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A B S T R A C T

Human intracranial EEG (iEEG) recordings are primarily performed in epileptic patients for presurgical

mapping. When patients perform cognitive tasks, iEEG signals reveal high-frequency neural activities

(HFAs, between around 40 Hz and 150 Hz) with exquisite anatomical, functional and temporal

specificity. Such HFAs were originally interpreted in the context of perceptual or motor binding, in line

with animal studies on gamma-band (‘40 Hz’) neural synchronization. Today, our understanding of HFA

has evolved into a more general index of cortical processing: task-induced HFA reveals, with excellent

spatial and time resolution, the participation of local neural ensembles in the task-at-hand, and perhaps

the neural communication mechanisms allowing them to do so. This review promotes the claim that

studying HFA with iEEG provides insights into the neural bases of cognition that cannot be derived as

easily from other approaches, such as fMRI. We provide a series of examples supporting that claim,

drawn from studies on memory, language and default-mode networks, and successful attempts of real-

time functional mapping. These examples are followed by several guidelines for HFA research, intended

for new groups interested by this approach. Overall, iEEG research on HFA should play an increasing role

in cognitive neuroscience in humans, because it can be explicitly linked to basic research in animals. We

conclude by discussing the future evolution of this field, which might expand that role even further, for

instance through the use of multi-scale electrodes and the fusion of iEEG with MEG and fMRI.
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Fig. 1. Task-induced high-frequency activity can be seen in raw iEEG signals. A

picture (face stimulus) was flashed foveally for 200 ms while the patient fixated the

center of a computer screen. The signal is a raw bipolar recording from the fusiform

gyrus (expressed in % of the maximal amplitude value during the time window of

interest). HFA is clearly visible in the raw trace (square box), together with the

event-related potential evoked by the stimulus, and alpha and beta oscillations

(respectively before and after stimulus presentation).
1. Historical background: from Berger to ‘GBR’

1.1. Intracranial EEG and human cognition

In the last few years, an increasing number of research groups
have turned to intracranial EEG (iEEG) recordings to study the
neural bases of human cognition. iEEG itself is an old technique
that dates back to the early pioneers of electrophysiological
recordings (Jasper and Carmichael, 1935), soon after Berger’s first
application of the EEG to humans. Because of its invasive nature, its
use in humans has mainly been restricted to the clinical
circumstances of patients undergoing resective surgery for
medically refractory epilepsy, in whom it has been used most
often to map the cortical networks responsible for seizures.
However, iEEG also provides a unique window into the spatio-
temporal dynamics of the human brain at work, with submillime-
ter and millisecond precision, sometimes at the individual neuron
level (Engel et al., 2005). This is why scientists have used iEEG to
study human cognition since it first came into clinical use. This
clinical research has by its nature required multi-disciplinary
collaborations between epileptologists, neurophysiologists, neu-
ropsychologists, and cognitive neuroscientists. The number of such
collaborations remained relatively stable for decades, until a shift
in scientific focus occurred during the 1990s that boosted the
entire field. While early iEEG research was primarily focused on
event-related potentials or peri-stimulus time histograms (e.g.
Allison et al., 1994; Halgren et al., 1978a,b, 1980; see Lachaux et al.,
2003 for review), the emerging trend in ‘cognitive’ iEEG research
has been characterized by its strong emphasis on high-frequency
neural activity (HFA: 40 Hz and above), which can sometimes be
seen in raw iEEG signals (Fig. 1) (Jerbi et al., 2009; Crone et al.,
2011; Jacobs and Kahana, 2010). A few early iEEG studies had
reported that motor tasks and sensory stimulation could modulate
HFA (e.g. Sem-Jacobsen et al., 1956; Chatrian et al., 1960; Brindley
and Craggs, 1972; Halgren et al., 1977), but the field really took off
with the ‘gamma buzz’: the marked interest of the neuroscience
community in gamma-band synchronization and its role in neural
representation and communication fueled by recent experimental
and technological advances.

1.2. The gamma ‘buzz’

This phenomenon was initiated by a series of electrophysio-
logical studies in the cat visual cortex (Eckhorn et al., 1988; Gray
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et al., 1989), suggesting that object perception might be mediated
by rhythmic and synchronous neural firing in area 17 at
frequencies around 40 Hz (the ‘gamma’ band), in line with
previous theoretical and experimental work (Milner, 1974;
Freeman, 1975). This idea was summarized by the dynamic
binding or binding-by-synchrony hypothesis (Singer, 1999). As the
binding-by-synchrony hypothesis started to receive experimental
support in monkeys (Kreiter and Singer, 1992), a couple of EEG
research groups initiated a search for gamma-band synchroniza-
tion during perception in humans, thanks to a significant
improvement of EEG acquisition systems and signal processing
analysis (Lutzenberger et al., 1995; Muller et al., 1996; Tallon-
Baudry et al., 1996). It was clear that due to its limited spatial
resolution EEG could not reveal synchrony between pairs of
neurons, but the bet was that the emergence of synchronous neural
assemblies would produce macro-scale oscillations, which could
be detected in EEG signals with state-of-the-art time–frequency
analysis. In fact, such oscillations had already been reported during
movement execution in EEG signals (Pfurtscheller et al., 1993;
Salenius et al., 1996, and see Pfurtscheller and Lopes da Silva,
1999). In the second half of the nineties, Bertrand and Tallon-
Baudry in Lyon published a series of seminal scalp-EEG studies
describing energy increases in the gamma-band in response to
visual stimuli (summarized in Tallon-Baudry and Bertrand, 1999).
Their first contribution was to distinguish between evoked and
induced gamma-band responses (or ‘GBR’), which are phase-
locked and non-phase-locked, respectively, to the stimulus onset
(Tallon-Baudry et al., 1996). Together with a couple of other EEG
groups (Lutzenberger et al., 1995; Muller et al., 1996), their focus
shifted rapidly to induced GBRs, which were particularly strong
when stimuli required feature-binding, as predicted by the
binding-by-synchrony hypothesis (Tallon-Baudry and Bertrand,
1999 for review). However, scalp EEG could not reveal the
anatomical origin of induced GBR, which immediately motivated
the team led by Varela in Paris to replicate the first paradigm of the
Lyon group with intracranial EEG recordings from the visual cortex
(Lachaux et al., 2000). The study used a grid of electrodes covering
the temporo-parietal junction and revealed sensory gamma-band
responses in iEEG recordings at frequencies up to 80 Hz (the upper
limit of valid investigation for that specific recording system). This
indicated that induced GBRs involved in fact a higher and broader
frequency range than is visible in scalp EEG, and that were not
homogeneous responses of visual cortex, but a collection of
responses with distinct latencies and exquisite anatomical
specificity. This result echoed an earlier study by Klopp et al.
showing a power increase in the fusiform gyrus up to 45 Hz, in
response to faces (Klopp et al., 1999). In the sensorimotor cortex,
Crone et al. (1998) had also found increased gamma-band
activity during movement execution. This study was not only
the first report of task-related HFA in human iEEG recordings, but
also provided clear evidence that the spatial distribution of
increases in HFA in sensorimotor cortex was specific to the
movement of different body parts. It was quickly followed by other
iEEG studies showing increased HFA in sensorimotor cortex
during visuo-motor behaviors (Aoki et al., 1999; Ohara et al.,
2000; Pfurtscheller et al., 2003).

1.3. High-frequency activity or high frequency oscillations?

These pioneering studies launched a steadily rising field
demonstrating that cognitive HFAs are ubiquitous in the human
brain, and yet exquisitely task-specific. In less than ten years, it has
become clear that HFA is an index of cortical processing not only in
sensory and motor cortices, but probably in any cortical region that
is involved by a task (Jerbi et al., 2009; Crone et al., 2011; Jacobs
and Kahana, 2010). This evolving experimental realization of HFA
as a general purpose index of cortical processing has widely been
considered to be consistent with theoretical extensions of the
mechanistic role of gamma-band synchronization, from sensory
and motor integration to neural communication in general (Fries,
2005). Nevertheless, human iEEG studies of HFA have also
contributed new and provocative findings that have yet to be
fully integrated into existing theoretical frameworks.

One burning question for instance is whether cognitive HFA
visible in iEEG recordings actually relate to the original phenome-
non described by Singer and colleagues. So far, the vast majority of
iEEG studies on task-induced HFA have reported broadband energy
increases in a frequency band ranging from 40 to 150 Hz, typically.
Although such increases have often been called ‘gamma-band
responses’, because their frequency extent includes the gamma-
band, it appears to be unlikely that they actually reflect the classic,
narrow-band, gamma-band synchronization mechanisms hypoth-
esized to subserve, for instance, feature-binding in the visual
cortex (Singer, 1999). This is quite ironic, considering that iEEG
research on HFA entirely emerged from that theoretical frame-
work.

From a mathematical point of view, such a broadband energy
increase cannot correspond to a single high-frequency oscillation,
or HFO, as it does not possess a well-defined frequency and phase.
Instead, Miller et al. (2009a,b,c) have suggested that task-induced
HFA might in fact result from an increase of the global spike rate of
the underlying neural population (together with asynchronous
post-synaptic currents), which would result in a broadband energy
increase in bandpass-filtered iEEG signals. This claim has received
recent support from studies showing a strong correlation between
multi-unit activity and HFA in animals (e.g. Ray et al., 2008; Ray
and Maunsell, 2011) and in humans (Manning et al., 2009). Indeed,
much of the power of the action potential as recorded extracellu-
larly is in the 50–150 Hz HFA window (Pettersen and Einevoll,
2008). However, this might not be the whole story, since this
frequency range also includes synaptic activity, and in a modeling
study where these parameters were adjusted to match those
experimentally observed, activity between 50 and 150 Hz arose
mainly from synaptic currents (Pettersen et al., 2008). In fact, the
relative contributions of synaptic and action potentials to the HFAs
are influenced by the number of cells that are synaptically
activated, the proportion of those that are driven to fire, the
locations of the synapses, and the morphology of the neurons,
among other factors. Thus, although HFA is highly correlated with
multi-unit activity (MUA) (Manning et al., 2009), it is probably not
solely generated by MUA. Further biophysical modeling studies
that match human anatomy and physiology in cognitive paradigms
are needed to confirm that claim.

An important implication is that HFA is reflected in the BOLD
signal of fMRI (Mukamel et al., 2005; Nir et al., 2007), because both
are fairly non-specific indicators of local neuronal activation.
However, BOLD has a significant delay (1–2 s) and smears activity
over long periods (�10–20 s) whereas HFA has no delay or
smearing, and thus can provide the temporal resolution needed to
probe the stages of cognition.

1.4. Away from oscillations . . . and back?

It should be clear that HFA might correlate with MUA and yet be
generated by neural oscillations. The two hypothesis are not
mutually exclusive: in a scenario where neural populations would
systematically produce rhythmic discharges of action potentials
when activated, the production of neural oscillations would always
require an increase of MUA. The main argument against an
oscillatory nature of HFA is not the strong correlation between HFA
and MUA, but the broad frequency extent of HFA. But then, it
should be noted that broadband HFA is mostly visible in average
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time–frequency representations of neural responses to multiple
stimuli, or movements. One possibility, which still awaits
confirmation in multiple patients, cortical structures, and experi-
mental situations, is that single-trial responses are characterized
by a juxtaposition of several transient components with well-
defined frequencies (we can call them elementary time–frequency
responses). Elementary time–frequency responses might corre-
spond to local high-frequency oscillations generated by several
local neural ensembles, within the larger population recorded by
each iEEG electrode (Fig. 2), see (Crone et al., 2011). The broadband
HFA increase revealed when averaging across trials would then
correspond to the statistical distribution of those elementary
responses in the time–frequency domain. The broadband appear-
ance of the average of many such responses might arise from the
fact that they are generated by small neural ensembles with
different task and stimulus specificity (Gaona et al., 2011). For
instance, the precise frequency of gamma-band synchronization in
the visual cortex has been shown to depend on stimulus contrast,
not to mention alertness and vigilance level (Ray and Maunsell,
2010; Lakatos et al., 2004). This means that in the visual cortex for
instance, two neighboring neural populations with different
receptive fields, and processing different parts of a complex image
with inhomogeneous local contrasts, would generate oscillations
at different frequencies. Therefore, we should not expect all
neuronal assemblies recorded by a single iEEG electrode to
synchronize at the same frequency. Rather, iEEG is likely to record
the sum of several locally generated HFOs, whose frequency and
latency vary from trial to trial as stimuli, processing latencies and
durations, altertness and vigilance levels also vary. The average
response across trials might then cover a broad frequency range, as
it is most frequently observed.

To conclude, the broad frequency extent of task-induced HFA
may be explained both by a simple increase of the firing rate, and
by local synchronization mechanisms producing HFOs at varying
frequencies and latencies. Once again, these two scenarios are not
mutually exclusive, and a final dissociation between these might
require the combination of iEEG and extensive single-unit
recordings of underlying neural populations. Until the exact
Fig. 2. Conceptual schematic of how iEEG broadband gamma activity increases could res

recorded by array of surface electrodes on the left. The power spectrum for one iEEG site 

field of view of each recording site (inverted cones) includes many neuronal assemblies

number for illustration). Neuronal assemblies activated by a task (colored cylinders) are s

gamma frequencies that depend on the resonant properties of each assembly. Membra

corresponding to cylinders to left) collectively contribute to signals recorded by iEEG el

power spectrum. Note that many more assemblies and bands than can be represented he

Also, different sets of neural assemblies and bands may be involved during different 

conditions. Assemblies not immediately engaged in task-related cortical processing are re

beta frequencies (red circular area on left and red bands on right) occurs in a wider area a

cortical processing in assemblies with similar but distinct response sensitivities.

Reproduced with permission from Elsevier.
mechanisms generating task-induced HFA are revealed, we should
keep in mind their most notable property: they reveal, with
excellent time resolution, the participation of local neural
populations in the task-at-hand. For this review, we shall therefore
refer to the phenomena we observe in iEEG recordings as cognitive
‘HFA’—not ‘HFO’. And we make the strong suggestion that in any
future iEEG study on HFA, authors should provide the precise
frequency range of the effect, such as HFA ‘‘between 40 Hz and
150 Hz’’, or more conveniently when the term must be repeated:
HFA[40–150]. We also propose that authors refer to high-frequency
neural activity as ‘‘neural oscillations’’, only when they have
evidence that the activity is rhythmic, or a collection of several
rhythmic processes. In the absence of this evidence, the
interpretation and discussion of results should acknowledge
whether they are made within a conceptual framework that does
or does not assume neural oscillations.

1.5. HFA and ERPs

Electrophysiologists might wonder about the relationship
between HFA and more ‘classic’ electrophysiological measures
used for decades to understand human cognition. In particular,
non-invasive studies of cortical information processing in humans
have generally used averaged EEG, event-related potentials (ERPs),
or their magnetic counterparts, event-related fields (ERFs). These
both arise from neuronal currents that are measured within the
cortex as local field potentials (LFPs). At the scalp level, ERPs arise
from the propagation of the currents through the various tissues of
the head whereas ERFs are directly generated by the intracellular
currents. Therefore, ERPs are more smeared by CSF and skull, and
reflect the activity of more cortical patches than ERFs, but their
local generators are two symmetrical limbs of the same current
loop (Cohen and Halgren, 2009). In iEEG recordings, intracranial
ERPs (iERPs) can be formed from event-related averaging of LFP.
Commonly, iERP and HFA are calculated from the same LFPs, and,
commonly, they have a similar distribution and time-course but
with clear differences (Vidal et al., 2010; Engell et al., 2012), for
reasons that we now discuss.
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1.5.1. HFA and ERPs are generated by different mechanisms

The reasons for the differences between iERP and HFA can be
appreciated by considering their contrasting mechanisms of
generation. Except for very short-latency primary sensory
components, the frequency content of iERP is below 50 Hz, mainly
between 1 and 10 Hz, and thus is non-overlapping with HFA. The
power of the LFP in the iERP range is also 100–1000 times greater
(per Hz) than in the HFA range (e.g., Miller et al., 2009a,b,c) for both
temporal and spatial reasons. Temporally, the short synaptic
events underlying HFA will not be synchronized unless their
timing is synchronized to within a few milliseconds, and
asynchronous potentials will tend to cancel each other when they
superimpose at the recording electrode. In contrast, the longer
synaptic events underlying iERP will superimpose and sum linearly
at the electrode even when their timing is off by tens of
milliseconds. Spatially, inward synaptic currents in the HFA
frequencies return back to the extracellular space over a shorter
distance, and thus produce smaller LFP fields than to the longer
synaptic events underlying iERP (Linden et al., 2010). Combining
these effects, synchronous long-duration synaptic currents can
take advantage of the long parallel apical dendrites of pyramidal
cells, and the laminar termination of afferents onto these
dendrites, to generate LFPs which can summate over relatively
long distances, and thus produce the large amplitudes that
characterize iERPs (Linden et al., 2011).

1.5.2. HFA can distinguish between neural activity increases and

decreases, while ERPs cannot

The special circumstances that lead to large amplitude LFPs in
the iERP range imply that iERPs selectively reflect synaptic activity
that is relatively long duration, temporally synchronous, and
spatially organized onto the apical dendrites of pyramidal cells.
Such conditions can arise from either excitatory or inhibitory
post-synaptic currents. Consequently, increased iERP can reflect
either increased excitation or increased inhibition, or even reflect
a more complex modulation. Indeed, a recent study suggests that
in hippocampal slices single spikes of inhibitory interneurons
terminating on pyramidal cells may be sufficient to produce LFP,
but spikes of pyramidal cells themselves are not (Bazelot et al.,
2010). Other combined modeling and recording studies in
hippocampal slices suggest that voltage-gated transmembrane
neuronal currents are the major contributors to stimulation-
evoked low frequency iERPs (Murakami et al., 2002, 2003).
Further, quantitative modeling has found that simultaneous
excitatory inward currents at the distal apical dendrites combined
with inhibitory outward currents at the soma were needed to
reproduce empirical iERP measures (Pettersen et al., 2008). These
imply that positive and negative iERP can both reflect either
excitatory or inhibitory currents, and that these currents can be
either ligand-gated at synapses, or voltage-gated throughout the
dendritic surface.

A further limitation of iERP is that their polarity depends on
the location of the electrode contact with respect to the
generating sources and sinks, which means that the same
neural phenomenon can be recorded either as a positive or a
negative iERP. Furthermore, because scalp ERPs are the
summated propagation of iERPs from different cortical patches,
an increased ERP could result from the removal of a canceling
iERP (Lutkenhoner, 2003). Current source density (CSD) analysis
with MUA can resolve these ambiguities (Einevoll et al., 2007;
Ulbert et al., 2001). However, in general, the only reliable
inferences that can be drawn from ERPs or iERPs concern the
timing and relative amplitude of the underlying generators. But
even then, one should keep in mind that ERPs rely on phase-
locking of signals across trials and are quite sensitive to jitter in
both the phase and latency of neural responses. This means that
the amplitude of the ERP might be reduced in an experimental
condition relative to another one if its phase varies more across
trials, even if its amplitude remains the same.

In contrast to the iERP, power changes in HFA are typically more
robust, sometimes detectable even in single trials, and are
generally less sensitive to small variations in the timing of
behavioral and neural responses. In addition, HFA fluctuations can
be correlated in real-time with purely endogeneous processes such
as attention fluctuations, mental imagery or spontaneous thought
processes (see Section 4.2), while iERP can only be defined in
relation to repeated sensory or motor events. As a relatively direct
and nonspecific measure of the local high-frequency synaptic and/
or unit activity, HFA may be interpreted as an estimate of the
intensity of any given population’s engagement in task processing.
Thus, HFA is particularly well suited to visualizing the onset,
magnitude, and duration of changes in neuronal activity during
cognitive tasks, or in relation to endogeneous cognitive processes.
In particular, HFA – unlike iERP – can reveal task-induced
suppressions of neural activity, which makes them ideally suited
for the study of the default-mode network, for instance (see
Section 2.3).

1.6. A unique window into the human brain

For all the reasons stated above, we would like to promote
the claim that studying HFA with intracranial EEG recordings
can provide insights into the neural bases of human cognition
that cannot be derived as easily from the study of BOLD effects
with fMRI or from the analysis of ERPs. iEEG research on
cognitive HFA has now diversified and the objective of this
article is not to provide a comprehensive review of this lively
field, which can be found elsewhere (e.g. Crone et al., 2011; Jerbi
et al., 2009). The first objective of this review paper is to support
our claim with illustrative examples. The second objective is to
propose guidelines for future iEEG research on cognitive HFA.
The third objective is to envision future developments of our
research field, which will lead, in our opinion, to several major
breakthroughs in human cognitive neuroscience.

2. Tell us something new: what can we learn from iEEG HFA
about the functional dynamics of the human brain?

We argue that studying HFA with iEEG is relevant for two
reasons: first, because it may serve to provide a link between
animal research on the cellular mechanisms supporting cognitive
functions and the non-invasive investigation of complex cognitive
processes in humans. Second, because it allows one to test specific
neuroscientific models of human cognitive processes, which often
make predictions at a level of spatial and temporal precision that
cannot be tested using other methods. These models may be
derived from animal research, computational neuroscience, or
cognitive psychology. Throughout this section, we will provide
examples illustrating how iEEG studies of HFA are uniquely able to
help fulfill these promises.

In those examples, we focus first on iEEG studies of HFA related
to human memory and language, then on more general issues in
cognitive neuroscience such as global cognitive control via neural
activation and deactivation, as well as the temporal dynamics of
neural activity and communication in large-scale neurocognitive
networks. This selection is purely based on our own fields of
expertise and should by no means underestimate that HFA is also
highly relevant for other cognitive processes such as perception,
attention, and consciousness. In other words, the following
examples aim only to illustrate the kinds of questions in human
cognitive neuroscience for which iEEG HFA analyses may be
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uniquely suited to provide some answers. Thus, it is by no means
an exhaustive list of the studies that are possible.

2.1. Memory

The first sections are devoted to memory, because several iEEG
studies have indicated that neural activity associated with HFA
plays a role in memory processes. We will review studies that
investigated HFA during working memory (WM) and long-term
memory (LTM) tasks, as well as HFA related to memory
consolidation. We will first review the experimental results, and
then suggest possible mechanisms by which HFA-related neural
activity support memory processes.

2.1.1. Working memory

WM has been conceptualized as the ability to maintain a
limited amount of information in an immediately accessible form
and to perform cognitive operations on these items (Baddeley,
1986). As this process involves maintaining the information for
several seconds, it has been linked to persistent changes in neural
activity, e.g. a persistent increase in firing rates (Fuster, 1990;
Young et al., 1997). For example, several studies have shown
sustained increases of gamma band activity during WM mainte-
nance, which correlates with WM load, in various neocortical
regions (Tallon-Baudry et al., 2001; Howard et al., 2003; Mainy
et al., 2007) as well as in the rhinal cortex (Axmacher et al., 2007)
and in hippocampus (Van Vugt et al., 2010). Beta and gamma
oscillations may also be phase-locked between widespread frontal,
parietal and occipital areas during the rapid storage, modification
and retrieval of multiple memoranda in more complicated working
memory tasks (Halgren et al., 2002). These studies have provided
insights beyond those of previous fMRI studies, because they have
allowed distinctions between transient and sustained responses
with a higher temporal resolution than would be possible through
analyzing the BOLD response alone.

The HFA modulations observed during working memory tasks
may be related to repeated reactivations of neural assemblies,
which are each synchronized in the gamma frequency range. This
is of course in a framework assuming that HFA implies neural
oscillations. In this section, we will avoid discussing that aspect
further, and focus on the interpretations of the authors of each
study (the same policy will apply throughout the text).

According to an influential computational model, maintenance
of multiple items depends on such reactivations during several
consecutive cycles of lower-frequency (e.g. theta, between 4 and
7 Hz) oscillations (Lisman and Idiart, 1995; Jensen and Lisman,
2005), which are independently generated in various brain regions
(Raghavachari et al., 2006). Recent studies have provided
experimental evidence for this model by showing increased
coupling of the amplitudes of HFA to the phase of theta frequency
oscillations during a continuous word recognition memory task
(amplitude-modulated activity at various frequencies between 12
and 46 Hz depending on task condition; Mormann et al., 2005) and,
more importantly, during WM maintenance, as compared to inter-
trial intervals (amplitude-modulated activity at around 28 Hz;
Axmacher et al., 2010a) (Fig. 3). While these observations have
been made using intracranial EEG recordings from the hippocam-
pus of epilepsy patients, similar results have been obtained using
pattern classification analyses of human MEG data, suggesting that
spontaneous re-occurrence of category-specific neural activity is
linked to the phases of ongoing theta activity (Fuentemilla et al.,
2010; Poch et al., 2011). On the other hand, recordings from the
prefrontal cortex of monkeys have shown that neuronal activity
representing different items occurs at different phases of low
gamma band activity at 32 Hz, not at different theta phases
(Siegel et al., 2009). Again, these investigations into the complex
spatio-temporal pattern of working memory maintenance cannot
be performed using functional MRI alone.

2.1.2. Long-term memory formation

In addition to these observations related to WM, several studies
have also demonstrated an increase in HFA during LTM formation.
As most intracranial EEG studies have focused on declarative long-
term memory processes, we will concentrate on the role of HFA for
this type of LTM. In a series of studies, Sederberg and colleagues
investigated the role of hippocampal and neocortical HFA recorded
with intracranial and subdural EEG electrodes for subsequent
memory to words. In their first study (Sederberg et al., 2003), they
found that HFA between 28 and 64 Hz at widespread neocortical
sites predicted subsequent memory. Similar results were later
found in the hippocampus for activity between 44 and 64 Hz
(Sederberg et al., 2007a). Furthermore, similar patterns of both
hippocampal and neocortical HFA enhancements (between 44 and
100 Hz) were found during successful encoding and retrieval
(Sederberg et al., 2007b), consistent with the contextual reinstate-
ment hypothesis. In addition to these positive relationships
between HFA and subsequent memory, Fell et al. (2001) found
that hippocampal HFA between 32 and 48 Hz was negatively
correlated with subsequent memory. Finally, it was found that
rhinal–hippocampal phase synchronization between 32 and 48 Hz
predicted subsequent free recall of words (Fell et al., 2001). In a
continuous recognition paradigm (Fell et al., 2008), a similar,
though less pronounced effect was observed for subsequently
recognized words (rhinal–hippocampal phase synchronization
increases between 37 and 46 Hz), while the reverse effect was
found in a lower range (28–34 Hz).

Mechanistically, these effects may be related, via spike-phase
coherence (Jacobs et al., 2007), to a precise alignment of action
potentials between these two regions or within the hippocampus.
Interestingly, hippocampal spike-phase coherence in the theta
range (3–8 Hz) was increased for subsequently remembered items
(Rutishauser et al., 2010). Such temporal alignment is a require-
ment for spike-timing dependent forms of synaptic long-term
potentiation (so-called Hebbian plasticity; Axmacher et al., 2006;
Fell and Axmacher, 2011). A facilitating mechanism to achieve
phase synchronization in the gamma band could be the coupling of
otherwise independent theta rhythms (Mormann et al., 2008a)
between relevant areas (Fell et al., 2003).

Even more detailed information has been obtained by studies
using linear microelectrode arrays with 24 contacts on 150 mm
centers, which have explored the flow of information in the
anterior temporal lobe during memory. Chan et al. (2011) found
that high-gamma activity in the anteroventral temporal lobe
distinguishes between words referring to objects vs. those
referring to animals. This distinction is present in the first pass,
feedforward activation, characterized as an EPSC (i.e., current sink)
in layer IV before 200 ms. It could be seen as defining the type and
timing of semantic information that may be projected to the
hippocampus as the raw materials of its memories. Conversely, in
case studies during retrieval (Knake et al., 2007), especially of
autobiographical remote memories (Steinvorth et al., 2010),
sustained increases in HFA were found in the superficial entorhinal
cortex layers (neocortical recipient).

2.1.3. Memory consolidation

A group of so-called two-step theories of memory formation
have suggested that the initial encoding stage, which leads to the
formation of labile memory representations, is followed by a
second stage called memory consolidation, which renders
memory traces stable against interfering inputs (Marr, 1971;
Buzsaki, 1989; McClelland et al., 1995; Squire and Alvarez, 1995)
and appears to be linked to very fast (in animals, around 200 Hz)



Fig. 3. Cross-frequency coupling during multi-item working memory. (A) During maintenance of multiple items (trial-unique novel faces), hippocampal oscillations in the

beta/gamma frequency range occur predominantly during a specific phase range of lower-frequency oscillations in the theta range. These data support a computer model of

working memory according to which multiple items can be simultaneously maintained by a multiplexing of cycles of high-frequency activity during specific phases of low-

frequency oscillations. This effect is more pronounced during the delay period of the working memory task (B) as compared to an inter-trial baseline (C) as well as compared

to surrogate data (not shown).

Figure modified from Axmacher et al. (2010a).
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bursts of ‘‘ripple’’ oscillations (Buzsaki et al., 2002). Evidence for
human ripples has been found both with microelectrode (Bragin
et al., 1999a,b; Staba et al., 2002; Worrell et al., 2008) and with
macroelectrode (Urrestarazu et al., 2007; Axmacher et al., 2008;
Worrell et al., 2008) recordings, as well as with semi-invasive
foramen ovale electrodes (Clemens et al., 2007). The rate of such
ripples within the rhinal cortex predicts memory performance
after sleep between individuals (Axmacher et al., 2008) (Fig. 4),
further supporting the link between these events and the
processes of memory consolidation. These oscillations, which in
humans have a lower frequency at around 100 Hz, in the
frequency range of interest for this review, should not be
confounded with so-called ‘‘fast ripples’’ at 500 Hz, which occur
predominantly in the vicinity of the epileptic focus and appear to
be related to pathological processes (Bragin et al., 1999a,b; Staba
et al., 2002; Foffani et al., 2007).

The mechanisms by which sharp wave ripples might promote
memory consolidation are starting to be understood. It has been
shown that these events are temporally coupled to the
occurrence of neocortical sleep spindles (Siapas and Wilson,
1998; Sirota et al., 2003; Clemens et al., 2007), which, in turn,
increase after learning (Gais et al., 2002) and may promote
neocortical plasticity via an accumulation of intracellular
calcium (Sejnowski and Destexhe, 2000). Therefore, sharp wave
ripples may be related to the induction of neocortical plasticity
processes by the hippocampus. Results from three studies have
suggested an even closer link between sharp wave ripples and
the cellular basis of memory processes: first, Behrens et al.
(2005) demonstrated in vitro that stimulation paradigms
typically used for the induction of synaptic plasticity, also
increase the rate of sharp wave ripples. Second, King et al. (1999)
showed in vivo that the induction of long-term potentiation is
facilitated during sharp wave ripples. Finally, it has been shown
that high frequency oscillations such as ripples are potent
inductors of synaptic long-term potentiation (Yun et al., 2002).

Ripple oscillations appear to be temporally linked to
reactivation of memory traces: reactivation has been predomi-
nantly studied in rodents, where content-specific representa-
tions of spatial environments can be investigated using
recordings from spatially selective hippocampal place cells
(O’Keefe and Dostrovsky, 1971; O’Keefe, 1976). Following
exploration of such environments – accompanied by sequential
firing in place cells which represent the locations along the rat’s
track – these same sequences re-occur spontaneously during
sleep (Pavlides and Winson, 1989; Wilson and McNaughton,
1994; Kudrimoti et al., 1999; Lee and Wilson, 2002), as well as
during quiet resting periods (Foster and Wilson, 2006; Diba and
Buzsáki, 2007).

It should be noted that a couple of recent studies questioned the
classical view of memory consolidation as a one-time process and
indicate that even consolidated memories may become vulnerable
toward new interfering information. As a result, they need to be
strengthened again, a process labeled as ‘‘reconsolidation’’ (Nader
and Hardt, 2009). Moreover, it has been shown that consolidation



Fig. 4. High-frequency ‘‘ripple’’ oscillations support memory consolidation in the human brain. (A) Individual trial of high frequency activity in unfiltered hippocampal raw

data (top, gray trace) and in the same trial band-pass filtered between 80 and 140 Hz (bottom). (B) Grand-average time–frequency representation of these data across 11

patients. (C) Ripple-triggered grand average of unfiltered data reveal locking of ripples to a low-frequency oscillation reminiscent of (but slower than) a physiological sharp

wave in rodents. (D) Inter-individual correlation between the number of ripples in rhinal cortex and memory for items learned prior to a sleep period (p = 0.005).

Figure modified from Axmacher et al. (2008).
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depends on the possibility to integrate novel information into pre-
existing schemata (e.g. Tse et al., 2007; Van Kesteren et al., 2010).
However, it is still an open question whether consolidation and
reconsolidation depend on separate neurophysiological mecha-
nisms (McKenzie and Eichenbaum, 2011)—possibly, reconsolida-
tion requires similar processes of replay linked to high-frequency
ripple oscillations as consolidation does.

Finally, memory consolidation has been linked to sleep. Several
studies using linear microelectrodes contributed to understanding
how HFA is modulated during NREM sleep, and which layer it is
coming from. These experiments recorded wideband activity of a
cortical column from the pia to the white matter. Richard Csercsa
in Istvan Ulbert’s lab (Csercsa et al., 2010) described the laminar
distribution of HFA, MUA and CSD during the slow oscillation in
humans. Increased HFA during the upstate is due to a powerful
layer II/III sink, and reflects increased synaptic activity in
supragranular layers due to increased firing by both infragranular
and supragranular pyramidal cells. Using the same techniques,
Cash et al. (2009) found that the main (surface negative at
�440 ms) component of the human K-complex is a cortical
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downstate, with a profound decrease in synaptic activity and
consequently HFA in the same supragranular layers. This could be
linked to cognition because the K-complex can be evoked as well
as spontaneous.

Taken together, these studies suggest that HFA supports both
working and long-term memory processes through different
mechanisms: on the one hand, persistent increases of HFA may
support the sustained maintenance of information during the
delay phase of WM tasks, possibly linked to specific phases of
simultaneous theta band activity. On the other hand, transient

increases of HFA may be relevant for the initial encoding and
subsequent consolidation of memories by facilitating hippo-
campal spike-timing dependent plasticity as well as neocortical
long-term potentiation.

2.2. Language

2.2.1. Language production and perception

Our understanding of the neural mechanisms underlying most
perceptual, motor and cognitive processes has greatly benefited
from the precision of invasive micro-recordings in animals.
Unfortunately, animal studies are of limited use to understand
cognitive functions unique to humans. One notorious example is
the production and comprehension of elaborated language, in both
its oral and written forms. Because of the impossibility of animal
studies, our understanding of the neural mechanisms supporting
language is not as elaborate as for other major cognitive functions
shared with other species, such as memory. However, we do know
(Price, 2000), that language is supported by large-scale networks of
cortical areas that are widely distributed across occipital, temporal,
parietal, and frontal lobes of the dominant hemisphere. Although it
is rare for all of these areas to be sampled with iEEG electrodes, it is
often possible to sample many of these areas and to measure the
magnitude and time course of neural activation at each site. This, in
turn, allows researchers to determine whether different sites are
activated in sequence, in parallel, or in a cascading fashion.
Visualizing the pattern of these fine temporal dynamics is essential
for building and testing anatomically constrained models of
human language.

Until recently, our knowledge about human language networks
derived almost exclusively from clinical lesion studies and from
non-invasive neuroimaging studies, using either fMRI, PET, and to a
lesser extent, EEG and MEG (Price, 2010; Salmelin, 2007). This non-
invasive approach has proved tremendously useful to disassemble
language processes into distinct subcomponents and associate
them with specific brain regions and stages of each task. However,
they do not combine sufficient temporal and spatial resolution for
making contact between functional anatomical and psycholin-
guistic models of language.

For instance, Indefrey and Levelt (2004) performed a meta-
analysis of 82 non-invasive studies, to associate specific neuroan-
atomical regions and time ranges, or stages, in a model of the core
representations/processes supporting word production. Though
some representations depended on representations at earlier
stages, the model predicted that it was not necessary for each stage
to be completed before another stage began: initial processing at
each stage propagated through the network in a serial fashion, but
it triggered a parallel and/or cascading dynamics at the level of
large-scale cortical networks. MEG recordings were used to test
this model in part with a picture naming task, using phase-locked
responses similar to ERPs as a measure of the onset latency of
processing at different cortical sites (Levelt et al., 1998). However,
MEG data were inconclusive, because it is somewhat difficult to
use ERPs to measure and interpret the duration and amount of
neural activity (see Section 1.5), which are important for
identifying cascading network activations, as well as the relative
contribution of simultaneously active areas to overall task
processing.

HFA, as measured with iEEG, can serve as a particularly useful
index of cortical activation with a temporal precision adequate, in
most cases, to contrast and compare the time courses of cortical
activations in the various language areas (Canolty et al., 2007;
Crone et al., 2001b; Edwards et al., 2010; Pei et al., 2011; Pasley
et al., 2012). A variety of language tasks have been studied with
that approach, including visual object (picture) naming (Crone
et al., 2001a; Edwards et al., 2010), auditory word repetition (Crone
et al., 2001b; Flinker et al., 2011; Pei et al., 2011; Towle et al., 2008),
sentence comprehension (Brown et al., 2008), and a variety of
auditory speech perception tasks (Chang et al., 2010, 2011; Crone
et al., 2001a; Edwards et al., 2005; Sinai et al., 2009; Towle et al.,
2008), and reading (see next section). In general, these studies have
demonstrated spatiotemporal patterns of activation consistent
with cascaded processing dynamics. For example, a recent study of
verb generation and picture naming (Edwards et al., 2010)
demonstrated a serial progression of activation consistent with
distinct stages of perception, semantic analysis, and speech
production. Nevertheless, there was substantial overlap in the
temporal envelopes of HFA increases observed in areas where the
onset of activation appeared to be sequential. What is not known,
however, is whether the total duration of activation at each site is
really necessary for successful task completion, i.e. whether
temporally overlapping activations are obligatory and thus
whether processing is truly cascaded.

2.2.2. Reading

Among all language functions, reading might be the most
difficult one to study with non-invasive techniques. One compli-
cating factor is the speed at which it occurs and its reliance on
oculomotor processes: reading a text like this one involves several
eye movements per second to scan through sentences and extract
their meaning. The temporal resolution of fMRI and PET is too slow
to follow the time-course of neural processing of each individual
word or word group. And while EEG and MEG are sufficiently fast,
their signals mix together contributions from several nodes of the
reading network, and most importantly, muscular artifacts
produced by eye-movements. In contrast, intracranial EEG largely
avoids such pitfalls and appears to be particularly well-suited to
studies of such a dynamic, ongoing process as reading.

Of course, this is not to underestimate the contribution of non-
invasive imaging. Each of the main subprocesses of reading has
been thoroughly investigated in healthy subjects: the visual
recognition of written word-forms, grapheme-to-phoneme con-
version and semantic and syntactic analysis of sentence compo-
nents (Price, 2000; Demonet et al., 2005). By comparing brain
responses to meaningful vs. meaningless letter strings, fMRI and
PET studies have located semantic processes in the inferior frontal
cortex and around the angular gyrus, while EEG and MEG studies
have associated those processes with a response component
around 400 ms after stimulus presentation: the N400 (Devlin
et al., 2003; Kutas et al., 2000; Dale et al., 2000). Similar
approaches have revealed that word-form recognition activates
a small cortical region in the inferior temporal cortex called the
Visual Word-Form Area, in direct association with a deflection of
EEG and MEG signals 200 ms after visual word stimulus onset
(Bentin et al., 1999; Cohen et al., 2000).

Yet, iEEG studies have undeniably revealed the neural mecha-
nisms of reading with unmatched precision. The first intracranial
EEG responses to written words were in fact reported more
than twenty years ago, some of them at the single-unit level
(Smith et al., 1986; Halgren et al., 1994a; Allison et al., 1994;
Ojemann et al., 1988). Heit et al. (1988, 1990) showed for instance
unit responses in the hippocampus and medial temporal lobe that
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were selective for specific words, and were shown to occur during
the N400. Slightly later, in a particularly exhaustive study, Halgren
et al. (1994a,b) used iEEG to describe a wave of event-related
potentials concomitant to single-word reading which propagates
between 190 ms and 600 ms through the occipital, temporal,
parietal and frontal lobes in regions coinciding with fMRI
localizations of the reading network. In later work using multi-
microelectrode arrays, Halgren et al. (2006) demonstrated that the
first pass of activity down the ventral stream in the temporal lobe
into layer IV is associated with word form encoding, and the N400
is associated with recurrent upper layer activity. Recently Chan
et al. (2011) showed that this first-pass layer IV MUA and current
sinks in the anteroventral temporal lobe are already selective to
the semantic content of words. This first-pass lexical component is
continued in Broca’s region by additional iERP components
that can be related to grammatical and phonological encoding
(Sahin et al., 2009).

In recent years, applications of time–frequency analysis to iEEG
signals have shown that the recognition of visually presented
words is also concomitant with a cascade of HFA, between 40 and
150 Hz (Crone et al., 2001a; Tanji et al., 2005). In a study
emphasizing either semantic, phonological or purely visual
analysis of words and letter strings, Mainy et al. (2008) observed
HFA between 40 Hz and 150 Hz in the ventral occipito-temporal
cortex in relation to word form analysis, in the superior temporal
cortex and posterior part of the inferior frontal cortex during
phonological analysis, and in the anterior part of the inferior
frontal cortex during semantic analysis. HFA was characterized by
a posterior–anterior spread between 200 and 400 ms from the left
temporal to the left frontal lobe. A second study by the same group
showed that HFA in the reading network is also strongly
modulated by attention (Jung et al., 2008): in a simple story-
reading task contrasting an attended and an unattended story,
attended words elicited sustained HFA in the entire network while
ignored words only triggered transient HFA in the ventral temporal
cortex. This study suggested that word comprehension requires a
widely distributed network of HFA including the frontal cortex,
which only reacts during attentive reading.

Future studies are expected to build on the aforementioned
preliminary observations to study activations and interactions
within the reading network with iEEG under more natural
conditions (see Vidal et al., 2012 for a first attempt). Eye-
tracking devices can precisely monitor gaze position and fixation
duration during sentence reading (Rayner, 1998). Such measures
have been extensively used in psychophysics, but rarely in
relation to neurophysiological processes. Yet, our understanding
of the reading network will greatly improve when electrophys-
iological parameters such as the amplitude, latency, duration,
and localization of HFA and correlations between HFA in
different brain regions will be related to experimental param-
eters such as word type (verb, noun, abstract or concrete),
context or syntactic complexity.

2.3. High-frequency suppression in the default-mode network

Over the last fifteen years, functional neuroimaging studies
have revealed a fronto-parietal network more active metabolically
during rest than during attention-demanding tasks (Gusnard and
Raichle, 2001; Mazoyer et al., 2001). That network, often called
‘default mode network’ or DMN, includes the posterior cingulate
cortex and the precuneus, part of the medial temporal lobe, part of
the ventral lateral and medial prefrontal cortex, and the lateral and
inferior parietal cortex. It has become evident that any cognitive
task requires not only the activation of specific brain regions
relevant to the task, but also the deactivation of brain regions
irrelevant to the task that might interfere with task-related
regions. In tasks that require attention to external stimuli, the
ensemble of irrelevant regions is the DMN; and failure to
deactivate the DMN during an attention-demanding task actually
impairs performance (Weissman et al., 2006).

Despite considerable advances regarding the understanding
of the spatial organization of the DMN and its main functional
correlates, very little is known about the precise neural
mechanisms taking place in that network, the fine-scale
temporal dynamics of neural activity suppressions, and their
precise relationship with behavior. This is mainly due to a lack of
knowledge about the electrophysiological correlates of DMN
metabolic activity decreases. BOLD deactivations have often
been interpreted as local cortical inhibition phenomena, that is,
transient reductions of the mean firing rate of large neural
populations. Firm evidence supporting that claim, combining
simultaneous BOLD and multi-unit activity recordings in the
DMN, is still lacking however. The best evidence so far was
established outside the DMN, in the primary visual cortex:
Shmuel et al. (2006) reported a tight relationship between
negative BOLD responses and neural activity decreases in
monkeys during visual stimulation.

Several studies have shown that the local generation of HFA is
often simultaneous with an increase of the BOLD signal (Niessing
et al., 2005; Lachaux et al., 2007; Ojemann et al., 2010; Engell et al.,
2012). If the BOLD signal correlates with HFA strength, and if it
diminishes in the DMN during attentive processing, then HFA
strength should also diminish in the DMN under similar attention
conditions. This predicts the existence of high-frequency activity
suppressions (HFS), that is, transient energy suppressions in the
gamma-band during the processing of sensory stimuli.

Lachaux et al. (2005) reported a first example of HFS, or
‘negative gamma-band response’ outside the DMN: a visual
stimulus that was flashed foveally induced a transient energy
suppression between 40 and 150 Hz, in iEEG recordings of the
primary visual cortex, in the periphery of the retinotopic map. This
negative response mirrored the neural deactivation later reported
by Shmuel et al. in monkey V1 (Shmuel et al., 2006). It was also the
opposite of positive gamma-band responses induced by visual
stimuli in the fusiform gyrus of the same patients. Therefore,
sensory stimuli induced both energy increases and decreases at
high-frequencies, similar to changes observed in lower frequency
bands, such as alpha (Rihs et al., 2009).

Later, the same team reported a similar HFS in the ventral
lateral prefrontal cortex (VLPFC) in response to written words
during a reading task (Lachaux et al., 2008). This time, the authors
proposed an explicit link with the DMN based on previous fMRI
studies including the VLPFC in the DMN, and based on the
observation that HFS in the VLPFC only occurred when participants
processed stimuli attentively. This result was consistent with the
fact that DMN-negative BOLD responses are enhanced by attention
(e.g. Weissman et al., 2006).

Miller et al. (2009a,b,c) later reported a similar HFS in the DMN
during active behavior vs. rest. Ossandon et al. (2011) reported a
tight relationship between HFS and behavior throughout the DMN
during a visual search task: HFS duration matched precisely the
duration of the search, on a trial-by-trial basis. However, the onset
latency of HFS was not uniform in the DMN, suggesting that the
DMN does not react ‘as a whole’: the VLPFC reacts first, quickly
followed by mesial structures. This sequence, which could not have
been revealed with fMRI, supports the view that the DMN is
temporally and functionally fragmented. The next question, still
unanswered, is whether the reaction of the VLPFC has a causal
influence on the other components of the DMN.

These results, confirmed by recent studies (Jerbi et al., 2010;
Dastjerdi et al., 2011) might have strong implications for our
understanding of HFA. To date, cognitive HFA has been mostly
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thought of as a transient phenomenon, triggered by, or supporting,
short cognitive processes. But the existence of HFS implies that
DMN neural populations produce HFA continuously except when
external stimuli are attended. It is therefore the suppression of HFA
that is transient, not their production. Indeed, Ossandon et al.
(2011) showed that HFA re-appears as soon as attentive processing
stops, within 100 ms or less, as if DMN HFA had to fill any gap
between two external demands. Therefore, HFA should not be seen
necessarily as a transient phenomenon, at least in the DMN. This
further triggers the question of whether pathological HFA, within
the epileptogenic network, might also occur continuously as in the
DMN and might possibly participate in seizure generation.

2.4. Time, yes, but more than just time

2.4.1. Time reveals function

We now shift away from specific functional systems to
illustrate more general applications of iEEG research on HFA.
One aspect which always needs to be emphasized is time. iEEG
studies in general have revealed the timing of neural processes
underlying human cognition with outstanding precision. For
decades, the idea of timing, at least in human cognitive
neuroscience, has been strongly associated with latencies of
well-known event-related potentials, such as the N170 (an
activity peak in the fusiform gyrus 170 ms after the presentation
of a face stimulus) (Bentin et al., 1996). Time information was
mostly used to validate models from experimental psychology,
computational neuroscience or animal research concerned with
the sequence of mental operations necessary to produce a
response to a stimulus. The discovery of task-induced HFA has
begun to shift the focus of iEEG studies to different aspects of
temporal information. For example, the high signal-to-noise
ratio of iEEG makes it possible to visualize task-related
modulation of HFA in single-trials and to correlate its latency
and duration with behavioral performance on a trial-by-trial
basis (Fig. 5). This kind of visualization allows for an immediate
functional dissociation between HFAs with different temporal
envelopes. During a visual search task for instance, HFA in the
fusiform gyrus is short and time-locked to stimulus onset, while
HFA in the posterior occipital cortex is sustained throughout the
search, indicating the fusiform gyrus does not participate in the
search process, while the posterior occipital cortex probably
does. fMRI studies lack the sufficient temporal resolution to
detect such a functional dissociation based on timing only.

Further, the timing of iEEG HFA often shows that a single
cortical region can process information at multiple stages or levels
of task performance. For example, Bastin et al. (2012) have studied
HFA in the posterior parahippocampal gyrus (PPG) in response to
several categories of pictures, including landscapes, faces and
words. The PPG generated an initial category-specific HFA to
landscapes, at latencies earlier than 200 ms, with no response to
other visual categories, in agreement with the fMRI literature
(Epstein and Kanwisher, 1998) and parahippocampal latency
analyses in humans at the single neuron level (Mormann et al.,
2008b). However, a second task contrasting different types of scene
analysis (allo-centric vs. ego-centric evaluation of distance)
revealed a later HFA, between 200 ms and 500 ms following
stimulus onset, which was task-specific. The early HFA response
was thus content-specific – it corresponded to identification of the
stimulus as a landscape – while the late HFA response was task-
specific, i.e. it supported the extraction of task-relevant informa-
tion from the stimulus. This temporal dissociation echoes a
previous study from the same group showing a succession of two
HFA increases in the word-form area during attentive and non-
attentive reading: HFA first increased in response to words
independent of task-condition, and was followed by a second
HFA increase contingent upon the task-relevance of the stimulus
(Jung et al., 2008).

Another example where the combined timing and spatial
resolution of iEEG can help resolve a controversy from fMRI
concerns the origin of selective responses in posteroventral
occipitotemporal cortex to words representing objects vs. animals.
These posterior areas differentially respond with BOLD to pictures
of objects vs. animals regardless of task, but to words representing
objects vs. animals only when the task seems to require access to
the visual representation of the item (Devlin et al., 2005). This
selective BOLD response could reflect a local computation that is
enhanced by strategic processes such as attention during such
tasks. Alternatively, this response could reflect later top-down
projections from semantic areas. Using laminar multielectrode
arrays to record HFA, MUA and current sinks in different cortical
layers, Chan et al. (2011) showed that first-pass activation of layer
IV in the anteroventral temporal lobe is already differentially
responsive to words representing objects vs. animals at 200 ms,
suggesting that the differential BOLD response in posteroventral
occipitotemporal cortex reflects top-down activation projected
back from more anterior areas. Note that both top-down and
bottom-up activation should evoke a BOLD response, provided that
they increase the level of neuronal activity. Although BOLD effects
may have different latencies and characteristics in different
cortical layers, these appear to be due to propagation within the
microvascular tree rather than major differences in neurovascular
coupling (Tian et al., 2010).

2.4.2. Time also reveals functional integration and interactions

A full account of the functional network dynamics during
cognitive tasks requires not only a description of the temporal
envelopes of cortical activation at each individual recording sites,
but also an understanding of how processing is integrated across
large-scale cortical networks and how different nodes of those
networks interact with one another. For example, if iEEG HFA
analysis reveals substantial temporal overlap in the activation of
two different regions, can we tell whether processing in these two
regions is mutually dependent or whether processing in one region
has a substantive impact on processing in the other region? Are the
two regions jointly participating in a representational/processing
stage or is one propagating the results of its processing to the other
region for further processing?

These questions are notoriously difficult to answer, and indeed,
the conceptual framework for asking them is still evolving. Yet the
answers to these questions may have some very practical clinical
ramifications. For example, common language tasks such as
picture naming require the cooperative activity of large-scale
networks of cortical sites, and it may be difficult to determine the
functional role, and thus the relative importance, of any single
cortical site based on its functional activation alone. When
deciding whether to resect or spare such a site, it might be
particularly useful to know whether a given site is common to
several different task-specific cortical networks or is an important
hub in one such network. This knowledge would be particularly
useful if the given site is also part of the network of sites
responsible for seizure generation or propagation.

These considerations have motivated a growing number of
studies using sophisticated signal processing algorithms that
leverage the timing information in iEEG signals to uncover higher-
order integration and interactions between and within brain
regions. To investigate the integration of cortical processing
across large-scale cortical networks, many investigators have
measured the degree to which gamma oscillations at different
sites are synchronized with each other. Using a variety of signal
processing approaches, including phase-synchrony coupling
analyses (Lachaux et al., 1999; Tallon-Baudry et al., 2001) these



Fig. 5. Timing of HFA dissociates between four distinct functional roles during visual search. The four panels show single-trial HFA during visual search in four anatomical sites

(FEF: frontal eye field; DLPFC: dorso-lateral prefrontal cortex). Color codes band-limited power of iEEG signals in the [50–150 Hz] frequency range, expressed in % increase or

decrease relative to the average value across the entire experiment. Stimulus onset occurs at 0 ms, yellow dots indicate reaction time. The task required that patients find a

target (tilted letter ‘T’) embedded in an array of distractors (tilted ‘L’s with random orientation). The four sites are characterized by dissimilar response timing, indicative of

clearly distinct functional roles.
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investigations have been grounded in the gamma-band synchro-
nization hypothesis (Varela et al., 2001). To date, this approach
has mostly been applied to non-human primate electrophysiology
(Gregoriou et al., 2009) and human non-invasive EEG (Rodriguez
et al., 1999) to understand parallel processing across widely
distributed neuronal assemblies. In iEEG signals, synchrony is
mostly visible in lower frequency bands (e.g. around 20 Hz,
Tallon-Baudry et al., 2001; Lachaux et al., 2005), but the spatial
and temporal precision of intracranial EEG make it particularly
well-suited for studying gamma synchronization as well, as
already shown by Fell et al. (2001).

That framework is rapidly extending to include increasingly
sophisticated approaches. For instance, graph-theoretical mea-
sures have been applied to networks synchronized in the gamma
frequency range, to characterize both physiological networks, with
scalp EEG (Palva et al., 2010; Kitzbichler et al., 2011; Zhou et al.,
2012), and pathological networks with iEEG (Wilke et al., 2011). A
new measure of multivariate phase-based interactions has also
been applied to iEEG data (Canolty et al., 2012), to separate direct
and indirect interactions between channels, which is not possible
with the traditional measure of phase synchronization (Mormann
et al., 2000). Other approaches try to understand how different
frequency bands might interact to facilitate neural integration. For
example, recent studies have shown that HFA is modulated by
theta oscillations in large-scale brain networks (Canolty et al.,
2006; Mormann et al., 2005), generating a growing interest in
cross-frequency coupling (Canolty and Knight, 2010) as a
mechanism for large-scale integration.

Yet another approach has focused on task-related causal
influences among network components, often referred to as
‘‘effective connectivity’’ (Bressler and Tognoli, 2006). This frame-
work emphasizes the impact of processing in one cortical site on
processing in other cortical sites activated by a task. Because these
causal influences are expected to contribute to network function
on timescales of tens to hundreds of milliseconds, iEEG is
particularly well suited to study them. A recent iEEG study used
multivariate autoregressive modeling (Korzeniewska et al., 2008)
to investigate the event-related temporal dynamics of direction-
ally specific causal influences during a set of complementary word
production tasks (Korzeniewska et al., 2011) (Fig. 6). This study
demonstrated robust and rapidly changing causal interactions at
high-gamma frequencies among widely distributed iEEG recording
sites. Importantly, the location and timing of these interactions
depended on contrasting stimulus modalities and response
modalities, and were consistent with anatomically constrained
models of the functional anatomy and dynamics of word
production. To investigate the relationship between activation
at individual sites and causal interactions between sites, the
number and magnitude of causal influences that each site had on
all other sites was integrated over task-relevant time windows.
Interestingly, the sites with the most numerous and prominent
influences on other sites in the network, were those with the
greatest activation, suggesting that these sites were important
nodes in the overall task-specific network. Moreover, although
only some of these sites were tested with electro-cortical
stimulation (ECS) mapping, there was a remarkable agreement
at several sites evaluated with both iEEG and ECS.

Finally, Vidal et al. (2012) reasoned that in most networks,
components produce, process and transmit information all at the
same time. The logical implication is that the amount of cortical
computation performed by two interacting neural populations
should co-vary in time. If follows that if HFA quantifies local
cortical computation, then the time fluctuations of HFA measured
in two interacting neural populations should also covary. In other



Fig. 6. Event-related causal (ERC) interactions between iEEG sites with HFA during an auditory word repetition task. Three sequential time intervals of the task are shown:

auditory word perception (stimulus onset to median stimulus duration, left panel), word retrieval and response preparation (between median stimulus offset and median

response onset, middle panel), and spoken response (including 750 ms following the median response latency, right panel). Arrows indicate the directions and intensities of

statistically significant increases in event-related causal (ERC) interactions between recording sites. The width and color of each arrow both represent linearly the magnitude

of its integral ERC flow. Color scale (on left) has the same range for all ERCs, scaled from minimum to maximum (10% of the smallest ERCs not shown). The integral (sum) of

ERC outflows is illustrated by semi-transparent purple circles. The radius of each circle is proportional to the normalized sum of statistically significant event-related

increases in causal interactions directed outwardly from the site (originating at the site). Plots of event-related iEEG HFA are shown for select iEEG sites (insets). Only

statistically significant power increases and decreases are plotted. Stimulus onset is at 0 s. Vertical markers indicate the times for median stimulus offset (o) and the median

response onset (r). Results of electrocortical stimulation mapping (ESM) are represented by colored bars between pairs of electrode sites: red—involuntary tongue movement,

purple—impaired spoken picture naming and auditory sentence comprehension (modified Token Test). F indicates frontal iEEG sites, and B indicates basal temporal sites.

Composite of illustrations reproduced from Korzeniewska et al. (2011) with permission from Elsevier.
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words, correlation between HFA envelopes should logically
measure network interactions, and as such, be modulated by
task-demands. They confirmed that hypothesis during a sentence-
reading task, showing interactions specific to semantic processing
between two major components of the reading network: the
middle temporal gyrus and the inferior frontal gyrus.

3. iEEG and cognitive HFA: guidelines for experimental
research

If, as we hope, the previous examples are convincing evidence
that iEEG research on HFA can provide unique information about
the human brain at work, we expect the number of contributors to
this field to increase at a fast pace, as it has already started to do in
the last few years. This review is a unique opportunity to combine
the experience of five research groups with long-standing
expertise in iEEG research, and to provide some guidelines for
experimental research on HFA. Human intracranial electrophysi-
ology comes with specific constraints, which require some care.

3.1. Fragments of a lost tale. How many patients make a study?

A major constraint of iEEG is its limited sampling of the human
brain. Recording techniques vary across epilepsy centers: 2-D
cortical grids provide a spatially continuous coverage of extended
superficial cortical areas such as the motor cortex, while depth
electrodes penetrate deep into the cortex to reach internal
structures such as the cingulate cortex or the hippocampus. Yet,
in all cases, electrodes record only from a fraction of the total brain
volume (on the order of 1%, see Halgren et al., 1998), which means
that iEEG never provides a comprehensive view of global brain
dynamics, but only ‘fragments of a lost tale’.

To deal with this limitation, most iEEG studies have chosen to
focus on a small set of brain structures, for instance the medial
temporal lobe, and to report only results that are reproducible
across patients. This approach is very much in line with the
tradition of animal electrophysiology, which has to deal with the
same spatial sampling issue: for instance, most studies performed
in monkeys target a very specific structure and report on data
recorded in a few animals only. Note that the number of subjects
reported in iEEG studies is typically lower than for non-invasive
neuroimaging (fMRI) or electrophysiological (scalp EEG or MEG)
studies for two reasons: (a) the number of patients undergoing
iEEG studies for clinical purposes at any one center is typically
small and (b) the high signal-to-noise ratio of iEEG recordings
allows statistically significant results to be obtained in single
subjects. Robust and stable HFA responses can be measured in
single subjects performing a relatively small number of trials of a
task, and multiple blocks of the same task can be recorded in the
same subject to demonstrate the test–retest reliability of these
responses. In these cases, ‘‘grand averages’’ are simply not needed,
and at the high spatial resolution of iEEG, may be inappropriate and
potentially misleading because of the risk of averaging responses
from neuronal populations with different responses to the same
task. Under these circumstances, it is only necessary to show that
HFA responses with task-relevant spatial and temporal profiles are
reproducible across subjects. Because of the potential effects of
epilepsy on normal cortical networks and because no two iEEG
electrode configurations (or human brains) are identical, the
number of subjects needed to demonstrate reproducibility is
arguably more than the two-subject criterion used in publishing
studies of nonhuman primates, but if the results are compelling it
need not be much more.

Other studies favor a more global approach to report on the
global brain dynamics, as much as possible. Data are collected in
several patients (often more than 10), and the results are organized
into regions of interest, which include anatomical sites with robust
task-related responses across patients. In practice, any cortical
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region sampled in at least two patients and with constant
sensitivity to experimental manipulation can be considered as a
region of interest (ROI). The rationale of such studies is to
compensate for limited brain sampling at the individual level by
including more patients. Because of the inter-individual variability
of iEEG explorations, the probability of missing important nodes of
the functional network under study becomes smaller as the
number of patients increases. This approach has several well-
known limitations though: (a) the effects reported in two different
ROIs might come from two distinct groups of patients, which
means that the study is in fact a collection of single-ROI studies of
the kind described above (e.g. Axmacher et al., 2010b) and (b) the
number of patients needed can become unrealistically high,
especially when studying specific patterns of interactions: patients
with electrodes over dorsolateral prefrontal cortex (DLPFC), dorsal
anterior cingulate gyrus, the frontal eye fields and the intraparietal
sulcus to study visual attention for instance. Once again, it is often
difficult to report on more than two patients with a very specific
combination of recording sites.

3.2. Individual-level or group-level statistics?

The aforementioned considerations often make group-statistics
inapplicable to iEEG studies. Rather, many reports favor a detailed
description of individual cases, with clear evidence that similar
effects can be found in at least one other patient. Statistically, this
research strategy is often combined with fixed-effects analyses, in
which the effects of independent or dependent variables on HFA
are tested across all trials in all subjects. In this case, intra-subject
variability and inter-subject variability are treated identically,
which statistically precludes a generalization beyond the investi-
gated group of subjects (Penny and Holmes, 2004). This is in sharp
contrast to non-invasive neuroimaging studies, which most often
report group-statistics only, and grand-averages computed across
more than 10 subjects. However, iEEG provides a rare opportunity
to highlight inter-individual variability in the brain’s functional
organization. Group statistics and grand-averages can be comput-
ed only in exceptional situations where the exact same brain
structure is recorded in several patients. In these cases, though, it is
possible to conduct random-effects analyses (with ‘‘subject’’ as a
random variable) similar to analysis of functional MRI data (Penny
and Holmes, 2004). In other words, such studies usually start with
computing the average value of HFA in each subject (first level),
and then conduct a parametric (or even better a non-parametric;
Maris and Oostenveld, 2007) analysis across subjects (second
level). In principle, this analysis strategy has the advantage that the
second-level analysis tests whether the effect of an experimental
manipulation or a behavioral outcome on HFA is robust against
typical inter-subject differences. This allows one to generalize
beyond the investigated group of subjects.

3.3. Is an epileptic human brain a good ‘model’ of the healthy

human brain?

Because iEEG is always obtained in patients suffering from
major brain disorders, one might rightfully wonder whether the
conclusions of any intracerebral study can be extended to healthy
brains. iEEG researchers have developed a series of guidelines to
address this concern: (a) consider only recording sites away from
the epileptic zone and signals free of epileptiform activity, such as
epileptic spikes; (b) concentrate on results from functionally intact
regions as assessed by neuropsychological testing and neuroim-
aging; (c) focus on results which can be reproduced across several
patients, possibly with different seizure foci and taking different
medications; (d) favor observations consistent with previous
neuroimaging studies of healthy subjects.
3.4. Additional technical issues

3.4.1. A noisy environment

Experimenters often have to deal with other practical issues
that can potentially impair the quality of the data. One source of
problems is that the clinical environment is not always designed to
perform high-quality data acquisition during cognitive protocols.
While most EEG researchers take great care reducing electrical
noise and controlling for ambient sound and light in the recording
room, clinical teams usually do not, because they do not have the
same needs. Patients might hear people talking nearby or street
sounds during an experiment for instance. The solution is to have a
separate isolated room for cognitive experiments, as it often
happens in long-standing collaborations between clinicians and
researchers. But that solution requires space, and that the patient
moves from one room to another during iEEG monitoring, which is
not always feasible. This means that some very careful psycho-
physics experiments, involving stimuli at visual or auditory
perceptual thresholds for instance, are particularly complicated
to conduct. The clinical environment is also not always optimally
designed to avoid contamination of iEEG recordings by electrical
noise, and both 50 Hz and 60 Hz line-noises happen to be in the
frequency range of HFA. In our experience, that noise can be
extremely high in raw, monopolar recordings. One efficient noise-
canceling solution is to use a bipolar montage, that is, to use for
each recording site a neighboring site as a reference. That solution
is particularly well-adapted to depth-electrode recordings, where
recording sites are typically separated by a few millimeters. In that
case, bipolar signals are very clean and originate from the
immediate vicinity of the recording site, within less than 5 mm
(Lachaux et al., 2003), although one must keep in mind that neural
signals recorded with the exact same amplitude on two consecu-
tive sites cancel in such a montage. In any case, raw data must
never be acquired directly using a bipolar montage, so that the
experimenter can always go back to the original monopolar signals
if need be. The bipolar montage is applied offline. Bipolar montages
are less adequate for 2-D cortical grids, first because the distance
between sites is usually larger, which means that a bipolar
montage might spread local HFA over several square-centimeters,
and second because the choice of the reference for each site is less
simple (most sites on the grid have eight neighbors). Laplacian
transforms, a popular choice in scalp EEG research, might seem
well-adapted to the geometry of cortical grids but they also spread
local HFA over non-responsive sites and reduce the spatial
resolution of the recordings. Alternatives include using as a
reference (a) an intracranial site located in a non-responding area,
for instance in the white matter, (b) a global average reference, for
instance the mean of all sites with comparable size and impedance
and showing no epileptiform activity, (c) a local average reference,
that is, the mean of a few signals recorded in the immediate
vicinity of the site of interest, (d) an external reference, such as
linked mastoids. All solutions have advantages and disadvantages:
for instance, an external reference might record muscular artifacts
and spread them over all iEEG signals, while a global average
reference might distribute over all iEEG signals HFA produced in a
few sites only. The best option might be to record linked mastoids
and iEEG altogether so that all options can be tested and evaluated
with regard to the recording conditions.

3.4.2. Fast, but not too soon

A final constraint of iEEG research is that the timing of the
experiments must be adjusted to the patients condition, in
addition to the clinical schedule. It is common sense that
experiments should not take place right after electrode implanta-
tion or immediately after a seizure. But how long should the
experimenters wait? The collaboration with the clinical staff is
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essential at that stage, because the answers really depend on the
patient’s recovery, which can be estimated from a judicious
assessment of both the patient’s neurological function and iEEG
signals. Needless to say, each patient should really be considered as
a generous collaborator of the research team, and be treated with
great care and respect. Some patients can perform experiments the
day after surgery, but most researchers choose to wait at least a
few days. Our experience is that patients with depth electrodes
recover faster than patients with subdural strips or even grid
electrodes, probably because the latter mechanically irritate the
dura much more than the former and because of the more invasive
requirements of surgical implantation. Experiments can then take
place for up to two weeks typically, at least with macro-electrodes.
Micro-electrode recordings impose an additional time limit
because microwire signals tend to degrade over time, while
macro-scale iEEG signals do not.

4. Use of HFA to anticipate and prevent post-operative
cognitive deficits

The objective of presurgical iEEG monitoring is not only to
define the epileptogenic network as a surgical target, but also to
identify cortical regions that support critical sensory, motor or
cognitive functions and should be spared from surgery. The best
way to anticipate post-operative deficits is to test the ‘functional
integrity’ (Chelune, 1995) of the candidate cortical target for
surgical resection. This integrity is usually evaluated by combining
neuropsychological testing, functional neuroimaging, pharmaco-
logical inactivation (Wada test), and electro-cortical stimulation.
None of these methods, however, have proven accurate enough to
reliably anticipate the risks of surgically induced cognitive deficits.
Although electro-cortical stimulation (ECS) is often considered to
be the gold standard for identifying eloquent brain areas, it does
not trigger interpretable manifestations in many cortical regions,
especially associative regions supporting high-level cognition. For
example, in one study of medial temporal lobe stimulation, 64% of
the ECS evoked no subjective or overt response, even when they
were strong enough to evoke an after discharge (Halgren et al.,
1978a,b). It is also not clear whether ECS actually activates or
disrupts cortical networks (see David et al., 2010 for a review on
this topic) and strong stimulation currents carry a risk of inducing
after-discharges. For these reasons, ECS – as well as the approaches
cited above – may detect only the ‘‘tip of the iceberg’’ and may fail
to reveal important functional cortical networks. Analyses of iEEG
responses during cognitive tasks are emerging as a useful
complement to ECS to try to address these limitations. It should
be clear from the previous sections, that information processing in
the neocortex generates focal, transient and task-specific HFA
increases and decreases. In this section, we discuss current
applications of HFA research to map cognitive functions in
patients before surgery.

4.1. Fast and systematic mapping of major functional networks with

HFA: the Grenoble experience

One of the authors (J.P.L.) has developed a series of short
cognitive tests, lasting about 10 min each, designed to generate
task-specific, and stimulus-specific HFA in several major function-
al systems, including the visual system, the auditory system, the
motor system as well as large-scale networks subtending
language, executive attention, verbal and visuo-spatial working
memory (Vidal et al., 2011). The extraction pipeline of HFA has
been optimized to provide a statistical mapping of HFA for each
network and each recording site in a convenient visual form, only a
couple of minutes after task completion. It provides an instant
visual guide to the patient’s functional anatomy, which is used by
the clinical team to optimize the ECS procedure. For instance, a site
in the auditory cortex was stimulated at 50 Hz while the patient
listened to music, because it had generated music-specific HFA
during the auditory localizer. During the stimulation, the patient
reported a disruption of auditory perception while listening to
music but not while listening to speech. Until now, the standard
procedure in Grenoble during ECS of the auditory cortex comprised
solely of a verbal exchange with the experimenter. Because ECS
must be done at pairs of electrodes and can be quite time-
consuming, it is not practical to use it to test all the potential
functions that might be present at a given site. Therefore, we
suggest that the fast and systematic mapping of major functional
networks with HFA can be a useful and inexpensive complement to
ECS, more convenient than a series of fMRI experiments for
instance. In the future, we propose that HFA may potentially be
used as a biomarker of healthy cortical structures to be spared from
resection, provided that more studies validate that HFA actually
identifies structures critical for task-performance (see Section 4.3).

4.2. BrainTV: cognitive-field mapping in the human brain

A limitation of the previous procedure, though, which also
applies to ECS mapping, is that clinicians can only test functions
envisioned beforehand. For instance, if a cortical site is critical for
mental calculation, it might go unnoticed if the patient is never
asked to use that function, either during ECS or during a
standardized cognitive test. One way to avoid that pitfall is to
test the reactivity of recorded sites online, as the patient is asked to
engage in multiple and very diverse cognitive operations. Because
of the high signal-to-noise ratio of invasive recordings, HFA
induced by cognitive activity can be detected in single trials in iEEG
signals (Vidal et al., 2010; Edwards et al., 2010; Miller et al., 2011).
For instance, each time a patient successfully maintains a complex
visual pattern in visuo-spatial working memory, an increase in HFA
can be detected in the infero-temporal gyrus (Hamame et al.,
2012). It is therefore possible to compute and display HFA
produced by small cortical regions in real-time, and evaluate
how it appears or disappears as the patient performs daily life
activities. This approach has been implemented within a system
called BrainTV (Lachaux et al., 2007; Lachaux, 2011): patients
watch HFA from selected regions of their own brain as if they were
watching a live show on TV.

Beyond its basic entertainment value, BrainTV provides a useful
research tool for presurgical functional mapping. Experimenters
and clinical staff can quickly formulate hypotheses about the
motor, perceptual or cognitive functions supported by a given
cortical site, and then test it, revising or refining it in a matter of
minutes. In the example cited above, a short BrainTV session
revealed that HFA in the inferior temporal gyrus was not specific to
visuo-spatial working memory, but could be induced by any type
of mental imagery (Hamame et al., 2012). In another example, an
auditory region responsive to speech turned out to be selective to
change in speaker (Lachaux et al., 2007). Examples are plenty and
have often revealed unsuspected cognitive functions associated
with cortical regions that were initially part of the planned
resection. BrainTV can be seen as an extension of the classic
receptive-field mapping procedure performed during recordings of
the cat’s visual cortex (Hubel and Wiesel, 1962). It is a form of
‘cognitive-field mapping’ during which the BrainTV experimenter
searches for the cognitive process that optimally activates a given
cortical region. In a second step, these initial hypotheses are
followed by rigorous, controlled tests of cortical function using
HFA and ECS (Lachaux et al., 2007).

In addition, BrainTV-like systems offer a unique opportunity to
observe human brain dynamics online, under natural conditions:
when the patient is performing informal daily activities such as
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reading the newspaper, watching TV or simply chatting with the
clinical staff (Movie 1). Other approaches that rely on non-invasive
measures requires that the participant stands still in a controlled
environment. With BrainTV, HFA increase can be observed in the
fusiform face area each time the patient looks around and finds a
familiar face, and even stronger if that person starts talking.

The BrainTV set-up is an example of an application that entirely
relies on the fine spatial and temporal precision of iEEG, and on the
sharp association between HFA and cognition. It works, because (a)
neural populations recorded by iEEG are functionally homoge-
neous and generate HFA each time they participate in the cognitive
process at-hand and (b) because HFA can be measured and
displayed in real-time (temporal precision).

Finally, BrainTV provides a path of discovery for novel brain–
computer interfaces (BCI). Any efficient BCI relies on a pairing
between an electrophysiological measure and a cognitive strategy
that a patient can use to control that measure at will. iEEG HFA are
sufficiently task-specific to serve as BCI index, as evidenced by
recent studies (Leuthardt et al., 2004, 2006, 2011; Brunner et al.,
2009; Hamame et al., 2012). Furthermore, the logic can be
extended to the control of single-neurons: proof that human
subjects can use biofeedback to selectively control brain activity
even at the single neuron level has come from a recent study where
subjects managed to voluntarily alter the appearance of pictures
on a computer screen by controlling the activity of four selected
single neurons (Cerf et al., 2010).

4.3. Participating vs. essential sites in cortical networks

One remaining question, however, is whether neural popula-
tions activated during a task – as revealed by task-induced HFA –
are truly critical for task performance. What percentage of these
activated populations are simply ‘‘along for the ride’’, perhaps due
to spreading activation of frequently associated representations?
To what degree are neural representations distributed across large
cortical areas or networks of areas, and how susceptible are these
representations to lesions of one or more of these areas? These
questions have important implications for the clinical application
of iEEG studies of human cognition.

ECS provides a convenient and effective means of studying the
behavioral effects of a brief, reversible, and localized cortical
‘‘lesion’’, and it is widely accepted as the best available method for
identifying cortical sites that are critical to function. As such, it is
used to predict whether functional impairment would result if a
given site were resected (Ojemann et al., 1989). However, the
hyperacute nature of the lesion makes it impossible to account for
post-lesional functional reorganization and to estimate the
functional reserve of other cortical areas, and there are lingering
uncertainties about whether the functional lesion is limited to the
site of stimulation. These concerns, as well as other practical
limitations of ECS, have motivated several studies of iEEG as a
potential clinical tool for preoperative functional mapping.
Whereas ECS must be carried out sequentially at pairs of
electrodes, iEEG can test all implanted cortical sites simultaneous-
ly. In addition, while ECS can sometimes trigger seizures that
interfere with functional mapping and do not contribute to clinical
goals, passive iEEG recordings do not carry this risk.

In spite of the important potential benefits of preoperative
functional mapping with iEEG, the fundamental issue of partici-
pating vs. essential activation of cortical sites in iEEG, as in fMRI
and PET, has inhibited its adoption into routine clinical practice
pending a favorable comparison with the existing clinical gold
standard. Several direct comparisons have been made between
iEEG cortical mapping and ECS (Brown et al., 2008; Crone et al.,
2001b; Sinai et al., 2005; Towle et al., 2008). In these comparisons,
sensitivity and specificity have been used as measures of the
performance of iEEG mapping as a binary classification test for the
presence of cortical function, relative to the presumed gold
standard of ECS. In this framework, sensitivity has been measured
as the proportion of true positives (percentage of electrode sites
that were both iEEG-positive and ECS-positive among all ECS-
positive sites), and specificity has been measured as the proportion
of true negatives (percentage of electrode sites that were both
iEEG-negative and ECS-negative among all ECS-negative sites). The
results of these studies have been variable, possibly due to
differences in testing and analysis methods. In addition, compar-
isons of the two methods are not necessarily straightforward. ECS
produces an all-or-none effect during language tasks, and it is
difficult to know which aspect of task processing has been
interrupted. iEEG produces a map of graded task-related neural
responses, and a threshold for the magnitude of these responses
must be chosen to compare with ECS maps.

In general, a lower threshold for activation will include more
sites as iEEG-‘‘positive’’ and will increase the sensitivity of iEEG
with respect to ECS at the expense of a lower specificity. This
tradeoff has been observed in comparisons of fMRI with ECS,
particularly when maps for single tasks are compared. Such a
tradeoff was observed in a comparison in 13 subjects between iEEG
and ECS maps of picture naming (Sinai et al., 2005), a task that is
commonly used for ECS and is one of the most susceptible to post-
operative impairments. This comparison was complicated by the
fact that naming could not be tested with ECS in sites responsible
for spoken responses because ECS in these sites produced
uncomfortable mouth sensations and movements that usually
prevented task performance. Nevertheless, once this was taken
into account, this study found that the specificity of iEEG mapping
relative to ECS was about 78%, and that its sensitivity was 38%. The
authors concluded that iEEG mapping could be used to create a
preliminary map of language cortex that could later be assessed
with electrocortical stimulation. In another study, Towle et al.
(2008) compared iEEG responses during word repetition and recall
tasks with ECS language maps and reported a sensitivity of 63%,
with a specificity of 57%.

In contrast to the aforementioned studies of complex word
production tasks, Sinai et al. (2009) compared iEEG maps of a
speech perception task with ECS maps of speech comprehension
and found a specificity of 98%, a sensitivity of 67%, and a positive
predictive value (ratio of true positives to the combination of true
and false positives) of 67%. The performance of iEEG mapping
relative to ECS has also been excellent when mapping motor cortex
(Miller et al., 2007; Brunner et al., 2009). Why have these
comparisons of iEEG vs. ECS mapping been more favorable in
auditory cortex and in motor cortex than in language cortex? It is
possible that the cortical populations responsible for simple
perceptual and motor tasks are more densely organized than are
those responsible for language tasks. In particular, lexical semantic
knowledge is likely represented in widely distributed cortical
networks, and any given network node may contain only a portion
of the overall neuronal representation. ECS may be able to acutely
disrupt task performance by inhibiting such a node or by
interfering with the network to which it belongs, perhaps through
abnormal propagation of action potentials in passing fibers.
However, the proportion of the neuronal population that is
activated at this node may not be sufficient to stand out among the
overall activity recorded at an iEEG electrode. This hypothesis has
yet to be confirmed, however, and may require smaller, more
densely spaced arrays of iEEG electrodes.

Although studies of the potential clinical utility of iEEG have
primarily focused on how its maps of cortical function compare
with those of ECS, it is important to acknowledge the limitations of
ECS as a ‘‘gold standard’’, already mentioned above, and to
remember that the most important criterion to be met by any
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clinical tool for functional mapping is its ability to predict and
avoid post-operative neurological impairments, while maximizing
the amount of ictogenic tissue that can be resected. Determining
how well iEEG meets this criteria, however, will be challenging. Of
course, it will require post-operative assessments of neurocogni-
tive outcomes (relative to pre-operative assessments), as well as
outcomes with respect to seizure control. A few cases of post-
operative outcomes after iEEG mapping have already been
reported and have suggested that it can predict post-operative
language impairments (Sinai et al., 2005; Cervenka et al., 2011) as
well as memory (Grunwald et al., 1998) and seizure outcome
(Grunwald et al., 1999). However, because of the relatively low
incidence of post-operative impairments and the number of
patients that continue to have seizures in spite of surgery, rigorous
tests of the accuracy of iEEG mapping will need to be done in a
larger cohort of patients, perhaps requiring a multi-site clinical
trial. Simple and efficient methods for iEEG mapping, such as those
described above in the Grenoble experience, would greatly
facilitate such a study and serve to standardize the results
obtained across patients and centers. Nevertheless, the interpre-
tation of such a study will have to take into account the fact that
the entire volume of tissue resected may not be sampled
comprehensively by the implanted electrodes. Likewise, the entire
network of activated sites may not be resected. In spite of these
limitations, however, the practical advantages of iEEG make it a
compelling method that will likely be used at least for now, as a
mapping tool that complements ECS.

5. Expected conceptual, methodological and technological
evolution of iEEG research on cognitive HFA

As more and more research groups use iEEG to probe the fine
spatio-temporal dynamics of the human brain, their scientific
questions become increasingly sophisticated and require finer and
broader means of investigation. iEEG itself can be used more
efficiently, through faster and better analysis techniques, but it can
also be improved to provide a truly multi-modal and multi-scale
perspective on the large-scale neural networks supporting
cognition. In this final section, we discuss several minor and
major evolutions which might shape the future of iEEG cognitive
research.

5.1. Beyond epilepsy: extension to deep-brain stimulations patients

In most epilepsy centers throughout the world, the number of
implanted patients appears to decrease gradually across the years.
This process is due to various factors, including the development of
new antiepileptic drugs, the improvement of MRI hardware and
signal processing algorithms (allowing to detect subtle lesions in
patients which had previously been considered as non-lesional),
and increased knowledge about the putative outcome of neuro-
surgical interventions given specific morphological alterations.
While these developments are generally beneficial for the epilepsy
patients, they render the investigation of cognitive functions with
iEEG increasingly difficult. On the other hand, deep brain
stimulation (DBS) is currently becoming a novel therapeutic
option for an increasing number of patients with various
pathologies: beyond the well-established treatment of severe
Parkinson’s disease by stimulation of the subthalamic nucleus (e.g.
Benabid et al., 2009; Bronstein et al., 2011), this method has
(among others) been recently applied to therapy-refractory
patients with obsessive–compulsive disorder (Denys and Man-
tione, 2009; Greenberg et al., 2010), depression (Mayberg et al.,
2005; Lozano et al., 2008; Schlaepfer et al., 2008), Tourette’s
syndrome (Hariz and Robertson, 2010), and even Alzheimer’s
disease (Laxton et al., 2010). In many cases, wires are initially
externalized, which allows one to record intracranial EEG from the
implanted brain regions. It is well conceivable that in the future
iEEG studies on HFA may increasingly rely on such interventions in
DBS patients. A disadvantage for studies of cognitive processes,
however, is that electrodes are in most cases implanted only in one
brain region which is likely affected by pathological processes. In
some cases, electrodes may be also implanted in areas ‘‘upstream’’
of the main target, or in cortical structures, but the implantation is
always limited to a few sites (e.g. where the depth electrodes are
inserted on their way to deeper brain nuclei).

5.2. Novel analysis strategies of iEEG signals

Novel analysis strategies will be applied to iEEG data.
While earlier studies of HFA focused on univariate analyses of
activity in individual brain regions or on mass-univariate
analyses across various regions which were each analyzed
separately, there is now an increasing number of studies using
bivariate measures of functional connectivity such as spectral
coherence or phase synchronization, already mentioned (for a
recent review, see Fell and Axmacher, 2011). In addition, some
studies have started to apply effective (directional) coupling
measures to iEEG, e.g. based on Granger causality or directional
entropy (e.g. Gow et al., 2009). Another potential framework for
analyzing iEEG data is dynamic causal modeling (DCM). Before it
was adopted by Friston et al. (2003) for analysis of fMRI/BOLD
signals, this framework had developed out of neural mass
modeling studies designed to account for neurophysiological
(EEG, MEG, EPs) phenomena based on the mean-field mathe-
matical approach introduced by Wilson and Cowan (1973; see
also Destexhe and Sejnowski, 2009a,b). DCM has more recently
been applied to event-related potentials (Kiebel et al., 2006) and
oscillations (Penny et al., 2009) in scalp EEG and MEG data. In
the future, this method may also be applied to intracranial EEG,
possibly in combination with noninvasive imaging methods (see
David et al., 2008). This may be particularly interesting to
constrain the neural mass models of neural activity in the
investigated areas by iEEG data recorded directly within
these regions.

Beyond bivariate measures, multivariate analyses allow one to
address additional models of cognitive function. One emerging
field of research uses pattern-classification algorithms derived
from machine learning to identify the distributed pattern of
category- or even stimulus-specific neural representations
(Haynes and Rees, 2006). A similar technique is the analysis of
representational similarity, which allows one to investigate
patterns of activity even across only a few trials (Kiani et al.,
2007; Kriegeskorte et al., 2008; Mormann et al., 2011). Such
algorithms have already been applied to iEEG data, e.g. during
memory paradigms (Manning et al., 2011). Finally, graph-
theoretical measures that describe topographical properties of
distributed activity patterns (Bullmore and Sporns, 2009a,b) can be
applied to iEEG data.

5.3. Multimodal imaging: hold your hand out !

In the near future, we expect iEEG to be combined more
frequently with non-invasive neuroimaging modalities, such as
fMRI or MEG, to provide a multi-scale and multi-modal under-
standing of task-related HFAs. There are several reasons for such
developments. iEEG investigation of cognitive HFA has grown into
a field of its own, which cannot continue evolving in isolation. iEEG
also has its own limitations: it suffers from limited cortical
sampling and applies only to patients with severe neurological or
psychiatric deficits. In contrast, fMRI and MEG/EEG provide a full
coverage of healthy brains. It is therefore highly desirable to
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combine the strengths of all existing techniques to provide a
comprehensive view of the human brain at work.

This integration, however, requires a better understanding of
how iEEG-recorded HFA is related to fMRI and MEG/EEG signals.
This relationship can be investigated through the combination of
invasive and non-invasive recordings. Simultaneous iEEG and MEG
recordings are challenging but feasible and can provide important
steps toward a multi-scale understanding of HFA. Dalal et al.
(2009) have shown that HFA induced by written words in visual
cortex coincide in time and anatomical origin with MEG gamma-
band responses. This observation contradicted recent and influen-
tial suggestions that gamma-band responses in non-invasive
recordings are mainly due to eye-movement artifacts (Yuval-
Greenberg et al., 2008). In the future, we expect that more
simultaneous iEEG/MEG studies will provide a platform for
validating MEG source reconstruction algorithms that are capable
of localizing HFA sources from noninvasive scalp-level recordings.

Simultaneous fMRI and iEEG recordings are even more
challenging, but the first successful attempts have recently been
published (Carmichael et al., 2010). HFA was found to be highly
correlated with the BOLD signal in somatomotor cortex, in line
with previous animal studies and non-simultaneous recordings in
humans (Logothetis et al., 2001; Kayser et al., 2004; Niessing et al.,
2005; Lachaux et al., 2007; Ojemann et al., 2010). We expect fast
technological progress in the near future to make simultaneous
fMRI and iEEG recordings increasingly more common.

Ideally, analysis of HFA in human intracranial EEG data should
also be combined with invasive recordings in animals. Such an
approach directly allows one to conduct the translational research
approach described at the beginning of this article—to study a
given cognitive process at various levels ranging from in vivo and
in vitro electrophysiology in animals to iEEG and fMRI recordings
in humans. Currently, only very few groups have adopted such a
strategy, however, as it requires a genuine inter-disciplinary effort.

5.4. Multi-scale iEEG: micro-, macro-, and multimodal electrodes

We conclude this review with an important new trend in iEEG
studies of human cognition: the shift toward smaller and more
closely spaced iEEG electrodes for pre-surgical monitoring,
including microelectrodes capable of recording single and multi-
unit activity. This trend is being driven primarily by a growing
appreciation among epileptologists for the importance of high
frequency epileptiform activity in the localization of brain
networks responsible for medically refractory seizures. Until
now intracranial EEG recordings and stimulation in common
clinical practice have employed relatively large electrodes, i.e.
‘‘macro-electrodes’’, with surface areas ranging from 1.25 to
4 mm2, typically configured in linear or rectangular arrays with
inter-electrode spacing (center-to-center) ranging from 2.2
(depth) to 10 mm (subdural). Until recently the sizes and
configurations of these electrodes have been constrained in large
part by the technological limitations of amplifiers commonly used
in long-term epilepsy monitoring units, i.e. low input impedances,
sampling rates, and channel counts. Advances in recording
technology, however, are rapidly removing these limitations and
making it possible to record from the same cortical territory with
denser arrays capable of recording human neuronal populations at
increasingly finer detail.

Although technological barriers to high-density iEEG are
quickly disappearing, most clinicians to date have been satisfied
with traditional electrode arrays and recording technology to
achieve the primarily clinical goal of localizing the epileptogenic,
as well as eloquent, cortex. Studies at several epilepsy centers have
recently suggested, however, that smaller, more closely spaced
electrodes may offer benefits to patients beyond those offered by
traditional macroelectrodes, and commercial medical vendors (e.g.
Adtech, PMT) have begun to offer FDA-approved hybrid (macro-
micro) electrode arrays in which sub-arrays (1-mm spacing) of
‘‘microelectrodes’’ (e.g. 0.561 mm diameter, surface area
0.25 mm2) are interposed between traditional macro-electrodes.
Most importantly, both animal and human studies have indicated
that high frequency oscillations recorded from microelectrodes are
reliable indices of the epileptogenic zone and may improve
localization of the seizure focus and thereby the outcome of
epilepsy surgery. Indeed, the rapidly growing number of studies to
this effect are comprehensively represented in the other con-
tributions to this special issue. These studies have occurred in
parallel with and largely independently of the studies using HFA to
study normal human cortical function.

The question of what is the optimum electrode size to record
epileptiform HFOs remains open. In the first systematic study to
date of epileptiform high frequency oscillations (HFOs) recorded at
different spatial scales, Worrell et al. (2008) performed combined
recordings with standard depth electrodes (contact area 9.4 mm2)
and with microelectrodes (40 mm diameter) placed 1–5 mm away.
They concluded that both electrode types could record epilepti-
form HFOs, but that high frequencies were better recorded with
the microelectrodes. A subsequent study using the same depth
electrodes as well as macro- and micro-contacts in subdural
electrodes found no excess high frequency activity in the subdural
microelectrodes (Blanco et al., 2011), possibly because they were
too far away from the small neuronal ensembles generating this
activity. Therefore, very high-frequency activity might be picked
up only by micro-electrode contacts on depth electrodes penetrat-
ing the parenchyma. A series of studies from the Montreal
Neurological Institute using larger electrodes with a diameter of
�1 mm and a surface area of 0.8 mm2, still smaller than most
commonly used electrodes, have also recorded epileptiform HFOs
during (Jirsch et al., 2006) and between seizures (Crepon et al.,
2010; Jacobs et al., 2008; Urrestarazu et al., 2007), and have
demonstrated a significant correlation between the resection of
regions with epileptiform HFOs and postsurgical seizure-free
outcomes (Jacobs et al., 2010; Ochi et al., 2007). In most cases,
epileptiform HFOs appeared to be a better index of the epilepto-
genic zone than traditional epileptiform discharges seen in lower
frequencies.

To date, the sensitivity and specificity of HFA-based ECoG
mapping relative to electro-cortical stimulation (ECS) have been
excellent in sensorimotor cortex (Brunner et al., 2009; Miller et al.,
2009a,b,c) and in auditory cortex (Sinai et al., 2009), where
functional anatomy is densely and predictably organized. In
language cortex, however, where function is more widely
distributed, the sensitivity of ECoG with respect to ECS has been
less than optimal (Sinai et al., 2005; Towle et al., 2008). It is
possible that higher density iEEG recordings such as those afforded
by newly available hybrid electrodes with both macro- and micro-
electrode elements, will improve the sensitivity of ECoG with
respect to ECS. There is growing evidence for such a hypothesis
from studies using subdural electrode arrays with 4 mm spacing
instead of the 1 cm spacing that has been more commonly used in
epidural grids. In recordings of high gamma responses to speech
stimuli in human auditory association cortex, several studies have
found evidence for functional specialization that is sufficient to
discriminate cortical regions responsible for different phonetic
category boundaries (Chang et al., 2010), as well as cortical regions
responding to self-generated vs. externally generated speech
(Flinker et al., 2010, 2011).

Because micro-electrodes emphasize the activity of neuronal
populations in their immediate vicinity, cognitive neuroscien-
tists may be able to use dense arrays of these electrodes to
identify neuronal populations with even more specific functional
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responsivities than have been observed to date. This would be
particularly useful when attempting to decode the information
represented in these populations as in, for example, brain–
machine interfaces driving brain-controlled prostheses. Further-
more, it may be possible to determine the density of these
populations in any given patch of cortex and perhaps better
estimate the likely functional consequences of its resection.

Beyond their considerations for functional mapping and
brain–computer interfaces, iEEG recordings combining micro-
and macro-electrodes may also provide a vital opportunity to
better understand the basic physiological mechanisms of HFA
and other macroscopic EEG phenomena that have been used for
human cognitive neuroscience. For example, it may be possible
to better test whether neuronal populations with different
functional selectivities can be discriminated by the frequency of
their gamma responses, as described above and recently
supported by the study of Gaona et al. (2011). Furthermore,
cognitive neuroscientists inspired by the success of human
single-unit studies (e.g. Engel et al., 2005; Quiroga et al., 2008),
will undoubtedly want to investigate the relationships between
single and multi-unit activities (firing rates and spike timing)
and the aggregate local field potentials of nearby neuronal
populations. Recent evidence suggests that extracellular HFA is
not only an emergent result of neural population activity, but
may also exert a causal role on neural activity itself (Fröhlich and
McCormick, 2010; Anastassiou et al., 2011). This question could
be ideally addressed with a combination of macro- and
microelectrode recordings.

The field of iEEG will also undoubtedly be boosted by a new
generation of intracranial electrodes, both multi-scale and multi-
modal, such as the Neuroprobe (Grand et al., 2010) or the optode
(Keller et al., 2009). This new generation of iEEG recordings is
expected to provide a firm experimental basis for understanding
the links between HFA, local synchronization processes, and
metabolic activation. Yet another exciting possibility is the
combination of iEEG recordings with voltammetry or microdialysis
(e.g. Fried et al., 2001). This approach allows one to test predictions
about the effect of specific neurotransmitters on HFA in a given
brain region, e.g. the effect of dopamine release on hippocampal
activity (Lisman and Grace, 2005; Axmacher et al., 2010b; Lisman
et al., 2011), but it also raises very complex safety issues that
should be resolved before use.
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