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Abstract

The paper introduces oscillatory networks as a model of
the realization of lexical and non-lexical complex con-
cepts in the cortex. The network has both perceptual
and semantic capabilities. Three adequacy conditions,
the compositionality of meaning, the compositionality
of content, and the co-variation with content, are satis-
fied. Coherency chains and hierarchical mechanisms of
binding are discussed.

Introduction
The neuronal structure of the cortex is usually perceived as
radically different from the semantic structure on which cog-
nition is defined. This paper argues that, in spite of these
prima faciedifferences, semantic structure can be reduced to
neural structure if one assumes that oscillatory networks be
an appropriate model of neural reality. Several neurobiolog-
ical data on neural synchronization support this assumption
(Singer & Gray 1995). In the context of this paper, seman-
tic structures are assumed to subserve two purposes. First,
its elements evaluate linguistic expressions semantically and
can thus be regarded as themeaningsof those expressions.
Second, its elements are themselves semantically evaluable
with respect to externalcontent. The linguistic expression
‘dog’, e.g., has as meaning the concept [dog], which is some
internal state of the cognitive system whatever it may reduce
to neurally. This internal state is itself a representation and
must thus have external content. Its external content will
here be identified with the set of dogs and is thus identical to
the denotation of the predicate ‘dog’. Since representations
are supposed to co-vary reliably with what they represent
(Fodor 1992), the latter identification requires that internal
states reliableco-varywith the denotations of those expres-
sions whose meanings they are.

Taking co-variation as a condition for internal represen-
tation seriously, however, means that any system with se-
mantic states must have some sort of perceptual, or more
modestly speaking, informational access to its environment.
Otherwise an adequate co-variation relation between repre-
sentation and content cannot be established. Unlike other
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attempts of mapping semantic structures onto connection-
ist networks (e.g., Smolensky 1995; Shastri & Ajjanagadde
1993; for a review see Werning 2001) in a compositional
way, the approach pursued in this paper fulfills the condi-
tion of co-variation because the network proposed here does
have (weakly) perceptual capabilities.

In this paper we will consider two ways of achieving con-
ceptual complexity. While it is obvious that (i) a non-lexical
concept like [red vertical] is complex — it is composed from
the concepts [red] and [vertical] —, it is less obvious (and
more controversial) if (ii) some lexical concepts like [ele-
phant] are complex, i.e., if they can be decomposed into less
complex concepts. A potential decomposition of the con-
cept [elephant] might, e.g., involve concepts of prototypi-
cal attributes of elephants, e.g., [animate], [big], [gray], or
concepts of prototypical parts of elephants, such as [trunk],
[tusks], [ears], [tail]. In the first part of the paper we will
focus on the neural implementation of the composition of
primitive attributive concept into complex non-lexical con-
cepts, whereas in the second part we will introduce a neural
model of the decomposition of complex lexical substance
concepts.

A main working hypothesis of ours is that some lexical
concepts, i.e., concepts expressible by syntactically unstruc-
tured expressions (words), are indeed complex, most impor-
tantly those that are expressed by concrete nouns and denote
substances (i.e., individuals like mama, kinds like mice, or
stuffs like milk, which may change their attributes, but can
still be re-identified over time, cf. Millikan 1998). Concepts
for attributes like [red] or [vertical], in contrast, may well be
primitive, i.e., not further decomposable.

Another working hypothesis is that the distinction be-
tween primitivity and complexity on the conceptual level
corresponds to a distinction between locality and distribu-
tivity on the neural level. We thus expect the neural corre-
lates of primitive (attributive) concepts (e.g., for color, ori-
entation) to be relatively local. In fact, cortical areas for
about 30 attribute dimensions could be anatomically located
in the monkey (Felleman & van Essen 1991). In contrast,
the correlates of complex (substance) concepts, we assume,
are highly distributed neural states. Complex concepts like
[mama], [mouse] or [milk] are thus not expected to be real-
ized by single cells — so-called grandmother cells —, but
by cell assemblies that may pertain to highly distinct parts



of the cortex.
The third working hypothesis, finally, assumes that the

mechanism that binds together the distributed neural activi-
ties in the case of complex concepts is the intra-cortical syn-
chronization of the electrical discharges of neurons (Engelet
al. 1990). So far this mechanism has been employed mainly
to explain how the representations of attributes of one and
the same object can be bound together to form the represen-
tation of the object with its attributes. What we envisage,
however, is that the mechanism of neural synchronization is
general enough to also bind together the representations of
the parts of an object to form the representation of the ob-
ject with its parts. Since the parts of an object themselves
are represented by neuronal assemblies, the mechanism that
binds together parts into a whole has to be of higher order:
It has to bind various assemblies, each of which consists of
synchronized neurons, into larger ‘meta-assemblies’. The
second-order binding mechanism, however, has to be such
that the temporally induced unity of each partial assembly
will be preserved.

Compositionality
It is widely assumed that speaking of semantic evaluation
implies that the evaluated structure, which is usually called a
syntax, iscompositionalwith respect to the evaluating struc-
ture, which is usually called a semantics (Janssen 1997).
Compositionality now means that the semantic value of an
element of the syntax is a structure-dependent function of
the semantic values of its syntactic parts. Formally, this can
be put as follows (Hodges 2001):

Definition 1 (Compositionality). Let the pair〈T,Σ〉 be a
syntax, i.e., a structure that comprises a carrier setT of syn-
tactic elements (expressions, concepts, etc.) and a setΣ of
syntactic operations (conjunction, predication etc.), which
are defined as partial functions from Cartesian products of
T into T . Furthermore, letµ be a function of semantic eval-
uation fromT into a set of semantic values (meanings, con-
tents, denotations, etc.). Thenµ is called compositional just
in case, for anyn-ary syntactic operationσ ∈ Σ, there is a
functionµσ such that, for everyσ(t1, ..., tn) ∈ T , the fol-
lowing equation holds:

µ(σ(t1, ..., tn)) = µσ(µ(t1), ..., µ(tn)). (1)

Assume we are given a first order predicate language with
identity PL= = 〈L,ΣL〉. The set of syntactic operations
ΣL shall comprise the standardly defined syntactic opera-
tions of that language and the denotations of expressions in
L be given by a compositional functionν : L → W , where
W is some worldly structure of objects, sets of objects, etc.
To be a representational system, our network should then be
such that it realizes a neuronal structureN = 〈N,ΣN 〉 that
satisfies the following three adequacy conditions:

1. N is a compositional semantics of meanings forPL=,
i.e., there is a compositional function of semantic evalua-
tion µ : L→ N .

2. N is itself compositionally evaluable with respect to con-
tent, i.e., there is a compositional function of semantic
evaluationκ : N →W.

3. The elements ofN reliably co-vary with their contents,
the elements ofW , such that, for every expressiont ∈ L,
ν(t) = κ(µ(t)).

Oscillatory Networks
Von der Malsburg’s (1981) supposition that the synchronous
oscillation of neuronal responses constitutes a mechanism
that binds the responses of feature specific neurons when
these features are instantiated by the same object has been
frequently applied to explain the integration of distributed
responses. Object-related neuronal synchrony has been ob-
served in numerous cell recording experiments (reviewed by
Singer 1999) and experiments related to attention (Steinmetz
et al. 2000), perception (Frieset al. 1997) and expectation
(Riehle, Gr̈un, & Aertsen 1997). Those data suggest the hy-
pothesis that the neural basis of object concepts are oscilla-
tion functions and that the neural basis of predicate concepts
are clusters of feature-specific neurons.

From Gestalt psychology the principles governing object
concepts are well known. According to two of the Gestalt
principles, spatially proximal elements with similar features
(similar color/ similar orientation) are likely to be perceived
as one object or, in other word, represented by one and the
same object concept. This principle is implemented in os-
cillatory networks by the following mechanism: Oscillators
that select input from proximal stimulus elements with like
properties tend to synchronize while oscillators that select
input from proximal stimulus elements with unlike prop-
erties tend to de-synchronize. As a consequence, oscilla-
tors selective for proximal stimulus elements with like prop-
erties tend to form out synchronous oscillation functions
when stimulated simultaneously. This oscillation can be re-
garded as one object concept. In contrast, inputs that contain
proximal elements with unlike properties tend to cause anti-
synchronous oscillations, i.e., different object concepts.

In our model a single oscillator consists of two mutually
excitatory and inhibitory neurons, each of which represents
a population of biological cells (Fig. 1). If the number of ex-
citatory and inhibitory biological cells is large enough, the
dynamics of each oscillator can be described by two vari-
ablesx andy. They evolve over time according to the fol-
lowing differential equations:

ẋ = −τxx− gy(y) + Lxx
0 gx(x) + Ix +Nx (2)

ẏ = −τyy + gx(x)− Iy +Ny.

Here, τξ (ξ ∈ {x, y}) are constants that can be chosen
to match refractory times of biological cells,gξ are trans-
fer functions,Lxx

0 describes self-excitation of the excitatory
cell population,Iξ are external inputs andNξ white noise,
which models fluctuation within the cell populations. With
Iξ above threshold, the solutions of (2) are limit-cycle oscil-
lations (Maye 2003).

Oscillators are arranged on the three-dimensional grid
forming a feature module. Two dimensions represent the
spatial domain, while the feature is encoded by the third
dimension. Spatially close oscillators that represent sim-
ilar properties synchronize. The desynchronizing connec-
tions establish a phase lag between different groups of syn-
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Figure 1: a) A single oscillator consists of an excitatory (x)
and an inhibitory (y) neuron. Each neuron represents the
average activity of a cluster of biological cells.Lxx

0 de-
scribes the self-excitation of the excitatory neuron.Ix and
Iy amounts to external input. b) Synchronizing connections
(solid) are realized by mutually excitatory connections be-
tween the excitatory neurons and hold between oscillators
within one layer. Desynchronizing connections (dotted) are
realized by mutually inhibitory connections between the in-
hibitory neurons and hold between different layers. ‘R’ and
‘G’ denote the red and green channel. The scheme applies
to further neighbors and the remaining channels as well. c)
Oscillators are arranged in a 3D-topology. The shaded cir-
cles visualize the range of synchronizing (light gray) and
desynchronizing (dark gray) connections of a neuron in the
top layer (black pixel). There are no interactions between
oscillators within a column.

chronously oscillating clusters. Feature modules for dif-
ferent feature dimensions, e.g., color and orientation, can
be combined by establishing synchronizing connections be-
tween oscillators of different modules in case they code for
the same stimulus region.

Stimulated oscillatory networks (e.g., by stimulus of Fig.
2a), characteristically, show object-specific patterns of syn-
chronized and de-synchronized oscillators within and across
feature dimensions. Oscillators that represent properties of
the same object synchronize, while oscillators that represent
properties of different objects de-synchronize. We observe
that for each represented object a certain oscillation spreads
through the network. The oscillation pertains only to oscil-
lators that represent the properties of the object in question.

Semantics in the Hilbert Space Framework
An oscillation functionx(t) of an oscillator is the activity
of its excitatory neuron as a function of time during a time
window [0, T ]. Mathematically speaking, activity functions
are vectors in the Hilbert spaceL2[0, T ] of in the interval
[0, T ] square-integrable functions. This space has the inner
product

〈x(t)|x′(t)〉 =
∫ T

0

x(t) x′(t)dt. (3)

The degree of synchrony between two oscillations lies be-
tween−1 and+1 and is defined as

∆(x, x′) =
〈x|x′〉√

〈x|x′〉〈x|x′〉
. (4)

From synergetics it is well known that the dynamics of com-
plex systems is often governed by a few dominating states,
the eigenmodes. The corresponding eigenvalues designate
how much of the variance is accounted for by that mode.
The first four eigenmodes of the stimulated network are
shown in Fig. 2b. The overall dynamics of the network
is given by the Cartesian vectorx(t) that contains the ex-
citatory activities of all oscillators as components. The net-
work state at any instant is considered as a superposition of
the temporally constant, but spatially variant eigenmodesvi

weighted by the corresponding spatially invariant, but tem-
porally evolving characteristic functionsci(t) of Fig. 2c:

x(t) =
∑

ci(t)vi. (5)

The eigenmodes, for any stimulus, can be ordered along
their eigenvalues so that each eigenmode can be signified
by a natural numberi beginning with the strongest.

The Hilbert space analysis allows us to interpret the dy-
namics of oscillatory networks in semantic terms. Since os-
cillation functions reliably co-vary with objects, they may
be assigned to some of the individual termsa,b, ..., x, y, ...
of the languagePL= by the partial functionα.

The sentencea = b expresses a representational state of
the system (i.e., the representation of the identity of the ob-
jects denoted by the individual termsa andb) to the degree
the oscillation functionsα(a) andα(b) of the system are
synchronous. The degree to which a sentenceφ of PL= ex-
presses a representational state of the system, for any eigen-
modei, can be measured by the valuedi(φ) ∈ [−1,+1]. In
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Figure 2: a) Stimulus: one vertical red bar and one horizon-
tal green bar. b) First four eigenmodes. Each of the four
eigenmodesv1, ...,v4 with the largest eigenvalues is shown
in one line. The four columns correspond to the four fea-
ture layers. Blue shading signifies negative, green zero and
yellow positive components. c) The characteristic functions
and eigenvalues for the first four eigenmodes.

case of identity sentences we have:

di(a = b) = ∆(α(a), α(b)). (6)

When we take a closer look at the first eigenmode of Fig. 2b,
we see that most of the vector components are exactly zero
(marked green). However, few components in the green-
ness and the horizontality layers are positive (marked yel-
low) and few components in the redness and the verticality
layers are negative (marked blue). We may interpret this by
saying that the first eigenmode represents two objects as dis-
tinct from one another. The representation of the first object
is the positive characteristic function+c1(t) and the repre-
sentation of the second object is the negative characteris-
tic function−c1(t) (Because of the normalization of the∆-
function, only the signs of the eigenmode components mat-
ter). These considerations justify the following evaluation
of non-identity:

di(¬a = b) =

{
+1 if di(a = b) = −1,
−1 if di(a = b) > −1. (7)

Feature layers function as representations of properties and
thus can be expressed by predicatesF1, ...,Fp, i.e., to ev-
ery predicateF a diagonal matrixβ(F) ∈ {0, 1}k×k can be
assigned such that, by multiplication with any eigenmode
vectorvi, the matrix renders the sub-vector of those compo-
nents that belong to the feature layer expressed byF. To de-
termine to which degree an oscillation function assigned to
an individual constanta pertains to the feature layer assigned
to a predicateF, we have to compute how synchronous it
maximally is with one of the oscillations in the feature layer.
We are, in other words, justified to evaluate the degree to
which a predicative sentenceFa (read: ‘a is F’, e.g., ‘This
object is red’) expresses a representational state of our sys-
tem, with respect to the eigenmodei, in the following way:

di(Fa) = max{∆(α(a), fj)|f = ci(t)β(F)vi}. (8)

If one, furthermore, evaluates the conjunction of two sen-
tencesφ∧ ψ by the minimum of the value of each conjunct,
we may regard the first eigenmodev1 of the network dynam-
ics of Fig. 2 as a representation expressible by the sentence

This is a red vertical object and that is a green horizon-
tal object.

We only have to assign the individual termsthis (= a) and
that (= b) to the oscillatory functions−c1(t) and+c1(t),
respectively, and the predicatesred (= R), green(= G),
vertical (= V) andhorizontal(= H) to the redness, green-
ness, verticality and horizontality layers as their neuronal
meanings. Simple computation then reveals:

d1(Ra ∧Va ∧Gb ∧Hb ∧ ¬a = b) = 1. (9)

Other stable eigenmodes (e.g.,v2) represent alternative per-
ceptual possibilities (e.g., the whole stimulus as one object).

Using further methods of formal semantics, the seman-
tic evaluation of sentences has been extended to sentences
comprising disjunction (∨), implication (→), and existential
as well as universal quantifiers (∃,∀). The compositional-
ity of meaning and the compositionality of content could



be proven (Werning 2004). Co-variation with content can
always be achieved if the assignmentsα and β are cho-
sen to match the network’s perceptual capabilities. Werning
(2003b) extends this approach from an ontology of objects
to an ontology of events. Werning (2003a) integrates rela-
tional concepts like [in]. Maye & Werning (2004) discuss
ambiguous and illusionary representations. All (primitive
or composed) concepts that can be expressed by a first or-
der predicate language with identity are in principle com-
positionally realizable in our network, insofar as the lexical
predicates of that language are semantically primitive. We
will now turn to semantically complex lexical predicates.

The Decomposition of Complex Concepts:
Coherency Chains and Hierarchical Binding

Among semanticists still some authors believe that no lexi-
cal concepts are decomposable (e.g., Fodor & Lepore 1992).
According to those so-called atomist positions, only con-
cepts that are linguistically expressible by syntactically com-
bined expressions can be complex. In neuroscience, more-
over, some authors still hold that substantial features like
that of being an elephant, or even features as particular as
that of being my grandmother are represented by highly spe-
cific single neurons (Logothetis & Sheinberg 1996).

The position we advocate is contrary to those, in two
respects: We think that (i) some lexical concepts are de-
composable into less complex concepts, and that (ii) the
neural realization of those concepts is distributed over as-
semblies of neurons and meta-assemblies thereof. In psy-
chology, philosophy and linguistics various theories have
been proposed to account for the decomposition of concepts.
The most prominent ones are: prototype theory (Roschet
al. 1976), lexical decomposition grammar (Hale & Keyser
1993; Wunderlich 1996), and frame theory (Minsky 1975;
Barsalou 1999). For our purposes a modified version of
frame theory seems to be most fruitful.

Frames are defined for large reference classesG of ob-
jects and allow for a categorization therein. Lowest-level
frames can be rendered by a matrix with one row per at-
tribute dimension (i) and the attributesFij of the respective
dimension in thej-th column:

dimensions

{ color
form

brightness
size

 red green
round square
light dark
small big


︸ ︷︷ ︸

(10)

frame

Relative to a frame, a category or conceptC is rendered
by a matrix that results from an assignment of typicality val-
uesCij (∈ [0,+1]) to each attribute.Cij tells how typical
thej-th attribute, regarding thei-th dimension, is for an ob-
ject that satisfies the conceptC. Relative to the frame shown
above, the matrix for the concept [cherry] might, e.g., look

• ◦

•

@@
@@

@@
@ ◦

◦ •

��
��

��
�

• ◦

Figure 3: Schematic view of a network
that represents an object as a cherry rel-
ative to the frame 10. Each circle rep-
resents a layer of feature(Fij)-selective
neurons. The lines mark the strongest
chain of temporally coherent activity.
Black/white dots represent high/low val-
ues forCijd(Fijx) (see equations 8 and
12).

as follows:  1 0.2
0.9 0
0.9 0.9
1 0.1

 (11)

If we assume that the list of attributes in each dimension are
a partitioning of the reference classG, and if we choose an
appropriate system of many-valued logic (Gottwald 2001),
we can prove the following inequality for the fuzzy value
d(∈ [−1,+1]) of the existential claim∃xCx (read: ‘There
are C’s’, e.g., ‘There are cherries’):

d(∃xCx) ≥ max
π ∈ Π

x 7→ L2[0, T ]

n
min
i=1

(Ciπ(i)d(Fiπ(i)x)). (12)

Here,C is the predicate expressing the conceptC, Π is the
set of all permutations of the indexesj, andn is the num-
ber of attribute dimensions in the reference frame. With
regard to the evaluation ofd, the mappingx 7→ L2[0, T ]
ranges over all assignments of the termx to an oscillation in
L2[0, T ].

To the result of equation 12 we can directly apply the neu-
ronal interpretation of the valued(Fijx), which has already
been developed in equation 8. From these considerations we
may infer the following hypothesis:

Hypothesis 1 (Coherency chains).Provided that a con-
cept is completely decomposable into attributive concepts
according to its matrixC, the lowest boundary of the de-
gree to which the network represents an object as an in-
stance of the concept is given by the strength of the strongest
(max) weighted coherency chain (weights:Cij) that per-
tains to layers of neurons selective for the attributes (Fij)
of the frame in question. Here, any coherency chain is re-
garded just as strong as the weakest (min) weighted coher-
ence among the activities of the feature-selective neurons in-
volved (see Fig. 3).

Some complex concepts, however, are not completely
decomposable into attributive concepts, because they have
characteristic parts. In that case hierarchical binding mech-
anisms are required (see Fig. 4). To explore their nature is
in the focus of ongoing research.

Conclusion
Both, complex non-lexical concepts that can be composed
from attribute concepts and complex lexical concepts that
can be decomposed into attribute concepts can be modelled



Figure 4: Schematic view of the successive composition
of the complex concept [traffic-light] relative to the frame
10. The first row shows the characteristic patterns of tem-
porally coherent network activity for the concepts of the ob-
ject parts. A higher-order binding mechanism stepwise com-
poses the concept of the whole object from the concepts of
its parts.

by oscillatory networks in a biologically realistic way. With
regard to the latter, coherency chains are required. Further
research needs to be done to account for complex lexical
concepts that decompose into concepts of parts. Here, mech-
anisms of hierarchical binding are postulated.
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