MARKUS WERNING

THE TEMPORAL DIMENSION OF THOUGHT

Cortical Foundations of Predicative Representation

ABSTRACT. The paper argues that cognitive states of biological systems are inherently
temporal. Three adequacy conditions for neuronal models of representation are vindicated:
the compositionality of meaning, the compositionality of content, and the co-variation
with content. Classicist and connectionist approaches are discussed and rejected. Based
on recent neurobiological data, oscillatory networks are introduced as a third alternative.
A mathematical description in a Hilbert space framework is developed. The states of this
structure can be regarded as conceptual representations satisfying the three conditions.

1. CONCEPTS, COMPOSITIONALITY AND CO-VARIATION

The view that cognition takes place in the cortex constitutes a com-
mon ground for most contemporary philosophers and cognitive scientists.
Highly controversial, however, is the question kow this can be. Cognition
is not just any form of information processing. Only processes that are
defined over conceptual structures, (i) which have content and (ii) which
are expressible by predicate languages, are properly called cognition. The
first condition derives from the fact that cognitive processes are essen-
tially epistemic: The criterion of truth-conduciveness, which is exclusive to
bearers of content, i.e., representations, applies to them. The second condi-
tion grounds in the assumption that cognition presupposes categorization.
Truth-conducive processes would be practically useless and without any
evolutionary benefit if they did not subsume objects under categories. Non-
categorial processes would not be about anything. Categories, however, are
just what concepts are and predicates express. While the neuronal structure
of the cortex, to this day, has been perceived as radically different from
conceptual structure, this paper, using the dimension of time, will show
how it is nevertheless possible to reduce the latter to the former.
Cognition is systematic in the sense that there are systematic correla-
tions between representational capacities: If a mind is capable of certain
cognitive states, it most probably is also capable of other cognitive states
with related contents. The capacity to think that a red square is in a green
circle, e.g., is statistically highly correlated with the capacity to think that
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a red circle is in a green square. To explain this correlation, composi-
tional operations are postulated. They enable the system to build complex
representations from primitive ones so that the content of the complex rep-
resentation is structure-dependently determined by the content of its parts.
Not only are cognitive states compositional with respect to content, also
expressions of natural languages are compositional with respect to mean-
ing: The meaning of a complex expression is a syntax-dependent function
of the meanings of its syntactic parts. The reasons for compositionality
of content and meaning have been extensively discussed in the literature
(Janssen 1997; Hodges 2001; and Fodor and Lepore 2002).

To explain the compositionality of content and meaning, Fodor and
Pylyshyn (1988) take recourse to a language of thought, which they link
to the claim that the brain can be modelled by a Turing-style computer.
A subject’s having a cognitive state, they believe, consists in the subject’s
bearing a computational relation to a mental sentence; it is a relation anal-
ogous to the relation a Turing machine’s control head bears to the tape.
A subject’s thought that there is a red square in a green circle, thus, is
conceived of as a computational relation between the subject and the men-
tal sentence: [There is a red square in a green circle]. Likewise, when a
subject understands the utterance John loves Mary, this utterance reliably
causes the subject to bear a computational relation to the concatenation of
mental words: [John loves Mary].

The trouble with classical computer models is well known and ranges
from the frame problem, the problem of graceful degradation, and the
problem of learning from examples (cf. Horgan and Tienson 1996) to
problems that arise from the content sensitivity of logical reasoning. To
avoid the pitfalls of classicism, connectionist models have been developed.
In connectionist models that try to implement the semantics of natural lan-
guages (e.g., Smolensky 1995; for a survey of related models see Werning
2001) the syntax of a language is mapped homomorphically onto an al-
gebra of vectors and tensor operations. Each primitive expression of the
language is assigned to a vector. Every vector renders a certain distribu-
tion of activity within the connectionist network. The syntactic operations
of the language have as counterparts tensor operations that generate vec-
tors, which implement the meanings of complex expressions, from vectors
which implement the meaning of the syntactic constituent expressions.
As far as the compositionality of meaning is concerned, the semantics of
languages with some, though limited combinatorial potential can, indeed,
be implemented by a connectionist network.

To make the notion of compositionality explicit, one usually defines the
syntax of a representational (linguistic, cognitive, or neuronal) structure
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R as a pair R = (R, X), where R is the set of representations and X
is the set of syntactic operations oy, ..., ¢;. Each syntactic operation ¢
of some arity n is a partial function ¢ : R" — R (not necessarily a
concatenation). The set R is the closure of a fixed set of atomic repre-
sentations with regard to recursive application of the syntactic operations.
Given any representations ¢, ¢t € R, ¢’ is called an immediate R-syntactic
part (or constituent) of 7 just in case there are an n-ary syntactic operation
o € X and some representations ti,...,%_1, ti+1,...,t; € R such that
t = o(ty,...,ti-1,t, tix1, ..., 1,). Any representation ¢ is said to be a
R-syntactic part of a representation ¢ just in case ¢’ is either an imme-
diate R-syntactic part of ¢ or an immediate R-syntactic part of some
R-syntactic part of ¢. (I will often omit the relativization of syntactic
constituency to a certain syntax.)

Representational structures are characterized not only by a syntax, but
also by the fact that they can be evaluated semantically. Expressions of
some linguistic structure are semantically evaluated either with respect to
their meaning or with respect to their denotation, while cognitive states
(thoughts, concepts, etc.) are evaluated with regard to their content. If one
entertains a mentalist (or cortical) view on meanings and identifies the
meanings of expressions with the cognitive states the expressions express,
the denotation of an expression may be identified with the content of its
meaning. This is the view I will assume in this paper, being aware of the
fact that non-actual entities will then probably have to be allowed as ele-
ments of denotations. I will assume that expressions can be disambiguated
(by terms) and that cognitive states naturally are unambiguous such that
both can be evaluated semantically by a function. The notion of compo-
sitionality is now defined for any function that semantically evaluates a
representational structure:

DEFINITION 1 (Compositionality). Let R = (R, X) be a representational
structure with ¥ = {01, ..., 0;} and let x be a function of semantic evalu-
ation with domain R. Suppose that every {R-syntactic part of a u-evaluable
representation is u-evaluable. Then u is called compositional if and only
if, for every syntactic operation ¢ € X, there is a function u, such that
for every non-atomic p-evaluable representation o (f{,...,%,) € R the
following equation holds:

(1) wlot, .. 1) = o (u(tr), ..., u(tn)).

A representational structure is called compositional just in case it has a to-
tal compositional function of semantic evaluation. In case (and just in case)
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of compositionality, the representational structure has the homomorphic
semantics (u[R], {ts,5 - - - Ko}

In order to show that a connectionist system of the kind mentioned
above provides a compositional semantics of meaning for natural lan-
guages, it suffices to show that the tensor algebra (or the connectionist
system, in general) is a homomorphic image of the syntax of natural lan-
guage. There is no principled reason why this should not be possible. The
problem with connectionist approaches to semantics lies elsewhere, viz.
in the compositionality of content: The network structure (of vectors and
tensor operations) is now itself regarded as a syntax whose semantics is
an algebra of external contents, where most semantic theories explain the
semantic properties of internal representations in terms of co-variation.
They, e.g., hold that a certain internal state is a representation of redness
because the state co-varies with nearby instances of redness.! This co-
variation relation is backed by the intrinsic and extrinsic causal properties
of the internal state that makes up the redness representation. Conse-
quently an internal representation has its semantic value because it has
a certain causal role within the world. The question of how the semantic
value of an internal representation is determined by the semantic values
of its syntactic parts leads to the question of how the causal properties of
an internal representation are determined by the causal properties of the
syntactic parts. From chemistry and other sciences we know that atoms
determine the causal properties of molecules because atoms are mereo-
logical constituents of molecules. A state X is commonly regarded to be
a mereological constituent of a state Y if and only if it is true that, if ¥
occurs at a certain region of space at a certain time, then X occurs at the
same region at the same time. Independently from sciences, one can even
make it a hard metaphysical point: If the causal properties of a state B
are determined by the causal properties of the states Ay, ..., A, and their
relations to each other, then Ay, ..., A, are mereological constituents of
B. Its justification starts off with Kim’s (1993) well established (although
not everywhere accepted) principle of explanatory exclusion, which says
that no two independent phenomena each completely determine one and
the same phenomenon. Given the truism that the causal properties of
a whole B are determined by the causal properties of an exhaustive
sample Cy, ..., C,, of mereological constituents of B (plus structure), it
follows that the causal properties of the states Ay, ..., A, (plus structure)
determine the causal properties of B only if Ay, ..., A, are not inde-
pendent from Cy, ..., C,,. Since there is a limited repertoire of relevant
metaphysical dependency relations, viz. identity, reduction, supervenience
and mereological constituency, one may conclude that each A; is either
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(i) identical with, (ii) reducible to, (iii) supervenient on, (iv) a mereologi-
cal constituent of, (v) or — the reverse — mereologically composed of one
or more of the C;. In all five cases every A; would be a mereological
constituent of B. In the first case, this follows from the reflexivity of mere-
ological constituency. In the second and the third case, if A; reduces to, or
is supervenient on, one or more of the C;, A; co-occurs with the C; in ques-
tion. Since the latter, as mereological constituents of B, occur whenever
and wherever B does, also A; occurs whenever and wherever B does and
is, thus, a mereological constituent of B. In the fourth case, it follows from
the transitivity of mereological constituency. The fifth case holds because
every mereological composition of mereological constituents of a whole is
itself a mereological constituent of the whole.

We may conclude that the semantic values, i.e., the contents, of the
syntactic constituents of an internal representation determine the content of
the internal representation just in case the syntactic constituents are mere-
ological constituents of the internal representation. Two remarks should
be added: First, syntactic parts aren’t mereological constituents per se.
Syntactic constituency is the relation the arguments of a syntactic operation
bear to the values thereof, while mereological constituency is a relation of
spatio-temporal co-occurrence. Since many natural languages have dele-
tion rules — in English exemplified by the mapping (can, not) — can’t —
syntactic constituency does not correlate with mereological constituency.
Second, the requirement that syntactic constituents of internal representa-
tions be mereological constituents of the latter does not follow from the
constraint of compositionality alone. There may well be compositional
representational structures for which syntactic constituents aren’t mere-
ological constituents, e.g., languages with deletion rules. However, the
requirement that the syntactic constituents of internal representations be
mereological constituents follows from the principle of compositionality
together with the premise that internal representations owe their semantic
values to their causal properties. The requirement highlights a particularity
of internal representation and does not generalize to other representational
structures. The words and phrases of English owe their meanings mainly
to the interpretation of English speakers. There may well be a language
whose tokens have the same causal properties (sound, loudness, etc.) as
those of English, but differ with respect to their meanings. For internal rep-
resentations, in contrast, causal properties are determinant with regard to
their semantics because internal representations represent autonomously,
i.e., without being interpreted by any other system.

Previous connectionist attempts to implement cognitive states, we may
now diagnose, fail. What is in need are two mappings, not one and both
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have to be compositional. The first, unproblematic mapping u : L — N
maps a syntax of some natural language £ to the network structure A and
treats the latter as a semantics. The second mapping x : N — W, how-
ever, treats the network structure itself as a syntax and maps the network
states onto their external contents. The external contents form the worldly
structure ‘W, e.g., a structure of individuals, properties and possible worlds.
Moreover, the mapping x need not only be a formal homomorphism, but
needs to be supported by a causal relation of co-variation. As I argued, this
requires any A -syntactic part ' of some state € N to be a mereological
constituent of ¢. Smolensky (1995) an others have frequently conceded,
that this is not the case in connectionist approaches because the products
of tensor operations do typically not contain the vectors they have been
applied to as vector components, i.e., as mereological constituents.

The argument can also be formulated in less abstract terms: Assume
the English expressions brown, cow, and brown cow have been mapped
onto vectors of a connectionist network by some compositional function
1. Now, although brown and cow, in English, are not only syntactic, but
also mereological parts of brown cow, and although their network coun-
terparts u(brown) and u(cow), with respect to the network structure, are
syntactic parts of u(brown cow), the states u(brown) and u(cow) aren’t
mereological constituents of the state u (brown cow). This implies that even
if u(brown) co-varied with brown things and even if u(cow) co-varied
with cows, u(brown cow) would not be necessitated to co-vary with its
content, brown cows. If mereological constituency, on the other hand, had
been correlated with syntactic constituency on the network level, any co-
variation between u(cow) and cows, respectively, u(brown) and brown
things, would have necessitated that u(brown cow) co-varies with brown
cows. We may conclude: The requirement that every function semantically
evaluating the neuronal meanings of natural languages with respect to their
contents should not only be compositional, but should also be backed by are-
lation of co-variation is violated, if, on the level of the neuronal structure, syn-
tactic constituency does not correlate with mereological constituency. This
is the reason why traditional connectionist approaches must fail, and indeed
no semantically interpreted connectionist architecture, so far, has achieved
co-variation between internal representations and external contents.

2. OSCILLATORY NETWORKS AND HILBERT SPACE
Mereological constituency is a synchronic relation, while causal connect-

edness is a diachronic relation. Whole and part co-exist in time, whereas
causes and effects succeed in time. The reference to causal connections and
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Figure la. A single oscillator consists of an excitatory (x) and an inhibitory (y) neu-
ron. Each neuron represents the average activity of a cluster of biological cells. LSX:
self-excitation, I and Iy: input.

the flow of activation within the network will, therefore, not suffice to es-
tablish mereological constituent relations. What we, in addition, need is an
adequate synchronic relation. Oscillatory networks provide a framework
to define such a relation: the relation of synchrony between oscillations.

A single oscillator consists of two mutually excitatory and inhibitory
neurons, each of which represents a population of biological cells (Fig-
ure la). If the number of excitatory and inhibitory biological cells is large
enough, the dynamics of each oscillator can be described by two variables,
ie.

(Ra) x = —1.x —gy(y) + Ly g (x) + Iy + Ny
2b) ¥ = —5y+&x) — I, +N,.

Here, 7 (¢ € {x, y}) are constants that can be chosen to match refractory
times of biological cells, gs are transfer functions, Ly* describes self-
excitation of the excitatory cell population, I: sums up the inputs from
external stimuli and connected oscillators (minus a normalizing current).
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Figure 1b. Synchronizing connections (solid) are realized by mutually excitatory con-
nections between the excitatory neurons and hold between oscillators within one layer.
Desynchronizing connections (dotted) are realized by mutually inhibitory connections be-
tween the inhibitory neurons and hold between different layers. ‘R’ and ‘G’ denote the red
and green channel.

;L L L L L LS L L LS

Figure Ic. Oscillators are arranged in a 3D-topology. The shaded circles visualize the
range of synchronizing (light gray) and desynchronizing (dark gray) connections of a
neuron in the top layer (black pixel).
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Figure 2a. Stimulus: a green horizontal and red vertical bar.

The solutions of (2) are oscillations. For a more detailed description of the
network see Maye (2002).

Oscillators are arranged on a three-dimensional grid forming a fea-
ture module (see Figures 1b and c). Two dimensions represent the spatial
domain, while the feature is encoded by the third dimension. Spatially
close oscillators that represent similar properties synchronize. The desyn-
chronizing connections establish a phase lag between different groups of
synchronously oscillating clusters. This can be viewed as an implementa-
tion of some of the well known Gestalt principles of perception. According
to those principles, proximal elements in the stimulus tend to be perceived
as belonging to one and the same object if they exhibit like properties.
Feature modules for different feature dimensions, e.g., color and orienta-
tion, can be combined by establishing synchronizing connections between
oscillators of different modules in case they code for the same stimulus
region.

Stimulated oscillatory networks, characteristically, show object-
specific patterns of synchronized and de-synchronized oscillators within
and across feature dimensions. Oscillators that represent properties of the
same object synchronize, while oscillators that represent properties of dif-
ferent objects de-synchronize. We observe that for each represented object
a certain oscillation spreads through the network. The oscillation pertains
only to oscillators that represent properties of the object in question.

A great number of neurobiological studies have by now corroborated
the view that cortical neurons are rather plausibly modelled by oscilla-
tory networks (Singer and Gray 1995; Schillen and Konig 1994; Werning
2001). Two hypotheses are supported:

HYPOTHESIS 1 (Indicativity). There are clusters of neurons that show
activity only when an object in the receptive field instantiates a cer-
tain property (Hubel and Wiesel 1962). These clusters are called feature
clusters (in the network: feature layers).

HYPOTHESIS 2 (Synchrony). Neurons of different feature clusters show
synchronous oscillations only if the properties indicated by each feature
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Figure 2b. Network state after stimulation with stimilus of Figure 2a. Each of the four
eigenmodes 07, . . ., v with the largest eigenvalues is shown in one line. The four columns
correspond to the four feature layers.

cluster are instantiated by the same object in the receptive field (Gray and
Singer 1989).

The oscillations spreading through the network can be characterized math-
ematically. An oscillation function, or more generally, the activity function
x(t) of an oscillator is the activity of its excitatory neuron as a function of
time during a time window [— %, +§]. Activity functions are vectors in the
Hilbert space L2[—%, +%] of in the interval [—%, +%] square-integrable
functions. This space has the countable basis {\/LT exp('%) |n e Z} and
the inner product

412
3 xOR@D) = / GRS
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Figure 2c. The characteristic functions c¢;(t) show the temporal evolution of the four
eigenmodes of Figure 2b.

where x(¢) signifies the conjugate complex of x(¢). The degree of syn-
chrony between two oscillations lies between —1 and +1 and is defined
as

@) Al x) = (X)) /Y x ) (xlx).

The degree of synchrony corresponds to the cosine of the angle between
the Hilbert vectors x and x’. The vectors are parallel, anti-parallel and
orthogonal depending on whether A(x, x") is +1, —1 or 0. The over-
all dynamics of the network is given by the Cartesian vector X(t) =
(x1(1), ..., xx(¢))T. The vector comprises the activities of the excitatory
neurons of all k oscillators of the network, each of which is determined
by a solution of (2). From synergetics it is well known that the dynamics
of complex systems is often governed by a few dominating states. These
states are the eigenmodes of the system. The corresponding eigenvalues
designate how much of the variance is accounted for by that mode. The
eigenmodes v of the network dynamics are computed as the eigenvectors
of the auto-covariance matrix C € R¥** i.e., as solutions of the equation
Cv = CA, where the components C;jr of C are given as C;; = (x;|xjr).
The temporal evolution of each eigenmode v; (Figure 2b) is described by
a characteristic function ¢; (¢) (Figure 2c). The network state at any instant
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is considered as a superposition of the eigenmodes v; weighted by the
corresponding characteristic functions c; (¢):

S) X0 =D ).

The eigenmodes, for any stimulus, can be ordered strictly along their
(presumably non-degenerate) eigenvalues: 4; > A;y;. This allows us to
introduce the useful convention of signifying each eigenmode by the index
i € N. For any stimulus we have the mapping: i — (v;, ¢;(¢), ;).

3. FIRST STEPS INTO SEMANTICS

In this section, I will develop a heuristics that allows us to interpret the dy-
namics of oscillatory networks in semantic terms. Later on, I will provide
a more explicit and fully semantic account of the network dynamics. Os-
cillatory networks that implement the Hypotheses 1 and 2, I argue, realize
a semantics of a monadic first order predicate language with identity PL~.

Because of Hypothesis 2 we are allowed to regard oscillation func-
tions as internal representations of individual objects. They may thus be
assigned some of the individual terms of the language PL~. Let Ind =
{ai, ..., am, 21, ..., 2,} be the set of individual terms of PL=, then the
partial function

T T
6 o:lnd — Ly——,+—
(6) o[ 3 2]
is a constant individual assignment of the language. By convention, I will
assume that, unless indicated otherwise, dom(a) = {ay, ..., a,} so that
the ay, ..., a, are individual constants and the zi, ..., z, are individual
variables. Sometimes I will use a, b as placeholders for ay, ..., a,. I will

furthermore use bold print to signify the oscillation function assigned to
an individual term: a(a) = a.

Following (4), the identity of oscillation functions is a matter of degree.
The sentence a = b expresses a representational state of the system to
the degree the oscillation functions a(a) and o () of the system are syn-
chronous. Provided that Cls is the set of sentences of P L=, the degree to
which a sentence expresses a representational state of the system, for any
eigenmode i € N, can be measured by the (in N possibly partial) function

) d:Cls xN— [—1,+1].
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In case of identity sentences, for every eigenmode i and any individual
constants a, b we have:

(8) d(a=b,i)= Aa,b).

Most vector components of the first eigenmode of Figure 2b are exactly
zero (marked middle grey), while few in the greenness and the horizontal-
ity layers are positive (marked light grey) and few in the redness and the
verticality layers are negative (marked dark grey). Since the contribution
of the eigenmode vector 0 to the entire network state temporally evolves
according to its characteristic function ¢ (¢), any positive eigenmode com-
ponent v{ = +[o]| contributes to the activity of the j-th oscillator
with +|v{ |c1(t), while any negative component 1)11 = —|1)11| contributes
with —|ul1 |c1(2) to the activity of the /-th oscillator. Since the A-function
is normalized, only the signs of the constants matter to determine that
the activities of the j-th and the [-th oscillator, contributed by the first
eigenmode, are exactly anti-parallel, while any two, with c;(¢) temporally
evolving components of equal signs contribute mutually parallel activity.
We may interpret this by saying that the first eigenmode represents two
objects as different from one another. The representation of the first object
is the positive characteristic function +c;(¢) and the representation of the
second object is the negative characteristic function —c;(¢). Both, the pos-
itive and the negative function can be assigned to individual constants, say
a and b, respectively. These considerations, for every eigenmode i, justify
the following evaluation of non-identity (Notice that unlike identity, its
negation is represented by the network as sharp, i.e., non-gradual):

[ +tifda@=b,0) = -1,
©) d(_'a_b’l)_[—1ifd(a=b,i)>—1.

Following hypothesis 1, feature clusters function as representations of
properties. They can be expressed by monadic predicates. I will as-
sume that our language P L~ has a set of monadic predicates Pred =
{Fy, ..., F,} such that each predicate denotes a property featured by some
feature cluster. To every predicate ' € Pred I now assign a diagonal
matrix B(F) € {0, 1}*>** that, by multiplication with any eigenmode vector
v;, renders the sub-vector of those components that belong to the feature
cluster expressed by F:

(10) B : Pred — {0, 1}k,

With respect to our particular network, the matrix f(red), e.g., is zero
everywhere except for the first i—i diagonal elements. Since f(F) does not
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vary from eigenmode to eigenmode, it is sensible to call it the neuronal
intension of F. By convention, I will use bold print to signify the neuronal
intension of predicates: f(F) = F.

The neuronal intension of a predicate, for every eigenmode, determines
its neuronal extension, i.e., the set of those oscillations that the neurons
on the assigned feature layer, per eigenmode, contribute to the dynamics
of the network. Hence, for every predicate F its neuronal extension in the
eigenmode i comes to the set of activity functions { f;| f = Fv;c;(¢)}. To
determine to which degree an oscillation function assigned to an individual
constant ¢ is in the neuronal extension of a predicate F', we have to com-
pute how synchronous it maximally is with one of the oscillation functions
in the neuronal extension. We are, in other words, justified to evaluate the
degree to which a predicative sentence expresses a representational state
of our system, with respect to the eigenmode i, in the following way:

(11)  d(Fa,i) =max{A(a, fj)|f = Fo;c; (1)}

Having now provided a sematic evaluation for every atomic sentence of
P L=, how can we evaluate the truth-functional connectives? Since we are
here dealing with an infinitely many-valued semantics, we have to look
at the broader spectrum of fuzzy logics. In those logics the conjunction is
semantically evaluated by a t-norm: A binary operation t in the real interval
[—1, +1] is a t-norm iff it is (i) associative, (ii) commutative, (iii) non-
decreasing in the first element, i.e., satisfiesd < d’ = t(d,d") < t(d’,d")
foralld,d’,d” € [—1, +1], and (iv) has 1 as neutral element. Having once
made a choice for a certain t-norm as the semantic correlate of conjunction,
the functions of semantic evaluation for most of the other connective can
be derived by systematic considerations (cf. Gottwald 2001). The system
that fits my purposes best is Godel’s (1932) min-max-logic. Here the con-
junction is evaluated by the minimum of the values of the conjuncts, which
is a t-norm. Let ¢, w be sentences of P L=, then, for any eigenmode i, we
have:

(12)  d(¢ Ay, i) =min{d(¢,i),d(y,i)}.

The evaluations we have so far introduced allow us to regard the first
eigenmode of the network dynamics, which results from stimulation with
one red vertical object and one green horizontal object (Figure 2a), as a
representation expressed by the sentence This is a red vertical object and
that is a green horizontal object. We only have to assign the individual
terms this (= a) and that (= b) to the oscillatory functions —c;(¢) and
~+c1(2), respectively, and the predicates red (= R), green (= G), vertical
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Figure 3a. Stimulus: two red vertical bars.

(= V) and horizontal (= H) to the redness, greenness, verticality and
horizontality layers as their neuronal intensions. Simple computation then
reveals:

13) d(RaAnVaAnGbANHbA—-a=b1)=1.

So far I have concentrated on a single eigenmode, only. The network, how-
ever, generates a multitude of eigenmodes. We tested the representational
function of the different eigenmodes by presenting an obviously ambigu-
ous stimulus to the network. The stimulus in Figure 3a can be perceived
as two red vertical bars or as one red vertical grating. It turned out that
the network was able to disambiguate the stimulus by representing each
of the two epistemic possibilities in a stable eigenmode of its own (see
Figure 3b). Eigenmodes, thus, play a similar role for neuronal represen-
tation as possible worlds for semantics. They do not interfere with each
other because eigenmodes are mutually orthogonal. Moreover, the identity
of oscillation functions as well as the neuronal intensions of predicates
apply across eigenmodes. It is also a nice feature that they can be ranked
and re-ranked along their eigenvalues. The results of Spohn (1988), who
provides a semantics of ranked models for a non-monotonic calculus, nat-
urally apply. To spell this idea out would go far beyond the scope of this
paper, though. I just want to mention that each of the two stable eigen-
modes shown in Figure 3b can be expressed by a disjunctive sentence, if
we semantically evaluate disjunction as follows:

(14)  d(pV y, i) =max{d($,),d(y,i)}.

We are leaving the heuristic approach now and turn to a formally explicit
description of the neuronal semantics realized by oscillatory networks.



218 MARKUS WERNING

green vertical horizontal

0.2
-0.2

Figure 3b. The first eigenmode represents the stimulus of Figure 3a as one red vertical
object, while the second mode represents it as two red vertical objects.
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4. MAKING SYNTAX AND SEMANTICS EXPLICIT

Let the oscillatory network under consideration have k oscillators. The
network dynamics is studied in the time window [— 5, +5 ] For any eigen-
mode i € N, it renders a determinate eigenmode Vector v,, a characteristic
function ¢;(¢) and an eigenvalue 4; after stimulation. The language to be
considered is a monadic first order predicate language with identity (P L7).
Besides the individual terms of /nd and the monadic predicates of Pred,
the alphabet of PL~ contains the logical constants A, vV, —, —, 3,V and
the binary predicate =. Provided we have the constant individual and pred-
icate assignments a and £ of (6) and (10), the union y = a U S is a
comprehensive constant assignment of PL~. The individual terms in the
domain of a are individual constants, those not in the domain of a are
individual variables. The syntactic operations of the language P L= and
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Figure 3c. The characteristic functions of the eigenmodes of Figure 3b. Only the first two
characteristic functions are non-decreasing and thus belong to stable eigenmodes.

the set SF of sentential formulae as their recursive closure can be defined
as follows, for arbitrary a, b, z € Ind, F € Pred,and ¢, y € SF:

o—:(a,b)— a =b; Opred - (a, F) — Fa;

(15) o~ ¢ > —g; opn (P, y) > P Ay
ov: (P, ) > ¢Vuy; o (P, w)—> ¢ — v,
o3 : (2, ¢) — 3z¢; ov : (z,P) = Vzg.

The set of terms of PL~ is the union of the sets of individual terms,
predicates and sentential formulae of the language. A sentential formula
in SF is called a sentence with respect to some constant assignment y if
and only if, under assignment y, all and only individual terms bound by
a quantifier are variables. Any term of PL~= is called y -grammatical iff,
under assignment y , it is a predicate, an individual constant, or a sentence.
Taking the idea at face value that eigenmodes can be treated like possible
worlds (or more neutrally speaking: like universes), the relation: i neurally
models ¢ to degree d by constant assignment y, in symbols i |=‘y’ ¢, for
any sentence ¢ and any real number d € [—1, +1], is then recursively
given as follows:

Identity. Given any individual constants a, b € Ind N dom(y) such that
y(a) =a,y(h) =b, theni lzf/’ a=biffd = A(a, b).
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Predication. Given any individual constant ¢ € Ind N dom(y) and any
predicate F € Pred such that y (a) =aand y (F) = F, then i I:;i Fa iff

d = max{A(a, ;)| f = Foic:()}.

Conjunction. Provided that ¢, y are sentences, then i |=‘y1 ¢ A yiffd =
min{d’,d"|i =4 ¢ andi ¢y}

Disjunction. Provided that ¢, y are sentences, then i |=‘y’ pVvyiffd =
max{d’,d" |i =7 ¢ andi I y}.

Implication. Provided that ¢, v are sentences, then i |:‘yl ¢ — yiff
d = sup{d’' € [—1,+1]|min{d’,d"} < d"” where i =" ¢ andi 4" y}.

Negation. Provided that ¢ is a sentences, then i |=‘y1 —¢ iff G)d = 1 and
i =" ¢or(i)d=—1andi =4 ¢ whered’ < 1.

Existential Quantifier. Given any individual variable z € Ind \ dom(y)
and any sentential formula ¢ € SF, then i |=;l Jz¢ ift d = sup{d’|i |=§f/,

¢ where y/ =9y U{{(z,z)}and z € Lz[—z, +%]}

Universal Quantifier. Given any individual variable z € Ind \ dom(y)
and any sentential formula ¢ € SF, then i |=§ Vz¢ iff d = inf{d’ | i lzj/,
¢ where y' =y U{(z,2)} andz € L,[—L, +1]}.

Let me briefly comment on these definitions: Most of them should be fa-
miliar from previous sections. The degree d, however, is no longer treated
as a function, but as a relatum in the relation |=. The semantic evaluation of
negation has previously only been defined for negated identity sentences.
The generalized definition, here, is a straightforward application of the
Godel system. An interesting feature of negation is that its duplication
digitalizes the values of d into +1 and —1. The evaluation of implication,
too, follows the Godel system.? The evaluation of the quantifiers follows
standard methods in semantics. Calculi for our semantics have been de-
veloped in the literature (cf. Gottwald 2001). The value of an universally
quantified implication of the form (Vz)(Fz — F’z) provides a measure
for the overall synchronization between feature clusters expressed by the
predicates F and F’. The value of an existentially quantified sentence of
the form (3z)(Fz) measures whether the neurons in the feature cluster
expressed by F oscillate. The work done so far leads us directly to the
following theorem:*
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THEOREM 1 (Compositional Meanings in Oscillatory Networks). Let L
be the set of terms of a P L=-language, SF the set of sentential formulae
and = the neuronal model relation. The function x# with domain L is a
compositional meaning function of the language, provided that x, for every
t € L, is defined in the following way:

] {y,y @Iy is aconstant assignment)} if t ¢ SF,
(16)  u() = [ {(y,i,d)|i |:tyf p}ift € SF.

Consequently, u(¢) can itself be regarded as a function on the domain of
constant assignments. We stipulate for any y -grammatical term ¢:

y (t) if ¢ is not a sentence,

a7y (@) = [ {(i,d)|(y,i,d) € u(r)} if t is a sentence.

The ideal meaning of t under assignment y, ,u; (1), can be identified
with the subset of u, (¢), for which all values d are 1. The formula
(i,d) € u,(¢) can then be read as: The eigenmode i, to degree d, realizes
the ideal neuronal meaning of ¢ under assignment y . To comply with the
condition of co-variation, we can choose the assignment y in a way so that
the oscillation function y (a) tracks the object designated by some individ-
ual term a. We can, furthermore, make sure that y (F) is just the cluster of
neurons featuring the property expressed by some predicate F. In this case,
the assignment will be called natural. As we have seen earlier, the network
dynamics warrants that the neuronal meanings of terms with respect to the
natural assignment reliably co-varies with the terms’ denotations.

The compositionality of content is achieved if co-variation is warranted
and the content of a representational state is identified with the denotation
of the term expressing it. The only additional assumptions we need are: (i)
We have the intended external constant assignment I" that maps individual
constants to their designated objects and predicates to functions that deter-
mine their extension in every possible world. (ii) We have have a relation:
a possible world w externally models ¢ to degree d by assignment I, in
symbols w =4 ¢, for any sentence ¢ of the language and any real number
d € [—1,+1]. (iii) |=r is defined in the same way |=, is defined except
that the set of oscillation functions is replaced by the set of objects, neu-
ronal extensions are replaced by external extensions, and the A-function is
interpreted as the (possibly digital) degree of identity between objects. (iv)

We have a denotational function v that, mutatis mutandis, is defined like

w
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THEOREM 2 (Compositional Contents of Oscillatory Networks). Let L
be the set of terms of a PL=-language. We assume that L has a compo-
sitional function of denotation v. Let ¢ be a neuronal meaning function
with domain L and let y be the natural neuronal, and I' the intended
external assignment of L. In the case of co-variation, the natural neuronal

structure N = ({y} X g, [L], {tt=s tpreds l=s lns fvs L, 43, fv}) AN
be compositionally evaluated with respect to content.

5. CONCLUSION

Oscillatory networks show how a structure of the cortex can be analyzed in
a way so that elements of this structure can be identified with the neuronal
meanings of a full-fledged first order predicate language. These internal
meanings form a compositional semantics and can themselves be evalu-
ated compositionally with respect to their external contents. The approach
formulated in this paper is biologically plausible and has been supported
by a number of experimental neurobiological data. Compared to alternative
connectionist approaches, the account presented here is superior in that it
not only implements a compositional semantics of meanings, but shows
how internal meanings can co-vary with external contents. The theory
developed amounts to a new mathematical description of the temporal
structure the cortex is known to exhibit. Cognition as realized by biological
systems takes place inherently in the medium of time. The task of the
neuronal hardware, only, is to keep this truly sublime structure alive.
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NOTES

' For a defense of co-variationism see Fodor (1992). I favor the view that co-variation is
an asymmetric and probabilistic dependency relation.

2 The deeper rationale behind this definition is the adjointness condition, which relates the
evaluation of implication i to the t-normt (= min, by our choice) (cf. Gottwald 2001, p.
92):d' <i(d”,d"y & t(d',d") <d".
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3 To prove the theorem, one has to show that for any of the syntactic operations in (15),
there is a semantic operation that satisfies (1). To do this for the first six operations, one
simply reads the bi-conditionals in the definition of |= as the prescriptions of functions:
p= 1 (@), p®) = ((y,i.d)ld = Auy (@), uy BN} fiprea = (@), p(F))
{(r,i,d)ld = max{A(uy (@), [HIf = wyF)jciO; un : (u@), u(y))
{(y,i,d)|d = min{d’,d"|(y,i,d") € u(p), (y,i,d") € u(y)}}, etc. To attain semantic
counterpart operations for o3 and oy, we have to apply the method of cylindrification:
13t (@ @) > {(y,i,d)|3y’ : dom(y’) = dom(y) U{z} and (y’, i, d) € u(p(@)}: uv
1(@(@) = {(y,i,d)|Vy’ : dom(y”) = dom(y)U{z} = (y'. i, d) € u(¢(2))}. One easily
verifies that (1) is satisfied.

4 Proof: Because of co-variation we have a function « such that T = x o y . Further-
more, vr(t) = pixoy (t) for every t € L, provided the interpretation of the A-function
is adjusted. The semantic operations v, are the same as u, except that the interpre-
tation of the A-function is altered appropriately. The intended denotational structure
w = ({I'} x vr[L], {v=, Vpreds V= VA> DV, Vs, V3, vy}), hence, is a homomorphous
image of V.
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