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Abstract
Formal models of learning from teachers need to respect certain criteria to avoid collusion. The
most commonly accepted notion of collusion-freeness was proposed by Goldman and Mathias
(1996), and various teaching models obeying their criterion have been studied. For each model M
and each concept class C, a parameter M -TD(C) refers to the number of examples required for
teaching a concept, in the worst case over all concepts in C.

This paper introduces a new model of teaching, called no-clash teaching, together with the
corresponding parameter NCTD(C). No-clash teaching is provably optimal in the strong sense that,
given any concept class C and any model M obeying Goldman and Mathias’s collusion-freeness
criterion, one obtains NCTD(C) ≤M -TD(C). We also study a corresponding notion NCTD+ for
the case of learning from positive data only, establish useful bounds on NCTD and NCTD+, and
discuss relations of these parameters to the VC-dimension and to sample compression.

In addition to formulating an optimal model of collusion-free teaching, our main results are
on the computational complexity of deciding whether NCTD+(C) = k (or NCTD(C) = k) for
given C and k. We show some such decision problems to be equivalent to the existence question
for certain constrained matchings in bipartite graphs. Our new hardness results are of independent
interest in the study of constrained graph matchings.
Keywords: machine teaching, constrained graph matchings, sample compression

1. Introduction

Models of machine learning from carefully chosen examples, i.e., from teachers, have gained in-
creased interest in recent years, due to various application areas, such as robotics (Argall et al.,
2009), trustworthy AI (Zhu et al., 2018), and pedagogy (Shafto et al., 2014). Machine teaching
is also related to inverse reinforcement learning (Ho et al., 2016), to sample compression (Moran
et al., 2015; Doliwa et al., 2014), and to curriculum learning (Bengio et al., 2009). The paper at
hand is concerned with abstract notions of teaching, as studied in computational learning theory.

A variety of formal models of teaching have been proposed in the literature, for example, the
classical teaching dimension model (Goldman and Kearns, 1995), the optimal teacher model (Bal-
bach, 2008), recursive teaching (Zilles et al., 2011), or preference-based teaching (Gao et al., 2017).

In each of these models, a mapping T (the teacher) assigns a finite set T (C) of correctly labelled
examples to a concept C in a concept class C in a way that the learner can reconstruct C from T (C).
Intuitively, unfair collusion between the teacher and the learner should not be allowed in any formal
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model of teaching. For example, one would not want the teacher and learner to agree on a total order
over the domain and a total order over the concept class and then to simply use the ith instance in
the domain for teaching the ith concept, irrespective of the actual structure of the concept class.

However, there is no general definition of what constitutes collusion, and of what constitutes
desirable or undesirable forms of learning. In this manuscript, we focus on a notion of collusion
that was proposed by Goldman and Mathias (1996) and that has been adopted by the majority of
teaching models studied in the literature. In a nutshell, Goldman and Mathias’s model demands that,
(i) the examples in T (C) are labelled consistently with C, and (ii) if the learner correctly identifies
C from T (C), then it will also identify C from any superset S of T (C) as long as the sample set
S remains consistent with C. In other words, adding more information about C to T (C) will not
divert the learner to an incorrect hypothesis.

Most existing abstract models of machine teaching are collusion-free in this sense. Historically,
some of these models were designed in order to overcome weaknesses of the previous models. For
example, the optimal teacher model by Balbach (2008) is designed to overcome limitations of the
classical teaching dimension model, and was likewise superseded by the recursive teaching model
(Zilles et al., 2011). The latter again was inapplicable to many interesting infinite concept classes,
which gave rise to the model of preference-based teaching (Gao et al., 2017). Each model strictly
dominates the previous one in terms of the teaching complexity, i.e., the worst-case number of
examples needed for teaching a concept in the underlying concept class C. In this context, one quite
natural question has been ignored in the literature to date: what is the smallest teaching complexity
that can be achieved under Goldman and Mathias’s condition of collusion-freeness? This is exactly
the question addressed in this paper.

Our first contribution is the formal definition of a collusion-free teaching model that has, for
every concept class C, the provably smallest teaching complexity among all collusion-free teach-
ing models. We call this model no-clash teaching, since its core property, which turns out to be
characteristic for collusion-freeness, requires that no pair of concepts are consistent with the union
of their teaching sets. A similar property was used once in the literature in the context of sample
compression schemes (Kuzmin and Warmuth, 2007), and dubbed the non-clashing property.

We call the worst-case number of examples needed for non-clashing teaching of any concept C
in a given concept class C the no-clash teaching dimension of C, abbreviated NCTD(C), and we
study a variant NCTD+(C) in which teaching uses only positive examples.

The value NCTD(C) being the smallest collusion-free teaching complexity parameter of C
makes it interesting for several reasons.

(1) NCTD represents the limit of data efficiency in teaching when obeying Goldman and Math-
ias’s notion of collusion-freeness. Therefore the study of NCTD has the potential to further our
understanding how collusion-freeness constrains teaching. It will also help to compare other no-
tions of collusion-freeness (see, e.g., (Zilles et al., 2011)) to Goldman and Mathias’s.

(2) An open question in computational learning theory is whether the VC-dimension (VCD),
which characterizes the sample complexity of learning from randomly chosen examples, also char-
acterizes teaching complexity for some reasonable notion of teaching. Recently, the first strong
connections between teaching and VCD were established, culminating in an upper bound on the
recursive teaching dimension (RTD) that is quadratic in VCD (Hu et al., 2017), but it remains
open whether this bound can be improved to be linear in VCD. Obviously, now NCTD is a much
stronger candidate for a linear relationship with VCD than RTD is. In fact, there is no concept class
known yet for which NCTD exceeds VCD.
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(3) The problem of relating teaching complexity to VCD is connected to the famous open prob-
lem of determining whether VCD is an upper bound on the size of the smallest possible sam-
ple compression scheme (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995) of a concept
class. Some interesting relations between sample compression and teaching have been established
for RTD (Moran et al., 2015; Doliwa et al., 2014; Darnstädt et al., 2016). The study of NCTD can
potentially strengthen such relations.

In addition, an important contribution of our paper is to link NCTD to the extensively devel-
oped theory of constrained graph matching. We show that the question whether NCTD+ = 1
is equivalent to a very natural constrained bipartite matching problem which has apparently not
yet been studied in the literature. We proceed by proving that this particular matching problem
is NP-complete—a result that generalizes to larger values of NCTD+ as well as to NCTD. By
comparison, the question whether RTD+ = 1 or RTD = 1 can be answered in linear time.

To sum up, our new notion of optimal collusion-free teaching is of relevance to the study of
important open problems in computational learning theory as well as of fundamental graph-theoretic
decision problems, and therefore appears to be worth studying in more detail.

2. Preliminaries

Given a domain X , a concept over X is a subset C ⊆ X , and we usually denote by C a concept class
over X , i.e., a set of concepts over X . Implicitly, we identify a concept C over X with a mapping
C : X → {0, 1}, where C(x) = 1 iff x ∈ C. By VCD(C), we denote the VC-dimension of C.

A labelled example is a pair (x, `) ∈ X × {0, 1}, and it is consistent with a concept C if
C(x) = `. Likewise, a set S of labelled examples over X , which is also called a sample set, is
consistent with C, if every element of S is consistent with C. An example with the label ` = 1 is a
positive example, while ` = 0 is the label of a negative example.

Intuitively, the notion of teaching refers to compressing any concept in a given concept class to
a consistent sample set.

Definition 1 Let C be a concept class over a domain X . A teacher mapping for C is a mapping T
on C such that, for all C ∈ C, T (C) is a finite sample set S ⊆ X × {0, 1} that is consistent with C.

The first model of teaching that was proposed in the literature required from a teacher mapping
T that the concept C ∈ C be the only concept in C that is consistent with T (C), for any C ∈ C
(Shinohara and Miyano, 1991; Goldman and Kearns, 1995). This led to the definition of the well-
known teaching dimension parameter.

Definition 2 (Shinohara and Miyano (1991); Goldman and Kearns (1995)) Let C be a concept
class over a domain X and C ∈ C be a concept. A teaching set for C (with respect to C) is a sample
set S such that C is the only concept in C consistent with S. The teaching dimension of C in C,
denoted by TD(C, C), is the size of the smallest teaching set for C with respect to C. The teaching
dimension of C is then defined as TD(C) = sup{TD(C, C) | C ∈ C}.

For example, let C be a concept class over a domain X of exactly m elements, containing
the empty concept, all singleton concepts over X , and no other concepts. Then TD({x}, C) = 1
for each singleton concept {x}, since {(x, 1)} serves as a teaching set for {x}. By comparison,
TD(∅) = m, since any set of up to m − 1 negative examples is consistent with some singleton
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concept, so that all m negative examples need to be presented in order to identify the empty concept.
Consequently, TD(C) = sup{TD(C, C) | C ∈ C} = m.

As mentioned in the introduction, various notions of teaching have been proposed in the litera-
ture. The one that is most relevant to our work is the model of preference-based teaching. In this
model, intuitively, a preference relation on C is used to reduce the size of teaching sets. In particular,
a concept C need no longer be the only concept consistent with its “teaching set” T (C); it suffices
if C is the unique most preferred concept in C that is consistent with C. In order to avoid cyclic
preferences, the preference relation is required to induce a partial order over C.

Definition 3 (Gao et al. (2017)) Let C be a concept class over a domain X and � any binary re-
lation that induces a strict (possibly non-total) order over C. We say that concept C is preferred
over concept C ′ (with respect to�), if C � C ′. The preference-based teaching dimension of C with
respect to C and �, denoted by PBTD(C, C,�), is the size of the smallest sample set S such that

1. S is consistent with C, and

2. C � C ′ for all C ′ ∈ C \ {C} such that S is consistent with C ′.

We write PBTD(C,�) = sup{PBTD(C, C,�) | C ∈ C}. Finally, the preference-based teaching
dimension of C, denoted by PBTD(C), is defined by

PBTD(C) = min{PBTD(C,�) | �⊆ C × C and � induces a strict order on C} .

An interesting variant of preference-based teaching is obtained when disallowing negative ex-
amples in teaching. Learning from positive examples only has been studied extensively in the
computational learning theory literature, see, e.g., (Denis, 2001; Angluin, 1980) and is motivated
by studies on language acquisition (Wexler and Culicover, 1980) or, more recently, by problems of
learning user preferences from a user’s interactions with, say, an e-commerce system (Schwab et al.,
2000), as well as by problems in bioinformatics (Wang et al., 2006).

Definition 4 (Gao et al. (2017)) Let C be a concept class over a domainX . The positive preference-
based teaching dimension of C, denoted by PBTD+(C), is defined analogously to PBTD(C), where
the sets S in Definition 3 are required not to contain any negative examples.

The same way, one can define the notion TD+. The following property, proven by Gao et al.
(2017), is crucial when computing the PBTD and PBTD+ of finite classes.

Proposition 5 (Gao et al. (2017)) Let C be a finite concept class. If PBTD(C)=d, then C contains
some C with TD(C, C) ≤ d. If PBTD+(C)=d, then C contains some C with TD+(C, C) ≤ d.

3. Collusion-free Teaching and the Non-Clashing Property

While there is no objective measure of how “reasonable” a formal model of teaching is, the literature
offers some notions of what constitutes an “acceptable” model of teaching, i.e., one in which the
teacher and learner do not collude. So far, the notion of collusion-free teaching that found the most
positive resonance in the literature is the one defined by Goldman and Mathias.
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Definition 6 (Goldman and Mathias (1996)) Let C be a concept class over X and T a teacher
mapping on C. Let L be a learner mapping that assigns to each set of labelled examples a concept
over X . The pair (T, L) is successful on C if L(T (C)) = C for all C ∈ C. The pair (T, L) is
collusion-free on C if L(S) = L(T (C)) for any C ∈ C and any set S of labelled examples such that
S is consistent with C and S contains T (C).

Intuitively, Goldman and Mathias’s definition captures the idea that a learner conjecturing concept
C will not change its mind when given additional information consistent with C.

For example, teacher-learner pairs following the classical teaching dimension model, Balbach’s
optimal teacher model, the recursive teaching model, or the preference-based teaching model are
always collusion-free according to Definition 6. Of these models, the classical teaching dimension
model is the one imposing the most constraints on the mapping T , followed by Balbach’s optimal
teaching, recursive teaching, and preference-based teaching in that order. Consequently, the “teach-
ing complexity” among these models is lowest for preference-based teaching; if every concept in a
concept class C can be taught with at most z examples in any of these models, then every concept
in C can be taught with at most z examples in the preference-based model.

One can still argue that the preference-based model is unnecessarily constraining. Preference-
based teaching of a concept class C relies on a preference relation that induces a strict order on C.
However, this strict order is used by the learner only after the teaching set has been communicated,
since the learner chooses the unique most preferred concept among those consistent with the set of
examples provided by the teacher. One might consider loosening the constraints by, for example,
demanding only that the set of concepts consistent with any chosen teaching set be ordered under
the chosen preference relation (rather than requiring acyclic preferences over the whole concept
class). In the same vein, one could relax more conditions—every relaxation might result in a more
powerful model of teaching satisfying the collusion-free property.

In this manuscript, we will define the provably most powerful model of teaching that is collusion-
free in the sense proposed by Goldman and Mathias (1996), namely a model that adheres to no other
constraints on the teacher-learner pairs (T, L) than those given by Goldman and Mathias: (i) T is a
teacher mapping; (ii) (T, L) is successful on C; and (iii) (T, L) is collusion-free on C.

Before we define this model formally, we introduce a crucial property.

Definition 7 Let C be a concept class and T be a teacher mapping on C. Following Kuzmin and
Warmuth (2007), we say that T is non-clashing (on C) if and only if there are no two distinct
C,C ′ ∈ C such that both T (C) is consistent with C ′ and T (C ′) is consistent with C.

It turns out that, for a teacher mapping T , the non-clashing property is equivalent to the existence
of a learner mapping L such that (T, L) is successful and collusion-free:

Theorem 8 Let C be a concept class over the instance space X . Let T be a teacher mapping on C.
Then the following two conditions are equivalent:

1. T is non-clashing (on C).

2. There is a mapping L : 2X×{0,1} → C such that (T, L) is successful and collusion-free.

Proof First, suppose T is a non-clashing teacher mapping, and define L as follows. Given any set
S of labelled examples as input, L checks for the existence of a concept C ∈ C such that T (C) ⊆ S
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and C is consistent with S. If such a concept C is found, L returns an arbitrary such C; otherwise
L returns some default concept in C.

To show that (T, L) is successful and collusion-free, suppose there is some concept C ∈ C such
that a given set S of labelled examples is consistent with C and contains T (C). We claim that then
such C is uniquely determined. For if there were two distinct concepts C,C ′ ∈ C consistent with
S such that T (C) ∪ T (C ′) ⊆ S, then T (C ′), being a subset of S, would be consistent with C and,
likewise, T (C) would be consistent with C ′—in contradiction to the non-clashing property of T .
From the definition of L, it then follows that (T, L) is successful and collusion-free.

Second, suppose T is a teacher mapping and there is a mapping L such that (T, L) is successful
and collusion-free, i.e., for all C ∈ C, we have L(S) = L(T (C)) = C whenever S is consistent
with c and contains T (C). To see that T is non-clashing, suppose two concepts C,C ′ ∈ C are both
consistent with T (C) ∪ T (C ′). Then C = L(T (C)) = L(T (C) ∪ T (C ′)) = L(T (C ′)) = C ′.

Consequently, teaching with non-clashing teacher mappings is, in terms of the worst-case num-
ber of examples required, the most efficient model that obeys Goldman and Mathias’s notion of
collusion-freeness. We hence define the notion of no-clash teaching dimension as follows.

Definition 9 Let C be a concept class over the instance space X . Let T : C → (X × {0, 1})∗
be a non-clashing teacher mapping. The order of T on C, denoted by ord(T, C), is then defined
by ord(T, C) = sup{|T (C)| | C ∈ C}. The No-Clash Teaching Dimension of C, denoted by
NCTD(C), is defined as NCTD(C) = min{ord(T, C) | T is a non-clashing teacher mapping for C}.

From Theorem 8 we obtain that, for every concept class C,

NCTD(C) = min{ord(T, C) | there exists an L such that (T, L) is successful and collusion-free on C} .

Note the simple but helpful fact that, without loss of generality, all sets T (C) used by a non-
clashing teacher mapping on the concept class C are of the same size. This is obvious since adding
more examples cannot possibly turn a non-clashing teacher mapping into a clashing one:

Proposition 10 Let T be a non-clashing teacher mapping for C. Then there is a non-clashing
teacher mapping T ′ for C such that ord(T, C) = ord(T ′, C) = |T ′(C)| for all C ∈ C.

As in the case of preference-based teaching, it is natural to study a variant of non-clashing
teaching that uses positive examples only.

Definition 11 Let C be a concept class over the domain X . A teacher mapping T is called pos-
itive on C if T (C) ⊆ X × {1} for all C ∈ C. We then define NCTD+(C) = min{ord(T, C) |
T is a positive non-clashing teacher mapping for C}.

While many of our definitions and results apply to both finite and infinite concept classes, we
will, for the remainder of this paper, assume that X and C are finite.
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4. Lower Bounds on NCTD and NCTD+

To establish lower bounds on NCTD and NCTD+, we first show that NCTD(C) must be at least
as large as the smallest d satisfying |C| ≤ 2d

(|X |
d

)
. A similar statement then follows for NCTD+.

In fact, we prove a slightly stronger result, replacing |X | with a potentially smaller value:

Definition 12 We define XT ⊆ X as the set of instances that are part of a labelled example in a
teaching set T (C) for some C ∈ C. Moreover, we define

X(C) = min{|XT | : T is a non-clashing teacher mapping for C with ord(C, T ) = NCTD(C)} .

Intuitively, X(C) is the smallest number of instances that must be employed by any optimal non-
clashing teacher mapping for C. Likewise, we define X+(C) for positive non-clashing teaching.

Theorem 13 Let C be any concept class.

1. If NCTD(C) = d, then |C| ≤ 2d
(X(C)

d

)
.

2. If NCTD+(C) = d, then |C| ≤
∑d

i=0

(
X+(C)

i

)
.

The proof (see Appendix A) is a simple counting argument in combination with Proposition 10.
We will next establish a useful lower bound on NCTD(C) based on the number of neighbors of

any concept in C, as well as a related lower bound on NCTD+(C).
A concept C ′ ∈ C is a neighbor of concept C ∈ C if it differs from C on exactly one instance,

i.e., if |(C \ C ′) ∪ (C ′ \ C)| = 1. The degree of C ∈ C, denoted as degC(C), is defined as the
number of neighbors of C in C. The average degree of concepts in C is then denoted by

degavg(C) :=
1

|C|
·
∑
C∈C

degC(C) .

The dominance of C ∈ C, denoted as domC(C), is defined as the number of smaller neighbors of
C in C, i.e. neighbors that contain exactly one fewer instance than C.

Theorem 14 Every concept class C over a finite domain satisfies NCTD(C) ≥
⌈
1
2 · degavg(C)

⌉
.

Proof Let T be any non-clashing teacher mapping for C. If C1 and C2 are neighbors, say C1∆C2 =
{xi}, then at least one of the sets T (C1), T (C2) must contain xi. We obtain

∑
C∈C |T (C)| ≥

1
2 ·
∑

C∈C degC(C) = |C| · 12 · degavg(C). According to the pigeon-hole principle, there must exist
a concept C ∈ C such that |T (C)| ≥

⌈
1
2 · degavg(C)

⌉
, which concludes the proof of the theorem.

Theorem 15 Every concept class C over a finite domain satisfies NCTD+(C) ≥ maxC∈C domC(C).

Proof If the smaller neighbor C ′ of C ∈ C differs from C on instance xi, then (xi, 1) must be used
in teaching C. Hence, every C ∈ C must have a positive teaching set of size at least domC(C).

Although the lower bounds in Theorems 14 and 15 are not expected to be attained very often,
the following example shows that they are sometimes tight:
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Example 1 LetP2 be the powerset of {a, b}. Every concept inP2 has degree 2, so that degavg(P2) =

2. It follows from Theorem 14 that NCTD(P2) ≥ 1
2 · degavg(P2) = 1. As the mapping T given by

∅ 7→ {(a, 0)}, {a} 7→ {(b, 0)}, {b} 7→ {(a, 1)}, {a, b} 7→ {(b, 1)} ,

is non-clashing for P2, it follows that NCTD(P2) ≤ 1. Furthermore, since domP2({a, b}) = 2, it
follows from Theorem 15 that NCTD+(P2) ≥ 2. But the positive mapping T that maps S ∈ P2 to
S × {1} is trivially non-clashing, and hence NCTD+(P2) ≤ 2.

5. Sub-additivity of NCTD and NCTD+

In this section, we will show that the NCTD is sub-additive with respect to the free combination of
concept classes. As an application of this result, we will determine the NCTD of the powerset over
any finite domain X . While the powerset is a rather special concept class, knowing its NCTD will
turn out useful to obtain a variety of further results.

Definition 16 Let C1 and C2 be concept classes over disjoint domains X1 and X2, respectively.
Then the free combination C1 t C2 of C1 and C2 is a concept class over the domain X1 ∪X2 defined
by C1 t C2 = {C1 ∪ C2| C1 ∈ C1 and C2 ∈ C2}.

Lemma 17 Let C = C1tC2 be the free combination of C1 and C2. Moreover, for i = 1, 2, let Ti be a
non-clashing mapping for Ci. Then, for T (C1tC2) defined by setting T (C1∪C2) = T1(C1)∪T2(C2),
we have that T is a non-clashing teacher mapping for C1 tC2. Moreover, as witnessed by T , NCTD
acts sub-additively on t, i.e.,

NCTD(C1 t C2) ≤ NCTD(C1) + NCTD(C2) . (1)

Proof Suppose that distinct concepts C1
i1
∪ C2

i2
and C1

j1
∪ C2

j2
in C1 t C2 clash under T . (Without

loss of generality we can assume that i1 6= j1.) Then C1
j1
∪C2

j2
is consistent with T1(C

1
i1

)∪T2(C
2
i2

)

and C1
i1
∪ C2

i2
is consistent with T1(C

1
j1

) ∪ T2(C
2
j2

). Hence C1
j1

is consistent with T1(C
1
i1

) and C1
i1

is consistent with T1(C
1
j1

), that is concepts C1
i1

and C1
j1

in C1 clash under the mapping T1.

Remark 18 In Lemma 17, if T1 and T2 are positive non-clashing mappings, then the same proof
shows that T (a positive non-clashing mapping) witnesses the fact that NCTD+ also acts sub-
additively on t, i.e.,

NCTD+(C1 t C2) ≤ NCTD+(C1) + NCTD+(C2) . (2)

Furthermore, since t is associative it follows immediately that, for any concept class C

NCTD(Ck) ≤ k ·NCTD(C) and NCTD+(Ck) ≤ k ·NCTD+(C) (3)

where Ck := C1 t . . . t Ck and Ci := {C × {i}| C ∈ C}, for i = 1, . . . , k.
These sub-additivity results can be applied in order to determine the NCTD and NCTD+ of

the powerset over an arbitrary finite domain.
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Theorem 19 Let Pm be the powerset over the domain {x1, . . . , xm}. Then NCTD(Pm) = dm/2e
and NCTD+(Pm) = m.

Proof Since every concept in Pm has degree m, the average degree of concepts in Pm equals m as
well. Furthermore, the concept {x1, . . . , xm} clearly has domination m inPm. Now NCTD(Pm) ≥
dm/2e and NCTD+(Pm) ≥ m follow from Theorems (14) and (15) respectively.

Obviously NCTD+(Pm) ≤ m. To show that NCTD(Pm) ≤ dm/2e it suffices to verify this
upper bound for even m. When m is even, we have Pm = Pm/2

2 . Now NCTD(Pm) ≤ dm/2e
follows from NCTD(P2) = 1 (compare with Example 1) and from (3).

This result in particular implies that d|X |/2e is an easily computed upper bound on the NCTD
of any concept class over a domain X .

A further consequence of Theorem 19 is that NCTD is not exactly additive with respect to free
combination, i.e., that Inequality (1) is sometimes strict. An example for that is the free combination
Pm t Pm of two copies of Pm for odd m. Since the domain of Pm t Pm has size 2m, we obtain
NCTD(Pm t Pm) = m, while NCTD(Pm) + NCTD(Pm) = 2dm2 e = 2m+1

2 = m + 1.
A situation, that we will exploit later, where NCTD+ acts strictly additively on t is captured in

the following:

Lemma 20 Let C be a concept class whose domain X is disjoint from {x1, . . . , xk}.
Then, NCTD+(Pk t C) = NCTD+(Pk) + NCTD+(C).

Proof By (2) it suffices to show that NCTD+(Pk t C) ≥ NCTD+(Pk) + NCTD+(C). Theo-
rem 15 implies that, for each Ci ∈ C, any positive non-clashing mapping T for Pk t C must use
k = NCTD+(Pk) examples from {x1, . . . , xk} to teach the single concept {x1, . . . , xk}tCi within
the concept class PktCi. So the only way that T could use fewer than k+NCTD+(C) examples in
total for each concept in {x1, . . . , xk} t C is if each such concept is taught with exactly k examples
from {x1, . . . , xk}, and hence fewer than NCTD+(C) examples from X , a contradiction.

Appendix B contains further results on additivity when the bound from Theorem 14 is met.

6. Relation to Other Learning-theoretic Parameters

In this section, we set NCTD in relation to PBTD and VCD, as well as to the smallest possible
size of a sample compression scheme for a given concept class.

6.1 PBTD and VCD

Since preference-based teaching is collusion-free (Gao et al., 2017), we obtain the following bounds.

Proposition 21 Let C be any concept class. Then NCTD(C) ≤ PBTD(C) and NCTD+(C) ≤
PBTD+(C).

The first inequality in Proposition 21 is strict, as witnessed by Theorem 19, which states that
NCTD(Pm) = dm/2e. By comparison, PBTD(Pm) = m. In particular, this yields a family of
concept classes of strictly increasing NCTD for which PBTD exceeds NCTD by a factor of 2.
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Strictness of the second inequality in Proposition 21 is witnessed by the class C = {{x1, x2},
{x2, x3}, {x1, x3}} over the domain X = {x1, x2, x3} of size 3. On the one hand, since no concept
in C has a positive teaching set of size 1, Proposition 5 implies PBTD+(C) = 2. On the other hand,
T (X \ {xi}) = {(x(i+1) mod 3, 1)} is a non-clashing teacher mapping witnessing NCTD+(C) = 1.

In particular, these examples witness that Proposition 5 does not hold for non-clashing teaching.
Results from the literature can now be combined in a straightforward way in order to formulate

an upper bound on NCTD in terms of the VC-dimension.

Theorem 22 NCTD(C) is upper-bounded by a function quadratic in VCD(C).

Proof PBTD is known to lower-bound the recursive teaching dimension (Gao et al., 2017). Hu
et al. (2017) proved that, when VCD(C) = d, the recursive teaching dimension of C is no larger
than 39.3752 · d2 − 3.6330 · d. By Proposition 21, the same upper bound applies to NCTD.

However, VCD can also be arbitrarily larger than NCTD:

Proposition 23 (cf. Gao et al. (2017)) Let k ∈ N, k ≥ 1. Then there exists a finite concept class C
such that NCTD+(C) = NCTD(C) = PBTD+(C) = PBTD(C) = 1 and VCD(C) = k.

This follows immediately from the corresponding result for PBTD stated by Gao et al. (2017), see
Appendix C.

So far, there is no concept class for which VCD is known to exceed NCTD. Note that any
such concept class would have to fulfill PBTD > VCD as well. We tested those classes for which
PBTD > VCD is known from the literature, but found that all of them satisfy NCTD ≤ VCD.

As an example, here we present “Warmuth’s class.” This concept class, shown in Table 1,
was communicated by Manfred Warmuth and proven by Darnstädt et al. (2016) to be the smallest
concept class for which PBTD exceeds VCD. In particular, VCD(CW )=2 while PBTD(CW )=3.

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5
C1 1 0 0 0 1 C ′1 1 0 1 0 1
C2 1 1 0 0 0 C ′2 1 1 0 1 0
C3 0 1 1 0 0 C ′3 0 1 1 0 1
C4 0 0 1 1 0 C ′4 1 0 1 1 0
C5 0 0 0 1 1 C ′5 0 1 0 1 1

Table 1: Warmuth’s class CW , with the highlighted entries (in bold) corresponding to the images of
a positive non-clashing teacher mapping. The domain of this class is {x1, . . . , x5}, and it
contains 10 concepts, named C1 through C5 and C ′1 through C ′5.

Proposition 24 NCTD(CW ) = NCTD+(CW ) = 2.

The highlighted labels in Table 1 correspond to a positive non-clashing mapping for CW , and one
can argue that teaching sets of size 1 must result in clashes. A full proof is given in Appendix D.
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6.2 Sample Compression

Intuitively, a sample compression scheme (Littlestone and Warmuth, 1986) for a (possibly infinite)
concept class C provides a lossless compression of every set S of labeled examples for any concept
in C in the form of a subset of S. It was proven that the existence of a finite upper bound on the
size of the compression sets is equivalent to PAC-learnability, i.e., to finite VC-dimension (Moran
and Yehudayoff, 2016; Littlestone and Warmuth, 1986). Open for over 30 years now is the question
how closely such an upper bound can be related to the VC-dimension.

Formally, a sample compression scheme of size k for a concept class C over X is a pair (f, g)
of mappings, where, for every sample set S consistent with some concept C ∈ C, (i) f maps S to a
subset f(S) ⊆ S with |f(S)| ≤ k; and (ii) g(f(S)) maps the compressed set to a concept C ′ over
X (not necessarily in C) that is consistent with S. By CN(C) we denote the size of the smallest-size
sample compression scheme for C. The open question then is whether CN(C) is upper-bounded by
(a function linear in) VCD(C).

Some connections between sample compression and teaching have been established in the liter-
ature (Doliwa et al., 2014; Darnstädt et al., 2016). The non-clashing property bears some similarities
to sample compression and has in fact been used in the context of unlabelled sample compression
(in which f(S) is an unlabelled set) (Kuzmin and Warmuth, 2007). It is thus natural to ask whether
CN is an immediate upper or lower bound on NCTD. Below, we answer this question negatively.

Proposition 25 1. For every k ∈ N, k ≥ 1, there is a concept class C such that NCTD(C) =
PBTD(C) = 1 but CN(C) > k.

2. Let Pm be the powerset over a domain of size m, where m is odd. Then CN(Pm) + 1 =
NCTD(Pm) and 2CN(C) + 1 = PBTD(Pm).

Proof Statement 1 is due to Proposition 23, which implies the existence of a concept class C with
NCTD(C) = PBTD(C) = 1 and VCD(C) = 5k. Then CN(C) > k follows from a result by Floyd
and Warmuth (1995) that states that no concept class of VC-dimension d has a sample compression
scheme of size at most d

5 .
Statement 2 follows from the obvious fact that PBTD(Pm) = m, in combination with Theo-

rem 19, as well as with a result by Darnstädt et al. (2016) that shows CN(Pm) ≤ bm2 c for any m.

7. Complexity of Decision Problems Related to No-clash Teaching

In this section, we address the complexity of the problem of deciding whether or not every concept
in a given finite concept class can be taught with a non-clashing teaching set of size at most k, for
some specified k ≥ 1. Surprisingly perhaps, such decision problems are NP-hard, even when k = 1
and teaching is done using positive examples only. In contrast, all such decision problems have
polynomial time solutions in the PBTD teaching model.

We show an equivalence between the most highly constrained such decision problem (testing if
NCTD+ = 1, for a given concept class) and a natural (but apparently not previously studied) con-
strained bipartite matching problem that is related to the well-studied notion of induced matchings.
We begin by establishing a preliminary result that will allow us to restrict our complexity analysis
to certain normalized concept classes.
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Proposition 26 Let C be any non-trivial concept class over a finite domain. Then, for all k ≥ 1,
NCTD+(C) = k iff NCTD+(C \ {∅}) = k.

Proof Let C′ denote C \ {∅}. If C′ = C there is nothing to show. So, suppose that C contains the
empty concept. If NCTD+(C) = k then trivially NCTD+(C′) = k.

For the converse, suppose that NCTD+(C′) = k, as witnessed by a mapping T .
Case 1. [T does not assign the empty set to any concept.] In this case one can obviously extend T
to assign the empty set to the empty concept and thus teach all of C in a clash-free way using no
negative examples and with teaching sets of size at most k. (There are no clashes, because the empty
concept cannot be consistent with any of the teaching sets that use at least one positive example.)
Case 2. [T assigns the empty set to some concept C in C′.] Then let x be an element of C. Such
x exists because C is not empty. Define T ′ to be the same as T , except that T ′ assigns {(x,+)} to
C. The mapping T ′ is clash-free. (If T ′ had a clash, this clash would be between C and some other
concept C ′ containing x. But then T would have had the same clash, since C ′ is certainly consistent
with the empty set of labelled examples.) Thus Case 2 can be reduced to Case 1.

Remark 27 It follows immediately from the proof of Proposition 26 that, for any concept class
C′ that does not contain the empty concept, NCTD+(C′) = k iff C′ has a non-clashing teacher
mapping in which every concept is taught with at least one positive instance (i.e. the empty set
is not used for teaching). Hereafter, in our consideration of NCTD+ decision problems, we will
assume that concept classes do not contain the empty set and that teacher mappings are restricted to
those that use at least one positive instance for each concept.

Our goal in the remainder of this section is to set out hardness results for testing NCTD = k?
and NCTD+ = k?, for fixed k ≥ 1. We begin by establishing that testing NCTD+ = 1?, for
a given concept class C is NP-hard. Other results follow by reduction from the NCTD+ = 1?
decision problem. (It is straightforward to confirm that all of the decision problems are in NP.)

7.1 Testing if NCTD+ = 1 is NP-hard

We start by observing that a concept class C over a finite domain X can be viewed as a bipartite
graph BC,X , with partitions C (black vertices) and X (white vertices) and an edge from Ci ∈ C to
xj ∈ X whenever xj ∈ Ci. Under this interpretation, it follows from Remark 27 that deciding if C
has NCTD+ = 1 is equivalent to deciding if BC,X admits a matching M such that (i) M saturates
all of the black vertices, and (ii) no two edges of M are part of a 4-cycle in BC,X . (Condition (i)
ensures that each concept in C has an associated positive teaching set of size 1, and condition (ii)
ensures that the resulting teacher mapping is non-clashing.)

We refer to the problem of deciding if a given bipartite graph B with vertex partitions Vb and
Vw admits a matching M such that (i) M saturates all of the vertices in Vb, and (ii) no two edges of
M are part of a 4-cycle in B, as the Non-Clashing Bipartite Matching Problem. The NP-hardness
of deciding NCTD = 1? is thus an immediate consequence of the following:

Theorem 28 The Non-Clashing Bipartite Matching Problem is NP-hard.

The proof of Theorem 28 is by reduction from the familiar NP-hard problem 3-SAT. The details
are given in Appendix E.
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The reduction produces a bipartite graph whose vertices have degree bounded by five. (This
occurs for the vertices pj2 and qj2 of the clause gadgets, both of which have three incident edges
within the gadget and two from a bridged connector.) One can conclude then that testing NCTD+ =
1? is NP-hard even if concepts contain at most five instances, and instances are contained in at most
five concepts. It is natural to ask to what extent this can be tightened. In Appendex F, we describe
a modification of the reduction that produces a bipartite graph whose vertices have degree bounded
by three, from which it follows that testing NCTD+ = 1? is NP-hard even if concepts contain at
most three instances, and instances are contained in at most three concepts. (It is not hard to show
that if the maximum degree is reduced to two there is a polynomial time algorithm to decide if a
non-clashing matching exists in a given bipartite graph.)

7.2 Testing if NCTD = 1 is NP-hard

We reduce the NCTD+ = 1 decision problem to the NCTD = 1 decision problem. Given an
instance of the NCTD+ = 1 decision problem, specifically a pair (C,X ), where C is a concept
class over the finite domain X , we make four disjoint copies (Ci,X i), i ∈ {1, 2, 3, 4}, and take their
union to be an instance of the NCTD = 1 decision problem. We will argue that any NCTD = 1
solution of this composite concept class must use only positive examples for teaching concepts in
at least one of the four component concept classes; in this sense it must include a NCTD+ = 1
solution of the instance (C,X ).

Suppose that some NCTD = 1 solution of the composite concept class uses a negative example
for at least one concept in each of the four component concept classes, and consider any four such
concepts Ci ∈ Ci, i ∈ {1, 2, 3, 4}. Note that there cannot exist concepts Ci and Cj , with i 6= j
that are taught using negative examples drawn from X i′ and X j′ , respectively, where i′ 6= j and
j′ 6= i, since these would necessarily clash. It follows immediately that no concept Ci is taught
with a negative example drawn from its own domain X i. Furthermore, every domain X i must be
the source of a negative example for some concept Cj , where j 6= i. But this leaves only the
possibility that, for some (possibly different) indexing of these four concepts, C1 is taught with a
negative example from X 2 and C3 is taught with a negative example from X 4, which once again
violates the non-clashing property.

7.3 Testing if NCTD+ = k + 1 is NP-hard, for k > 0.

Again we describe a reduction from the NCTD+ = 1 decision problem. Given an instance of the
NCTD+ = 1 decision problem, specifically a pair (C,X ), where C is a concept class over the finite
domain X disjoint from {x1, . . . , xk}, we construct the concept class Pk tC, where Pk denotes the
power set on {x1, . . . , xk}. By Lemma 20, we know that NCTD(Pk t C) = k + NCTD(C), so
NCTD(C) = 1 iff NCTD(Pk t C) = k + 1.

By comparison, the corresponding decision problem for preference-based teaching can be solved
efficiently.

8. Conclusions

No-clash teaching represents the limit of data efficiency that can be achieved in teaching settings
obeying Goldman and Mathias’s notion of collusion-freeness. Therefore, it is the sole most promis-
ing collusion-free teaching model to shed light on two open problems in computational learning
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theory, namely (i) to find a teaching complexity parameter that is upper-bounded by a function lin-
ear in VCD, and (ii) to establish an upper bound on the size of smallest sample compression schemes
that is linear in VCD. If any collusion-free teaching model yields a complexity upper-bounded by
(a function linear in) VCD, then no-clash teaching does. Likewise, if any collusion-free model
is powerful enough to compress concepts as efficiently as sample compression schemes do, then
no-clash teaching is.

The most fundamental open question resulting from our paper is probably whether NCTD is
upper-bounded by VCD in general.

Furthermore, our results introduce some intriguing connections between NCTD and the well-
studied field of constrained matching in bipartite graphs that may open up a line of study that relates
teaching complexity, as well as sample compression and VCD, to fundamental issues in matching
theory.
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Appendix A. Proof of Theorem 13

Proof To prove statement 1, let X ′ be a subset of size X(C′) of X . Let C 7→ T (C) ⊆ X ′ × {0, 1}
be a consistent and non-clashing mapping which witnesses that NCTD(C) = d, and let L be the
mapping such that L(T (C)) = C for all C ∈ C. By Proposition 10, one may assume without loss
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of generality that |T (C)| = d for all C ∈ C. Since T is an injective mapping and there are only
2d
(X(C)

d

)
labelled teaching sets at our disposal, the claim follows.

Statement 2 is proven analogously, when considering that, in the NCTD+ case, we do not have
an analogous statement to Proposition 10, since a concept does not in general contain d or more el-
ements. Note that the formula has no factors 2i since there are no options for labelling the instances
in any set T (C).

Appendix B. Additivity and the Degree Lower Bound

It is easily seen that the average degree acts additively on t:

Lemma 29 Let C1 and C2 be concept classes over disjoint and finite domains. Then the following
holds:

degavg(C1 t C2) = degavg(C1) + degavg(C2) . (4)

Proof Let C := C1 t C2. The concepts in C that are neighbors of C1 ∪ C2 ∈ C are precisely the
concepts of the form C1 ∪ C ′2 or C ′1 ∪ C2 where C ′2 is a neighbor of C2 in C2 and C ′1 is a neighbor
of C1 in C1. Hence

degC(C1 ∪ C2) = |C2| · degC1(C1) + |C1| · degC2(C2) .

Moreover |C| = |C1| · |C2|. It follows that∑
C∈C

degC(C) = |C2| ·
∑

C1∈C1

degC1(C1) + |C1| ·
∑

C2∈C2

degC2(C2) .

Division by |C1| · |C2| immediately yields (4).

The free combination of classes with a tight degree lower bound is again a class with a tight
degree lower bound:

Corollary 30 Let C1 and C2 be two concept classes over disjoint and finite domains, and let C =
C1 t C2. Then NCTD(Ci) = 1

2 · degavg(Ci) for i = 1, 2 implies that NCTD(C) = 1
2 · degavg(C).

Proof The assertion is evident from the following chain of inequalities:

NCTD(C)
(1)

≤ NCTD(C1)+NCTD(C2) =
1

2
·degavg(C1)+

1

2
·degavg(C2)

(4)
=

1

2
·degavg(C)

Thm.14
≤ NCTD(C) .
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Appendix C. Proof of Proposition 23

Proof It was proven that, for any k ≥ 1, there is a concept class C such that PBTD+(C) = 1
and VCD(C) = k (Gao et al., 2017). Namely, the claim is witnessed by a concept class C over
k + 2k instances, with |C| = 2k. The ith concept in C contains only the ith of the first 2k instances
and, furthermore, realizes the ith bit pattern over the remaining k instances. Clearly, the resulting
concept class has VC-dimension k, since the set of the last k instances is shattered, but no larger
set is. However, the ith concept is the only concept containing the ith instance, so that every con-
cept has teaching dimension 1 with respect to C, witnessed by a single positive example, and thus
PBTD+(C) = 1. Proposition 21 then yields NCTD+(C) = 1.

Appendix D. Proof of Proposition 24

Proof The highlighted labels in Table 1 correspond to a positive non-clashing mapping for CW ,
which immediately shows that NCTD+(CW ) ≤ 2 and thus NCTD(CW ) ≤ 2. To show that
NCTD(CW ) ≥ 2, suppose by way of contradiction that NCTD(CW ) = 1. Then there is a non-
clashing teacher mapping T that assigns every concept in CW a teaching set of size 1.

Since C1 and C ′1 differ only on the instance x3, the mapping T must fulfill either T (C1) =
{(x3, 0)} or T (C ′1) = {(x3, 1)}.

Case 1. T (C1) = {(x3, 0)}. Since C2 is consistent with T (C1), the teaching set for C2 must be
inconsistent with C1. In particular, T (C2) 6= {(x4, 0)}. This implies T (C ′2) = {(x4, 1)}, since x4
is the only instance on which C2 and C ′2 disagree. By an analogous argument concerning C5 and
C ′5, one obtains T (C ′5) = {(x2, 1)}. Now T has a clash on C ′2 and C ′5, which is a contradiction.

Case 2. T (C ′1) = {(x3, 1)}. One argues as in Case 1, with C ′3 and C ′4 in place of C2 and C5,
yielding T (C3) = {(x5, 0)} and T (C4) = {x1, 0)}. This is a clash, resulting in a contradiction.

As both cases result in a contradiction, we have NCTD(CW ) > 1 and thus NCTD(CW ) = 2.
Since NCTD+ is an upper bound on NCTD, we also have NCTD+(CW ) = 2.

Appendix E. Proof of Theorem 28

Proof We describe a reduction from the familiar NP-hard problem 3-SAT, an instance of which is
a set D = {D1, . . . , Dm} of clauses, each of which is a disjunction of three literals drawn from
an underlying set V = {V 1, . . . , V n} of variables. Specifically, given an instance D of 3-SAT, we
construct a bipartite graph BD (vertices are either black or white, and all edges join a black vertex
to a white vertex) that admits a matching satisfying the constraints above if and only if the instance
D is satisfiable.

To this end, we first associate with each variable V i a variable gadget: a ring of 4m vertices,
with alternating subscripted labels vi and wi, emphasizing its bipartite nature (cf. Figure 1(a)). A
matching that saturates all of the vi-vertices (black) of this gadget is of one of two types, illustrated
in Figure 1(b) and (c)).

We associate with each clause Dj a clause gadget consisting of 10 vertices, with subscripted
labels pj , qj , rj and sj (cf. Figure 2(a)). It is straightforward to confirm that any matching that
saturates all of the rj and qj-vertices (black) must use exactly one of the three pjqj-edges, illustrated
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Figure 1: VariableGadget

in Figure 2(b) (c) and (d)). We refer to the pjqj-edges as portals of the clause gadget, since their
endpoints are the only points of connection with other parts of the full construction.

(a)

pj1 pj3pj2

qj3qj2qj1

sj1 sj2

rj2rj1

(b)
pj1 pj3pj2

qj3qj2qj1
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rj2rj1

(c)
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sj1 sj2

rj2rj1

(d)
pj1 pj3pj2

qj3qj2qj1

sj1 sj2

rj2rj1

Figure 2: ClauseGadget

We complete the construction by adding edges from vertex gadgets to appropriate clause gadget
portals. Specifically, (i) if the k-th literal in clause Dj is V i, then we add edges from vi2j to pjk and
qjk to wi

2j (cf. Figure 3(a)) and (ii) if the k-th literal in clause Dj is V i, then we add edges from
vi2j to pjk and qjk to wi

2j−1 (cf. Figure 3(b)). These edges, shown dashed in Figures 3(a) and (b), are
forbidden in any matching satisfying the constraints set out above, by the inclusion, for each such
edge, of a pair of additional vertices and associated edges, as illustrated in Figure 3(c). (Note that
the edge joining each such pair of additional vertices is forced to belong to the matching .) It follows
that if the k-th literal in clause Dj is V i, and the edge pjkq

j
k belongs to the constrained matching

then edge vi2jw
i
2j cannot belong. Similarly, if the k-th literal in clause Dj is V i, and the edge pjkq

j
k

belongs to the constrained matching then edge vi2jw
i
2j−1 cannot belong.

To complete the proof it remains to argue that the resulting graph BD admits a matching M
such that (i) M saturates all of the black vertices, and (ii) no two edges of M are part of a 4-cycle
in BD, if and only if the instance D is satisfiable. Suppose first that BD admits such a matching
M . Since none of the connector edges are included in M , it follows (as argued above) that in every
vertex gadget the black vertices are saturated in one of the two ways illustrated in Figure 1(b) and
1(c)). Similarly, in every clause gadget, the black vertices are saturated in one of the three ways
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illustrated in Figure 2(b), 2(c) and 2(d)). Suppose that the portal edge pjkq
j
k of the gadget associated

with clause Dj belongs to the matching M . Then, by our choice of connector edges, if the k-th
literal in clause Dj is V i, it must be that edge vi2jw

i
2j does not belong to M , that is matching on the

variable gadget associated with V i has the associated truth assignment true . Similarly, if the k-th
literal in clause Dj is V i, it must be that edge vi2jw

i
2j does not belong to M , that is matching on the

variable gadget associated with V i has the associated truth assignment false. It follows that the
truth assignment to the variables in V , associated with the matchings induced on the vertex gadgets,
satisfies all of the clauses in D.

On the other hand, suppose that D is satisfiable, that is there is an assignment of truth values to
the variables in V that satisfies all of the clauses in D. Then, if we (i) choose the matching on the
vertex gadget associated with V i to be the one corresponding to its truth assignment, and (ii) choose
any matching on the clause gadget associated with clause Dj including a portal edge associated
with one of the satisfied literals in Dj , and (iii) choose all of the edges added to prevent the choice
of connector edges, it is straightforward to confirm that the chosen edges form a matching M in BD
such that (i) M saturates all of the black vertices, and (ii) no two edges of M are part of a 4-cycle
in BD.

Appendix F. Complexity of Degree-bounded Instances of Non-clashing Bipartite
Matching

As it happens a fairly simple modification of both our clause and connector structures allow us to
reduce the maximum degree to three. (As we shall see later if the maximum degree is reduced to two
there is a polynomial time algorithm to decide if a non-clashing matching exists in a given bipartite
graph.) We begin by describing a new clause gadget, illustrated in Figure 4(a), with the same p-q
portal structure as before but with the additional property that all p and q vertices have degree two.
It is straightforward to confirm that, up to symmetry, the matching illustrated in Figure 4(b) is the
only matching that saturates all of the vertices using only edges internal to the gadget.

Next we describe a somewhat more complicated connector structure that is used to link vertices
in the variable gadgets with portal vertices of the new clause gadget. Schematically, as illustrated in
Figures 5(a) and (b), the connector structure plays exactly the same role as its counterpart (pair of
bridged edges) in the earlier construction. The new connector structure, illustrated in Figures 5(c),
also contains edges, dashed as before, that cannot be part of any perfect clash-free matching. Their
role, as before, is simply to constrain the choice of other edges (in any perfect clash-free matching).
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It is easiest to argue first that neither of the dashed diagonals can be used. If both are used then
edge r4s4 must also be used, creating a clash. On the other hand if just one, say r3s5 is used, then
either r4s4 must also be used or both r4r5 and s3s4 must be used, creating a clash in either case.

By parity, an even number of the horizontal dashed edges are used in any perfect matching.
Since it is impossible to choose both wr1 and vs1 (or both r7p and s7q) in a clash-free matching, it
suffices to rule out the case where exactly one of wr1 and vs1 and exactly one of r7p and s7q belong
to a perfect matching. Suppose r7p (but not s7q) is chosen. Then the matching is forced to include
r5r6 and s6s7 (in order to saturate r6 and s7). This in turn forces the choice of r3r4 and s4s5 (in
order to saturate r4 and s5), creating a clash. By symmetry, it follows that none of the horizontal
dashed edges can be used in a perfect clash-free matching.

It remains to argue that (i) if a clash-free matching contains edge pq then edge vw cannot belong
(and vice versa); (ii) there is a clash-free matching of the connector gadget that contains edge pq
but leaves both v and w exposed (and vice versa); and (iii) there is a clash-free matching of the
connector gadget that leaves all of v, w, p and q exposed. For (i), we observe that, by chained
forcing as above, the inclusion of pq forces the inclusion of r1s1 (and, by symmetry, the inclusion
of vw forces the inclusion of r7s7). Properties (ii) and (iii) are illustrated in Figure 6.
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v q
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Figure 6: ConnectorMatchings
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