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Abstract. We examine the computational complexity of some problems
from algebraic automata theory and from the field of communication
complexity: testing Green’s relations (relations that are fundamental in
monoid theory), checking the property of a finite monoid to have only
Abelian subgroups, and determining the deterministic communication
complexity of a regular language. By well-known algebraizations, these
problems are closely linked with each other. We show that all of them
are PSPACE-complete.
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1 Introduction

The Green’s relations L,R,J ,H are ubiquitous tools for studying the buildup
of a (finite) monoid M . For example, the maximal subgroups of M can be char-
acterized as H-classes of M containing an idempotent element (e.g. [7]). Such
H-classes are called regular. As illustrated in [3], there are also important applica-
tions in automata theory: star-free languages, factorization forests, and automata
over infinite words. The former application, due to Schützenberger, characterizes
the star-free languages as regular languages with syntactic monoids having only
trivial subgroups [8]. Finite monoids having only trivial subgroups are called
aperiodic and form a variety denoted as A. In [2], Cho and Huynh prove Stern’s
conjecture from [9] that testing for aperiodicity (star-freedom, alternatively) is
PSPACE-complete if the regular language is given as a minimum DFA. A is
contained in the variety Ab of monoids having only Abelian subgroups (reg-
ular H-classes, alternatively). Ab plays a decisive role for the communication
complexity of a regular language [10]. Since its introduction by Yao [11], commu-
nication complexity has developed to one of the major complexity measures with
plenty of applications (e.g., listed in [6]). In [10], Tesson and Thérien categorize
the communication complexity of an arbitrary regular language L by some prop-
erties of its underlying syntactic monoid M(L). This algebraic classification can



be achieved in the following models of communication: deterministic, random-
ized (bounded error), simultaneous, and Modp-counting. For the deterministic
model, the authors of [10] show that the communication complexity of L can
only be constant, logarithmic, or linear (in the sense of Θ-notation). Thereby,
the condition M(L) 6∈ Ab is a sufficient (but not necessary) condition for the
linear case.

In this paper, we focus on monoids which are generated by mappings with
domain and range Q for some finite set Q (like the syntactic monoid where these
mappings are viewed as state transformations). We primarily analyze the compu-
tational complexity of problems related to Green’s relations, the monoid-variety
Ab, and the deterministic communication complexity of regular languages. Our
main contributions are summarized in the following theorem:

Theorem 1. (Main results) Let M be a finite monoid given by the genera-
tors (=state transformations) f1, . . . , fl. Let g, h be 2 elements of M . Let G ∈
{L,R,J ,H} be one of Green’s relations w.r.t. the monoid M . Let A be a mini-
mum DFA with syntactic monoid M(A). Let N be an NFA recognizing language
L. Let cc(L) be the deterministic communication complexity of L. With these
notations, the following problems are PSPACE-complete:

Problem Input Question

(i) G-TEST g, h ∈M and generators f1, . . . , fl g G h ?

(ii) DFA-Ab minimum DFA A M(A) ∈ Ab ?

(iii) NFA-CC NFA N Is cc(L) const., log., or lin.?

This paper is organized as follows. In Section 2, we introduce the necessary
background and notations. In Section 3, we show the PSPACE-hardness of de-
ciding Green’s relations. In Section 4, we show the PSPACE-hardness of the
problem DFA-Ab. In Section 5.1, we show that all problems listed in Theo-
rem 1 are members of PSPACE even when the underlying monoid is a syntactic
monoid of a regular language that is given by an NFA. In Section 5.2, we show
the PSPACE-hardness of the problem NFA-CC. Moreover, this problem remains
PSPACE-hard even when the language L is given by a regular expression β at
the place of the NFA N .

2 Preliminaries

We assume that the reader is familiar with the basic concepts of computational
complexity (e.g. [4]), communication complexity (e.g. [6]), regular languages (e.g.
[4]), and algebraic automata theory (e.g. [7]). In the sequel, we will briefly re-
capitulate some definitions and facts from these fields and thereby fix some
notation.

A Deterministic Finite Automaton (DFA) is formally given as a 5-tuple A =
(Q,Σ, δ, s, F ) where Q denotes the finite set of states, Σ the input alphabet,



δ : Q×Σ → Q the transition function, s ∈ Q the initial state and F ⊆ Q the set
of final (accepting) states. As usual, the mapping δ can be extended by morphism
to δ∗ : Q × Σ∗ → Q. Throughout the paper, we will make use of the notation
q ·w := δ∗(q, w). Intuitively, q ·w is the state that is reached after A, started in
state q, has completely processed the string w. The change from state q to state
q · w is sometimes called the w-transition from q. The language recognized by
A is given by L(A) = {w ∈ Σ∗ : s · w ∈ F}. Languages recognizable by DFA
are called regular. The DFA with the minimal number of states that recognizes
a regular language L is called the minimum DFA for L. DFA-minimization can
be executed efficiently.

Let L ⊆ Σ∗ be a formal language. We write w1 ∼L w2 iff the equivalence
uw1v ∈ L ⇔ uw2v ∈ L holds for every choice of u, v ∈ Σ∗. ∼L defines a
congruence relation on Σ∗ named syntactic congruence. For every w ∈ Σ∗,
[w]∼L

denotes the equivalence class represented by w. The quotient monoid
Σ∗/ ∼L, denoted as M(L), is called the syntactic monoid of L. M(L) is finite iff
L is regular. Moreover, M(L) coincides with the monoid consisting of the state
transformations fw(q) := q ·w of a minimum DFA for L. Clearly, this monoid is
generated by {fa : a ∈ Σ}. If L = L(A) for some DFA A, we often simply write
M(A) instead of M(L(A)). The analogous convention applies to NFA.

Let M be a monoid and a, b ∈ M two arbitrary elements. aJ b :⇔ MaM =
MbM ; aLb :⇔ Ma = Mb; aRb :⇔ aM = bM ; aHb :⇔ aLb ∧ aRb define four
equivalence relations on M named Green’s relations. An element e ∈M is called
idempotent iff e2 = e. A subgroup of M is a subsemigroup of M that is a group.

We denote by PSPACE the class of all problems that can be solved by a
Deterministic Turing-Machine (DTM) in polynomial space. We use the symbol
M for such a DTM. PSPACE is closed under complement. The following two
decision problems FAI [5] and RENU [1] are known to be complete problems
for PSPACE. FAI: Given DFAs A1, . . . , Ak with a common input alphabet and
unique final states, is there an input word accepted by all of A1, . . . , Ak? RENU:
Given a regular expression β over Σ (i.e., an expression with operands from
Σ ∪ {ε} and operations “+” (for union), “·” (for concatenation) and “∗” (for
Kleene closure)), do we have L(β) 6= Σ∗?1

Let L ⊆ Σ∗ be a formal language. Let ε denote the empty string. In the
so-called communication game, 2 parties, say X and Y , exchange bits in order
to decide if the string x1y1 . . . xnyn belongs to L. Thereby, X (resp. Y ) only
knows (x1, . . . , xn) ∈ (Σ ∪ {ε})n (resp. (y1, . . . , yn) ∈ (Σ ∪ {ε})n). The com-
munication may depend only on the input of the bit-sending party and the bits
already exchanged. The minimal number of communication bits needed to decide
membership is called deterministic communication complexity and is denoted as
cc(L). By [10], a regular language L has constant communication complexity iff
M(L) is commutative.

The definition of an NFA N = (Q,Σ, δ, s, F ) is similar to the definition of a
DFA with the notable exception that δ(q, w) is not an element but a subset of
Q, i.e., an element of the powerset 2Q. Again the mapping δ can be extended by

1 The language L(β) induced by a regular expression is defined in the obvious manner.



morphism to a mapping δ : Q×Σ∗ → 2Q or even to a mapping δ∗ : 2Q×Σ∗ → 2Q

by setting
δ∗(R,w) = ∪z∈Rδ∗(z, w) . (1)

3 Testing Green’s Relations

In this section, we prove the PSPACE-hardness of testing Green’s relations (see
Theorem 1,(i)). To this end, we design 2 logspace-reductions that start from the
problem FAI. Recall that an instance of FAI is given by DFA A1, . . . , Ak with a
common input alphabet Σ = {a1, . . . , al} and unique final states.
L-,H-TEST: The instance of FAI is transformed to the mappings

fa1 , . . . , fal , h0, g+, h+ : Z ] {σ0, σ1, σ2, τ0, τ1} → Z ] {σ0, σ1, σ2, τ0, τ1} , (2)

which we view as state transformations. Here, Z = ]kj=1Z(Aj) denotes the dis-
joint union of the state sets of the DFAs, and σ0, σ1, σ2, τ0, τ1 are five additional
special states. In the sequel, the notion state diagram refers to the total diagram
that is formed by the disjoint union of the state diagrams for all DFAs whereas
the diagram for a particular DFA Ai is called sub-diagram. On the ordinary states
(as opposed to the special states), the state transformations act as follows:

∀a ∈ Σ : fa(z) = z · a and h0(z) = z0, g+(z) = h+(z) = z+ .

Here, z0 denotes the unique initial state in the sub-diagram containing z. Like-
wise, z+ denotes the unique accepting state in this sub-diagram. The special
states σ0, σ1, σ2 are transformed as follows:

σ0
g+,h+7−→ σ1

g+,h+7−→ σ2 (3)

Moreover, σ0, σ1 are fix-points for fa1 , . . . , fal , h0, and σ2 is a fix-point for every
transformation. The analogous interpretation applies to

τ0
h0,h+7−→ τ1, τ1

h0,h+7−→ τ0 (4)

Concerning the L-TEST (resp. theH-TEST), we ask whether g+Lh+ (resp. g+Hh+)
w.r.t. the monoid generated by the mappings in (2). We claim that the following
equivalences are valid:

k⋂
j=1

L(Aj) 6= ∅ ⇔ g+Hh+ ⇔ g+Lh+ . (5)

To prove this claim, we first suppose
⋂k
j=1 L(Aj) 6= ∅. Now, pick a word w from⋂k

j=1 L(Aj), and observe that the following holds:

h+ = fw ◦ h0 ◦ g+, g+ = fw ◦ h0 ◦ h+ (6)

h+ = g+ ◦ h0, g+ = h+ ◦ h0 (7)



Thus, we have g+Lh+ by (6) and g+Rh+ by (7). Hence, g+Hh+, as required.
The implication from g+Hh+ to g+Lh+ holds for trivial reasons. Now, suppose
g+Lh+. Certainly, this implies that h+ can be written as h+ = P ◦ g+ where
P is a product of generators, i.e., a composition of functions from (2). Since
h+ and g+ are the only generators that do not leave states of type σ fixed and
act on them according to (3), it follows that P neither contains h+ nor g+.
For ease of later reference, we call this kind of reasoning the σ-argument. Since
h+, h0 are the only generators that do not leave states of type τ fixed and act on
them according to (4), the product P must contain h0 an odd number of times.
Focusing on the leftmost occurrence of h0, P can be written as P = P ′ ◦h0 ◦P ′′
where P ′ does not contain h0, and P ′′ contains h0 an even number of times. It
is easily verified that h0 = h0 ◦ P ′′, so P = P ′ ◦ h0 and h+ = P ′ ◦ h0 ◦ g+ where
product P ′ contains exclusively generators from {fa1 , . . . , fal}. Thus, there exists
a word w ∈ Σ∗ such that P ′ = fw and h+ = fw ◦ h0 ◦ g+. Now, we are done

with the proof of (5) since this implies w ∈
⋂k
j=1 L(Aj). (5) directly implies the

desired hardness result for the L- and the H-TEST, respectively.
R-,J -TEST: This time, we map A1, . . . , Ak to the following list of generators:

fa1 , . . . , fal , f0, f, g, g+ : Z ] Z ′ ] {σ0, σ1, σ2} → Z ] Z ′ ] {σ0, σ1, σ2} (8)

Here, Z is chosen as in (2), Z ′ = {z′ : z ∈ Z} contains a marked state z′ for every
ordinary state z, and σ0, σ1, σ2 are special states (put into place to apply the σ-
argument). The marked states are fix-points for every mapping. Mappings g, g+
act on states of type σ according to (3) but now with g in the role of h+. The
remaining mappings leave states of type σ fixed. For every a ∈ Σ, fa(z) = z · a
is defined as in the previous logspace-reduction. Mappings f0, f, g, g+ act on
ordinary states (with the same notational conventions as before) as follows:

f0(z) = z0, f(z) = g(z) = z′, g+(z) = z′+

Concerning theR-TEST (resp. the J -TEST), we ask whether gRg+ (resp. gJ g+)
w.r.t. the monoid generated by the mappings in (8). We claim that the following
equivalences are valid:

k⋂
j=1

L(Aj) 6= ∅ ⇔ gRg+ ⇔ gJ g+ (9)

To prove this claim, we first suppose
⋂k
j=1 L(Aj) 6= ∅. Now, pick a word w from⋂k

j=1 L(Aj), and observe that the following holds:

g = g+ ◦ f , g+ = g ◦ fw ◦ f0

Thus, gRg+, as required. The implication from gRg+ to gJ g+ holds for trivial
reasons. Now, suppose gJ g+. Certainly, this implies that g+ can be written as
g+ = P ◦ g ◦Q = g ◦Q where P and Q are products of generators, respectively.
The second equation is valid simply because g marks ordinary states and marked



states are left fixed by all generators (so that P is redundant). It follows from the
σ-argument that neither g nor g+ can occur in Q (or P ). We may furthermore
assume that f does not occur in Q because a decomposition of g ◦Q containing
f could be simplified according to g ◦ Q = g ◦ Q′ ◦ f ◦ Q′′ = g ◦ Q′′. The last
equation holds because f (like g) marks ordinary states which are then kept
fixed by all generators. We may conclude that g+ = g ◦Q for some product of Q
that does not contain any factor from {g, g+, f}. Because of the simplification
Q′◦f0◦Q′′ = Q′◦f0, we may furthermore assume that either Q does not contain
f0, or it contains f0 as the rightmost factor only. Thus, there exists some word
w ∈ Σ∗ such that either g+ = g ◦Q = g ◦ fw or g+ = g ◦Q = g ◦ fw ◦ f0. In both

cases, this implies that w ∈
⋂k
j=1 L(Aj) so that the proof of (9) is now complete.

(9) directly implies the desired hardness result for the R- and the J -TEST,
respectively. ut

4 Finite Monoids: Testing for a Non-Abelian Subgroup

Recall from Section 1 that A denotes the variety of finite monoids with only
trivial subgroups (the so-called aperiodic monoids). Let DFA-A be defined in
analogy to the problem DFA-Ab from Theorem 1. In [2], Cho and Huynh show
the PSPACE-hardness of DFA-A by means of a generic reduction that proceeds
in two stages with the first one ending at a special version of FAI. We will briefly
describe this reduction and, thereafter, we will modify it so as to obtain a generic
reduction to the problem DFA-Ab.

Let M be an arbitrary but fixed polynomially space-bounded DTM with
input word x. In a first stage, Cho and Huynh efficiently transform (M, x) into
a collection of prime p many minimum DFAs A1, . . . , Ap with aperiodic syntactic
monoids M(Ai), initial states si, unique accepting states fi, and unique (non-
accepting) dead states such that L(A1) ∩ . . . ∩ L(Ap) coincides with the strings
that describe an accepting computation ofM on x. Consequently, L(A1)∩ . . .∩
L(Ap) is either empty or the singleton set that contains the (representation of
the) unique accepting computation ofM on x. In a second stage, Cho and Huynh
connect A1, . . . , Ap in a cyclic fashion by using a new symbol # that causes a
state-transition from the accepting state fi of Ai to the initial state si+1 of Ai+1

(or, if i = p, from fp to s1). This construction of a single DFA A (with A1, . . . , Ap
as sub-automata) is completed by amalgamating the p dead states, one for every
sub-automaton, to a single dead state, and by declaring s1 as the only initial
state and f1 as the only accepting state. (All #-transitions different from the
just described ones end up in the dead state.) By construction, A is a minimum
DFA. Moreover, M(A) is not aperiodic iff M accepts x. The latter result relies
on the following general observation:

Lemma 1 ([2]). Let B be a minimum DFA: M(B) is not aperiodic iff there is
a state q and an input word u such that u defines a non-trivial cycle starting at
q, i.e., q · u 6= q and, for some positive integer r, q · ur = q.



For ease of later reference, we insert the following notation here:

r(q, u) := min ({r ∈ Z : r ≥ 1, q · ur = q})

with the convention that min(∅) =∞.

Our modification of the reduction by Cho and Huynh is based on the following
general observation:

Lemma 2. Let B be a minimum DFA with state set Q and alphabet Σ: If M(B)
contains a non-Abelian subgroup G, then there exists a state q and a word u with
r(q, u) ≥ 3.

Proof. Since every subgroup whose elements are of order at most 2 is Abelian,
G contains an element u ∈ Σ+ (identified with the element in M(B) that it
represents) of order r at least 3. Because ur fixes the states from Q′ := Q · u,
for every q′ ∈ Q′, u defines a cycle starting at q′. Therefore, we obviously get
r = lcm{r(q′, u) : q′ ∈ Q′}. Because of r ≥ 3, this directly implies the claim. ut

We modify the first stage of the reduction by Cho and Huynh by introducing
2 new symbols `,a (so-called endmarkers). Moreover, each sub-automaton Ai
gets s′i as its new initial state and f ′i as its new unique accepting state. We set
s′i · ` = si and fi · a = f ′i . All other transitions involving s′i, f

′
i or `,a end into

the dead state of Ai. It is obvious that Ai still satisfies the conditions that are
valid for the construction by Cho and Huynh: it has a unique accepting state
and a unique (non-accepting) dead state; it is a minimum DFA whose syntactic
monoid, M(Ai), is aperiodic so that, within a single sub-automaton Ai, a word
can define a trivial cycle only. In an intermediate step, we perform a duplication
and obtain 2p sub-automata, say A′1, A

′
2, . . . , A

′
2p−1, A

′
2p such that A′2i−1 and

A′2i are state-disjoint duplicates of Ai.
In stage 2, we build a DFA A′ by concatenating the sub-automata

A′1, A
′
2, . . . , A

′
2p−1, A

′
2p in a cyclic fashion in analogy to the original construc-

tion (using symbol #) but now with s′i, f
′
i in the role of si, fi. Again in analogy,

we amalgamate the 2p dead states to a single dead state denoted REJ, and we
declare s′1 as the initial state and f ′2p as the unique accepting state of A′. The
most significant change to the original construction is the introduction of a new
symbol swap that, as indicated by its naming, causes transitions from s′2i−1 to
s′2i and vice versa, and transforms any other state into the unique dead state.
The following result is obvious:

Lemma 3. A′ is a minimum DFA.

The following two results establish the hardness result from Theorem 1,(ii).

Lemma 4. If M accepts x, then M(A′) contains a non-Abelian subgroup.

Proof. Let α denote the string that describes the accepting computation of M
on x. Then, for every i = 1, . . . , 2p− 1 and for every state q 6∈ {s′1, . . . , s′2p},

s′i· ` α a # = s′i+1, s
′
2p· ` α a # = s′1, q· ` α a # = REJ .



Thus, string ` α a # represents the cyclic permutation 〈s′1, s′2, . . . , s′2p−1, s′2p〉 in
M(A′). A similar argument shows that the letter swap represents the permuta-
tion 〈s′1, s′2〉 . . . 〈s′2p−1, s′2p〉 in M(A′). The strings ` α a # and swap generate a
non-Abelian subgroup of M(A′). ut

Lemma 5. If M(A′) contains a non-Abelian subgroup, then M accepts x.

Proof. According to Lemma 2, there exists a state q and a word u such that u
defines a cycle C starting at q and r := r(q, u) ≥ 3. Clearly, q must be different
from the dead state. Let S := {s′1, . . . , s′2p}. Let C(q, u) be the set of states
occurring in the computation that starts (and ends) at q and processes ur letter
by letter. C(q, u)∩S cannot be empty because, otherwise, the cycle C would be
contained in a single sub-automaton A′i which, however, is impossible because A′i
is aperiodic. By reasons of symmetry, we may assume that s′1 ∈ C(q, u). After
applying an appropriate cyclic permutation to the letters of u, we may also
assume that u defines a cycle C starting (and ending) at s′1 and r = r(s′1, u) ≥ 3
(the same r as before). Since C(q, u) does not contain the dead state, u must
decompose into segments of two types:
Type 1: segments of the form ` α a # with no symbol from {swap,`,a,#}
between the endmarkers
Type 2: segments consisting of the single letter swap
Since r ≥ 3, there must be at least one segment of type 1. Applying again the
argument with the cyclic permutation, we may assume that the first segment in
u, denoted ū1 in what follows, is of type 1. Every segment of type 1 transforms
s′i into s′i+1.2 Every segment of type 2 transforms s′2i−1 into s′2i and vice versa.
Now, consider the computation path, say P , that starts at s′1 and processes u
letter by letter. Let k be the number of segments of type 1 in u, let k′ be the
number of occurrences of swap in u that hit a state s′i ∈ P for an odd index i, and
finally let k′′ be the number of occurrences of swap in u that hit a state s′i ∈ P
for an even index i. Thus, s′2i−1 · u = s′2i−1+k+k′−k′′ and s′2i · u = s′2i+k−k′+k′′ .
Let d := k + k′ − k′′.
Case 1: d is even.
Note that d 6≡ 0 (mod 2p) (because, otherwise, s′1 · u = s′1 - a contradiction to
r ≥ 3). Since the sequence s′1, s

′
1 · u, s′1 · u2, . . . exclusively runs through states of

odd index from S and there are p (prime number) many of them, the sequence
runs through all states of odd index from S. It follows that at some point every
sub-automaton A′2i−1 will process the first segment ū1 =` α a # of u (which is
of type 1) and so it will reach state f ′2i−1. We conclude that L(A′1)∩L(A′3)∩ . . .∩
L(A′2p−1) is not empty (as witnessed by ū1). Thus, α represents an accepting
computation of M on input x.
Case 2: d is odd.
Note that, for every i = 1, . . . , 2p, s′i · u2 = s′i+2k. Thus, 2k 6≡ 0 (mod 2p)
(because, otherwise, s′1 · u2 = s′1 - a contradiction to r ≥ 3). Now, the sequence

2 Throughout this proof, we identify an index of the form 2pm + i, 1 ≤ i ≤ 2p, with
the index i. For example, s′2p+1 is identified with s′1.



s′1, s
′
1 · u2, s′1 · u4, . . . exclusively runs through states of odd index from S, and

we may proceed as in Case 1. ut

5 Complexity of Communication Complexity

5.1 Space-efficient Algorithms for Syntactic Monoids

Let N = (Z,Σ, δ, z1, F ) be an NFA with states Z = {z1, . . . , zn}, alphabet Σ,
initial state z1, final states F ⊆ Z, transition function δ : Z ×Σ → 2Z , and let
δ∗ : 2Z ×Σ∗ → 2Z be the extension of δ as defined in Section 2. Let L = L(N)
be the language recognized by N , and let A be the minimum DFA for L. It
is well-known that the syntactic monoid M := M(L) of L coincides with the
transformation monoid of A, and that A may have up to 2n states. We aim
at designing space-efficient algorithms that solve questions related to M . These
algorithms will never store a complete description of A (not to speak of M).
Instead, they will make use of the fact that reachable sets R ⊆ Z represent
states of A in the following sense:

– R is called reachable (by w) if there exists w ∈ Σ∗ such that R = δ∗(z1, w).
– Two sets Q,R are called equivalent, denoted as Q ≡ R, if, for all w ∈ Σ∗,
δ∗(Q,w) ∩ F 6= ∅ ⇔ δ∗(R,w) ∩ F 6= ∅, which is an equivalence relation.

– For reachable R ⊆ Z, [R] denotes the class of reachable sets Q such that
Q ≡ R.

The following should be clear from the power-set construction combined with
DFA-minimization (e.g. [4]): the states of A are in bijection with the equivalence
classes [R] induced by reachable sets. Moreover, the transition function δA of A
satisfies δA([R], a) = [δ∗(R, a)] for every a ∈ Σ (and this is well-defined). The
extension δ∗A is related to δ∗ according to δ∗A([R], w) = [δ∗(R,w)] for every
w ∈ Σ∗.

We now move on and turn our attention to M . Since M coincides with the
transformation monoid of A, it precisely contains the mappings

Tw ([R]) := δ∗A([R], w) = [δ∗(R,w)] , reachable R ⊆ Z (10)

for w ∈ Σ∗. M is generated by {Ta|a ∈ Σ}. Because of (1) and (10), every
transformation Tw is already determined by Aw := (Aw1 , . . . , A

w
n ) where

Awi := δ∗(zi, w) ⊆ Z, i = 1, . . . , n . (11)

In particular, the following holds for A := Aw, Ai := Awi , and TA := Tw:

TA([R]) =

[ ⋃
i:zi∈R

δ∗(zi, w)

]
=

[ ⋃
i:zi∈R

Ai

]
, reachable R ⊆ Z (12)

Thus, given a reachable R and A = Aw, one can time-efficiently calculate a
representant of TA([R]) = Tw([R]) without knowing w. In order to emphasize



this, we prefer the notation TA to Tw in what follows. We call A a transformation-
vector for TA.

The next lemma presents a list of problems some of which can be solved in
polynomial time (p.t.), and all of which can be solved in polynomial space (p.s.):

Lemma 6. The NFA N is part of the input of all problems in the following list.

1. Given R ⊆ Z, the reachability of R can be decided in p.s..
2. Given a reachable set R ⊆ Z and a transformation-vector A (for an unknown

Tw), a representant of TA([R]) = Tw([R]) can be computed in p.t..
3. Given a ∈ Σ, a transformation-vector for Ta can be computed in p.t..
4. Given transformation-vectors A (for an unknown Tw), B (for an unknown

Tw′), a transformation-vector for TB ◦TA, denoted as B◦A, can be computed
in p.t..

5. Given a transformation-vector A, its validity (i.e., does there exist w ∈ Σ∗
such that A = Aw) can be decided in p.s..

6. Given Q,R ⊆ Z, it can be decided in p.s. whether Q ≡ R.
7. Given valid transformation-vectors A, B, their equivalence (i.e., TA = TB)

can be decided in p.s..
8. It can be decided in p.s. whether M is commutative.
9. Given a valid transformation-vector A, it can be decided in p.s. whether TA

is idempotent.
10. Given valid transformation-vectors A, B, it can be decided in p.s. whether

TA ∈MTBM (similarly for TA ∈MTB, or for TA ∈ TBM).

Proof. By Savitch’s Theorem, membership in PSPACE can be proved by means
of non-deterministic procedure. We shall often make use of this option.

1. Initialize Q to {z1}. While Q 6= R do
(a) Guess a letter a ∈ Σ.
(b) Replace Q by δ∗(Q, a).

2. Apply formula (12).
3. Apply formula (11) for i = 1, . . . , n and w = a (so that δ∗ collapses to δ).
4. For i = 1, . . . , n, apply the formula Ci = ∪j:zj∈Ai

Bj . Then TC = Tww′ .
5. Initialize B to ({z1}, . . . , {zn}) which is a transformation-vector for Tε. While
B 6= A do
(a) Guess a letter c ∈ Σ. Compute the (canonical) transformation-vector C

for Tc.
(b) Replace B by the (canonical) transformation-vector for TC ◦ TB .

6. It suffices to present a non-deterministic procedure that recognizes inequiv-
alence: While Q ∩ F 6= ∅ ⇔ R ∩ F 6= ∅ do
(a) Guess a letter a ∈ Σ.
(b) Replace Q by δ∗(Q, a) and R by δ∗(R, a), respectively.

7. It suffices to present a non-deterministic procedure that recognizes inequiv-
alence:
(a) Guess Q ⊆ Z and verify that Q is reachable.
(b) Compute a representant R of TA([Q]).



(c) Compute a representant S of TB([Q]).
(d) Verify that R 6≡ S.

8. The syntactic monoid is commutative iff its generators commute. It suffices
to present a non-deterministic procedure that recognizes non-commutativity:

(a) Guess two letters a, b ∈ Σ.
(b) Compute transformation-vectors A for Tab and B for Tba.
(c) Given these transformation-vectors, verify their inequivalence.

9. Compute A ◦A and decide whether A and A ◦A are equivalent.
10. Guess two transformations-vectors C,D and verify their validity. Compute

the transformation-vector D ◦B ◦ C and accept iff it is equivalent to A.
ut

Note that the 10th assertion of Lemma 6 is basically saying that Green’s
relations w.r.t. the syntactic monoid of L(N) can be decided in polynomial
space.

Corollary 1. Given NFA N , the deterministic communication complexity
cc(L) of the language L = L(N) can be determined in polynomial space. More-
over, the membership of the syntactic monoid M(L) in Ab can be decided in
polynomial space.

Proof. The following facts are known from [10]: cc(L) is constant iff M(L) is
commutative. If cc(L) is not constant, it is either logarithmic or linear. The linear
case occurs iff there exist a, b, c, d, e ∈M(L) such that (i) aHbHc, a2 = a, bc 6= cb
or (ii) aJ b, a2 = a, b2 = b, (ab)2 6= ab ∨ a 6J ab. Condition (i) is equivalent to the
condition M(L) 6∈ Ab. The assertion of the corollary is now immediate from
Lemma 6. ut

5.2 Hardness Result for Regular Expressions

Definition 1. Let L be a formal language over an alphabet Σ. Let w = a1 . . . am
be an arbitrary Σ-word of length m. We say that L is invariant under permuta-
tion if

w = a1 . . . am ∈ L =⇒ π(w) := aπ(1) . . . aπ(m) ∈ L

holds for every permutation π of 1, . . . ,m.

The following result is folklore:

Lemma 7. Let L be a formal language over an alphabet Σ. Then M(L) is com-
mutative iff L is invariant under permutation.

We are now ready for the main result in this section:

Theorem 2. For every f(n) ∈ {1, log n, n}, the following problem is PSPACE-
hard: given a regular expression β over an alphabet Σ, decide whether L(β) has
deterministic communication complexity Θ(f(n)).



Proof. We know from [10] (see Section 2) that a regular language has constant
deterministic communication complexity iff its syntactic monoid is commutative.
In [1], the authors show (by means of a generic reduction) that the problem of
deciding whether L(β) 6= Σ∗ is PSPACE-hard, even if either L(β) = Σ∗ or
L(β) = Σ∗ \ {w} for some word w ∈ Σ∗ that contains at least two distinct
letters. Clearly, Σ∗ is invariant under permutation whereas Σ∗ \ {w} is not.
According to Lemma 7, the syntactic monoid of Σ∗ is commutative whereas the
syntactic monoid of Σ∗ \{w} is not. It readily follows that deciding “cc(L(β)) =
O(1)?” is PSPACE-hard. It is easy to show that the deterministic communication
complexity of Σ∗ \ {w} is Θ(log n). Thus, deciding “cc(L(β)) = Θ(log n)?” is
PSPACE-hard, too. It is easy to modify the proof of [1] so as to obtain the
PSPACE-hardness of the problem “L(β) 6= Σ∗?” even when either L(β) = Σ∗

or L(β) = Σ∗ \ w∗ for some word w that contains at least two distinct letters.
It is easy to show that the deterministic communication complexity of Σ∗ \ w∗
is Θ(n). Thus, deciding “cc(L(β)) = Θ(n)?” is PSPACE-hard, too. ut

As is well-known, a regular expression can be transformed into an equivalent
NFA in polynomial time. Thus, the decision problems from Theorem 2 remain
PSPACE-hard when the language L is given by an NFA.
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