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Introduction

Motivation

Basic Steps of Finite Element Discretization

I Derive a variational formulation of the differential equation.

I Replace the infinite dimensional test and trial spaces of the
variational problem by finite dimensional subspaces
consisting of functions which are piece-wise polynomials on
a partition into non-overlapping subdomains.

I Build the stiffness matrix and the load vector.

I Solve the resulting linear or nonlinear system of equations.

4/ 203



Adaptive Finite Element Methods

Introduction

Motivation

Basic Steps of A Priori Error Estimation

I General results imply that the discrete problem admits a
unique solution.

I General results also imply that the error of the discrete
solution is proportional to the error of the best
approximation with a constant depending on properties of
the variational problem.

I Bound the error of the best approximation by the error of a
suitable interpolation.

I A priori error estimates do not require the solution of the
discrete problem.
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Introduction

Motivation

Drawbacks of A Priori Error Estimates

I They only yield information on the asymptotic behaviour
of the error.

I They give no information on the actual size of the error nor
on its spatial and temporal distribution.

I The error estimate is globally deteriorated by local
singularities arising from, e.g., re-entrant corners or interior
or boundary layers.
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Introduction

Motivation

Goals of A Posteriori Error Estimation and
Adaptivity

I Extract an easy-to-compute and precise information on the
actual size of the error and its spatial and temporal
distribution using the data of the differential equation and
the computed solution of the discrete problem.

I Obtain an approximation for the solution of the differential
equation with a given tolerance using a (nearly) minimal
amount of unknowns.

7/ 203

Adaptive Finite Element Methods

Introduction

Motivation

Basic Ingredients of A Posteriori Error
Estimates and Adaptivity

I Stability of the variational problem, i.e. a one-to-one
correspondence of load and displacement

I A suitable representation of the error in terms of the
residual associated with the discrete solution and the
strong form of the differential equation

I Element-wise error estimates for suitable interpolation
operators and cut-off functions

I Suitable marking, refinement and coarsening strategies
I The a posteriori error estimates require the explicit

knowledge of the solution of the discrete problem.
I The optimal discrete solution and the associated mesh are

determined in an iterative way by successively improving
the solution and the mesh.
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Introduction

Motivation

Example: Poisson Equation with Singular
Solution

Refinement Elements Unknowns Error

uniform 24576 12033 0.5%
adaptive 11242 5529 0.5%
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Introduction

Motivation

Example: Reaction-Diffusion Equation with an
Interior Layer

Triangles Quadrilaterals
uniform adaptive uniform adaptive

Unknowns 16129 2923 16129 4722
Triangles 32768 5860 0 3830

Quadrilaterals 0 0 16384 2814
Error 3.8% 3.5% 6.1% 4.4%
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Introduction

Outlook

Variational Formulation

I Divergence theorem

I Weak derivatives

I Sobolev spaces

I Properties of Sobolev spaces
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Introduction

Outlook

Discretization

I Finite element partitions

I Finite element spaces

I Basis functions

I Interpolation error estimates

I Building the stiffness matrix and load vector
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Introduction

Outlook

A Posteriori Error Estimates for a Model
Problem

I Residual estimates
I Equivalence of error and residual
I L2-representation of the residual
I Local error estimates for suitable interpolation operators
I Local inverse estimates for suitable cut-off functions

I Estimates based on the solution of auxiliary local discrete
problems

I Estimates based on an averaging of the gradient

I Estimates based on a hierarchical splitting of finite element
spaces

I Estimates based on a suitable H(div)-lifting of the residual
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Introduction

Outlook

A Posteriori Error Estimates for Elliptic
Problems

I General elliptic equations of 2nd order

I Saddle point problems arising from mixed formulations in
elasticity and fluid mechanics

I Non-linear problems
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Introduction

Outlook

A Posteriori Error Estimates for Parabolic
Problems

I Discretization

I Space-time finite elements

I Method of characteristics

I Adaptivity
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Introduction

Outlook

Finite Volume Methods

I Systems in divergence form

I Finite volume discretization

I Finite volume meshes

I Numerical fluxes

I Relation to finite element methods

I Discontinuous Galerkin methods
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Introduction

Outlook

Mesh Adaption

I Basic adaptive algorithm

I Marking strategies

I Mesh refinement

I Mesh coarsening

I Mesh smoothing

I Data structures
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Introduction

Outlook

Solution of Discrete Problems

I Properties of direct and iterative solvers

I Nested algorithm

I Classical iterative solvers

I Conjugate Gradient methods

I Multigrid methods

I Non-linear and indefinite problems
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Introduction

Sobolev Spaces

Sobolev Spaces

I Basic idea

I Integration by parts

I Weak derivatives

I Sobolev spaces

I Properties of Sobolev spaces
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Introduction

Sobolev Spaces

Reaction-Diffusion Equation

−div(A∇u) + αu = f in Ω

u = 0 on Γ

I Ω a polyhedron in Rd with d = 2 or d = 3

I A(x) a symmetric positive definite, d× d matrix for every x
in Ω

I α(x) a non-negative number for every x in Ω
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Introduction

Sobolev Spaces

Divergence Theorem

I Divergence:

divw =
d∑
i=1

∂wi
∂xi

I Divergence Theorem:∫
Ω

divwdx =

∫
Γ
w · ndS

21/ 203

Adaptive Finite Element Methods

Introduction

Sobolev Spaces

Integration by Parts in Several Dimensions I

I The divergence theorem applied to w = v(A∇u) yields∫
Ω
v div(A∇u)dx+

∫
Ω
∇v ·A∇udx

=

∫
Ω

div(vA∇u)dx =

∫
Ω

divwdx =

∫
Γ
w · ndS

=

∫
Γ
vn ·A∇udS.

I If v = 0 on Γ, this implies∫
Ω
∇v ·A∇udx = −

∫
Ω
v div(A∇u)dx.
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Introduction

Sobolev Spaces

Idea of the Variational Formulation

I Multiply the differential equation with a continuously
differentiable function v with v = 0 on Γ

−div(A∇u)(x)v(x) + α(x)u(x)v(x) = f(x)v(x) für x ∈ Ω.

I Integrate the result over Ω∫
Ω

[
−div(A∇u)v + αuv

]
dx =

∫
Ω
fvdx.

I Use integration by parts for the term containing derivatives

−
∫

Ω
div(A∇u)vdx =

∫
Ω
∇v ·A∇udx.
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Introduction

Sobolev Spaces

Problems

I The properties of the functions u and v must be stated
more precisely to obtain a well-posed variational problem.

I Classical properties such as ‘continuously differentiable’ are
too restrictive.

I The notion ‘derivative’ must be generalised.

I In view of the discrete problems, piecewise differentiable
functions should be differentiable in the new weaker sense.
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Introduction

Sobolev Spaces

Integration by Parts in Several Dimensions II

I The divergence theorem applied to w = uvei (ei i-th unit
vector with i-th component 1 and vanishing remaining
components) yields∫

Ω

∂u

∂xi
vdx+

∫
Ω
u
∂v

∂xi
dx

=

∫
Ω

∂(uv)

∂xi
dx =

∫
Ω

divwdx =

∫
Γ
w · ndS

=

∫
Γ
uvnidS.

I If u = 0 or v = 0 on Γ, this implies∫
Ω

∂u

∂xi
vdx = −

∫
Ω
u
∂v

∂xi
dx.
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Introduction

Sobolev Spaces

Weak Derivative

I The function u is said to be weakly differentiable w.r.t. xi
with weak derivative wi, if every continuously differentiable
function v with v = 0 on Γ satisfies∫

Ω
wivdx = −

∫
Ω
u
∂v

∂xi
dx.

I If u is weakly differentiable w.r.t. to all variables
x1, . . . , xd, we call u weakly differentiable and write ∇u for
the vector (w1, . . . , wd) of the weak derivatives.

26/ 203

Adaptive Finite Element Methods

Introduction

Sobolev Spaces

Examples

I Every function which is continuously differentiable in the
classical sense is weakly differentiable and its classical
derivative coincides with the weak derivative.

I Every continuous piecewise dif-
ferentiable function is weakly dif-
ferentiable and its weak deriva-
tive is the piecewise classical
derivative.
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Introduction

Sobolev Spaces

Sobolev Spaces

I ‖v‖ =
{∫

Ω
|v|2dx

} 1
2

denotes the L2-norm.

I L2(Ω) is the Lebesgue space of all functions v with finite
L2-norm ‖v‖.

I H1(Ω) is the Sobolev space of all functios v in L2(Ω),
which are weakly differentiable and for which |∇v|, the
Euclidean norm of ∇v, is in L2(Ω).

I H1
0 (Ω) is the Sobolev space of all functions v in H1(Ω)

with v = 0 on Γ.

I H1
D(Ω) is the Sobolev space of all functions v in H1(Ω)

with v = 0 on a subset ΓD of Γ.
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Introduction

Sobolev Spaces

Examples

I Every bounded function is in L2(Ω).

I v(x) = 1√
x2+y2

is not in L2(B(0, 1)) (B(0, 1) circle with

radius 1 centred at the origin), since∫
B(0,1)

|v(x)|2dx = 2π

∫ 1

0

1

r
dr is not finite.

I Every continuously differentiable function is in H1(Ω).

I A piecewise differentiable function is in H1(Ω), if and only
if it is globally continuous.

I Functions in H1(Ω) must not admit point values.

v(x) = ln(|ln(
√
x2 + y2)|) is in H1(B(0, 1)) but has no

finite value at the origin.
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Introduction

Sobolev Spaces

Variational Problem

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω)∫
Ω

[
∇v ·A∇u+ αuv

]
dx =

∫
Ω
fvdx.
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Introduction

Sobolev Spaces

Properties of the Variational Problem

I The variational problem admits a unique solution.

I The solution of the variational problem is the unique
minimum in H1

0 (Ω) of the energy function
1

2

∫
Ω

[
∇u ·A∇u+ αu2

]
dx−

∫
Ω
fudx.
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Introduction

Finite Element Spaces

Finite Element Spaces

I Partitions

I Finite element spaces

I Local and global degrees of freedom

I Nodal basis functions

I Evaluation of the nodal basis functions
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Introduction

Finite Element Spaces

Reaction-Diffusion Equation

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω)∫
Ω

[
∇v ·A∇u+ αuv

]
dx =

∫
Ω
fvdx.
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Introduction

Finite Element Spaces

Basic Idea

I Subdivide Ω into non-overlapping simple sub-domains
called elements such as triangles, parallelograms,
tetrahedra of parallelepipeds, . . . (partition).

I In the variational problem replace the space H1
0 (Ω) by a

finite dimensional subspace consisting of continuous
functions which are element-wise polynomials (finite
element space).

I This gives rise to a linear system of equations for the
approximation uT of the solution u of the differential
equation.
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Introduction

Finite Element Spaces

Partition

T = {Ki : 1 ≤ i ≤ NT } denotes a partition of Ω with the
following properties:

I Ω is the union of all elements K in T .

I Admissibility: Any two elements K and K ′ in T are either
disjoint or share a vertex or a complete edge or, if d = 3, a
complete face.

admissible •@@
��

��

@@

��

@@

@@

��

not admissible ��

@@

@@

I Affine equivalence: Every element K is a triangle or
parallelogram, if d = 2, or a tetrahedron or parallelepiped,
if d = 3.

35/ 203

Adaptive Finite Element Methods

Introduction

Finite Element Spaces

Remarks

I Curved boundaries can be approximated by piecewise
straight lines or planes.

I The admissibility is necessary to ensure the continuity of
the finite element functions and thus the inclusion of the
finite element spaces in H1

0 (Ω).

I If the admissibility is violated, the continuity of the finite
element functions must be enforced which leads to a more
complicated implementation.

I Partitions can also consist of general quadrilaterals or
hexahedra which leads to a more complicated
implementation.
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Introduction

Finite Element Spaces

Finite Element Spaces

I Rk(K̂) =


span{xα1

1 · . . . · x
αd
d : α1 + . . .+ αd ≤ k}

K̂ reference simplex
span{xα1

1 · . . . · x
αd
d : max{α1, . . . , αd} ≤ k}

K̂ reference cube

I Rk(K) = {p̂ ◦ F−1
K : p̂ ∈ R̂k}

I Sk,−1(T ) = {v : Ω→ R : v
∣∣
K
∈ Rk(K) for all K ∈ T }

I Sk,0(T ) = Sk,−1(T ) ∩ C(Ω)

I Sk,00 (T ) = Sk,0(T ) ∩H1
0 (Ω)

= {v ∈ Sk,0(T ) : v = 0 on Γ}

I Sk,0D (T ) = Sk,0(T ) ∩H1
D(Ω)

= {v ∈ Sk,0(T ) : v = 0 on ΓD}
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Introduction

Finite Element Spaces

Remarks

I The global continuity ensures that Sk,0(T ) ⊂ H1(Ω).

I The polynomial degree k may vary from element to
element; this leads to a more complicated implementation.
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Introduction

Finite Element Spaces

Discrete Problem

Find uT ∈ Sk,00 (T ) (trial function) such that for all

vT ∈ Sk,00 (T ) (test function)∫
Ω

[
∇vT ·A∇uT + αuT vT

]
dx =

∫
Ω
fvT dx.
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Introduction

Finite Element Spaces

Properties of the Discrete Problem

I The discrete problem admits a unique solution.

I The solution of the discrete problem is the unique
minimum in Sk,00 (T ) of the energy function
1

2

∫
Ω

[
∇u ·A∇u+ αu2

]
dx−

∫
Ω
fudx.

I After choosing a basis for Sk,00 (T ) the discrete problem
amounts to a linear system of equations with ≈ kdNT
(NT = ]T ) equations and unknowns.
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Introduction

Finite Element Spaces

Element-wise Degrees of Freedom NK,k
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Finite Element Spaces

Global Degrees of Freedom NT ,k

I NT ,k =
⋃
K∈T

NK,k k = 1 �
��

@
@@

@
@@

• •

• •

• • •

• • •

k = 2 �
��

@
@@

@
@@

• • •
• • •

• • •

• • • • •
• • • • •
• • • • •

I The functions in Sk,0(T ) are uniquely defined by their
values in NT ,k thanks to the admissibility of T .
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Finite Element Spaces

Nodal Basis Functions

The nodal basis function associated
with a vertex z ∈ NT ,k is uniquely
defined by he conditions

I λz,k ∈ Sk,0(T ),

I λz,k(z) = 1,

I λz,k(y) = 0 for all
y ∈ NT ,k \ {z}.

�
��

�
�
�
�
�
�
�

Q
Q

Q
Q

Q
Q
Q

A
AA

A
AA

�
��

�
�
�
�
�

@
@
@

@
@

�
�
�
�
�
�
�

Q
Q

QQ

A
A
A
A
A
A
A

�
�
��
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Finite Element Spaces

Properties

I {λz,k : z ∈ NT ,k} is a basis for Sk,0(T ).

I {λz,k : z ∈ NT ,k \ Γ} is a basis for Sk,00 (T ).
(Degrees of freedom on the boundary Γ are suppressed.)

I λz,k vanishes outside the union of all elements that share
the vertex z.

I The stiffness matrix is sparse.
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Finite Element Spaces

Evaluation of the Nodal Basis Functions by
Transformation to a Reference Element

I Reference elements K̂ @
@@

@
@@

��

H
HHH

��

����

I Determine the nodal basis functions λ̂ẑ,k for the reference

element K̂.

I Determine an affine transformation of the reference element
K̂onto the current element K

K̂ 3 x̂ 7→ x= bK +BK x̂ ∈ K.

I Express λz,k in terms of λ̂ẑ,k using the affine transformation

λz,k(x) = λ̂ẑ,k(x̂).
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Finite Element Spaces

Examples for λ̂ẑ,k
I Reference triangle @@

I k = 1 Vertices 1− x− y, x, y
I k = 2

Vertices (1− x− y)(1− 2x− 2y), x(2x− 1), y(2y − 1)
Midpoints of edges 4x(1− x− y), 4xy, 4y(1− x− y)

I Reference square
I k = 1 Vertices (1− x)(1− y), x(1− y), xy, (1− x)y
I k = 2

Vertices (1− 2x)(1− x)(1− 2y)(1− y),
x(2x− 1)(1− 2y)(1− y), x(2x− 1)y(2y − 1),
(1− 2x)(1− x)y(2y − 1)
Midpoints of edges 4x(1− x)(1− y)(1− 2y),
4x(2x− 1)y(1− y),

4x(1− x)y(2y − 1), 4y(1− y)(1− 2x)(1− x)
Barycentre 16x(1− x)y(1− y)
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Examples for Affine Transformations

I
@
@

â0 â1

â2
−→

�
�
@
@

a0 a1

a2

bK = a0, BK =
(
a1 − a0 , a2 − a0

)
I

â0 â1

â2â3
−→

�
�
�
�

a0 a1

a2a3

bK = a0, BK =
(
a1 − a0 , a3 − a0

)

I @
@@

��

H
HHH

â0 â1
â2

â3

−→
�
�
�
�
�

A
A
A
A
A

��
�

Z
Z
Z
ZZ

a0 a1

a2

a3

bK = a0, BK =
(
a1 − a0 , a2 − a0 , a3 − a0

)
I Similar formulae hold for parallelepipeds.
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Finite Element Spaces

Evaluation Using the Element Geometry (k = 1)

I
@
@

a0 a1

a2
λai,1(x) =

det(x− ai+1 , ai+2 − ai+1)

det(ai − ai+1 , ai+2 − ai+1)

I

a0 a1

a2a3
λai,1(x) =

det(x− ai+2 , ai+3 − ai+2)

det(ai − ai+2 , ai+3 − ai+2)
·

· det(x− ai+2 , ai+1 − ai+2)

det(ai − ai+2 , ai+1 − ai+2)

I

@
@@

��

HHHH
a0 a1

a2

a3

λai,1(x) =
det(x− ai+1,ai+2 − ai+1,ai+3 − ai+1)

det(ai − ai+1,ai+2 − ai+1,ai+3 − ai+1)

I Parallelepipeds similarly with 3 factors corresponding to 3
tetrahedra

I All indices must be taken modulo the number of element
vertices.
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Evaluation Using the Element Geometry (k ≥ 2)

I Every λz,k can be represented as a suitable product of first
order nodal basis functions λai,1 associated with the
element vertices.

I Example: triangle, k = 2
I Vertex ai
λai,2 = λai

[λai
− λai+1

− λai+2
]

I Midpoint z of the edge with endpoints ai und ai+1

λz,2 = 4λaiλai+1

I Example: parallelogramm, k = 2
I Vertex ai
λai,2 = λai [λai − λai+1 + λai+2 − λai+3 ]

I Midpoint z of the edge with endpoints ai und ai+1

λz,2 = 4λai
[λai+1

− λai+2
]

I Barycentre z
λz,2 = 16λa0λa2
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Neumann Boundary Conditions

I The Neumann boundary condition n ·A∇u = g on ΓN ⊂ Γ
gives rise to

I an additional term

∫
ΓN

gvdS on the right-hand side of the

variational problem,

I an additional term

∫
ΓN

gvT dS on the right-hand side of the

discrete problem.

I The additional entries of the load vector are taken into
account when sweeping through the elements.

I Degrees of freedom associated with points on the Neumann
boundary ΓN are additional unknowns.
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A Posteriori Error Estimates

A Posteriori Error Estimates

I A residual error estimator for the model problem

I Other error estimators for the model problem

I Elliptic problems

I Parabolic problems

I Finite volume methods
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A Posteriori Error Estimates

A Residual Error Estimator for the Model Problem

Model Problem: Poisson Equation with Mixed
Dirichlet and Neumann Boundary Conditions

−∆u = f in Ω

u = 0 on ΓD

∂u

∂n
= g on ΓN
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A Residual Error Estimator for the Model Problem

Variational Problem

Find u ∈ H1
D(Ω) such that for all v ∈ H1

D(Ω)∫
Ω
∇u · ∇v =

∫
Ω
fv +

∫
ΓN

gv.
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A Residual Error Estimator for the Model Problem

Discrete Problem

Find uT ∈ S1,0
D (T ) such that for all vT ∈ S1,0

D (T )∫
Ω
∇uT · ∇vT =

∫
Ω
fvT +

∫
ΓN

gvT .
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A Residual Error Estimator for the Model Problem

Residual

The residual R is implicitely defined as the mapping

R : H1
D(Ω) 3 v 7→

∫
Ω
fv +

∫
ΓN

gv −
∫

Ω
∇uT · ∇v︸ ︷︷ ︸

=〈R,v〉

∈ R.
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A Residual Error Estimator for the Model Problem

Equivalence of Error and Residual

I Every v ∈ H1
D(Ω) satifies

〈R, v〉 =

∫
Ω
∇(u− uT ) · ∇v.

I This implies

‖∇(u− uT )‖ = sup
v∈H1

D(Ω);‖∇v‖=1

〈R, v〉.

I The energy norm of the error (displacement) is the same as
the dual norm of the residual (load).
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A Residual Error Estimator for the Model Problem

Consequences

I It suffices to estimate the dual norm of the residual.

I The residual only incorporates the known data of the
differential equation and the computed solution of the
discrete problem.

I The exact evaluation of the dual norm is as costly as the
solution of the variational problem.

I All error estimators strive to approximate as well as
possible the dual norm by an easy-to-compute quantity.
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A Residual Error Estimator for the Model Problem

Basic Ingredients for Deriving a Residual Error
Estimator

I Galerkin orthogonality of the error

I L2-representation of the residual

I Local error estimates for a quasi-interpolation operator

I Local inverse estimates for cut-off functions
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Galerkin Orthogonality

I Since S1,0
D (T ) ⊂ H1

D(Ω) inserting discrete test functions in
the variational problem and subtracting the result from the
discrete problem yields for every vT ∈ S1,0

D (T )∫
Ω
∇(u− uT ) · ∇vT = 0.

I This implies for every vT ∈ S1,0
D (T )

〈R, vT 〉 = 0.
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L2-Representation

Integration by parts element-wise yields for every v ∈ H1
D(Ω)

〈R, v〉 =

∫
Ω
fv +

∫
ΓN

gv −
∑
K∈T

∫
K
∇uT · ∇v

=

∫
Ω
fv +

∫
ΓN

gv +
∑
K∈T

{∫
K

∆uT v −
∫
∂K

nK · ∇uT v
}

=
∑
K∈T

∫
K

(f + ∆uT )︸ ︷︷ ︸
=RK(uT )

v +
∑
E∈EN

∫
E

(g − nE · ∇uT )︸ ︷︷ ︸
=RE(uT )

v

+
∑
E∈EΩ

∫
E
−JE(nE · ∇uT )︸ ︷︷ ︸

=RE(uT )

v.
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A Quasi-Interpolation Operator

I Define the quasi-interpolation operator
IT : L2(Ω)→ S1,0

D (T ) by

IT v =
∑

z∈NΩ∪NN

λzvz with vz =

∫
ωz
vdx∫

ωz
dx

.

I It has the following local approximation properties for all
v ∈ H1

D(Ω)

‖v − IT v‖K ≤ cA1hK |v|1,ω̃K

‖v − IT v‖∂K ≤ cA2h
1
2
K |v|1,ω̃K .

@@

@
@
@

@
@
@
@@

@
@
@@@

I ω̃K is the union of all elements that share a point with K.
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Upper Bounds

The Galerkin orthogonality, the L2-representation, the error
estimates for the quasi-interpolation operator and the
Cauchy-Schwarz inequality for integrals and sums yield for
every v ∈ H1

D(Ω) the upper bound

〈R, v〉 ≤ c∗
{∑
K∈T

h2
K‖RK(uT )‖2K

+
∑
E∈ET

hE‖RE(uT )‖2E
} 1

2 ‖∇v‖.
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Bubble Functions

I Define element and face bubble functions by

ψK = αK
∏
z∈NK

λz, ψE = αE
∏
z∈NE

λz.

I The weights αK and αE are determined by the conditions

max
x∈K

ψK(x) = 1, max
x∈E

ψE(x) = 1.

I K is the support of ψK ;
ωE is the support of ψE .

��

@@

@@

��
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Inverse Estimates for the Bubble Functions

For all elements K, all faces E and all polynomials v the
following inverse estimates are valid

cI1,k‖v‖K ≤ ‖ψ
1
2
Kv‖K ,

‖∇(ψKv)‖K ≤ cI2,kh−1
K ‖v‖K ,

cI3,k‖v‖E ≤ ‖ψ
1
2
Ev‖E ,

‖∇(ψEv)‖ωE ≤ cI4,kh
− 1

2
E ‖v‖E ,

‖ψEv‖ωE ≤ cI5,kh
1
2
E‖v‖E .
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Lower Bounds

Inserting ψKRK(uT ) and ψERE(uT ) as test functions in the
L2-representation and taking into account the inverse estimates
for the bubble functions yields the lower bounds

hK‖RK(uT )‖K ≤ c1‖∇(u− uT )‖K + c2hK‖f − fK‖K

h
1
2
E‖RE(uT )‖E ≤ c3‖∇(u− uT )‖ωE + c4hK‖f − fK‖ωE

+ c5h
1
2
E‖g − gE‖E∩ΓN

with fK =
1

|K|

∫
K
f and gE =

1

|E|

∫
E
g.
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Residual Error Estimator

ηR,K =
{
h2
K‖fK + ∆uT ‖2K

+
1

2

∑
E∈EK,Ω

hE‖JE(nE · ∇uT )‖2E

+
∑

E∈EK,N

hE‖gE − nE · ∇uT ‖2E
} 1

2

with fK =
1

|K|

∫
K
f and gE =

1

|E|

∫
E
g
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Structure of the Error Estimator

I The approximations fK and gE of the data f and g are
needed for establishing a lower bound for the error. They
also facilitate the evaluation of ηR,K .

I fK + ∆uT is the residual of the discrete solution w.r.t. the
strong form of the differential operator.

I JE(nE · ∇uT ) and gE − nE · ∇uT are the boundary terms
which appear in the integration by parts relating the weak
and strong form of the differential equation.
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Residual A Posteriori Error Estimates

‖∇(u− uT )‖ ≤ c∗
{∑
K∈T

η2
R,K+

∑
K∈T

h2
K‖f − fK‖2K

+
∑
E∈EN

hE‖g − gE‖2E
} 1

2

ηR,K ≤ c∗
{
‖∇(u− uT )‖2ωK
+

∑
K′∈T ;EK′∩EK 6=∅

h2
K′‖f − fK′‖2K′

+
∑

E∈EK,N

hE‖g − gE‖2E
} 1

2
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Structure of the Error Estimates

I The data oscillations f − fK and g − gE can be computed
explicitly and are often of higher order.

I The constants c∗ and c∗ depend on the shape parameter of
the partition.

I The upper bound is a global one since it is related to the
inverse of the differential operator which is a global one
(local load → global displacement).

I The lower bound is a local one since it is related to the
differential operator which is a local one (local
displacement → local load).
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A Catalogue of Error Estimators

I Auxiliary local discrete problems associated with elements
of higher order on patches consisting of

I elements sharing a given vertex,
I elements adjacent to a given element,
I a single element

I Hierarchical estimates

I Averaging of the gradient (ZZ-estimator)

I H(div)-lifting of the residual
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Auxiliary Dirichlet Problems on ωz
@
@@�
����

@@
@@
��

•

I Set Vz = span{ϕψK , ρψE , σψE′ : K ∈ T , z ∈ NK ,
E ∈ EΩ, z ∈ NE , E′ ∈ EN , E′ ⊂ ∂ωz, ϕ, ρ, σ ∈ P1}.

I Find vz ∈ Vz such that for all w ∈ Vz∫
ωz

∇vz · ∇w =
∑
K⊂ωz

∫
K
fKw

+
∑

E⊂ΓN∩∂ωz

∫
E
gEw −

∫
ωz

∇uT · ∇w.

I Set ηD,z = ‖∇vz‖ωz .
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Auxiliary Dirichlet Problems on ωK
@
@@

�
��

��@@

I Set ṼK = span{ϕψK′ , ρψE , σψE′ : K ′ ∈ T , EK ∩ EK′ 6= ∅,
E ∈ EK , E′ ∈ EN , E′ ⊂ ∂ωK , ϕ, ρ, σ ∈ P1}.

I Find ṽK ∈ ṼK such that for all w ∈ ṼK∫
ωK

∇ṽK · ∇w =
∑

K′⊂ωK

∫
K′
fK′w

+
∑

E⊂ΓN∩∂ωK

∫
E
gEw −

∫
ωK

∇uT · ∇w.

I Set ηD,K = ‖∇ṽK‖ωK .
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Auxiliary Neumann Problems on K

I Set VK = span{ϕψK , ρψE : E ∈ EK\ED, ϕ, ρ ∈ P1}.
I Find vK ∈ VK such that for all w ∈ VK∫

K
∇vK · ∇w =

∫
K

(fK + ∆uT )w

−1

2

∑
E∈EK∩EΩ

∫
E
JE(nE · ∇uT )w

+
∑

E∈EK∩EN

∫
E

(gE − nE · ∇uT )w.

I Set ηN,K = ‖∇vK‖K .
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Hierarchical Estimates
Basic Idea

I Approximately solve the discrete problem using a more
accurate finite element space and compare this solution
with the original discrete solution.

I To reduce the computational cost of the new problem, the
new finite element space is decomposed into the original
one and a nearly orthogonal higher order complement; only
the contribution corresponding to the complement is
computed.

I To further reduce the computational cost, the original
bilinear form is replaced by an equivalent one which leads
to a diagonal stiffness matrix.
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Hierarchical Estimates
Estimator

I For every element or edge S set

ηS =
1

‖∇ψS‖

{∫
Ω
fψS +

∫
ΓN

gψS −
∫

Ω
∇uT · ∇ψS

}
.

I A hierarchical error estimator is then given by

ηH,z =
{ ∑
K⊂ωz

η2
K +

∑
E⊂ωz

η2
E

} 1
2
.
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Averaging of the Gradient (ZZ-Estimator)

I Compare the piece-wise constant gradient ∇uT with a
continuous piece-wise linear gradient GuT obtained by
taking a suitable average of the constant values around a
given vertex.

I The averaged gradient is given by

GuT (z) =
∑
K⊂ωz

|K|
|ωz|
∇uT

∣∣
K

.

I The resulting ZZ-error estimator takes the form

ηZ,K = ‖GuT −∇uT ‖K .

76/ 203



Adaptive Finite Element Methods

A Posteriori Error Estimates

Other Error Estimators for the Model Problem

H(div)-Lifting of the Residual

I There is a vector field ρT which admits a divergence
element-wise and which satisfies for all v ∈ H1

D(Ω)∫
Ω
ρT · ∇v =

∫
Ω
fv +

∫
ΓN

gv −
∫

Ω
∇uT · ∇v.

I ρT can be constructed by sweeping through the elements
and may be chosen from suitable finite dimensional spaces.

I The resulting error estimator is given by

ηT = ‖ρT ‖.
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Construction of ρT
Single Element

I Assume that F ∈ L2(K) and G ∈ L2(∂K) satisfy∫
K
F +

∫
∂K

G = 0.

I Then there is a vector field ρK with
I −div ρK = F on K,
I ρK · nK = G on ∂K.

I If F and G are polynomials, ρK is a polynomial too and
can be computed by solving an appropriate linear system
of equations.
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Construction of ρT
@
@@�
����

@@
@@
��

•
Patch of Elements

I Sweep through the elements K sharing a given vertex z.

I Apply the previous result to
F = λzRK(uT ) and

G =


λzR∂K(uT ) on (∂K ∩ σz) \ (E ∪ E′),
αE′ on E′,

λzR∂K(uT )− αE on E,

0 on ∂K \ σz

�
�
�

�
�
�

�
�
�@

@
@@

@
@

�
�
�

�
�
�

�
�
�@

@
@@

@
@

�
�
�

�
�
�

@
@
@

@
@
@
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Construction of ρT
Global Assembly

I The previous step yields vector fields ρz.

I Set

ρT =
∑
z

ρz.

I Then∫
Ω
ρT · ∇v =

∫
Ω
fv +

∫
ΓN

gv −
∫

Ω
∇uT · ∇v.
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Equivalence of the Error Estimators

I All estimators are equivalent to the residual estimator in
that they can be bounded from above and from below by
constant multiples of the latter.

I The evaluation of the residual estimator is less costly.

I The residual estimator is well suited for controlling the
mesh adaptation process.

I The estimators based on the solution of auxiliary problems
often yield more accurate numerical values for the error.

I Contrary to the other estimators, the ZZ-estimator and the
estimator based on the H(div)-lifting are not robust w.r.t.
to dominant low order terms in the differential equation.
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Elliptic Problems

I Linear elliptic problems of 2nd order

I Saddle-point problems

I Non-linear problems
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Linear Elliptic Equations of 2nd Order
The Setting

I Differential equation:

−div(A∇u) + a · ∇u+ αu = f in Ω

u = 0 on ΓD

n ·A∇u = g on ΓN

I Key parameters:
I ε a positive lower bound for the smallest eigenvalue of the

diffusion matrix A,
I β a non-negative lower bound for α− 1

2 div a

I An error estimator is called robust if it gives upper and
lower bounds for the error which are uniform w.r.t. the
parameters ε and β.
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Linear Elliptic Equations of 2nd Order
A Robust Residual Error Estimator

I Define element residuals, edge residuals and weighting
factors by

I RK(uT ) = fK + div(A∇uT )− a · ∇uT − αuT ,

I RE(uT ) =


−JE(nE ·A∇uT ) if E ∈ EΩ,
g − nE ·A∇uT if E ∈ EN ,
0 if E ∈ ED,

I αS = min{ε− 1
2hS , β

− 1
2 } for S ∈ T ∪ E .

I A robust residual error estimator is then given by

ηR,K =
{
α2
K‖RK(uT )‖2K +

∑
E∈EK

ε−
1
2αE‖RE(uT )‖2E

} 1
2
.
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Mixed Formulation of the Poisson Equation

I Differential equation

−∆u = f in Ω

u = 0 on Γ

Mixed formulation

σ = ∇u in Ω

div σ = f in Ω

u = 0 on Ω

I Error estimator

ηK =
{
‖div σT + f‖2K + h2

K‖σT −∇uT ‖2K

+
∑
E⊂∂K

hE‖JE(σT · tE)‖2E
} 1

2
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Equations of Linearized Elasticity

I The displacement formulation can be handled in the same
way as the Poisson equation.

I The displacement formulation breaks down for nearly
incompressible materials which is reflected by the so-called
locking phenomenon.

I The locking phenomenon can be overcome by using a mixed
formulation similar to the one of the Poisson equation.

I The corresponding residual error estimator is similar to the
one for the mixed formulation of the Poisson equation.

I Special attention must be paid to the robustness of the
error estimator w.r.t. to the Lamé parameters.
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Fluid Mechanics

I A residual error estimator consists of the element residuals
of the momentum and the continuity equation and of the
edge residuals of the momentum equation.

I The terms corresponding to the momentum equation
(−∆u +Re(u · ∇)u +∇p = f) have the same weighting
factors as for the model problem.

I The term corresponding to the continuity equation
(divu = 0) has the weighting factor 1.

I The correct scaling of the weighting factors can be deduced
by a dimensional analysis.

I It is not possible to separate the errors of the velocity and
pressure approximation.
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Non-Linear Problems

I Residual error estimators are constructed in the same way
as for linear problems.

I Auxiliary local problems are based on a linearization of the
non-linear problem; the non-linearity only enters into the
right-hand side of the auxiliary problem.

I A posteriori error estimates only make sense for well-posed
problems which exhibit a continuous dependence of the
solution (displacement) on the right-hand side (load).

I Bifurcation points and turning points re-
quire special techniques.

-

6
•
•
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Parabolic Problems

I Discretizations

I Space-time finite elements

I Method of characteristics

I Adaptivity

89/ 203

Adaptive Finite Element Methods

A Posteriori Error Estimates

Parabolic Problems

Linear Parabolic Equation of 2nd Order

∂u

∂t
− div(A∇u) + a · ∇u+ αu = f in Ω×(0, T ]

u = 0 on Γ×(0, T ]

u(·, 0)= u0 in Ω

I Ω polyhedron in Rd with d = 2 or d = 3

I A(x, t) symmetric positive definite matrix for every x in Ω,
t in (0, T ]

I a(x, t) vector in Rd for every x in Ω, t in (0, T ]

I α(x, t) non negative number for every x in Ω, t in (0, T ]

I α(x, t)− 1
2 div a(x, t) ≥ 0 for every x in Ω, t in (0, T ]
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Standard Discretizations

I Three major approaches:
I method of lines,
I Rothe’s method,
I space-time finite elements.

I All approaches yield the same result for classical uniform
partitions.

I The method of lines is very inflexible and not suited for
adaptivity.

I The analysis of Rothe’s method is rather intricate since it
requires differentiability properties w.r.t. time which often
are not available.

I Space-time finite element methods allow a posteriori error
estimates and are well suited for space-time adaptivity.
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Method of Lines

I Choose a fixed partition T of Ω and an associated finite
element space X(T ) (space discretization); denote by AT
and fT the corresponding stiffness matrix and load vector.

I The space discretization then yields the following ODE
system:

duT
dt

= fT −AT uT .

I Apply to this system a standard ODE solver (implicit
Euler, Crank-Nicolson, Runge-Kutta, . . .) (time
discretization).

I The Crank-Nicolson method, e.g., yields

unT − u
n−1
T

τ
=

1

2

(
fnT −AT unT + fn−1

T −AT un−1
T
)
.
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Rothe’s Method

I Interpret the parabolic problem as an ODE in infinite
dimension and apply to this a standard ODE solver
(implicit Euler, Crank-Nicolson, Runge-Kutta, . . .) (time
discretization).

I Each time step then requires the solution of a stationary
elliptic equation which is discretized using a standard finite
element method (space discretization).

I The Crank-Nicolson method, e.g., yields the elliptic
equations

un − un−1

τ
+

1

2

(
−div(A∇un) + a · ∇un + αun −

div(A∇un−1) + a · ∇un−1 + αun−1
)

=
1

2

(
fn + fn−1

)
.
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Space-Time Finite Elements
Meshes

-

6

t0
t1

t2

...

tNI

T0

TNI
I I = {[tn−1, tn] : 1 ≤ n ≤
NI}: partition of [0, T ]
with 0 = t0 < . . . < tNI = T
(The tn are determined
successively while
advancing in time.)

I τn = tn − tn−1

I Tn: partitions of Ω

I Xn = X(Tn): associated
finite element spaces
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Space-Time Finite Elements
Discretization

Compute an approximation u0
T0 ∈ X0 of u0 and for n = 1, 2, . . .

successively find unTn ∈ Xn (trial function) such that with

unθ = θunTn + (1− θ)un−1
Tn−1

every vnTn ∈ Xn (test function)
satisfies: ∫

Ω

1

τn
(unTn − u

n−1
Tn−1

)vTndx+

∫
Ω
∇unθ ·A∇vTndx

+

∫
Ω
a · ∇unθvTndx+

∫
Ω
αunθvTndx

=

∫
Ω
fvTndx
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Space-Time Finite Elements
Choice of θ

I θ = 1
2 corresponds to the Crank-Nicolson method.

I θ = 1 corresponds to the implicit Euler scheme.

I θ = 0 corresponds to the explicit Euler scheme.

I To ensure stability one should choose θ ≥ 1
2 .
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Space-Time Finite Elements
Properties

I If θ > 0, every time step requires the solution of a linear
system of equations which corresponds to a finite element
discretization of a stationary elliptic equation.

I If a 6= 0, the stiffness matrix is not symmetric and
indefinite.

I When using an iterative solver, un−1
Tn−1

is a good initial guess
for the computation of unTn .

I The discretization error is of the order h2 + τγ with γ = 2
for θ = 1

2 and γ = 1 for θ 6= 1
2 (h maximal mesh size in

space, τ maximal mesh size in time).
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Method of Characteristics
Idea

I For every point (x∗, t∗) ∈ Ω× (0, T ] the following ODE
(characteristic equation) admits a unique solution on the
interval (0, t∗)

d

dt
x(t;x∗, t∗) = a(x(t;x∗, t∗), t), x(t∗;x∗, t∗) = x∗.

I U(x∗, t) = u(x(t;x∗, t∗), t) satisfies

dU

dt
=
∂u

∂t
+ a · ∇u.

I Hence the differential equation can be put in the form

dU

dt
−div(A∇u) + αu = f .

I The reaction-diffusion equation and the material derivative
are discretized separately.
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Method of Characteristics
Re-Interpolation

z•

•
xn−1
z

z•

•
xn−1
z

I Denote by Nn the degrees of
freedom associated with Xn.

I For every n and every z ∈ Nn
apply a classical ODE solver
(implicit Euler, Crank-Nicolson,
Runge-Kutta, . . .) to the
characteristic equation with
(x∗, t∗) = (z, tn) and denote by
xn−1
z the resulting approximation

for x(tn−1; z, tn).
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Method of Characteristics
Discrete Problem

I Find ũn−1
Tn ∈ Xn such that ũn−1

Tn (z) = un−1
Tn−1

(xn−1
z ) holds for

all z ∈ Nn.

I Find unTn ∈ Xn such that every vnTn ∈ Xn satisifes

1

τn

∫
Ω
unTnv

n
Tndx+

∫
Ω
∇unTn ·A∇v

n
Tndx+

∫
Ω
αunTnv

n
Tndx

=
1

τn

∫
Ω
ũn−1
Tn vnTndx+

∫
Ω
fvnTndx
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Method of Characteristics
Properties

I The method of characteristics, alias transport-diffusion
algorithm, is well suited for the solution of parabolic
equations with a large convection term.

I It decouples the discretization of the temporal and
convective derivatives from the discretization of the other
derivatives.

I It requires the solution of ODEs and of reaction-diffusion
problems with a symmetric positive definite stiffness
matrix.
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A Residual Error Estimator

I En: Edges (d = 2) or faces (d = 3) of elements in Tn
I space indicator

ηnh =
{ ∑
K∈Tn

h2
K

∫
K

∣∣f(x, tn)− 1

τn
(unTn − u

n−1
Tn−1

)

+ div(A∇unTn)− a · ∇unTn − αu
n
Tn
∣∣2dx

+
∑
E∈En

hE

∫
E

∣∣[nE ·A∇unTn]E∣∣2dS} 1
2

I time indicator

ηnτ =
{∫

Ω
|∇unTn −∇u

n−1
Tn−1
|2dx

} 1
2
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Remarks

I ηnh consists of element residuals and inter-element jumps.

I The element residuals correspond to the strong form of the
differential equation.

I The jump terms are the same as for the corresponding
elliptic problem (time derivative suppressed).

I ηnτ is a jump term w.r.t. time.
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A Posteriori Error Estimates

I Denote by uI the continuous piece-wise linear function
w.r.t. time which coincides with unTn at time tn.

I Then the error satisfies{
max

0≤t≤T

∫
Ω
|u− uI |2dx+

∫ T

0

∫
Ω
|∇u−∇uI |2dxdt

} 1
2

≈
{∫

Ω
|u0
T0 − u0|2dx+

NI∑
n=1

τn
[(
ηnh
)2

+
(
ηnτ
)2]} 1

2
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Remarks

I ≈ denotes upper and lower bounds up to multiplicative
constants.

I These constants depend on the polynomial degree and the
shape parameters of the partitions.

I The upper bound is global w.r.t. space and time.

I The lower bound is global w.r.t. space and local w.r.t.
time.

I ηnh controls the spacial error.

I ηnτ controls the temporal error.
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Space-Time Adaptivity

0. Given: tolerance ε, partition T0, time step τ1

1. Adapt T0 such that

∫
Ω
|u0
T0 − u0|2dx ≤

1

4
ε2.

Set n = 1, t1 = τ1.

2. Solve the discrete problem for time tn and compute the
indicators ηnh and ηnτ .

3. If ηnτ >
ε

2
√
T

, replace tn by 1
2(tn−1 + tn) and return to step

2 (reducing τn).

4. Adapt Tn such that ηnh ≤
ε

2
√
T

.

If ηnτ <
ε

4
√
T

, double τn.

5. If tn = T ist, stopp.
Otherwise set tn+1 = min{T, tn + τn}, augment n by 1 and
return to step 2.
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Properties

I The algorithm yields a solution with{∫
Ω
|u0
T0 − u0|2dx+

NI∑
n=1

τn
[(
ηnh
)2

+
(
ηnτ
)2]} 1

2 ≤ ε.

I When adapting Tn the quantities tn, τn and ηnτ are kept
fixed.

I The adaptation of Tn eventually requires the repeated
solution of discrete problems and the computation of ηnh .
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Finite Volume Methods

I Systems in divergence form

I Finite volume discretization

I Finite volume meshes

I Numerical fluxes

I Relation to finite element methods

I Discontinuous Galerkin methods
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Systems in Divergence Form
I Domain: Ω ⊂ Rd
I Source: g : Rm × Ω× (0,∞)→ Rm
I Mass: M : Rm → Rm
I Flux: F : Rm → Rm×d
I Initial value: U0 : Ω→ Rm
I Problem: Find U : Ω× (0,∞)→ Rm such that under

suitable boundary conditions

∂M(U)

∂t
+ divF(U) = g(U, x, t) in Ω× (0,∞)

U(·, 0) = U0 in Ω

I divF(U) =
( d∑
j=1

∂F(U)i,j
∂xj

)
1≤i≤m
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Advective and Viscous Fluxes

I The flux F splits into two components:

F = Fadv + Fvisc.

I Fadv is called advective flux and does not contain any
derivatives.

I Fvisc is called viscous flux and contains spacial derivatives.

I The advective flux models transport or convection
phenomena.

I The viscous flux models diffusion phenomena.
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Examples

I Linear parabolic equations of 2nd order:

I
∂u

∂t
− div(A∇u) + a · ∇u+ αu = f

I m = 1
I U = u
I M(U) = u
I Fadv(U) = au
I Fvisc(U) = −A∇u
I g(U) = f − αu+ (div a)u

I Euler equations

I Compressible Navier-Stokes equations

I Burger’s equation
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Finite Volume Discretization
First Step

I Choose a time step τ > 0.

I Choose a partition T of Ω into arbitrary non-overlapping
polyhedra.

I Fix n ∈ N∗ and K ∈ T .

I Integrate the system over K × [(n− 1)τ, nτ ]:∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
dxdt+

∫ nτ

(n−1)τ

∫
K

divF(U)dxdt

=

∫ nτ

(n−1)τ

∫
K
g(U, x, t)dxdt
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Finite Volume Discretization
Second Step

Apply integration by parts to the terms on the left-hand side:∫ nτ

(n−1)τ

∫
K

∂M(U)

∂t
dxdt =

∫
K
M(U(x, nτ))dx

−
∫
K
M(U(x, (n− 1)τ))dx∫ nτ

(n−1)τ

∫
K

divF(U)dxdt =

∫ nτ

(n−1)τ

∫
∂K

F(U) · nKdSdt
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Finite Volume Discretization
Third Step

I Assume that U is piecewise constant w.r.t space and time.

I Denote by Un
K and Un−1

K the value of U on K at times nτ
and (n− 1)τ :∫

K
M(U(x, nτ))dx ≈ |K|M(Un

K)∫
K
M(U(x, (n− 1)τ))dx ≈ |K|M(Un−1

K )∫ nτ

(n−1)τ

∫
∂K

F(U) · nKdSdt ≈ τ
∫
∂K

F(Un−1
K ) · nKdS∫ nτ

(n−1)τ

∫
K
g(U, x, t)dxdt ≈ τ |K|g(Un−1

K , xK , (n− 1)τ)
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Finite Volume Discretization
Fourth Step

Approximate the boundary integral for the flux by a numerical
flux:

τ

∫
∂K

F(Un−1
K ) · nKdS

≈ τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|FT (Un−1
K ,Un−1

K′ )
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Resulting Finite Volume Method

I For every element K ∈ T compute

U0
K =

1

|K|

∫
K
U0(x).

I For n = 1, 2, . . . successively compute for every element
K ∈ T

M(Un
K) = M(Un−1

K )

−τ
∑
K′∈T

∂K∩∂K′∈E

|∂K ∩ ∂K ′|
|K|

FT (Un−1
K ,Un−1

K′ )

+τg(Un−1
K , xK , (n− 1)τ).
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Possible Modifications

I The time step may be variable.

I The partition of Ω may differ from time step to time step.

I The approximation of Un
K may not be constant.
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Open Tasks

I Construct the partition T .

I Construct the numerical flux FT .

I Take boundary conditions into account.
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Construction of the Partition

I Often the partition T is constructed as a dual mesh
corresponding to an admissible primal finite element mesh
T̃ .

I In two space dimensions (d = 2) there are two major
approaches for the construction of dual meshes:

I For every element K̃ ∈ T̃ draw the perpendicular bisectors.
I Connect the barycentre of every element K̃ ∈ T̃ with the

midpoints of its edges.
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Perpendicular Bisectors and Barycentres

Perpendicular Bisectors
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Properties of Dual Meshes

I Every element in
K ∈ T corresponds to
an element vertex xK
of T̃ and vice versa.

I For every edge E of T
there are two element
vertices xE,1, xE,2 of T̃
such that the line
segment xE,1 xE,2
intersects E.
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Advantages and Disadvantages of Perpendicular
Bisectors

I The line segment xE,1 xE,2 and the edge E are
perpendicular.

I The perpendicular bisectors of a triangle may intersect in a
point outside of the triangle. The intersection of the
perpendicular bisectors is inside the triangle, if and only if
the triangle is acute.

I The perpendicular bisectors of a quadrilateral may not
intersect at all. The perpendicular bisectors of a
quadrilateral intersect in a common point, if and only if the
quadrilateral is a rectangle.

I The construction with perpendicular bisectors is restricted
to two space dimensions.
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Construction of the Numerical Fluxes
Notations and Assumptions

I Assume that T is a dual mesh corresponding to a primal
finite element mesh T̃ .

I For every edge or face E of T denote by
I K1 and K2 the adjacent volumes,
I U1, U2 the values Un−1

K1
and Un−1

K2
,

I x1, x2 the element vertices in T̃ such that the line segment
x1 x2 intersects E.

I Split the numerical flux FT (U1,U2) into a viscous
numerical flux FT ,visc(U1,U2) and an advective numerical
flux FT ,adv(U1,U2).
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Approximation of Viscous Fluxes

I Introduce a local coordinate system
η1, . . . , ηd such that η1 is parallel to
x1 x2 and such that the remaining
coordinates are tangential to E. �

�
�
��

•

•
η1

η2
���6

I Express all derivatives in Fvisc in terms of derivatives
corresponding to the new coordinate system.

I Suppress all derivatives except those corresponding to η1.

I Replace derivatives corresponding to η1 by difference
quotients of the form ϕ1−ϕ2

|x1−x2| .
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Spectral Decomposition of Advective Fluxes

I Denote by C(V) = D(Fadv(V) · nK1) ∈ Rm×m the
derivative of Fadv(V) · nK1 w.r.t. V.

I Assume that this matrix can be diagonalized (Euler and
Navier-Stokes equations fulfil this assumption.)

Q(V)−1C(V)Q(V) = ∆(V)

with an invertible matrix Q(V) ∈ Rm×m and a diagonal
matrix ∆(V) ∈ Rm×m.

I Set z+ = max{z, 0}, z− = min{z, 0} and

∆(V)± = diag
(
∆(V)±11, . . . ,∆(V)±mm

)
,

C(V)± = Q(V)∆(V)±Q(V)−1.
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Approximation of Advective Fluxes

I Steger-Warming

FT ,adv(U1,U2) = C(U1)+U1 + C(U2)−U2

I van Leer

FT ,adv(U1,U2)

=
[1

2
C(U1) + C(

1

2
(U1 + U2))+ − C(

1

2
(U1 + U2))−

]
U1

+
[1

2
C(U2)− C(

1

2
(U1 + U2))+ + C(

1

2
(U1 + U2))−

]
U2
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Properties

I Both approximations require the computation of
DFadv(V) · nK1 together with its eigenvalues and
eigenvectors for suitable values of V.

I The approach of van Leer usually is more costly than the
one of Steger-Warming since it requires three evaluations of
C(V) instead of two.

I This extra cost can be avoided for the Euler and
Navier-Stokes equations since these have the particular
structure Fadv(V) · nK1 = C(V)V.
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A One-Dimensional Example

I Burger’s equation:
∂u

∂t
+ u

∂u

∂x
= 0

I Fadv(u) = 1
2u

2, C(u) = u, C(u)± = u±

I Steger-Warming:

FT ,adv(u1, u2) =


u2

1 if u1 ≥ 0, u2 ≥ 0

u2
1 + u2

2 if u1 ≥ 0, u2 ≤ 0

u2
2 if u1 ≤ 0, u2 ≤ 0

0 if u1 ≤ 0, u2 ≥ 0

I van Leer:

FT ,adv(u1, u2) =

{
u2

1 if u1 ≥ −u2

u2
2 if u1 ≤ −u2
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Relation to Finite Element Methods

I Suppose that T is a dual mesh corresponding to a primal
finite element mesh T̃ .

I Then there is a one-to-one correspondence between
piecewise constant functions associated with T and
continuous piecewise linear functions associated with T̃ :

S0,−1(T )m 3 UT ↔ ŨT̃ ∈ S
1,0(T̃ )m

UT |K = ŨT̃ (xK) for all K ∈ T .
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A Simple Adaptive Algorithm

I Given a finite volume discretization and its solution UT ,
compute the corresponding finite element function ŨT̃ .

I Apply a standard error estimator to ŨT̃ .

I Based on this error estimator apply a standard mesh
adaptation process to T̃ and thus obtain a modified
partition T̂ .

I Take T̂ as primal mesh for the construction of a new dual
mesh T ′. This is the refinement / coarsening of T .
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Idea of Discontinuous Galerkin Methods

I Approximate U by discontinuous functions which are
polynomials w.r.t. space and time on small space-time
cylinders of the form K × [(n− 1)τ, nτ ] with K ∈ T .

I For every such cylinder multiply the differential equation
by a corresponding test-polynomial and integrate the result
over the cylinder.

I Use integration by parts for the flux term.

I Accumulate the contributions of all elements in T .

I Compensate for the illegal partial integration by adding
appropriate jump-terms across the element boundaries.

I Stabilize the scheme in a Petrov-Galerkin way by adding
suitable element residuals.
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A Simple Discontinuous Galerkin Scheme
I Compute U0

T , the L2-projection of U0 onto Sk,−1(T ).
I For n ≥ 1 find Un

T ∈ Sk,−1(T ) such that for all VT∑
K∈T

1

τ

∫
K
M(Un

T ) ·VT −
∑
K∈T

∫
K
F(Un

T ) : ∇VT

+
∑
E∈E

δEhE

∫
E
JE(nE · F(Un

T )VT )

+
∑
K∈T

δKh
2
K

∫
K

divF(Un
T ) · divF(VT )

=
∑
K∈T

1

τ

∫
K
M(Un−1

T ) ·VT +
∑
K∈T

∫
K
g(·, nτ) ·VT

+
∑
K∈T

δKh
2
K

∫
K
g(·, nτ) · divF(VT )
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Possible Modifications

I The jump and stabilization terms can be chosen more
judiciously.

I The time-step may not be constant.

I The spatial mesh may depend on time.

I The functions UT and VT may be piece-wise polynomials
of higher order w.r.t. to time. Then the term∑
K∈T

∫ nτ

(n−1)τ

∫
K

∂M(UT )

∂t
·VT must be added on the

left-hand side and terms of the form
∂M(UT )

∂t
·VT must

be added to the element residuals.
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Implementation

I Mesh adaptation

I Data structures
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Mesh Adaptation

Mesh Adaptation

I The general adaptive algorithm

I Mesh refinement

I Mesh coarsening

I Mesh smoothing
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The General Adaptive Algorithm

The General Adaptive Algorithm

0. Given: The data of a partial differential equation and a
tolerance ε.
Sought: A numerical solution with an error less than ε.

1. Construct an initial coarse mesh T0 representing sufficiently
well the geometry and data of the problem; set k = 0.

2. Solve the discrete problem on Tk.
3. For every element K in Tk compute an a posteriori error

indicator.

4. If the estimated global error is less than ε then stop.
Otherwise decide which elements have to be refined or
coarsened and construct the next mesh Tk+1. Replace k by
k + 1 and return to step 2.
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Basic Ingredients

I An error indicator which furnishes the a posteriori error
estimate.

I A refinement strategy which determines which elements
have to be refined or coarsened and how this has to be
done.
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Basic Ingredients for Mesh Refinement
I The mesh refinement requires two key-ingredients:

I a marking strategy that decides which elements should be
refined,

I refinement rules which determine the actual subdivision of a
single element.

I To maintain the admissibility of the partitions, i.e. to avoid
hanging nodes, the refinement process proceeds in two
stages:

I Firstly refine all those elements that are marked due to a
too large value of ηK (regular refinement).

I Secondly refine additional elements in order to eliminate the
hanging nodes which are possibly created during the first
stage (irregular refinement).

I The mesh refinement may possibly be combined with mesh
coarsening and mesh smoothing.
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Maximum Strategy for Marking

0. Given: A partition T , error estimates ηK for the elements
K ∈ T , and a threshold θ ∈ (0, 1).
Sought: A subset T̃ of marked elements that should be
refined.

1. Compute ηT ,max = max
K∈T

ηK .

2. If ηK ≥ θηT ,max mark K by putting it into T̃ .
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Equilibration Strategy for Marking
(Bulk Chasing or Dörfler Marking)

0. Given: A partition T , error estimates ηK for the elements
K ∈ T , and a threshold θ ∈ (0, 1).
Sought: A subset T̃ of marked elements that should be
refined.

1. Compute ΘT =
∑
K∈T

η2
K . Set ΣT = 0 and T̃ = ∅.

2. If ΣT ≥ θΘT return T̃ ; stop. Otherwise go to step 3.

3. Compute η̃T ,max = max
K∈T \T̃

ηK .

4. For all elements K ∈ T \T̃ check whether ηK = η̃T ,max. If

this is the case, mark K by putting it into T̃ and add η2
K

to ΣT . Otherwise skip K. When all elements have been
checked, return to step 2.
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Comparison of the Marking Strategies

I The maximum strategy is cheaper.

I At the end of the equilibration strategy the set T̃ satisfies∑
K∈T̃

η2
K ≥ θ

∑
K∈T

η2
K .

I Convergence proofs for adaptive finite element methods are
often based on this property.
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Ensuring a Sufficient Refinement

I Sometimes very few elements have an extremely large
estimated error, whereas the remaining ones split into the
vast majority with an extremely small estimated error and
a third group of medium size consisting of elements with an
estimated error of medium size.

I Then the marking strategies only refine the elements of the
first group.

I This deteriorates the performance of the adaptive
algorithm.

I This can be avoided he following modification:

Given a small percentage ε, first mark the ε% elements
with largest estimated error for refinement and then apply
the marking strategies to the remaining elements.
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Regular Refinement

I Elements are subdivided by joining the midpoints of their
edges.
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I This preserves the shape parameter.
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Hanging Nodes

I Hanging nodes destroy the admissibility of the partition.
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I Therefore
I either the continuity of the finite element spaces must be

enforced at hanging nodes
I or an additional irregular refinement must be performed.

I Enforcing the continuity at hanging nodes may counteract
the refinement.
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Irregular Refinement

I Triangles
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Marked Edge Bisection

I The first mesh is constructed such that the longest edge of
an element is also the longest edge of its neighbour.

I The longest edges in the first mesh are marked.

I An element is refined by joining the midpoint of its marked
edge with the vertex opposite to this edge (bisection).

I When bisecting the edge of an element, its two remaining
edges become the marked edges of the resulting triangles.
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Mesh Coarsening

Mesh Coarsening

I The coarsening of meshes is needed
I to ensure the optimality of the adaptive process, i.e. to

obtain a given accuracy with a minimal amount of
unknowns,

I to resolve moving singularities.

I The basic idea is to cluster elements with too small an
error.

I This is achieved by
I either going back in the grid hierarchy
I or removing resolvable vertices.
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Mesh Coarsening

Going Back in the Grid Hierarchy

0. Given: A hierarchy T0, . . ., Tk of adaptively refined
partitions, error indicators ηK for the elements K of Tk,
and parameters 1 ≤ m ≤ k and n > m.
Sought: A new partition Tk−m+n.

1. For every element K ∈ Tk−m set η̃K = 0.

2. For every element K ∈ Tk determine its ancestor
K ′ ∈ Tk−m and add η2

K to η̃2
K′ .

3. Successively apply the maximum or equilibration strategy
n times with η̃ as error indicator. In this process, equally
distribute η̃K over the descendants of K once an element K
is subdivided.
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Mesh Coarsening

Resolvable Vertices

I An element K of the current partition T has refinement
level ` if it is obtained by subdividing ` times an element of
the coarsest partition.

I Given a triangle K of the current partition T which is
obtained by bisecting a parent triangle K ′, the vertex of K
which is not a vertex of K ′ is called the refinement vertex
of K.

I A vertex z ∈ N of the current partition T and the
corresponding patch ωz are called resolvable if

I z is the refinement vertex of all elements contained in ωz,
I all elements contained in ωz have the same refinement level.
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Removing Resolvable Vertices

0. Given: A partition T , error indicators ηK for all elements
K of T , and parameters 0 < θ1 < θ2 < 1.
Sought: Subsets Tc and Tr of elements that should be
coarsened and refined, respectively.

1. Set Tc = ∅, Tr = ∅ and compute ηT ,max = max
K∈T

ηK .

2. For all K ∈ T check whether ηK ≥ θ2ηT ,max. If this is the
case, put K into Tr.

3. For all vertices z ∈ N check whether z is resolvable. If this
is the case and if max

K⊂ωz
ηK ≤ θ1ηT ,max, put all elements

contained in ωz into Tc.
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Mesh Smoothing

I Improve the quality of a given partition T by moving its
vertices while retaining the adjacency of the elements.

I The quality is measured by a a quality function q such that
a larger value of q indicates a better quality.

I The quality is improved by sweeping through the vertices
with a Gauß-Seidel type smoothing procedure:

For every vertex z in T , fix the vertices of ∂ωz and find a
new vertex z̃ inside ωz such that min

z̃∈K̃
q(K̃) > min

z∈K
q(K).
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Quality Functions

I Based on geometric criteria:

q(K) =
4
√

3µ2(K)

µ1(E0)2 + µ1(E1)2 + µ1(E2)2

I Based on interpolation:

q(K) = ‖∇(uQ − uL)‖2K
with linear and quadratic interpolants of u

I Based on an error indicator:

q(K) =

∫
K

∣∣∣ 2∑
i=0

ei∇ψEi
∣∣∣2

with ei = h
1
2
Ei
JEi(nEi · ∇uT )
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Classes of ALF

I NODE

I ELEMENT

I LEVEL
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Data Structures

NODE

I NODE realizes the concept of a node, i.e. of a vertex of a
grid.

I It has three members c, t, and d.

I c stores the co-ordinates in Euclidean 2-space.
I t stores the type of the node and equals:

I 0, if the node is an interior point of the computational
domain,

I k, k > 0, if the node belongs to the k-th component of the
Dirichlet boundary,

I −k, k > 0, if the node is belongs to the k-th component of
the Neumann boundary.

I d gives the address of the corresponding degree of freedom
and equals −1 if the corresponding node is not a degree of
freedom.
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ELEMENT

I ELEMENT realizes the concept of an element.

I It has six members nv, v, e, p, c, and t.

I nv determines the element type, i.e. triangle or
quadrilateral.

I v realizes the vertex informations.

I e provides the edge informations.

I p gives the number of the parent element.

I c provides the number of the first child, the remaining
children being enumerated consecutively.

I t determines the refinement type.
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ELEMENT.v

I The vertices are enumerated consecutively in
counter-clockwise order.

I v[i] gives the global number of the i-th vertex of the
element.

I v[3] = −1 if nv= 3, i.e., if the element is a triangle.

156/ 203



Adaptive Finite Element Methods

Implementation

Data Structures

ELEMENT.e

I The edges are enumerated consecutively in
counter-clockwise order such that the i-th edge has the
vertices i+ 1 mod nv and i+ 2 mod nv as its endpoints.

I e[i] = −1 indicates that the corresponding edge is on a
straight part of the boundary.

I e[i] = −k − 2, k ≥ 0, indicates that the endpoints of the
corresponding edge are on the k-th curved part of the
boundary.

I e[i] = ` ≥ 0 indicates that edge i of the current element is
adjacent to element number `.
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ELEMENT.t

I t describes which edges are bisected.

I It is in
I {0}, if the element is not refined,
I {1, . . . , 4}, if the element is refined green,
I {5}, if the element is refined red,
I {6, . . . , 24}, if the element is refined blue,
I {25, . . . , 100}, if the element is refined purple.
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Enumeration of Descendants
Triangles
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Data Structures

Enumeration of Descendants
Regular Quadrilaterals

i+3 i

i+1i+2

i+2
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0 0
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Enumeration of Descendants
Irregular Quadrilaterals
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Data Structures

Reasons for Keeping the Node and Edge
Informations Separately

I It minimizes the storage requirement.

I The co-ordinates of a node must be stored only once.

I If nodes and elements are represented by a common
structure, these co-ordinates are stored 4− 6 times.

I The elements represent the topology of the grid which is
independent of the particular position of the nodes.

I If nodes and elements are represented by different
structures it is much easier to implement mesh smoothing
algorithms which affect the position of the nodes but do
not change the mesh topology.
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Data Structures

Grid Hierarchy

I Nodes are completely hierarchical, i.e. a node of grid Ti is
also a node of any grid Tj with j > i.

I Since in general the grids are only partly refined, the
elements are not completely hierarchical.

I Therefore, all elements of all grids are stored.

I The corresponding information is stored in the class LEVEL.
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LEVEL

I LEVEL has seven members nn, nt, nq, ne, first, last and
dof.

I nn gives the number of nodes.

I nt is the number of triangles.

I nq gives the number of quadrilaterals.

I ne is the number of edges.

I first provides the address of the first element of the
current grid.

I last gives the address of the first element of the next grid.

I dof yields the number of degrees of freedom of the
corresponding discrete finite element problem.
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Solution of Discrete Problems

I Properties of direct and iterative solvers

I Classical iterative solvers

I Conjugate Gradient methods

I Multigrid methods

I Non-linear and indefinite problems
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Properties of Direct and Iterative Solvers

A Typical Model Problem
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I Poisson equation
−∆u = f in Ω, u = 0 on Γ

I Ω = (0, 1)2

I Courant triangulation
consisting of 2n2 isosceles
right-angled triangles with
short sides of length
h = n−1

I Linear finite elements

I Number N of unknowns is
of order n2 = h−2.
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Properties of Direct and Iterative Solvers

Properties of the Stiffness Matrix

I It is symmetric positive definite.

I It has 5 non-zero elements per row.

I It has bandwidth h−1 ≈ N
1
2 .

I Gaussian elimination requires N2 operations.

I A matrix-vector multiplication requires 5N operations.

I Its smallest eigenvalue is of order 1.

I Its largest eigenvalue is of order h−2 ≈ N .
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Properties of Direct and Iterative Solvers

Typical Properties of Direct Solvers

I They require O(N2− 1
d ) storage for a discrete problem with

N unknowns in d space dimensions.

I They require O(N3− 2
d ) operations.

I They yield the exact solution of the discrete problem up to
rounding errors.

I They yield an approximation for the differential equation
with an O(hα) = O(N−

α
d ) error (typically: α ∈ {1, 2}).
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Properties of Direct and Iterative Solvers

Typical Properties of Classical Iterative Solvers

I They require O(N) storage.

I They require O(N) operations per iteration.

I Their convergence rate deteriorates with an increasing
condition number of the discrete problem which usually is
O(h−2) = O(N

2
d ).

I In order to reduce an initial error by a factor 0.1 one
usually needs the following numbers of operations:

I O(N1+ 2
d ) with the Gauß-Seidel algorithm,

I O(N1+ 1
d ) with the conjugate gradient (CG-) algorithm,

I O(N1+ 1
2d ) with the CG-algorithm with Gauß-Seidel

preconditioning.
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Properties of Direct and Iterative Solvers

Comparison of Solvers
Arithmetic Operations

Example: Linear finite elements on a Courant triangulierung for
the Poisson equation in the unit square; initial error is reduced
by the factor 0.05

h Gaussian el. GS CG PCG MG

1
16 7.6 · 105 2.6 · 105 2.7 · 104 1.6 · 104 1.2 · 104

1
32 2.8 · 107 4.5 · 106 2.2 · 105 8.6 · 104 4.9 · 104

1
64 9.9 · 108 7.6 · 107 1.9 · 106 5.0 · 105 2.1 · 105

1
128 3.3 · 1010 1.2 · 109 1.5 · 107 3.2 · 106 8.4 · 105
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Properties of Direct and Iterative Solvers

Comparison of Solvers
Iterations

Example: Linear finite elements on a Courant triangulierung for
the Poisson equation in the unit square; initial error is reduced
by the factor 0.05

h GS CG PCG MG

1
16 236 12 4 1

1
32 954 23 5 2

1
64 3820 47 7 2

1
128 15287 94 11 1
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Properties of Direct and Iterative Solvers

Comparison of Solvers
Iterations and Convergence Rates

Example: Adaptively refined linear finite element discretization
of a reaction-diffusion equation in the unit square with an
interior layer; initial error is reduced by the factor 0.05

CG PCG MG
DOF It. κ It. κ It. κ

9 4 0.10 3 0.2 4 0.3
47 10 0.60 7 0.5 3 0.3
185 24 0.80 12 0.7 5 0.2
749 49 0.90 21 0.8 5 0.4
2615 94 0.95 37 0.9 6 0.4
5247 130 0.96 55 0.9 5 0.4
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Properties of Direct and Iterative Solvers

Conclusion

I Direct solvers need too much storage and and computer
time.

I It suffices to compute an approximate solution of the
discrete problem which, compared to the solution of the
differential equation, has an error similar in size to the one
of the exact solution of the discrete problem.

I Iterative solvers are superior if one arrives at improving
their convergence rate and at finding good initial guesses.
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Nested Grids

I Often one has to solve a sequence of discrete problems
Lkuk = fk corresponding to increasingly more accurate
discretizations.

I Usually there is a natural interpolation operator Ik−1,k

which maps functions associated with the (k − 1)-st
discrete problem into those corresponding to the k-th
discrete problem.

I Then the interpolate of any reasonable approximate
solution of the (k − 1)-st discrete problem is a good initial
guess for any iterative solver applied to the k-th discrete
problem.

I Often it suffices to reduce the initial error by a factor 0.1.
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Nested Iteration

I Compute
ũ0 = u0 = L−1

0 f0.

I For k = 1, . . . compute an approximate solution ũk for
uk = L−1

k fk by applying mk iterations of an iterative solver
for the problem

Lkuk = fk

with starting value Ik−1,kũk−1.

I mk is implicitly determined by the stopping criterion

‖fk − Lkũk‖ ≤ ε‖fk − Lk(Ik−1,kũk−1)‖.
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Conjugate Gradient Methods

The Setting

I We have to solve a linear system Lu = f with N unknowns.

I L is symmetric positive definite.

I κ denotes the condition number of L, i.e. the ratio of the
largest over the smallest eigenvalue of L.

I κ ≈ N
2
d
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Idea of the Gradient Algorithm

I The solution of Lu = f is equivalent to the minimization of
the quadratic functional J(u) = 1

2u · (Lu)− f · u.

I The negative gradient −∇J(v) = f −Lv of J at v gives the
direction of the steepest descent.

I Given an approximation v and a search direction d 6= 0, J
attains its minimum on the line t 7→ v + td at the point
t∗ = d·(f−Lv)

d·(Ld) .
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Gradient Algorithm

I Iteration step: Given the actual iterate u
I compute the residual r = f − Lu,
I replace u by u+ r·r

r·Lr r.

I The gradient algorithm corresponds to a Richardson
iteration with an automatic and optimal choice of the
relaxation parameter.

I The convergence rate is κ−1
κ+1 ≈ 1−N−

2
d .
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Idea of the CG-Algorithm

I The gradient algorithm slows down since the search
directions become nearly parallel.

I The algorithm speeds up when choosing the successive
search directions L-orthogonal, i.e. di · (Ldi−1) = 0.

I L-orthogonal search directions can be computed during the
algorithm by a suitable three-term recursion.
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The CG-Algorithm

0. Given: an initial guess u0 for the solution, and a tolerance
ε > 0.

1. Compute r0 = f − Lu0, d0 = r0, γ0 = r0 · r0. Set i = 0.

2. If γi < ε2 return ui as approximate solution; stop.
Otherwise go to step 3.

3. Compute si = Ldi, αi = γi
di·si , ui+1 = ui + αidi,

ri+1 = ri − αisi, γi+1 = ri+1 · ri+1, βi = γi+1

γi
,

di+1 = ri+1 + βidi. Increase i by 1 and go to step 2.
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Conjugate Gradient Methods

Properties

I The CG-algorithm only requires matrix-vector
multiplications and inner products.

I The convergence rate is
√
κ−1√
κ+1
≈ 1−N−

1
d .

I The CG-algorithm can only be applied to symmetric
positive definite matrices, it breaks-down for
non-symmetric or indefinite matrices.
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Conjugate Gradient Methods

The Idea of Pre-Conditioning

I Instead of the original system Lu = f solve the equivalent
system L̂û = f̂ with L̂ = H−1LH−t, f̂ = H−1f , û = Htu
and an invertible square matrix H.

I Choose the matrix H such that:
I The condition number of L̂ is much smaller than the one of
L.

I Systems of the form Cv = d with C = HHt are much easier
to solve than the original system Lu = f .

I Apply the conjugate gradient algorithm to the new system
L̂û = f̂ and express everything in terms of the original
quantities L, f , and u.
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The PCG-Algorithm

0. Given: an initial guess u0 for the solution, and a tolerance
ε > 0.

1. Compute r0 = f − Lu0, solve Cz0 = r0 and compute
d0 = z0, γ0 = r0 · z0. Set i = 0.

2. If γi < ε2 return ui as approximate solution; stop.
Otherwise go to step 3.

3. Compute si = Ldi, αi = γi
di·si , ui+1 = ui + αidi,

ri+1 = ri − αisi, solve Czi+1 = ri+1 and compute
γi+1 = ri+1 · zi+1, βi = γi+1

γi
, di+1 = zi+1 + βidi. Increase i

by 1 and go to step 2.
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Conjugate Gradient Methods

Properties

I The convergence rate of the PCG-algorithm is
√
κ̂−1√
κ̂+1

where

κ̂ is the condition number of L̂.

I Good choices of C, e.g. SSOR-preconditioning, yield
κ̂ = N

1
d and corresponding convergence rates of 1−N−

1
2d .
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SSOR-Preconditioning

0. Given: r and a relaxation parameter ω ∈ (0, 2).
Sought: z = C−1r.

1. Set z = 0.

2. For i = 1, . . . , N compute

zi = zi + ωL−1
ii {ri −

N∑
j=1

Lijzj}.

3. For i = N, . . . , 1 compute

zi = zi + ωL−1
ii {ri −

N∑
j=1

Lijzj}.
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Comparison of CG and PCG Algorithms

Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = 1

64

CG
convergence rate 0.712

SSOR-PCG
convergence rate 0.376
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Comparison of CG and PCG Algorithms
Poisson equation on the unit square,
linear finite elements on Courant triangulation with h = 1

128

CG
convergence rate 0.723

SSOR-PCG
convergence rate 0.377
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The Multigrid Algorithm

The Basic Idea of the Multigrid Algorithm

I Classical iterative methods such as the Gauß-Seidel
algorithm quickly reduce highly oscillatory error
components.

I Classical iterative methods such as the Gauß-Seidel
algorithm are very poor in reducing slowly oscillatory error
components.

I Slowly oscillating error components can well be resolved on
coarser meshes with fewer unknowns.
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The Multigrid Algorithm

The Basic Two-Grid Algorithm

I Perform several steps of a classical iterative method on the
current grid.

I Correct the current approximation as follows:
I Compute the current residual.
I Restrict the residual to the next coarser grid.
I Exactly solve the resulting problem on the coarse grid.
I Prolongate the coarse-grid solution to the next finer grid.

I Perform several steps of a classical iterative method on the
current grid.
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The Multigrid Algorithm

Schematic Form

Two-Grid

G−−−−→ G−−−−→

R
y xP

E−−−−→

Multigrid

G−−−−→ G−−−−→

R
y xP

G−−−−→ G−−−−→

R
y xP

E−−−−→
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The Multigrid Algorithm

Basic Ingredients

I A sequence Tk of increasingly refined meshes with
associated discrete problems Lkuk = fk.

I A smoothing operator Mk, which should be easy to
evaluate and which at the same time should give a
reasonable approximation to L−1

k .

I A restriction operator Rk,k−1, which maps functions on a
fine mesh Tk to the next coarser mesh Tk−1.

I A prolongation operator Ik−1,k, which maps functions from
a coarse mesh Tk−1 to the next finer mesh Tk.
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The Multigrid Algorithm

0. Given: the actual level k, parameters µ, ν1, and ν2, the
matrix Lk, the right-hand side fk, an inital guess uk.
Sought: improved approximate solution uk.

1. If k = 0 compute u0 = L−1
0 f0; stop.

2. (Pre-smoothing) Perform ν1 steps of the iterative
procedure uk = uk +Mk(fk − Lkuk).

3. (Coarse grid correction)
3.1 Compute fk−1 = Rk,k−1(fk − Lkuk) and set uk−1 = 0.
3.2 Perform µ iterations of the MG-algorithm with parameters

k − 1, µ, ν1, ν2, Lk−1, fk−1, uk−1 and denote the result by
uk−1.

3.3 Compute uk = uk + Ik−1,kuk−1.

4. (Post-smoothing) Perform ν2 steps of the iterative
procedure uk = uk +Mk(fk − Lkuk).
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The Multigrid Algorithm

Typical Choices of Parameters

I µ = 1 V-cycle or

µ = 2 W-cycle

I ν1 = ν2 = ν or

ν1 = ν, ν2 = 0 or

ν1 = 0, ν2 = ν

I 1 ≤ ν ≤ 4.
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The Multigrid Algorithm

Prolongation and Restriction

I The prolongation is typically determined by the natural
inclusion of the finite element spaces, i.e. a finite element
function corresponding to a coarse mesh is expressed in
terms of the finite element basis functions corresponding to
the fine mesh.
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I The restriction is typically determined by inserting finite
element basis functions corresponding to the coarse mesh
in the variational form of the discrete problem
corresponding to the fine mesh.
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The Multigrid Algorithm

Smoothing

I Gauß-Seidel iteration

I SSOR iteration:
I Perform a forward Gauß-Seidel sweep with over-relaxation

as pre-smoothing.
I Perform a backward Gauß-Seidel sweep with over-relaxation

as post-smoothing.

I ILU smoothing:
I Perform an incomplete lower upper decomposition of Lk by

suppressing all fill-in.
I The result is an approximate decomposition LkUk ≈ Lk.
I Compute vk = Mkuk by solving the system LkUkvk = uk.
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Number of Operations

I Assume that
I one smoothing step requires O(Nk) operations,
I the prolongation requires O(Nk) operations,
I the restriction requires O(Nk) operations,
I µ ≤ 2,
I Nk > µNk−1,

I then one iteration of the multigrid algorithm requires
O(Nk) operations.
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Convergence Rate

I The convergence rate is uniformly less than 1 for all
meshes.

I The convergence rate is bounded by c
c+ν1+ν2

with a
constant which only depends on the shape parameter of the
meshes.

I Numerical experiments yield convergence rates less than
0.1.

197/ 203

Adaptive Finite Element Methods

Solution of Discrete Problems

Non-Linear and Indefinite Problems

CG Algorithm for Non-Symmetric or Indefinite
Problems

I The CG algorithm typically breaks down when applied to
non-symmetric or indefinite problems (stiffness matrix has
eigenvalues with positive as well as negative real part).

I A naive solution is to apply the CG algorithm to the
symmetric positive definite system of normal equations
LTLu = LT f .

I This doubles the number of iterations since the passage to
the normal equations squares the condition number.

I A preferable solution are specialised variants of the CG
algorithm such as the stabilised bi-conjugate gradient
algorithm (Bi-CG-Stab algorithm).
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Bi-CG-Stab Algorithm

0. Given: an initial guess u0 and a tolerance ε > 0.

1. Compute r0 = b− Lu0 and set r0 = r0, v−1 = 0, p−1 = 0,
α−1 = 1, ρ−1 = 1, ω−1 = 1, and i = 0.

2. If ri · ri < ε2 return ui as approximate solution; stop.
Otherwise go to step 3.

3. Compute ρi = ri · ri, βi−1 = ρiαi−1

ρi−1ωi−1
. If |βi−1| < ε there

may be a break-down; stop. Otherwise compute
pi = ri + βi−1{pi−1 − ωi−1vi−1}, vi = Lpi, αi = ρi

r0·vi . If
|αi| < ε there may be a break-down; stop. Otherwise
compute si = ri − αivi, ti = Lsi, ωi = ti·si

ti·ti ,
ui+1 = ui + αipi + ωisi, ri+1 = si − ωiti. Augment i by 1
and go to step 2.
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Properties

I The Bi-CG-Stab algorithm aims at a simultaneous solution
of the original problem Lu = f as well of the adjoint
problem LT v = f .

I The algorithm only needs the stiffness matrix L of the
original problem.

I It only requires inner products and matrix vector
multiplications.

I The Bi-CG-Stab algorithm may be preconditioned; possible
methods for preconditioning are the SSOR iteration or the
ILU decomposition applied to the symmetric part
1
2(L+ LT ) of L.
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Multigrid Algorithms for Non-Symmetric or
Indefinite Problems

I Multigrid algorithms can directly be applied to
non-symmetric or indefinite problems.

I Possibly one as to resort to a specialised smoother.

I The Richardson iteration applied to the normal equations
is a robust smoother which however yields convergence
rates of about 0.8.

I The ILU decomposition is a robust smoother too, but more
costly and yields convergence rates of about 0.5.
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Non-Linear Problems

I Non-linear problems are typically solved with a (damped)
Newton iteration.

I Every step of the Newton iteration requires the solution of
a linear problem.

I The latter can be solved with an iterative solver; the
solution of the previous Newton step then is a good initial
guess for the inner iteration.

I In multigrid methods one may reverse the roles of inner
and outer iteration; then a few steps of the Newton method
with a moderately accurate solution of the linear problems
act as a smoother.
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