

 ρv
ρv ⊗ v + pI
ev + pv


g =

 0
ρf

f · v

 .

For the Navier-Stokes equations the viscous forces yield a viscous flux

Fvisc(U) =

 0
T + pI

(T + pI) · v + σ

 .

These equations are complemented by the constitutive equations for p,
T, and σ given in §I.1.8 (p. 11).
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IV.3.2. Finite volume schemes. Finite volume schemes are par-
ticularly suited for the discretization of systems in divergence form.

To describe the idea in its simplest form, we choose a time-step
τ > 0 and a partition T of the domain Ω. The partition may consist of
arbitrary polyhedrons. From §I.2.7 (p. 21) we only retain the condition
that the sub-domains must not overlap.

In a first step, we fix an i and an element K ∈ T . Then we integrate
the system over the set K × [(i− 1)τ, iτ ]. This yields∫ iτ

(i−1)τ

∫
K

∂M(U)

∂t
dxdt+

∫ iτ

(i−1)τ

∫
K

div F(U)dxdt

=

∫ iτ

(i−1)τ

∫
K

g(U, x, t)dxdt.

Using the integration by parts formulae of §I.2.3 (p. 18), we obtain for
the left-hand side∫ iτ

(i−1)τ

∫
K

∂M(U)

∂t
dxdt =

∫
K

M(U(x, iτ))dx

−
∫
K

M(U(x, (i− 1)τ))dx∫ iτ

(i−1)τ

∫
K

div F(U)dxdt =

∫ iτ

(i−1)τ

∫
∂K

F(U) · nKdSdt,

where nK denotes the exterior unit normal of K.
Now, we assume that U is piecewise constant with respect to space

and time. Denoting by Ui
K and Ui−1

K its constant values on K at times
iτ and (i− 1)τ respectively, we obtain∫

K

M(U(x, iτ))dx ≈ |K|M(Ui
K)∫

K

M(U(x, (i− 1)τ))dx ≈ |K|M(Ui−1
K ),

where |K| denotes the area, if n = 2, respectively volume, if n = 3, of
the element K.

Next we approximate the flux term∫ iτ

(i−1)τ

∫
∂K

F(U) · nKdSdt ≈ τ

∫
∂K

F(Ui−1
K ) · nKdS.

The right-hand side is approximated by∫ iτ

(i−1)τ

∫
K

g(U, x, t)dxdt ≈ τ |K|g(Ui−1
K , xK , (i− 1)τ),

where xK denotes a point in K, which is fixed a priori, e.g. its barycen-
tre.
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Finally, we approximate the boundary integral for the flux by a
numerical flux

τ

∫
∂K

F(Ui−1
K ) · nKdS ≈ τ

∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|FT (Ui−1
K ,Ui−1

K′ ),

where E denotes the set of all edges, if n = 2, respectively faces, if
n = 3, in T and where |∂K ∩ ∂K ′| is the length respectively area of
the common edge or face of K and K ′.

With these approximations the simplest finite volume scheme for a
system in divergence form is given by

For every element K ∈ T compute

U0
K =

1

|K|

∫
K

U0(x)dx.

For i = 1, 2, . . . successively compute for all elements K ∈ T
M(Ui

K) = M(Ui−1
K )

− τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|
|K|

FT (Ui−1
K ,Ui−1

K′ )

+ τg(Ui−1
K , xK , (i− 1)τ).

For a concrete finite volume scheme we of course have to specify

• the partition T and
• the numerical flux FT .

This will be the subject of the following sections.

Remark IV.3.2. In practice one works with a variable time-step
and variable partitions. To this end one chooses an increasing sequence
0 = t0 < t1 < t2 < . . . of times and associates with each time ti a par-
tition Ti of Ω. Then τ is replaced by τi = ti − ti−1 and K and K ′

are elements in Ti−1 or Ti. Moreover one has to furnish an interpola-
tion operator which maps piecewise constant functions with respect to
one partition to piecewise constant functions with respect to another
partition.

IV.3.3. Construction of the partitions. An obvious possibil-
ity is to construct a finite volume partition T in the same way as a
finite element partition. In practice, however, one prefers so-called
dual meshes.

To describe the idea, we consider the two-dimensional case, i.e. n =

2. We start from a standard finite element partition T̃ which satisfies

the conditions of §I.2.7 (p. 21). Then we subdivide each element K̃ ∈ T̃
into smaller elements by either
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• drawing the perpendicular bisectors at the midpoints of edges

of K̃ (cf. Figure IV.3.1) or by

• connecting the barycentre of K̃ with its midpoints of edges (cf.
Figure IV.3.2).

Then the elements in T consist of the unions of all small elements that
share a common vertex in the partition T̃ .
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Figure IV.3.1. Dual mesh (thick lines) via perpendic-
ular bisectors of primal mesh (thin lines)
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Figure IV.3.2. Dual mesh (thick lines) via barycentres
of primal mesh (thin lines)

Thus the elements in T can be associated with the vertices in Ñ .
Moreover, we may associate with each edge in E exactly two vertices

in Ñ such that the line connecting these vertices intersects the given
edge (cf. Figure IV.3.3).



IV.3. COMPRESSIBLE AND INVISCID PROBLEMS 111

The first construction has the advantage that this intersection is
orthogonal. Yet this construction also has some disadvantages which
are not present with the second construction:

• The perpendicular bisectors of a triangle may intersect in a
point outside the triangle. The intersection point is within
the triangle only if its largest angle is at most a right one.
• The perpendicular bisectors of a quadrilateral may not inter-

sect at all. They intersect in a common point inside the quadri-
lateral only if it is a rectangle.
• The first construction has no three dimensional analogue.

IV.3.4. Construction of the numerical fluxes. In order to
construct the numerical flux FT (Ui−1

K ,Ui−1
K′ ) corresponding to the com-

mon boundary of two elements K and K ′ in a finite volume partition,
we split ∂K ∩∂K ′ into straight edges, if n = 2, or plane faces, if n = 3.

Consider such an edge respectively face E. To simplify the notation,
we denote the adjacent elements by K1 and K2 and write U1 and U2

instead of Ui−1
K1

and Ui−1
K2

, respectively.

We assume that T is the dual mesh to a finite element partition T̃
as described in §IV.3.3 (p. 109). Denote by x1 and x2 the two vertices

in Ñ such that their connecting line intersects E (cf. Figure IV.3.3).
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Figure IV.3.3. Examples of a common edge E (thick
lines) of two volumes and corresponding nodes x1 and x2

of the underlying primal mesh together with their con-
necting line (thin lines)

In order to construct the contribution of E to the numerical flux
FT (U1,U2), we split the flux in an advective part FT adv(U1,U2) and
a viscous part FT visc(U1,U2) similar to the splitting of the analytical
flux F.

For the viscous part of the numerical flux we introduce a local
co-ordinate system η1, . . . , ηn such that the direction η1 is parallel to
the direction x1x2 and such that the other directions are tangential to
E. Note, that in general x1x2 will not be orthogonal to E. Then we
express all derivatives in Fvisc in terms of the new co-ordinate system,
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suppress all derivatives not involving η1, and approximate derivatives
with respect to η1 by difference quotients of the form ϕ1−ϕ2

‖x1−x2‖2 . Here,

‖x1−x2‖2 denotes the Euclidean distance of the two points x1 and x2.
For the advective part of the numerical flux we need some addi-

tional notations. Consider an arbitrary vector V ∈ Rm. Denote by
D(Fadv(V) · nK1) ∈ Rm×m the derivative of Fadv(V) · nK1 with re-
spect to V. One can prove that for many systems in divergence form,
including the compressible Navier-Stokes and Euler equations, this ma-
trix can be diagonalized, i.e. there is an invertible m×m matrix Q(V)
and a diagonal m×m matrix ∆(V) such that

Q(V)−1D(Fadv(V) · nK1)Q(V) = ∆(V).

The entries of ∆(V) are the eigenvalues of D(Fadv(V) · nK1).
For any real number z we set

z+ = max{z, 0} , z− = min{z, 0}
and define

∆(V)± =


∆(V)±11 0 . . . 0

0 ∆(V)±22 . . . 0
...

. . .
...

0 0 . . . ∆(V)±mm


and

C(V)± = Q(V)∆(V)±Q(V)−1.

With these notations, the Steeger-Warming approximation of the
advective flux is given by

FT (U1,U2) = C(U1)+U1 + C(U2)−U2.

Another popular numerical flux is the van Leer approximation which
is given by

FT (U1,U2)

=
[1

2
C(U1) + C(

1

2
(U1 + U2))+ − C(

1

2
(U1 + U2))−

]
U1

+
[1

2
C(U2)− C(

1

2
(U1 + U2))+ + C(

1

2
(U1 + U2))−

]
U2.

In both schemes one has to compute the derivatives DFadv(V)·nK1 and
their eigenvalues and their eigenvectors for suitable values of V. At first
sight the van Leer scheme seems to be more costly than the Steeger-
Warming scheme since it requires three evaluations of C(V) instead of
two. For the compressible Navier-Stokes and Euler equations, however,



IV.3. COMPRESSIBLE AND INVISCID PROBLEMS 113

this can be reduced to one evaluation since for these equations Fadv(V)·
nK1 = C(V)V holds for all V.

Example IV.3.3. Consider the Burger’s equation

∂u

∂t
+ u

∂u

∂x
= 0

which, in a certain sense, is a one dimensional counterpart of the Euler
equations and which is a system in divergence form with

m = n = 1, u = u, M(U) = u,

Fadv(u) =
1

2
u2, Fvisc(U) = 0, g(U) = 0.

For this equation the Steger-Warming scheme takes the form

FT ,adv(u1, u2) =


u2

1 if u1 ≥ 0, u2 ≥ 0

u2
1 + u2

2 if u1 ≥ 0, u2 ≤ 0

u2
2 if u1 ≤ 0, u2 ≤ 0

0 if u1 ≤ 0, u2 ≥ 0

while the van Leer scheme reads

FT ,adv(u1, u2) =

{
u2

1 if u1 ≥ −u2

u2
2 if u1 ≤ −u2.

IV.3.5. Relation to finite element methods. The fact that
the elements of a dual mesh can be associated with the vertices of a
finite element partition gives a link between finite volume and finite
element methods:
Consider a function ϕ that is piecewise constant on the dual mesh T ,
i.e. ϕ ∈ S0,−1(T ). With ϕ we associate a continuous piecewise linear

function Φ ∈ S1,0(T̃ ) corresponding to the finite element partition T̃
such that Φ(xK) = ϕK for the vertex xK ∈ Ñ corresponding to K ∈ T .

This link sometimes considerably simplifies the analysis of finite
volume methods. For example it suggests a very simple and natural
approach to a posteriori error estimation and mesh adaptivity for finite
volume methods:

• Given the solution ϕ of the finite volume scheme compute the
corresponding finite element function Φ.
• Apply a standard a posteriori error estimator to Φ.
• Given the error estimator apply a standard mesh refinement

strategy to the finite element mesh T̃ and thus construct a

new, locally refined partition T̂ .

• Use T̂ to construct a new dual mesh T ′. This is the refinement
of T .
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IV.3.6. Discontinuous Galerkin methods. These methods can
be interpreted as a mixture of finite element and finite volume methods.
The basic idea of discontinuous Galerkin methods can be described as
follows:

• Approximate U by discontinuous functions which are poly-
nomials with respect to space and time on small space-time
cylinders of the form K × [(n− 1)τ, nτ ] with K ∈ T .
• For every such cylinder multiply the differential equation by

a corresponding test-polynomial and integrate the result over
the cylinder.
• Use integration by parts for the flux term.
• Accumulate the contributions of all elements in T .
• Compensate for the illegal integration by parts by adding ap-

propriate jump-terms across the element boundaries.
• Stabilize the scheme in a Petrov-Galerkin way by adding suit-

able element residuals.

In their simplest form these ideas lead to the following discrete problem:

Compute U0
T , the L2-projection of U0 onto Sk,−1(T ).

For n ≥ 1 successively find Un
T ∈ Sk,−1(T ) such that∑

K∈T

1

τ

∫
K

M(Un
T ) ·VT dx−

∑
K∈T

∫
K

F(Un
T ) : ∇VT dx

+
∑
E∈E

δEhE

∫
E

JE(nE · F(Un
T )VT )dS

+
∑
K∈T

δKh
2
K

∫
K

div F(Un
T ) · div F(VT )dx

=
∑
K∈T

1

τ

∫
K

M(Un−1
T ) ·VT dx+

∑
K∈T

∫
K

g(·, nτ) ·VT dx

+
∑
K∈T

δKh
2
K

∫
K

g(·, nτ) · div F(VT )dx

holds for all VT .

This discretization can easily be generalized as follows:

• The jump and stabilization terms can be chosen more judi-
ciously.
• The time-step may not be constant.
• The spacial mesh may depend on time.
• The functions UT and VT may be piecewise polynomials of

higher order with respect to to time. Then the term∑
K∈T

∫ nτ

(n−1)τ

∫
K

∂M(UT )

∂t
·VT dxdt
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must be added on the left-hand side and terms of the form
∂M(UT )

∂t
·VT

must be added to the element residuals.





Bibliography

[1] M. Ainsworth, J. T. Oden: A Posteriori Error Estimation in Finite Element
Analysis. Wiley, 2000

[2] V. Girault, P. A. Raviart: Finite Element Approximation of the Navier-Stokes
Equations. Computational Methods in Physics, Springer, Berlin, 2nd edition,
1986

[3] R. Glowinski: Finite Element Methods for Incompressible Viscous Flows.
Handbook of Numerical Analysis Vol. IX, Elsevier 2003

[4] E. Godlewski, P. A. Raviart: Numerical Approximation of Hyperbolic Systems
of Conservation Laws. Springer, 1996

[5] D. Gunzburger, R. A. Nicolaides: Incompressible CFD - Trends and Advances.
Cambridge University Press, 1993
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additional refinement, 63
admissibility, 22
advective flux, 107
affine equivalence, 22

Babuška-Brezzi condition, 37
Babuška, Ivo, 37
Bi-CG-stab, 62
biharmonic equation, 50
blue element, 70
boundary, 9
Brezzi, Franco, 36
Burger’s equation, 113

Cauchy theorem, 9
CG algorithm, 55
checkerboard instability, 36
checkerboard mode, 35
compressible Navier-Stokes equations

in conservative form, 12
compressible Navier-Stokes equations

in non-conservative form, 14
conjugate gradient algorithm, 55
conservation of energy, 11
conservation of mass, 9
conservation of momentum, 10
consistent penalty, 43
Courant triangulation, 31
Crank-Nicolson scheme, 97
Crouzeix-Raviart element, 45

deformation tensor, 12, 18
differential algebraic equation, 98
diffusion step, 103
discontinuous Galerkin method, 114
discrete Stokes operator, 77
divergence, 18
dual mesh, 109
dyadic product, 18
dynamic viscosities, 12

edge bubble function, 28
efficient, 65
element, 21
element bubble function, 27
equal order interpolation, 40
equation of state, 12
equilibration strategy, 69
error estimator, 64
error indicator, 64
Euler equations, 13
Euler’s formula, 46
Eulerian coordinate, 7
Eulerian representation, 7

explicit Euler scheme, 97
explicit Runge-Kutta scheme, 97

face bubble function, 28
finite volume scheme, 109
fixed-point iteration, 86
flux, 107
Friedrichs inequality, 21

Gauß-Seidel algorithm, 58
general adaptive algorithm, 63
gradient, 18
green element, 70

hanging node, 70
hierarchical basis, 26
higher order Hood-Taylor element,

39
Hood-Taylor element, 38

ideal gas, 12
implicit Euler scheme, 97
implicit Runge-Kutta scheme, 97
improved Uzawa algorithm, 56
incompressible, 15
inf-sup condition, 37
inner product, 18
instationary incompressible

Navier-Stokes equations, 15
internal energy, 11

Jacobian determinant, 7
Jacobian matrix, 7

kinematic viscosity, 15

Ladyzhenskaya-Babuška-Brezzi
condition, 37

Ladyzhenskaya, Olga, 37
Lagrangian coordinate, 7
Lagrangian representation, 7
Laplace operator, 18
LBB-condition, 37

marked edge bisection, 71
marking strategy, 63
maximum strategy, 69
mesh coarsening, 71
mesh smoothing, 71
MG algorithm, 57
mini element, 38
mixed finite element discretization of

the Stokes equations, 33
mixed variational formulation of the

Stokes equations, 32
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Morley element, 51
multigrid algorithm, 57

Navier, Pierre Louis Marie Henri, 17
Newton iteration, 87
no-slip condition, 17
nodal shape function, 24
non-linear CG-algorithm of

Polak-Ribière, 88
nonlinear Gauß-Seidel algorithm, 89
numerical flux, 109

operator splitting, 88

partition, 21
path tracking, 87
penalty parameter, 43
Poincaré inequality, 21
Poise, 12
pressure, 12
pressure correction scheme, 55
prolongation operator, 57
purple element, 70

Q1/Q0 element, 35
quasi-interpolation operator, 27

red element, 70
reference cube, 23
reference force, 15
reference length, 15
reference pressure, 15
reference simplex, 23
reference time, 15
reference velocity, 15
regular refinement, 63, 70
reliable, 65
residual error estimator, 64
restriction operator, 57
Reynolds’ number, 16
Reynolds, Osborne, 16
robust error estimator, 104
Rothe’s method, 100
Runge-Kutta scheme, 97

saddle-point problem, 33
SDIRK scheme, 97
shape-regularity, 22
slip condition, 17
smoothing operator, 57
Sobolev space, 20
stabilized bi-conjugate gradient

algorithm, 62

stable, 36
stable discretization, 36
stable element, 36
stable pair, 36
stage number, 97
stationary incompressible

Navier-Stokes equations, 16
Steeger-Warming approximation, 112
Steeger-Warming scheme, 112
stiffness matrix, 29
Stokes, 12
Stokes, George Gabriel, 17
Stokes equations, 16
Stokes operator, 75
stream-function, 50
streamline-diffusion discretization,

84
streamline-diffusion method, 84
strongly diagonal implicit

Runge-Kutta scheme, 97
support, 19
surface element, 10
system in divergence form, 107
system of differential equations in

divergence form, 107

tensorial product, 18
θ-scheme, 96
total energy, 11
trace, 12, 21
trace space, 21
transport step, 102
transport theorem, 8
transport-diffusion algorithm, 102

unit outward normal, 9
unit tensor, 12, 18
up-wind difference, 83
Uzawa algorithm, 55

V-cycle, 58
van Leer approximation, 112
van Leer scheme, 112
Vanka method, 59
velocity, 7
viscous flux, 107
vorticity, 52

W-cycle, 58
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