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This paper tries to unify a widely held semanticist view on the nature of meaning
and content with two central neuro-scientific hypotheses on the role of cortical
neurons. The semanticist view presupposes the covariation of concepts with
their contents as well as the compositionality of meaning and content. On the
side of neuroscience, the existence of cortical feature maps and the mechanism
of neural synchronization is assumed. A neural correlate of a semantics is pro-
posed that covers not only the propositional case, the case of first order predicate
languages, but also modal-logical structures.1

1 Covariation and Compositionality

The semanticist view I appeal to characterizes the triangle between language,
mind and world roughly as follows: Linguistic utterances are expressions of
meaning. Those meanings are mental representations, which are often called
concepts. Concepts again have an external content and this content is respon-
sible for an utterance having reference or denotation. Here is an example: The
utterance ‘dog’ expresses a mental concept – let’s call it [dog]. This concept
has a certain content and thereby relates the utterance to its denotation in the
world: dogs, doghood, sets of dogs or sets of possible dogs, depending on your
favorite semantic theory. This story tells us how utterances can be about things
in the world or, in other words, how one can speak of dogs by means of the word
‘dog’.

Leaving aside what mechanism underlies the relation between mental rep-
resentation and the production of phonological sequences, semanticists of the
kind described endorse the view that the relation between concepts and their
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content is some relation of covariation. A concept has the content it has because
it co-varies with certain thing and not with others. Co-variation between con-
cepts and their contents is a causal-informational relation of sorts and has been
explored in the literature (Fodor, 1992). The sense in which conceptual con-
tents are responsible for linguistic expressions having denotation – I assume for
reasons of simplicity – is identity (More complex relations between content and
denotation may be viable, too). The denotation of an utterance is identical to the
content of the concept the utterance is an expression of. This view is captured
by our first hypothesis:2

Hypothesis 1 (Covariation with Content). An expression has the denotation
it has because the concept it expresses reliably co-varies with a content that is
identical to the expression’s denotation.

Since natural languages have a rich constituent structure, it is rather plausi-
ble to a assume that the structure of their meanings is complex, too, and that
the structure of meanings in some way or another resembles the structure of
their expressions. Now, the most simple way to spell out this relation of resem-
blance is by means of a structural match, in technical terms: a homomorphism.
This homomorphism is spelled out by the principle of the compositionality of
meaning:

Hypothesis 2 (Compositionality of Meaning). The meaning of a complex ex-
pression is a syntax-dependent function of the meanings of its syntactic con-
stituents.

It would be surprising, furthermore, if the covariation relations between prim-
itive concepts and their contents should not in some way or another contribute
to the covariation relations between complex concepts and their contents. The
quest for simplicity again leads us to the hypotheses that the contents of the
primitive concepts are the sole factors to determine the content of a therefrom
combined complex concept. Again, this is just what the principle of composi-
tionality says for contents, our third and last semanticist hypothesis:

Hypothesis 3 (Compositionality of Content). The content of a complex con-
cept is a structure-dependent function of the contents of its constituent concepts.

2I conceive of denotation in a broad sense as modal denotation and distinguish be-
tween reference and denotation. The denotation of an expression is a function from pos-
sible worlds to the referents of the expression in those possible worlds. The denotation of
a sentence p, e.g., is the set of pairs {〈w, t〉|p has the truth-value t in the world w}, while
its referent is the truth-value it has in the actual world. Little depends on the particular
view one assumes with regard to the nature of denotation in our context.
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The three semanticist hypotheses, though not uncontroversial, are at the core
of many contemporary semanticist theories. They may thus serve us as a starting
point for our reductive project.3

2 Neuronal Reduction

The aim of this paper is to make out a neuronal structure N = 〈N,ΣN〉 that
fulfills the three semanticist hypotheses: co-variation with content as well as
compositionality of meaning and content. The neuronal structure shall consist
of a set of neuronal states N and a set of thereon defined operations ΣN . Since
the three semanticist hypotheses may serve as (minimal) identity criteria for
concepts, their fulfillment by a neuronal structure will justify us in identifying
the neuronal structure with a structure of concepts. The three hypotheses hence
form the adequacy conditions for a neuronal reduction of concepts.

Since a large part of natural language can be paraphrased by means of a for-
mal monadic first order predicate language with identity, the adequacy condi-
tions may be formalized for that case in the following way (In the formalization
of compositionality I follow Hodges, 2001; see also Werning, 2004):

Principle 1 (Adequacy Conditions). Let

PL= = 〈L,ΣL〉
be a monadic first order predicate language with identity. Let it comprise the
set of grammatical terms L and the syntactic operations of identity, predica-
tion, negation, conjunction, disjunction, implication and existential as well as
universal quantification:4

ΣL = {σ=,σpred,σ¬,σ∧,σ∨,σ→,σ∃,σ∀}.
Let there furthermore be a denotation function

ν : L →W

that maps the grammatical terms of PL= onto their denotations and let this
function of denotation be compositionally evaluable by a worldly structure of
denotations

W = 〈W,ΣW 〉.
3My appeal to simplicity arguments in favor of compositionality has to do with my

reluctance to accept the three most often cited reasons for compositionality, namely pro-
ductivity, systematicity, and inferentiality (Werning, 2005a). I am aware that the sim-
plicity arguments lack the force of a strict argument or even a proof. They are therefore
marked as hypotheses.

4For an exemplification of the syntactic operations see the mappings (28) below.
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That is: For every syntactic operation σ ∈ ΣL, there is a function νσ ∈ ΣW
such that for every non-atomic grammatical term σ(t1, ..., tn) ∈ L the following
equation holds:

ν(σ(t1, ..., tn)) = νσ (ν(t1), ...,ν(tn)).

Then any neuronal structure

N = 〈N,ΣN〉
is a structure of internal representations expressible by PL= if and only if the
following three conditions hold:

(a) N is a compositional semantics of meanings for PL=, that is: There is
a function

µ : L → N

and for every syntactic operation σ ∈ ΣL, there is a function µσ ∈ ΣN
such that for every non-atomic grammatical term σ(t1, ..., tn)∈ L the fol-
lowing equation holds:

µ(σ(t1, ..., tn)) = µσ (µ(t1), ...,µ(tn)).

(b) N is compositionally evaluable with respect to content, that is: There is
a function

κ : N →W

and for every operation h ∈ ΣN, there is a function κh ∈ ΣW such that for
every neuronal element h(m1, ...,mn) ∈ N the following equation holds:

κ(h(m1, ...,mn)) = κh(κ(m1), ...,κ(mn)).

(c) The elements of N reliably co-vary with their contents, the elements of
W , such that for every grammatical term t ∈ L the following holds:

ν(t) = κ(µ(t)).

3 Neurobiological Evidence

For many feature dimensions (color, orientation, direction, size, etc.) involved
in the course of visual processing one can anatomically identify so-called neu-
ronal feature maps (Hubel & Wiesel, 1968). These are clusters of clusters of
neurons that exhibit a certain topological organization (see Fig. 1). With regard
to one feature dimension, one finds a pinwheel-like structure for each receptive
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Figure 1: Feature map. Optical im-
age of an orientation map in the pri-
mary visual cortex of a macaque.
Shadings code the preferred orien-
tations of neurons as indicated by
the bars on the right. Three exem-
plary pin-wheel centers are marked
by black crosses. The horizontal ex-
tent is 3.3 mm. Adapted from Ober-
mayer and Blasdel (1993).

field (i.e., a specific region of the stimulus). This structure is called a hyper-
column. It typically has an extent of about 1mm2. For each receptive field or,
correspondingly, each hypercolumn, neurons for the entire spectrum of features
in the respective feature dimension (e.g., orientation) fan out around a pin-wheel
center. Neurons of a hypercolumn with a tuning for one and the same feature
(e.g., verticality) form a so-called column.

A features map thus is an assembly of hypercolumns, one per receptive field.
Neurons of neighboring hypercolumns are selective for properties that are in-
stantiated in neighboring receptive fields on the stimulus. This means, there
is some topological correspondence between the neighbor relations of hyper-
columns in a feature map and the neighbor relations among receptive fields
in the stimulus. Within one hypercolumn we, furthermore, have a topological
correspondence between the neighbor relations of columns and the similarity
relations of the features for which the neurons of each column select. Neurons
of neighboring columns select for similar features.

More than 30 so organized cortical areas, which occupy approximately one-
half of the total cortex, are experimentally known to be involved in the visual
processing of the monkey (Felleman & van Essen, 1991), less are known for
humans. These findings justify the following hypothesis:

Hypothesis 4 (Feature maps). There are many cortical areas that function as
topologically structured feature maps. They comprise clusters of neurons whose
function it is to show activity only when an object in their receptive field instan-
tiates a certain property of the respective feature dimension.

The fact that features which belong to different feature dimensions, but may
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be properties of the same stimulus object are processed in distinct regions of
cortex, poses the problem of how this information is integrated in an object-
specific way. How can it be that the horizontality and the redness of a red
horizontal bar are represented in distinct regions of cortex, but still are part of
the representation of one and the same object? This is the binding problem in
neuroscience (Treisman, 1996).

A prominent and experimentally well supported solution postulates neuronal
synchronization as a mechanism for binding (von der Malsburg, 1981; Gray,
König, Engel, & Singer, 1989): Neurons that are indicative for different prop-
erties sometimes show synchronous activation, but only when the properties
indicated are instantiated by the same object in the perceptual field; otherwise
they are firing asynchronously. Synchrony, thus, might be regarded to fulfill the
task of binding together various property representations in order to form the
representation of an object as having these properties.

The fact that object-specific synchrony has been measured within columns,
within and across hypercolumns, across different feature maps, even across the
two hemispheres and on a global scale (for a review see Singer, 1999) supports
the following hypothesis:

Hypothesis 5 (Synchrony). Neurons of different feature clusters have the func-
tion to show synchronous activation only if the properties indicated by each
feature cluster are instantiated by the same object in their receptive field.

4 Oscillatory Networks

The two neurobiological hypotheses on neuronal feature maps and synchrony
allow us to regard oscillatory networks (see Fig. 2) as a plausible model of in-
formational processes in the visual cortex. The design of oscillatory networks
is also supported by principles of Gestalt psychology that govern the represen-
tation of objects.

According to some of the Gestalt principles, spatially proximal elements with
similar features (similar color/orientation/direction/size, etc.) are likely to be
perceived as one object or, in other words, represented by one and the same
object concept. If, for example, in a field of densely arranged, randomly moving
dots a bunch of neighboring dots are moving in the same direction, you are likely
to perceive them as one object. If in a field of randomly arranged, varicolored
bars, a group is in parallel and of the same color, we see them as belonging
together and forming an object of its own.

The Gestalt principles are implemented in oscillatory networks by the follow-
ing mechanism: Oscillators that select input from proximal stimulus elements
with like properties tend to synchronize, whereas oscillators that select input
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from proximal stimulus elements with unlike properties tend to de-synchronize.
As a consequence, oscillators selective for proximal stimulus elements with like
properties tend to form out a synchronous oscillation when stimulated simulta-
neously. This oscillation can be regarded as one object concept. In contrast,
inputs that contain proximal elements with unlike properties tend to cause anti-
synchronous oscillations, i.e., different object concepts.

A single oscillator consists of two mutually excitatory and inhibitory neurons,
each of which represents a population of biological cells. If the number of
excitatory and inhibitory biological cells is large enough, the dynamics of each
oscillator can be described by two variables x and y. They evolve over time
according to the following differential equations:

dx
dt

=− τxx−gy(y)+Lxx
0 gx(x)+ Ix +Nx

dy
dt

=− τyy+gx(x)− Iy +Ny.

(1)

Here, τξ (ξ ∈ {x,y}) are constants that can be chosen to match refractory times
of biological cells. The gξ are transfer functions that tell how much of the
activity of a neuron is transferred to other neurons. The constant Lxx

0 describes
self-excitation of the excitatory cell population. Iξ are static external inputs and
Nξ variable white noise, which models fluctuation within the cell populations.
With Iξ above threshold, the solutions of the system of equations (1) are limit-
cycle oscillations. For a more detailed description of the network see Maye
(2003).

Stimulated oscillatory networks, characteristically, show object-specific pat-
terns of synchronized and de-synchronized oscillators within and across fea-
ture dimensions. Oscillators that represent properties of the same object syn-
chronize, while oscillators that represent properties of different objects de-
synchronize. In the simulation we observe that for each represented object a
certain oscillation spreads through the network. The oscillation pertains only to
oscillators that represent the properties of the object in question.

A considerable number of neurobiological studies have by now corroborated
the view that cortical neurons are rather plausibly modelled by oscillatory net-
works (cf. Singer & Gray, 1995; Schillen & König, 1994; Werning, 2001; and
Maye, 2003). Together with the simulations described, these studies suggest
that the synchrony of oscillations indicates the sameness of objects and that
an oscillation pertaining to a neuronal feature cluster indicates that the object
indicated by the oscillation has the featured property.
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a) b)

c) d)

Figure 2: Oscillatory network. a) A single oscillator consists of an excitatory (x)
and an inhibitory (y) neuron. Each model neuron represents the average activity
of a cluster of 100 to 200 biological cells. Lxx

0 describes the self-excitation of the
excitatory neuron. Ix and Iy amount to external input. b) Synchronizing connec-
tions (solid) are realized by mutually excitatory connections between the exci-
tatory neurons and hold between oscillators within one layer. Desynchronizing
connections (dotted) are realized by mutually inhibitory connections between
the inhibitory neurons and hold between different layers. ‘R’ and ‘G’ denote
the red and green channel. The cylinder segments correspond to Hubel and
Wiesel’s (1968) columns, whole cylinders to hypercolumns. c) A module for a
single feature dimension (e.g., color) consists of a three-dimensional topology
of oscillators. There is one layer per feature and each layer is arranged to reflect
two-dimensional retinotopic structure. The shaded circles visualize the range
of synchronizing (light gray) and desynchronizing (dark gray) connections of
a neuron in the top layer (black pixel). d) Two coupled feature modules are
shown schematically. The single oscillator in module A has connections to all
oscillators in the shaded region of module B. This schema is applied to all other
oscillators and feature modules. Reprinted from Werning (2005b) and Maye
and Werning (2004).
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5 Hilbert Space Analysis

Fig. 3a shows a stimulus we presented to an oscillatory network. The network
consists of a color module with layers for redness and greenness and an orien-
tation module with layers for verticality and horizontality. In the stimulus the
human observer perceives two objects: A red vertical object and a green hori-
zontal objects. Now, how does the network answer to the stimulus? What can
we say about the network dynamics?

The oscillations spreading through the network can be characterized mathe-
matically: An oscillation function, or more generally the activity function x(t)
of an oscillator is the activity of its excitatory neuron as a function of time dur-
ing a time window [−T

2 ,+T
2 ]. Mathematically speaking, activity functions are

vectors in the Hilbert space L2[−T
2 ,+T

2 ] of in the interval [−T
2 ,+T

2 ] square-
integrable functions. This space has the inner product

〈x(t)|x′(t)〉 =
∫ +T/2

−T/2
x(t) x′(t)dt. (2)

The degree of synchrony between two oscillations lies between −1 and +1 and
is defined as their normalized inner product

∆(x,x′) =
〈x|x′〉√〈x|x〉〈x′|x′〉. (3)

The degree of synchrony, so defined, corresponds to the cosine of the angle
between the Hilbert vectors x and x′. The most important cases are:

∆(x,x′) = 1 ⇔ x and x′ are parallel (totally synchronous),
∆(x,x′) = 0 ⇔ x and x′ are orthogonal (totally uncorrelated),

∆(x,x′) = −1 ⇔ x and x′ are anti-parallel (totally anti-synchronous).

6 Eigenmodes

From synergetics it is well known that the dynamics of complex systems is often
governed by a few dominating states. These states are the eigen- or principal
modes of the system. The corresponding eigenvalues designate how much of
the variance is accounted for by a mode.
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a)

b)

c)

Figure 3: a) Stimulus: one vertical red bar and one horizontal green bar. b) The
eigenvectors v1, ...,v4 of the four eigenmodes 1, ...,4 with the largest eigenval-
ues are shown in one line. The values of the vector components are coded by
colors. The four columns correspond to the four feature layers. Dark shading
signifies negative, mid-gray zero and light shading positive components. c) The
characteristic functions and eigenvalues for the first four eigenmodes. Reprinted
from Werning (2005b).



Synchronization and Compositionality 293

The overall dynamics of the network is given by the Cartesian vector

x(t) =




xA1(t)
...

xA2(t)
...

xB1(t)
...

xk(t)




. (4)

A,B, ... signify the feature dimensions and the subsequent numbers enumerate
particular features of the feature dimension in question. The index A1 = 1 marks
the beginning of the first feature cluster (e.g., red) in the first feature module
(e.g., color), A2 the beginning of the second feature cluster (e.g., green) in the
first module, B1 the first cluster (e.g., vertical) in the second module (orienta-
tion) and so on. The vector x(t) comprises the activities of the excitatory neu-
rons of all k oscillators of the network after a transient phase and is determined
by a solution of the system of differential equations (1).

For each eigenmode, the eigenvalue λ and its corresponding eigenvector v
are solutions of the eigen-equation for the auto-co-variance matrix C ∈ Rk×k:

Cv = Cλ , (5)

where the components Ci j of C are determined by the network dynamics x(t)
as:

Ci j = 〈xi|x j〉. (6)

The eigenvector v1 of the strongest eigenmode is shown in Fig. 3b and exhibits
a significant difference between the two objects in the stimulus. To assess the
temporal evolution of the eigenmodes, the notion of a characteristic function
ci(t) is introduced. The network state at any instant can be considered as a su-
perposition of the eigenvectors vi weighted by the corresponding characteristic
functions ci(t) of Fig. 3c:

x(t) =
∑

i

ci(t)vi. (7)

The eigenmode analysis separates spatial from temporal variation in the net-
work dynamics. The eigenvectors are constant over time, but account for the
varying behavior of the spatially distributed oscillators of the network. In con-
trast, the characteristic functions are the same for all oscillators, but account for
the temporal dynamics of the network as a whole.
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In the long run the network exhibits stable oscillatory behavior. As one can
guess from Fig. 3c only the first two eigenmodes are stable because the am-
plitudes of their characteristic functions do not decrease. In contrast, the am-
plitudes of the characteristic functions of the other eigenmodes in the long run
apparently converge to zero.

The eigenmodes, for any stimulus, can be ordered along their eigenvalues:5

λi > λi+1. (8)

For this reason, I will introduce the useful convention of signifying each eigen-
mode by the index i ∈ N. For any stimulus we have the mapping:

i �→ 〈vi,ci(t),λi〉,
which, for each eigenmode i, renders the i-th eigenvector vi, the corresponding
characteristic function ci(t) and the eigenvalue λi.

7 First Steps Into Semantic Interpretation

In this section, I will develop a heuristics that allows us to interpret the dynamics
of oscillatory networks in semantic terms. Oscillatory networks that implement
the hypotheses of feature maps (Hyp. 4) and synchrony (Hyp. 5), I argue, real-
ize a structure of internal representations expressible by a monadic first order
predicate language with identity PL=.

Because of Hyp. 5 we are allowed to regard oscillation functions as internal
representations of individual objects. They may thus be assigned some of the
individual terms of the language PL=. Let

Ind = {a1, ...,am,z1, ...,zn} (9)

be the set of individual terms of PL=, then the partial function

α : Ind → L2[−T
2

,+
T
2

] (10)

be a constant individual assignment of the language. By convention, I will
assume for the domain of α , unless indicated otherwise, that

dom(α) = {a1, ...,am} (11)

so that the a1, ...,am are individual constants and the z1, ...,zn are individual
variables. Sometimes I will use a,b as placeholders for a1, ...,am.

5I assume that the ordering is strict, i.e., none of the eigenvalues is degenerate.



Synchronization and Compositionality 295

Following equation (3), the synchrony of oscillation functions is a matter of
degree. The sentence a = b expresses a representational state of the system
to the degree the oscillation functions α(a) and α(b) of the system are syn-
chronous. Provided that Cls is the set of sentences of PL=, the degree to which
a sentence expresses a representational state of the system, for any eigenmode
i ∈ N, can be measured by the (in N possibly partial) function

d : Cls×N → [−1,+1].
In case of identity sentences, for every eigenmode i and any individual constants
a,b, we have:

d(a = b, i) = ∆(α(a),α(b)). (12)

When we take a closer look at the first eigenmode of Fig. 3b, we see that most
of the vector components are exactly zero (marked by mid-gray). However,
few components v1

j ,v
1
j′, ... in the greenness and the horizontality layers are posi-

tive (marked by light shading) and few components v1
l ,v

1
l′, ... in the redness and

the verticality layers are negative (marked by dard shading). Since the contri-
bution of the eigenmode to the entire network state is weighted by its charac-
teristic function, the positive component v1

j contributes to the activity of x j(t)
with +|v1

j |c1(t), while the negative component v1
l contributes with −|v1

l |c1(t) to
xl(t). Since the ∆-function is normalized, only the signs of the constants mat-
ter. The weighted positive components of the eigenmode are all exactly parallel
with one another, the weighted negative components are all exactly parallel with
one another, but any weighted positive component is exactly anti-parallel to any
weighted negative component:

∆(v1
jc1(t),v1

j′c1(t)) = 1, (13)

∆(v1
l c1(t),v1

l′c1(t)) = 1, (14)

∆(v1
jc1(t),v1

l c1(t)) = −1. (15)

We may interpret this by saying that the first eigenmode represents two objects
as distinct from one another. The representation of the first object is the positive
characteristic function +c1(t) and the representation of the second object is
the negative characteristic function −c1(t). Both, the positive and the negative
function can be assigned to individual constants, say a and b, respectively. In
the eigenmode analysis we can thus identify sharp representations of objects
in the network: the characteristic functions and their negative mirror images.
These considerations, for every eigenmode i, justify the general definition:

d(¬a = b, i) =

{
+1 if d(a = b, i) = −1,
−1 if d(a = b, i) > −1. (16)
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Notice that unlike identity, its negation is represented by the network as sharp,
i.e., non-gradual. Within each eigenmode, at most two objects can be repre-
sented as non-identical. As we will see later on, sharpness is a general feature
of negation in our semantics as such.6

Following Hyp. 4, clusters of feature selective neurons function as represen-
tations of properties. They can be expressed by monadic predicates. I will
assume that our language PL= has a set of monadic predicates

Pred = {F1, ...,Fp} (17)

such that each predicate denotes a property represented by some feature cluster.
To every predicate F ∈ Pred I now assign a diagonal matrix β (F) ∈ {0,1}k×k

that, by multiplication with any eigenmode vector vi, renders the sub-vector of
those components that belong to the feature cluster expressed by F :

β : Pred →{0,1}k×k. (18)

With respect to our particular network, the matrix β (red), e.g., is zero every-
where except for the first k

4 diagonal elements:

β (red) =




1 0 · · · 0
0 . . .

1
... 0 ...

. . .
0 · · · 0




. (19)

The multiplication of β (red) with the first eigenmode vector v1 gives us the
components of v1 for the redness-layer in the color module of the network:

β (red)v1 =
(

v1
1 · · · v1

i(green)−1 0 · · · 0
)

. (20)

Since β (F) is a hardware feature of the network and does neither vary from
stimulus to stimulus, nor from eigenmode to eigenmode (and is, model-
theoretically speaking, hence constant in all models), it is sensible to call it
the neuronal intension of F .

The neuronal intension of a predicate, for every eigenmode, determines what
I call its neuronal extension, i.e., the set of those oscillations that the neurons on

6This evaluation of non-identity is chosen for reasons of consistency with the Gödel
system introduced below.
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the feature layer contribute to the activity the eigenmode adds to the overall net-
works dynamics. Unlike the neuronal intension, the neuronal extension varies
from stimulus to stimulus and from eigenmode to eigenmode (just as extensions
vary from possible world to possible world). Hence, for every predicate F its
neuronal extension in the eigenmode i comes to:

{ f j|f = ci(t)β (F)vi}. (21)

Here, the f j are the components of the vector f. The neuronal extension of
the predicate red in the first eigenmode in our experimental setting thus comes
to the following set of functions – it comprises all those temporally evolving
activities the redness-components contribute to the overall network dynamics in
the first eigenmode:

{ f j|f = β (red)v1c1(t)} = {v1
1c1(t), ...,v1

i(green)−1c1(t),0}. (22)

To determine to which degree an oscillation function assigned to an individual
constant a is in the neuronal extension of a predicate F , we have to compute how
synchronous it maximally is with one of the oscillation functions in the neuronal
extension. We are, in other words, justified to evaluate the degree to which a
predicative sentence Fa expresses a representational state of our system, with
respect to the eigenmode i, in the following way:

d(Fa, i) = max{∆(α(a), f j)|f = ci(t)β (F)vi}. (23)

Having by now provided a semantic evaluation for every atomic sentence of
PL=, how can we evaluate the truth-functional connectives? Since we are here
dealing with an infinitely many-valued semantics, we have to look at the broader
spectrum of fuzzy logics. In those logics the conjunction is semantically eval-
uated by a t-norm.7 Having once made a choice for a certain t-norm as the se-
mantic correlate of conjunction, the functions of semantic evaluation for most of
the other connectives can be derived by systematic considerations (cf. Gottwald,
2001).

As will become obvious in the course of the remaining sections, the system
that fits my purposes best is Gödel’s (1932) min-max-logic. Here the conjunc-
tion is evaluated by the minimum of the values of the conjuncts, which is a
t-norm. Let φ ,ψ be sentences of PL=, then, for any eigenmode i, we have:

d(φ ∧ψ, i) = min{d(φ , i),d(ψ, i)}. (24)
7A binary operation t in the real interval [−1,+1] is called a t-norm if and only if

it is (d,d′,d′′ ∈ [−1,+1]): (i) associative, i.e., t(d, t(d′,d′′)) = t(t(d,d′),d′′); (ii) com-
mutative, i.e., t(d,d′) = t(d′,d); (iii) non-decreasing in the first element, i.e., d ≤ d′ ⇒
t(d,d′′) ≤ t(d′,d′′); and (iv) has 1 as neutral element, i.e., t(d,1) = d.
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The evaluations we have so far introduced allow us to regard the first eigenmode
of the network dynamics, which results from stimulation with one red vertical
object and one green horizontal object (see Fig. 3), as a representation expressed
by the sentence

This is a red vertical object and that is a green horizontal object.

We only have to assign the individual terms this (= a) and that (= b) to the
oscillatory functions −c1(t) and +c1(t), respectively, and the predicates red
(= R), green (= G), vertical (= V ) and horizontal (= H) to the redness, green-
ness, verticality and horizontality layers as their neuronal intensions. Simple
computation then reveals:

d(Ra∧Va∧Gb∧Hb∧¬a = b,1) = 1. (25)

8 Eigenmodes as Alternative Epistemic Possibilities

So far I have concentrated on a single eigenmode, only. The network, however,
generates a multitude of eigenmodes. We tested the representational function
of the different eigenmodes by presenting an obviously ambiguous stimulus
to the network. The stimulus shown in Fig. 4a can be perceived as two red
vertical bars or as one red vertical grating. It turned out that the network was
able to disambiguate the stimulus by representing each of the two epistemic
possibilities in a stable eigenmode of its own (see Fig. 4b).

Eigenmodes, thus, play a similar role for neuronal representation as possible
worlds known from Lewis (1986) or Kripke (1980) play for semantics. Like
possible worlds, eigenmodes do not interfere with each other because they are
mutually orthogonal. Moreover, the identity of oscillation functions (as for rigid
designators in Kripke semantics) and of the neuronal intensions of predicates
pertains across eigenmodes.

We now see that both of the two stable eigenmodes shown in Fig. 4b can be
expressed by a disjunctive sentence, if we semantically evaluate disjunction as
follows:

d(φ ∨ψ, i) = max{d(φ , i),d(ψ, i)}, (26)

for any sentences φ and ψ of PL= and any eigenmode i. Either of the two
eigenmodes i = 1,2 makes d(φ , i) assume the value +1 if φ is set to the following
disjunctive sentence, which says that there is one red vertical object – denoted
by a – or two red vertical objects – denoted by b and c:

(Ra∧Va)∨ (Rb∧Rc∧V b∧V c∧¬b = c).
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a)

b)

c)

Figure 4: a) Stimulus: two vertical red bars or one red vertical grating. b) The
eigenvectors v1, ...,v4 of the four eigenmodes 1, ...,4 with the largest eigen-
values are shown in one line. The first mode represents the stimulus as one
red vertical object, while the second mode represents it as two red vertical ob-
jects. c) The characteristic functions show the temporal evolution of the first
four modes. Only the first two are non-decreasing and thus belong to stable
eigenmodes. Reprinted from Werning (2005b).
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One only needs to make the following assignments of individual constants to
oscillation functions:

α(a) = +c1(t), α(b) = +c2(t), α(c) = −c2(t).

The choice of the maximum as the semantic evaluation of disjunction is the
primary reason for me to prefer the Gödel system over alternative systems of
many-valued logic. In general, many-valued logics semantically evaluate dis-
junction by a t-conorm of which the maximum-function is an instance.8 For
our purposes the maximum is the best choice of a t-conorm because it is the
only continuous t-conorm that always takes the value of one of the disjuncts
as the value of the disjunction (The proof has to do with the particular non-
Archimedian character of the Gödel t-norm, see Gottwald, 2001, p. 75). Other
continuous t-conorms would hence not allow us to treat eigenmodes as inde-
pendent alternative possibilities. We would not be able to say that a certain
disjunction is true because a possibility (i.e., an eigenmode) expressed by one
of its disjuncts exists.

9 Making Syntax and Semantics Explicit

We are leaving the heuristic approach now and turn to a formally explicit de-
scription of the neuronal semantics realized by oscillatory networks. Let the
oscillatory network under consideration have k oscillators. The network dy-
namics is studied in the time window [−T

2 ,+T
2 ]. For any stable eigenmode

i ∈ N, it renders a determinate eigenvector vi, a characteristic function ci(t) and
an eigenvalue λi after stimulation. The language to be considered is a monadic
first order predicate language with identity (PL=). Besides the individual terms
of Ind and the monadic predicates of Pred, the alphabet of PL= contains the
logical constants ∧,∨,→,¬,∃,∀ and the binary predicate =. Provided we have
the constant individual and predicate assignments α and β of (10) and (18), the
union

γ = α ∪β (27)

is a comprehensive constant assignment of PL=. The individual terms in the
domain of α are individual constants, those not in the domain of α are indi-
vidual variables. The syntactic operations of the language PL= and the set SF
of sentential formulae as their recursive closure can be defined as follows, for

8A binary operation s in the real interval [−1,+1] is a t-conorm if and only if it is (i)
associative, (ii) commutative, (iii) non-decreasing in the first element, and (iv) has −1
as neutral element.
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arbitrary a,b,z ∈ Ind,F ∈ Pred, and φ ,ψ ∈ SF :

σ= : (a,b) �→ a = b; σpred : (a,F) �→ Fa; σ¬ : φ �→ ¬φ ;
σ∧ : (φ ,ψ) �→ φ ∧ψ; σ∨ : (φ ,ψ) �→ φ ∨ψ; σ→ : (φ ,ψ) �→ φ → ψ;
σ∃ : (z,φ) �→ ∃zφ ; σ∀ : (z,φ) �→ ∀zφ .

(28)

The set of terms of PL= is the union of the sets of individual terms, predicates
and sentential formulae of the language. A sentential formula in SF is called
a sentence with respect to some constant assignment γ if and only if, under
assignment γ , all and only individual terms bound by a quantifier are variables.
Any term of PL= is called γ-grammatical if and only if, under assignment γ ,
it is a predicate, an individual constant, or a sentence. Taking the idea at face
value that eigenmodes can be treated like possible worlds (or more neutrally
speaking: like models), the relation ‘i neurally models φ to degree d by constant
assignment γ’, in symbols

i |=d
γ φ ,

for any sentence φ and any real number d ∈ [−1,+1], is then recursively given
as follows:

Identity: Given any individual constants a,b ∈ Ind ∩dom(γ), then i |=d
γ a = b

iff d = ∆(γ(a),γ(b)).

Predication: Given any individual constant a ∈ Ind ∩ dom(γ) and any predi-
cate F ∈ Pred, then i |=d

γ Fa iff d = max{∆(γ(a), f j)|f = γ(F)vici(t)}.
Conjunction: Provided that φ ,ψ are sentences, then i |=d

γ φ ∧ ψ iff d =
min{d′,d′′ | i |=d′

γ φ and i |=d′′
γ ψ}.

Disjunction: Provided that φ ,ψ are sentences, then i |=d
γ φ ∨ ψ iff d =

max{d′,d′′ | i |=d′
γ φ and i |=d′′

γ ψ}.
Implication: Provided that φ ,ψ are sentences, then i |=d

γ φ → ψ iff d =
sup{d′ ∈ [−1,+1] |min{d′,d′′} ≤ d′′′ where i |=d′′

γ φ and i |=d′′′
γ ψ}.

Negation: Provided that φ is a sentences, then i |=d
γ ¬φ iff (i) d = 1 and i |=−1

γ φ
or (ii) d = −1 and i |=d′

γ φ where d′ < 1.

Existential Quantifier: Given any individual variable z ∈ Ind \ dom(γ) and
any sentential formula φ ∈ SF , then i |=d

γ ∃zφ iff d = sup{d′ | i |=d′
γ ′

φ where γ ′ = γ ∪{〈z,x〉} and x ∈ L2[−T
2 ,+T

2 ]}.
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Universal Quantifier: Given any individual variable z ∈ Ind \dom(γ) and any
sentential formula φ ∈ SF , then i |=d

γ ∀zφ iff d = inf{d′ | i |=d′
γ ′ φ where γ ′ =

γ ∪{〈z,x〉} and x ∈ L2[−T
2 ,+T

2 ]}.

Let me briefly comment on these definitions: Most of them should be famil-
iar from previous sections. The degree d, however, is no longer treated as a
function, but as a relatum in the relation |=.

The semantic evaluation of negation has previously only been defined for
negated identity sentences. The generalized definition, here, is a straightfor-
ward application of the Gödel system.9 An interesting feature of negation in the
Gödel system is that its duplication digitalizes the values of d into +1 and −1.

The evaluation of implication, too, follows the Gödel system. The deeper
rationale behind this definition is the adjointness condition, which relates the
evaluation of implication to the t-norm (= min, by our choice).10 Calculi for our
semantics have been developed in the literature (cf. Gottwald, 2001). As far as
propositional logic is concerned, the calculi are in principle those of intuitionist
logic.11 Fig. 5 gives a calculus of the Gödel system for the propositional case.

To evaluate existentially quantified formulae, the well-known method of
cylindrification (Kreisel & Krivine, 1976, p. 17) is adjusted to the many-valued
case. The supremum (sup) takes over the role of existential quantification in the
meta-language and can be regarded as the limit case of the maximum-function
in an infinite domain. This is analogous to the common idea of regarding the
existential quantifier as the limit case of disjunction over an infinity of domain
elements. It should be noted that the value of an existentially quantified sentence
of the form

(∃z)(Fz)
measures whether the neurons in the feature cluster expressed by F oscillate.

For the evaluation of universally quantified formulae, the method of cylindri-
fication is used and adjusted again. This time the infimum (inf) assumes the role
of universal quantification in the meta-language. It can be regarded as the limit
case of the minimum for infinite domains in the same way as one might think of
the universal quantifier as the limit case for infinite conjunction. To mention a

9In t-norm based many-valued logics a function n : [−1,+1]→ [−1,+1] is generally
said to be a negation function if and only if n is non-increasing, n(−1) = 1 and n(1) =
−1 (cf. Gottwald, 2001, p. 85).

10The adjointness condition relates the evaluation of implication, the function i :
[−1,+1]2 → [−1,+1], to the t-norm t by the following bi-conditional (cf. Gottwald,
2001, p. 92): d′ ≤ i(d′′,d′′′) ⇔ t(d′,d′′) ≤ d′′′.

11Gödel (1932) developed his min-max-system under the title ‘Zum intuitionistischen
Aussagenkalkül’.
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The following system of axiom schemata provides a propositional cal-
culus for an infinitely many-valued Gödel system G∞ as chosen in this
paper. Its completeness is proven by Gottwald (2001, p. 297).

H1 → (H1∧H1) (LC1)
(H1∧H2) → (H2∧H1) (LC2)

(H1 → H2) → (H1∧H3 → H2∧H3) (LC3)
((H1 → H2)∧ (H2 → H3)) → (H1 → H3) (LC4)

H1 → (H2 → H1) (LC5)
H1∧ (H1 → H2) → H2 (LC6)

H1 → H1∨H2 (LC7)
H1∨H2 → H2∨H1 (LC8)

(H1 → H3)∧ (H2 → H3) → (H1∨H2 → H3) (LC9)
¬H1 → (H1 → H2) (LC10)

(H1 → H2)∧ (H1 →¬H2) →¬H1 (LC11)
(H1 → H2)∨ (H2 → H1) (LC12)

The only rule of inference for the calculus is modus ponens:

H1,H1 → H2 /H2.

Figure 5: Propositional calculus for the Gödel system.

concrete example, the value of a universally quantified implication of the form

(∀z)(Fz → F ′z)
can be viewed as providing a measure for the overall synchronization between
feature clusters expressed by the predicates F and F ′.

The propositional calculus for the Gödel system can be extended to capture
the first order predicate case. See Fig. 6. With respect to the identity relation
one should keep in mind that identity is not absolute but graded. To capture
the identity relation, we can nevertheless supplement the first order predicate
calculus of Fig. 6 by the axiom schemata of Fig. 7.

10 Compositionality Ratified

In this section I will finally prove that the adequacy conditions for internal rep-
resentation are fulfilled for oscillatory networks. The work done so far leads us
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For the infinitely valued Gödel system G∞, the propositional calculus of
Fig. 5 can be extended to capture the first order predicate case. This is
achieved if one adds as a rule of inference the rule of generalization

H /∀xH

and if one supplements LC1–LC12 with the following axiom schemata,
where the variable x must not occur free in G (cf. Gottwald, 2001,
p. 284–5, unfortunately no completeness proof is provided):

∀x(H1 → H2) → (∀xH1 → H2) (GPL1)
∀x(G → H) → (G →∀xH) (GPL2)
∀x(H → G) → (∃xH → G) (GPL3)

∀x(H1 → H2) → (H1 →∀xH2) (GPL4)
∀xH(x) → H(t|x) for all terms t which are substitutable for x in H

(GPL5)
H(t|x) →∃xH(x) for all terms t which are substitutable for x in H

(GPL6)

Figure 6: First order predicate calculus for the Gödel system.

For the infinitely valued semantics presented in this paper, the propo-
sitional calculus of Fig. 5 plus the first order predicate extension of
Fig. 6 can be extended to capture sentences involving the identity re-
lation. Since identity is evaluated by the ∆-function, identity in our case
is gradual, but still reflexive (ID1) and symmetric (ID2), however, not
transitive. Due to our evaluation of predication, one direction of the
Leibniz law, i.e., ID3, also holds. One may thus add the following ax-
iom schemata:

∀x(x = x) (ID1)
∀x∀y(x = y → y = x) (ID2)

∀x∀y((x = y∧F(x)) → F(y)) for every predicate F (ID3)

Figure 7: Axioms of identity.
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directly to the following theorem:
Theorem 1 (Compositional Meanings in Oscillatory Networks). Let L be
the set of terms of a PL=-language, SF the set of sentential formulae and |=
the neuronal model relation. The function µ with domain L is a compositional
meaning function of the language if µ , for every t ∈ L, is defined in the following
way:

µ(t) =

{
{〈γ,γ(t)〉|γ is a constant assignment} if t �∈ SF,
{〈γ, i,d〉|i |=d

γ φ} if t ∈ SF.

To simply notation, we may stipulate for any γ-grammatical term t:

µγ(t) =

{
γ(t) if t is not a sentence,
{〈i,d〉|〈γ, i,d〉 ∈ µ(t)} if t is a sentence. (29)

Proof. To prove the theorem, one has to show that for any of the syntactic
operations σ in (28), there is a semantic operation µσ that satisfies the equation:

µ(σ(t1, ..., tn)) = µσ (µ(t1), ...,µ(tn)). (30)

To do this for the first six operations, one simply reads the bi-conditionals in the
definition of |= as the prescriptions of functions:

µ= : (µ(a),µ(b)) �→ {〈γ, i,d〉|d = ∆(µγ(a),µγ(b))};

µpred : (µ(a),µ(F)) �→
{〈γ, i,d〉 |d = max{∆(µγ(a), f j)|f = µγ(F)vici(t)}};

µ∧ : (µ(φ),µ(ψ)) �→
{〈γ, i,d〉 |d = min{d′,d′′|〈γ, i,d′〉 ∈ µ(φ),〈γ, i,d′′〉 ∈ µ(ψ)}};

etc.
To attain semantic counterpart operations for σ∃ and σ∀, we have to apply the

method of cylindrification:

µ∃ : µ(φ(z)) �→
{〈γ, i,d〉 |∃γ ′ : dom(γ ′) = dom(γ)∪{z} and 〈γ ′, i,d〉 ∈ µ(φ(z))};

µ∀ : µ(φ(z)) �→
{〈γ, i,d〉 |∀γ ′ : dom(γ ′) = dom(γ)∪{z}⇒ 〈γ ′, i,d〉 ∈ µ(φ(z))}.

One easily verifies that equation (30) is satisfied. �
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Theorem 1 proves that condition (a) of Principle 1 is satisfied. If one holds fix
the constant assignment γ and consequently the grammaticality of the terms of
the language PL=, and if one regards Lγ as the set of grammatical terms of PL=

under assignment γ , one may say that the neuronal structure

N = 〈{γ}×µγ [Lγ ],{µ=,µpred,µ¬,µ∧,µ∨,µ→,µ∃,µ∀}〉
compositionally evaluates the language

〈Lγ ,{σ=,σpred,σ¬,σ∧,σ∨,σ→,σ∃,σ∀}〉
with respect to meaning.

The ideal meaning of a term t under assignment γ , µ1
γ (t), can be identified

with the subset of µγ(t), for which all values d are 1. The formula

〈i,d〉 ∈ µγ(φ)

can then be read as: The eigenmode i, to degree d, realizes the ideal neuronal
meaning of φ under assignment γ . The ideal meaning µ1

γ (a) of an individual
constant a is henceforth identified with an object concept. Recall that the ob-
ject concept µ1

γ (a) just is the oscillation α(a). The ideal meaning µ1
γ (F) of

a predicate F is identified with a predicate concept. Notice that µ1
γ (F) just is

the matrix β (F), which we have called neuronal intension earlier and which
identifies a specific cluster of feature-selective neurons.

To comply with the condition of co-variation, i.e., condition (c) of Principle
1, we can choose the assignment γ in a way so that the oscillation function γ(a)
tracks the object designated by any individual term a. We can, furthermore,
make sure that γ(F) is just the cluster of neurons representing the property ex-
pressed by the predicate F . In this case, the assignment will be called natural.
As we have shown in our simulations, the network dynamics warrants that the
neuronal meanings of terms with respect to the natural assignment reliably co-
vary with the terms’ denotations:

Fact 1 (Covariation with Content for Oscillatory Networks). Let Γ be an in-
tended external constant assignment for a language PL= with a set of terms L
such that Γ maps individual terms and predicates to their intended denotations.
Let νΓ, then, be a function that maps each element of the set of Γ-grammatical
terms LΓ to its denotation. The architecture of oscillatory networks now war-
rants that there is a natural neuronal assignment γ of the individual constants
and predicates of LΓ (= Lγ) into the set of neuronal states N of the network
and, consequently, a meaning function µγ from Lγ into N, such that meanings
co-vary with their contents, or, formally speaking: There is a content function

κ : µγ [Lγ ] → νΓ[LΓ].
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and
νΓ(t) = κ(µγ(t))

for every t ∈ LΓ.

Condition (c) of the adequacy conditions in Principle 1 thus turns out to be
fulfilled by the network architecture. This is the central result of our simulations
and has an explanation in the construction plan of the network. Recall that the
construction scheme was chosen not only to match up with neurobiological data,
but also to implement the Gestalt principles for object perception.

If the co-variation with content is warranted according to Fact 1, the compo-
sitionality of content can also be proven:

Theorem 2 (Compositional Contents of Oscillatory Networks). Let γ be the
natural neuronal, and Γ the intended external assignment of the language PL=

with the set of terms L. Let Lγ and LΓ be the set of grammatical terms of PL=

with respect to the natural neuronal, respectively, the intended external assign-
ment. Let, furthermore, be

Lγ = LΓ.

We assume that Lγ(= LΓ) have a compositional function of denotation ν and µ
be a compositional neuronal meaning function with the same domain. Then, in
the case of co-variation, the natural neuronal structure

N = 〈{γ}×µγ [Lγ ],{µ=,µpred,µ¬,µ∧,µ∨,µ→,µ∃,µ∀}〉
can be compositionally evaluated with respect to content.

Proof. Since co-variation is assumed to be the case in the antecedent of the
theorem, we have

ν = κ ◦µ.

Since Γ is the intended external and γ the natural neuronal assignment, we may
set ν := νΓ and µ := µγ . Now, the theorem’s antecedent tells us that the lan-
guage can be compositionally evaluated with respect to denotation, i.e., there is
a function f (= νσ ) for every n-ary syntactic operation σ of the language such
that

ν(σ(t1, ..., tn)) = f (ν(t1), ...,ν(tn)),
which, in the case of co-variation, is equivalent to

(κ ◦µ)(σ(t1, ..., tn)) = f ((κ ◦µ)(t1), ...,(κ ◦µ)(tn)).

Since the language is compositional with respect to the meaning function µ ,
there is a function µσ in N for each and every σ of the language such that

µσ (µ(t1), ...,µ(tn)) = µ(σ(t1, ..., tn)).
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From the former two equations we derive:

κ(µσ (µ(t1), ...,µ(tn))) = f (κ(µ(t1)), ...,κ(µ(tn))).

Since the surjectivity of the meaning function µ warrants that, for every element
m of the carrier set of N , there is at least one grammatical term t in Lγ such
that

m = µ(t),
we may finally conclude that, for every n-ary operation h(= µσ ) of N , and
every sequence m1, ...,mn in the domain of h, there is a function κh (= f = νσ )
such that

κ(h(m1, ...,mn)) = κh(κ(m1), ...,κ(mn)).
The content function is hence proven to be compositional and the condition (b)
of the adequacy conditions is fulfilled. �

11 Perceptual Necessities

It is sometimes useful to talk not only about what is represented by one eigen-
mode of the network dynamics, but to talk about what the network dynamics
as a whole represents. This must take into account all stable eigenmodes of the
network. Each eigenmode, as I have argued earlier, stands for one perceptual
or, more generally speaking, one epistemic possibility. If we take the identifi-
cation of eigenmodes with possibilities – ‘possibility’ always to be read in an
epistemic sense – at face value, we can apply Leibniz’s idea that necessity is
truth in all possible worlds.

We can then say that what the network dynamics represents as a whole is
what is represented as necessarily being true by the network dynamics when
the network is stimulated with a certain stimulus. If we want to capture what
the network dynamics represents as a whole and identify epistemic possibilities
with eigenmodes, we thus have to express what is represented as true in all
eigenmodes of the network dynamics. Formally, this can be done by use of the
necessity operator � of modal logic. With φ being a grammatical sentence, we
hence write

�φ
to express that the network dynamics represents φ to be necessarily true, given
the current epistemic situation, i.e., the current stimulus input.

If we hold fix the assignment γ to be the natural neuronal assignment, the
four place relation |= reduces to a three place relation. Epistemic necessity with
respect to a network dynamics x(t) is now defined as follows:
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Definition 1 (Epistemic Necessity in the Network). Given a network dynamics
x with the set of stable eigenmodes E ⊆ N, then, for every sentence φ of the
respective language,

�φ
is true in x if and only if, for all stable eigenmodes i ∈ E, the following holds:

i |=1 φ .

Likewise epistemic possibility can be defined by the existence of an eigen-
mode. We write

♦φ
just in case there is an eigenmode of the networks dynamics that models φ :

Definition 2 (Epistemic Possibility in the Network). Given a network dynam-
ics x with the set of stable eigenmodes E ⊆ N, then, for every sentence φ of the
respective language,

♦φ
is true in x if and only if, there is a stable eigenmode i ∈ E, such that the follow-
ing holds:

i |=1 φ .

We can now apply our newly defined modal notions to describe what the
network dynamics represents as a whole when the network is stimulated, e.g.,
with the stimulus of Fig. 4a. We may assume that i = 1,2 are the only two
stable eigenmodes of the resulting network dynamics x. As one sees in Fig. 4c
the characteristic functions of the third and fourth eigenmode are decreasing
over time and probably converge to zero. The eigenmodes higher than 2 thus
are not stable. A little computation now reveals that

�




(∃x∀y)
(Rx∧V x∧ ((Ry∧V y) → y = x))

∨
(∃x∃y∀z)

(¬x = y∧Rx∧V x∧Ry∧V y∧ ((Rz∧V z) → (z = x∨ z = y)))




is true in x.12 However, the sentence after the necessity operator just expresses
what we are forced to perceive when we look at the ambiguous stimulus of

12The first eigenmode makes the first disjunct true while the second eigenmode makes
the second disjunct true. If we look at the first disjunct, the existential quantifier requires
us to search for the oscillation function (the value of x) that makes the evaluation of the
subsequent formula supremal, namely 1. This must be an oscillation function parallel
to +c1(t). Only then Rx∧V x becomes 1. Looking at the universal quantifier, we have
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Fig. 4a, namely, that there is exactly one red vertical object or there are exactly
two red vertical objects. The semantics developed thus pretty well accommo-
dates the phenomenological facts.

12 Conclusion

Oscillatory networks show how a structure of the cortex can be analyzed so that
elements of this structure can be identified with mental concepts. These cortical
states can be regarded as the neuronal meanings of predicative expressions. As
meanings they form a compositional semantics for a language. As concepts they
can themselves be evaluated compositionally with respect to external content.
The approach formulated in this paper is biologically rather well-founded. It
is supported by a rich number of neurophysiological and psycho-physical data
and is underpinned by various computer simulations.

Compared to connectionist alternatives (Smolensky, 1991/1995; Shastri &
Ajjanagadde, 1993; Plate, 1995; van der Velde & de Kamps, 2006), the archi-
tecture proposed for large parts of the cortex in this paper is advantageous in
that it not only implements a compositional semantics of meanings, but shows
how internal representations can co-vary with external contents. As a conse-
quence, the internal conceptual structure can itself be externally evaluated in a
compositional way. It thus becomes transparent how concepts can have content
and how they thereby mediate between utterances and their denotations.

Oscillatory networks and their biological correlates may be assigned a central
role at the interface between language and mind, and between mind and world.
This is due to the quasi-perceptual capabilities of oscillatory networks, which
alternative connectionist models for semantic implementations lack completely.
Linking oscillatory networks to mechanisms for the production of phonological
sequences remains a challenge for future investigations.

The theory developed here amounts to a new mathematical description of
the time-structure the cortex is believed to exhibit. Neuronal synchronization
plays an essential role not only for binding, but, generally, for the generation of
compositional representations in the brain.

to ask whether any oscillation function (evaluating y) other than one parallel to +c1(t)
could make the antecedent of the value of the implication Ry∧V y greater than the value
of the consequent. Only then the value of the implication would be less than 1. The
answer is no because all non-zero components v1

j of the eigenvector are positive and
pertain to the redness or verticality layer. Their contributions to the network dynamics
v1

jc1(t) are hence parallel to +c1(t) such that d(x = y,1) would be 1. Assigning y to the
constant zero-function would also leave the value of the implication at 1. For, in that
case the values of the antecedent and the consequent would be equally 0. The evaluation
of the second disjunct follows similar considerations.
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