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Abstract. Sample compression schemes are schemes for “encoding” a
set of examples in a small subset of examples. The long-standing open
sample compression conjecture states that, for any concept class C of
VC-dimension d, there is a sample compression scheme in which samples
for concepts in C are compressed to samples of size at most d.
We show that every order over C induces a special type of sample com-
pression scheme for C, which we call order compression scheme. It turns
out that order compression schemes can compress to samples of size at
most d if C is maximum, intersection-closed, a Dudley class, or of VC-
dimension 1–and thus in most cases for which the sample compression
conjecture is known to be true.
Since order compression schemes are much simpler than sample com-
pression schemes in general, their study seems to be a promising step
towards resolving the sample compression conjecture. We reveal a num-
ber of fundamental properties of order compression schemes, which are
helpful in such a study. In particular, order compression schemes exhibit
interesting graph-theoretic properties as well as connections to the theory
of learning from teachers.

1 Introduction

In the context of concept learning, sample compression schemes are schemes for
“encoding” a set of examples in a small subset of examples. For instance, from
the set of examples they process, learning algorithms often extract a subset of
particularly “significant” examples in order to represent their hypotheses. This
way sample bounds for PAC-learning of a concept class C can be obtained from
the size of a smallest sample compression scheme for C [1, 2]. The size of a sample
compression scheme is the size of the largest subset resulting from compressing
any sample consistent with some concept in C. In what follows, we will use the
term sample compression number of a concept class C to refer to the smallest
possible size of a sample compression scheme for C.
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Littlestone and Warmuth [1] pointed out that their sample bounds for PAC-
learning, stated in terms of the sample compression number, would improve on
the classical bounds stated in terms of the VC-dimension (see [3]), if one could
show that the sample compression number is linear in the VC-dimension. The
precise relationship between these two combinatorial parameters is hence of great
interest to the learning theory community, as witnessed by a continuing series of
publications on the topic, see, e.g., [4–6, 2, 7, 1, 8]. Floyd and Warmuth [2] conjec-
tured that any concept class C of VC-dimension d (abbreviated by VCD(C) = d)
possesses a sample compression scheme of size d, but to date this conjecture
(called the sample compression conjecture) remains open. It is even open whether
or not the sample compression number is linear in the VC-dimension.

While this paper does not resolve the sample compression conjecture, it offers
a potential new stepping stone for its solution. We demonstrate that any total
order over a finite concept class3 C induces a sample compression scheme for C;
we call such schemes order compression schemes. The principle behind the con-
struction of this special kind of compression scheme is very simple; in particular,
it does not fully exploit the available options for “coding tricks”. Consequently,
order compression schemes are not in general optimal in terms of size, i.e., for
some concept classes the smallest possible size for an order compression scheme
exceeds the sample compression number. Despite their “suboptimality”, order
compression schemes exhibit properties that make them a very promising object
of study for future research on the sample compression conjecture:
– Every finite concept class has order compression schemes, and thus our notion
is generally applicable.
– Almost all finite concept classes C for which the sample compression conjecture
is proven, i.e., that have a sample compression scheme of size VCD(C), have an
order compression scheme of size VCD(C). In particular, we prove the existence of
order compression schemes of size VC-dimension for maximum classes (classes of
the largest possible size for a given VC-dimension [9, 10]), for intersection-closed
classes, for Dudley classes [11], and for classes of VC-dimension 1. This suggests
that there might be further well-structured concept classes for which order com-
pression schemes witness the correctness of the sample compression conjecture.
– If the sample compression conjecture is true, then a helpful step towards its
proof could be to gain a deeper understanding of the circumstances under which
order compression schemes are not optimal in terms of size. In particular, it
could be worth analyzing which “coding tricks” beyond those systematically ex-
ploited by order compression schemes can make general compression schemes
more powerful.
– If the sample compression conjecture is false, then a helpful step towards dis-
proving it could be an attempt to show that the size of the smallest possible
order compression scheme is not linear in the VC-dimension. Firstly, due to
the simplicity of the construction of order compression schemes, this should be

3 In this paper, we focus on finite concept classes. This is not a restriction, since it is
proven that the sample compression conjecture is true if and only if it is true for all
finite concept classes [4].



less challenging than disproving the general conjecture. Secondly, the results ob-
tained and the proof techniques used could potentially yield new insights into
the theory behind the general conjecture.
– The definition of order compression schemes exhibits similarities to a model
of learning from helpful teachers, namely the model of recursive teaching [12].
The central complexity parameter delimiting the number of examples required
for learning in this model is the recursive teaching dimension. By proving that
the recursive teaching dimension lower-bounds the smallest possible size of or-
der compression schemes, we establish a new connection between teaching and
sample compression. Hence, known results on the recursive teaching model may
provide useful tools for the study of order compression schemes.
– Order compression schemes also exhibit interesting graph-theoretic properties.
We define a graph representation of general sample compression schemes and
prove that order compression schemes correspond to exactly the acyclic graphs
in this definition.

2 Preliminaries

Throughout this paper, X = {x1, . . . , xn} is a set of cardinality n ∈ N, called
the instance space, and C,H ⊆ P(X) denote concept resp. hypothesis classes
over the domain X. For X ′ ⊆ X, we define C|X′ := {C ∩X ′| C ∈ C}. We treat
concepts and hypotheses interchangeably as subsets of X and as 0, 1-valued
functions on X. A labeled example is a pair (x, l) with x ∈ X and l ∈ {0, 1}.
A labeled sample is a set of labeled examples. For every labeled sample S, we
define X(S) = {x ∈ X | (x, 0) ∈ S or (x, 1) ∈ S}. Further, Cons(S,H) is the
set of all hypotheses in H that are consistent with S, i.e., Cons(S,H) = {H ∈
H | H(x) = l for all (x, l) ∈ S}. S is called C-realizable if Cons(S, C) 6= ∅. The
VC-dimension of the class C, denoted by VCD(C), is defined as the cardinality
of the largest X ′ ⊆ X such that C|X′ is the power set of X ′.

2.1 Sample Compression

A sample compression scheme [1] of size k for the class C consists of a compression
function f and a reconstruction function g. The compression function f maps
every C-realizable sample S to a subset of size at most k, called compression set.
The reconstruction function g maps any compression set f(S) to a hypothesis
g(f(S)) ⊆ X, where

∀ (x, l) ∈ S : g(f(S))(x) = l ,

i.e., g(f(S)) is consistent with the original sample set S. The set H = {g(f(S)) |
S is a C-realizable sample} consists of all hypotheses that are used by the com-
pression scheme. Obviously, the hypothesis class H must be at least as power-
ful as C, i.e., C ⊆ H. A sample compression scheme fulfilling H = C is called
proper. We often write “(C,H)-scheme” as an abbreviation of “sample compres-
sion scheme for C using hypotheses from H”.



Let (f, g) represent a scheme. We say that two labeled samples S′, S′′ are
g-equivalent if g(S′) = g(S′′). We can certainly normalize schemes according to
the following policy: S′ = f(S) is always chosen as a subset of S of minimal size
among all subsets of S that are g-equivalent to S′. We will henceforth implicitly
assume that a scheme is normalized in this sense.

An important open question is whether any class C has a sample compression
scheme of size linear in VCD(C), or even of size equal to VCD(C) [2].

2.2 Teaching

Following Goldman and Kearns [13] and Shinohara and Miyano [14], a set S of
labeled examples is called a teaching set for a concept C ∈ C (with respect to C)
if C is the only concept in C that is consistent with S, i.e., if Cons(S, C) = {C}.
By T S(C, C) we denote the set of all teaching sets for C with respect to C.
TD(C, C) = min{|S| | S ∈ T S(C, C)} denotes the smallest possible size of a
teaching set for C with respect to C. According to Zilles et al. [12], a teaching
plan for a class C = {C1, . . . , Cm} of cardinality m is a sequence

P = ((C1, S1), . . . , (Cm, Sm))

in which St ∈ T S(Ct, {Ct, . . . , Cm}) for all t = 1, . . . ,m. The order of P is
defined as ord(P ) = max{|St| | 1 ≤ t ≤ m}. The recursive teaching dimension
of C, denoted by RTD(C), is the minimum order over all teaching plans of C,
and is always witnessed by a teaching plan P = ((C1, S1), . . . , (Cm, Sm)) for C
in which, for all t ∈ {1, . . . ,m},

– Ci is chosen from Ct = {Ct, Ct+1, . . . , Cm} such that
TD(Ct, Ct) = minC∈Ct(TD(C, Ct)).

– St is a smallest possible teaching set for Ct with respect to Ct.

The notion
RTD∗(C) = max

X′⊆X
(RTD(C|X′))

was introduced by Doliwa et al. [6].

3 Properties of Order Compression Schemes

We will now introduce order compression schemes, a notion that is inspired by
Fan’s work [15] and that is central to this paper:

Definition 1. Let H = {H1, . . . ,Hm} be a hypothesis class over X and let
C ⊆ H. Let < be a total order on H, say H1 < H2 < . . . < Hm. An order
compression scheme for (C,H) with respect to < is a pair (f, g) of mappings that
satisfies the following properties for all C-realizable samples S:

1. Let t be largest number such that Ht is consistent with S. Then f(S) is a
smallest subset of S that is a teaching set for Ht with respect to {Ht, . . . ,
Hm}.



2. Let t be the largest number such that Ht is consistent with f(S). Then
g(f(S)) = Ht.

Because the definition of f and g is constructive it is clear that any order
over a hypothesis class induces an order compression scheme.

The similarly obvious observation, that the t in the first and second part of
Definition 1 must be the same number, shows that any such scheme is indeed a
compression scheme:

Proposition 1. Let H = {H1, . . . ,Hm} be any hypothesis class over X and
C ⊆ H. Then any order compression scheme using hypotheses from H is a (C,H)-
scheme.

Since order compression schemes are compression schemes, we are particu-
larly interested in their size:

Definition 2. The order compression number of a pair (C,H), denoted by
OCN(C,H), is the minimum size of an order (C,H)-scheme (where the mini-
mum is taken over all total orderings of H).

The following example shows that non-proper order compression schemes can
be greatly superior to proper ones. In particular, there are concept classes for
which the smallest possible non-proper order compression scheme is of size 1,
while the smallest possible proper schemes can be arbitrarily large:

Example 1. Let C = {{0}, . . . , {n − 1}} be the class of singletons, and let H =
C ∪ {∅}. The improper order compression scheme with respect to the ordering
{0} < . . . < {n− 1} < ∅ is easily seen to be of size 1:

– A C-realizable sample S including a positive example, say (k, 1), is com-
pressed to {(k, 1)}.

– All other samples are compressed to ∅.

Note that {(k, 1)} is a teaching set for {k} with respect to H, and ∅ is a teaching
set for ∅ with respect to {∅}. Thus, the described compression mapping respects
the policy of order compression schemes. The compressed sets are of size at most
1. We thus obtain OCN(C,H) = 1.

By contrast, consider proper order compression schemes for C. For reasons of
symmetry, we may assume that {0} < . . . < {n− 1} is the underlying ordering.
The sample S = {(1, 0), . . . , (n − 1, 0)} is a teaching set for {0}. However, any
compression to a proper subsample would be decompressed to some {i} such that
i > 0, which is an inconsistency to (i, 0) ∈ S. It follows that OCN(C, C) = n− 1.

It should be noted that general compression schemes for the class C of sin-
gletons can be made proper and of size 1 at the same time:

– A sample S including a positive example is compressed as described above
for order compression schemes.

– A non-empty C-realizable sample S not including positive examples can be
of size at most n− 1. Let k ∈ {0, . . . , n− 1} be an index such that k occurs
in S but k + 1 mod n does not. Then S is compressed to {(k, 0)} (resolving
ambiguities in favor of smaller indexes).



Clearly, {(k, 1)} is decompressed to {k}, and {(k, 0)} is decompressed to {k +
1 mod n}. We obtain a proper compression scheme of size 1 for the class of
singletons.

This example raises the question of what is the optimal choice for the hy-
pothesis class H ⊇ C. The best choice for H leads us to the order compression
number of a class C which is formally defined as follows:

Definition 3. The order compression number of C, denoted by OCN(C), is the
minimum of OCN(C,H) over the choice of H ⊇ C.

Theorem 1. Let X denote the domain of the classes H and C ⊆ H, and let
X ′ ⊆ X. Then, OCN(C,H) ≥ OCN(C|X′ ,H|X′).

Proof. Let H1 < . . . < Hm be the ordering of H = {H1, . . . ,Hm} such that the
corresponding order compression scheme has size OCN(C,H). For i = 1, . . . ,m,
let H ′i denote the restriction of Hi to X ′. Note that i 6= j does not necessarily
imply H ′i 6= H ′j since different hypotheses might coincide on X ′. Let m′ ≤ m
denote the number of distinct restrictions. Pick indices i(1) < . . . < i(m′) such
that the sequence H ′i(1), . . . ,H

′
i(m′) contains every restriction exactly once and,

subject to this constraint, the indices i(j) are chosen as large as possible, i.e., for
every hypothesis from H|X′ , we select the latest representative in the sequence
H1, . . . ,Hm. Consider now the order compression scheme for (C|X′ ,H|X′) with
H ′i(1) < . . . < H ′i(m′) as the underlying ordering. Let S′ be a C-realizable sample

over the restricted domain X ′, and let t ∈ [m] be the largest index such that Ht ∈
Cons(S,H). The definition of order compression schemes implies that f(S) ⊆
S ⊆ X ′ is a smallest teaching set for Ht with respect to {Ht, . . . ,Hm}. By the
maximality of t, Ht is the latest representative of H ′t in the sequence H1, . . . ,Hm

so that t = i(τ) for some τ ∈ [m′]. Thus, τ ∈ [m′] is the largest index such that
H ′t = H ′i(τ) ∈ Cons(S,H|X′). Clearly, f(S) ⊆ S ⊆ X ′ is a teaching set for H ′t
with respect to H′τ := {H ′i(τ), . . . ,H

′
i(m′)}. It follows that the size of the smallest

teaching set for H ′t with respect to H′τ is bounded by |St|. We obtain an order
(C|X′ ,H|X′)-scheme whose size is bounded from above by OCN(C,H). ut

Corollary 1. For every X ′ ⊆ X: OCN(C) ≥ OCN(C|X′).

Proof. The result is obtained from Theorem 1 as follows:

OCN(C) = min
H

OCN(C,H) ≥ min
H

OCN(C|X′ ,H|X′)

≥ min
H′

OCN(C|X′ ,H′) = OCN(C|X′)

ut

A useful tool for analyzing order compression schemes in particular and com-
pression schemes (f, g) in general is the “compression graph”, a digraph that we
introduce in



Definition 4. Let (f, g) be a (C,H)-scheme. The digraph Gcomp(f, g) = (V,E),
called compression graph associated with (f, g), is given as follows:

1. V equals the set of hypotheses H.
2. For any H1, H2 ∈ H, (H1, H2) ∈ E if there exists a C-realizable labeled

sample S such that both H1 and H2 are consistent with f(S) and g(f(S)) =
H2.

A compression scheme (f, g) is called acyclic if the induced compression graph
is acyclic.

For illustration, Figure 1 shows the compression graphs of the compression
schemes from Example 1 for the case n = 4.

{0} {1}

{2}{3}

∅

(a)

{0} {1}

{2}{3}

(b)

{0} {1}

{2}{3}

(c)

Fig. 1. The compression graphs of the compression schemes from Example 1 for the
class C = {{0}, {1}, {2}, {3}}: (a) results from the acyclic improper scheme of size 1
with H = C ∪ {∅}, (b) results from an acyclic proper scheme of size 3, and (c) results
from the cyclic proper scheme of size 1 (assuming that the empty set is decompressed
to {3}, which yields an additional edge from {2} to {3}.)

The following result presents a useful characterization of order compression
schemes, which we will exploit several times in Section 5:

Theorem 2. For any (C,H)-scheme (f, g), the following holds: the compression
scheme (f, g) is acyclic iff (f, g) is an order compression scheme.

Proof. Assume first that (f, g) is an order compression scheme. Let H1 < . . . <
Hm be the underlying ordering of the hypotheses from H. Pick an arbitrary
edge (Hi, Hj) of the compression graph G associated with (f, g). The definition
of compression graphs implies that there exists a sample S such that S is real-
izable by C, Hi, Hj ∈ Cons(f(S),H) and g(f(S)) = Hj . The definition of order
compression schemes implies that j > i. Thus, G is acyclic.
Assume now that the compression graph G = (V,E) associated with (f, g) is
acyclic. Let H1 < . . . < Hm be a topological ordering of V = H. Let S be an
arbitrary sample that is realizable by C, let S′ = f(S) and let Hj = g(S′). The
definition of compression graphs implies that, for every Hi ∈ Cons(S′,H), the
edge (Hi, Hj) belongs to E. Since the hypotheses are ordered topologically, we
may conclude that

j = max{i : Hi ∈ Cons(S′,H)} . (1)



This is precisely how decompression proceeds in an order compression scheme. It
now suffices to show that the compression function f agrees with the definition
of an order compression scheme too. To this end, let S be a sample that is
realizable by C, and let t ∈ [m] be maximum such that Ht ∈ Cons(S,H). In
particular, Ht+1, . . . ,Hm are not consistent with S. Let S′ = f(S) and Hj =
g(S′). According to the definition of schemes, Hj actually is consistent with S so
that Hj ∈ {H1, . . . ,Ht}. As already mentioned earlier in this proof, the definition
of compression graphs implies that j satisfies (1). Since Ht is consistent with S,
it is certainly consistent with S′ ⊆ S too. Since, as mentioned before, Hj ∈
{H1, . . . ,Ht}, we may conclude that g(f(S)) = Hj = Ht. We remind the reader
that we implicitly assume all compression functions f to pick subsets of S of
minimal size among all g-equivalent ones. It follows that f(S) = S′ is a smallest
subset of S whose g-image is Ht. Furthermore, since g acts like a decompression
function of an order compression scheme, it follows that S′, among all subsets
of S, is a smallest teaching set for Ht with respect to {Ht, Ht+1, . . . ,Hm}. Since
this is precisely how compression should proceed in order compression schemes,
we are done. ut

Note that the proof of Theorem 2 implies the following: the total orders on
H that induce order compression schemes with an acyclic compression graph
G = (V,E) are precisely the topological orderings of V .

4 Order Compression Schemes and Teaching

The definition of order compression schemes bears some similarity to the model
of recursive teaching [12], and the notion of order compression number hence is
related to the complexity parameter of this teaching model, namely the recursive
teaching dimension.

Let C ⊆ H = {H1, . . . ,Hm}, and let P = ((H1, S1), . . . , (Hm, Sm)) be a
teaching plan forH. Then P is called realizable by C if the samples S1, . . . , Sm are
realizable by C. P is called inclusion-minimal with respect to C if P is realizable
by C and, for every t ∈ [m], there is no proper subset of St that is a teaching
set for Ht with respect to {Ht, Ht+1, . . . ,Hm}. P is called a maximal (C,H)-
plan (among the inclusion-minimal ones) if, for every t ∈ [m], St is of largest
cardinality among all C-realizable inclusion-minimal teaching sets for Ht with
respect to {Ht, Ht+1, . . . ,Hm}.

Theorem 3. There is an order (C,H)-scheme of size k iff there is a maximal
(C,H)-plan of order k.

Proof. Let (f, g) represent an order (C,H)-scheme of size k, and let H1 < . . . <
Hm be the underlying ordering ofH = {H1, . . . ,Hm}. According to the definition
of (C,H)-schemes, there must exist a sample St such that St is realizable by C
and g(f(St)) = Ht. According to the definition of order compression schemes,
t is maximum subject to Ht ∈ Cons(f(St),H). Thus, f(St) is a teaching set
for Ht with respect to {Ht, Ht+1, . . . ,Hm} (and f(St) is inclusion-minimal with



this property by our implicit assumption of dealing with normalized schemes
only). Since f(St) ⊆ St and St is realizable by C, f(St) is realizable by C too. It
follows from this discussion that the teaching sets f(St) such that g(f(St)) = Ht

represent a teaching plan that is inclusion-minimal with respect to C. In order
to get a maximal (C,H)-plan, we proceed as described above, with the following
exception: St such that g(f(St)) = Ht is not chosen arbitrarily but as a set
of maximal size among all C-realizable inclusion-minimal teaching sets for Ht

with respect to {Ht, Ht+1, . . . ,Hm}. In this case, f(St) = St, and we obtain a
maximal (C,H)-plan of order k.

Suppose now that P = ((H1, S1), . . . , (Hm, Sm)) is a maximal (C,H)-plan of
order k. Consider the order (C,H)-scheme with H1 < . . . < Hm as the underly-
ing ordering. Let S be a C-realizable sample and let t be maximum subject to
Ht ∈ Cons(S,H). Then S is a C-realizable teaching set for Ht with respect to
{Ht, Ht+1, . . . ,Hm}. Recall that order compression maps S to a smallest S′ ⊆ S
that is still a teaching set for Ht with respect to {Ht, Ht+1, . . . ,Hm}. Then
clearly |S′| ≤ |St| ≤ k because St is the teaching set for Ht with respect to
{Ht, Ht+1, . . . ,Hm} taken from a maximal (C,H)-plan P . The discussion shows
that the order (C,H)-scheme with H1 < . . . < Hm as the underlying ordering is
of size k. ut

Theorem 3 leads to the following lower bound on OCN.

Lemma 1. For every concept class C: OCN(C) ≥ RTD(C).

Proof. Choose H such that OCN(C) = OCN(C,H). Let P be a teaching plan
for H that is realizable by C ⊆ H (e.g., a maximal (C,H)-plan). According to
Theorem 3, it suffices to show that the order of P is lower-bounded by RTD(C).
To this end, we define the plan PC , called the projection of P on C, as follows:
PC is obtained from P by deletion of all items (Hi, Si) such that Hi /∈ C. It is
obvious that PC is a valid teaching plan for C, and the order of PC is smaller
than or equal to the order of P . Thus, OCN(C) ≥ RTD(C). ut

The definition of RTD∗ implies that RTD∗(C) ≥ RTD(C), and it is easy
to find classes for which RTD∗ is considerably larger than RTD. Thus it is
remarkable that Lemma 1 can be strengthened as follows:

Theorem 4. OCN(C) ≥ RTD∗(C).

Proof. Let H = {H1, . . . ,Hm} be a hypothesis class such that OCN(C) =
OCN(C,H). Let X be the domain of C and of H. Let X ′ ⊆ X such that
RTD∗(C) = RTD(C|X′). With this notation, the following holds:

OCN(C) = OCN(C,H)
Th.1
≥ OCN(C|X′ ,H|X′)

L.1
≥ RTD(C|X′ ,H|X′) = RTD∗(C)

This proves the theorem. ut



Since RTD∗(C) ≥ VCD(C) (see [6]), we immediately obtain the following
corollary from Theorem 4:

Corollary 2. OCN(C) ≥ VCD(C).

It is known from previous work that VCD can exceed RTD by an arbitrary
amount [6]. Thus, Corollary 2 implies that also OCN can exceed RTD by an
arbitrary amount.

Example 2 below presents a concept class CMW such that VCD(CMW ) = 2
and OCN(CMW ) = 3, thereby showing that the inequality OCN(C) ≥ VCD(C)
can be strict occasionally. By means of padding, it is easy to find classes C of
arbitrarily large VC-dimension such that OCN(C) = 1.5 · VCD(C). However, at
the time being, it is not known whether the gap can be made larger than a factor
of 1.5.

Example 2. Consider the class CMW in Figure 2, which was found by Man-
fred Warmuth (personal communication). It is the smallest concept class for
which RTD exceeds VCD [5]. In this particular example, RTD(CMW ) = 3, while
VCD(CMW ) = 2.

CMW x1 x2 x3 x4 x5

C1 1 1 0 0 0
C2 0 1 1 0 0
C3 0 0 1 1 0
C4 0 0 0 1 1
C5 1 0 0 0 1
C6 0 1 0 1 1
C7 0 1 1 0 1
C8 1 0 1 1 0
C9 1 0 1 0 1
C10 1 1 0 1 0

(a) CMW given as a table of con-
cepts.

x1

x2

x3 x4

x5

(b) All concepts in CMW are given ei-
ther by the vertices of the solid edges
or by the complements of the vertices
of the dashed edges.

Fig. 2. The smallest compression schemes for the concept class CMW are always cyclic.
Part (b) is a nice visualization of this concept class.

An improper sample compression scheme (f, g) for CMW of size 2 can be
defined as follows (there also exists a proper, but more involved scheme of the
same size): any set S that is homogeneously labeled is compressed to the empty
set (in the case of label 1) or a single example with label 0 (in the other case). If
S has mixed labels we consider the following cases: sets that contain exactly one
or two examples with label 1 are compressed to these one or two examples. Sets
that contain three examples with label 1 and two with label 0 are compressed to
the two 0-labeled examples. Since X consists of five elements, only the following



case is left: S contains three or four 1-labeled examples and exactly one 0-
labeled example. In that case S is compressed to any pair with mixed labels.
The decompression of f(S) proceeds in the obvious way: if f(S) consists exactly
of one or two 1-labeled examples or of a single 0-labeled example, g chooses the
label 0 for all points outside of f(S). Otherwise g assigns the label 1 to these
points.

Note that the compression graph G = (V,E) for this scheme has cycles.
For instance, there is a loop between the two hypotheses H = {x2} and H ′ =
{x2, x3, x5}; the edge (H ′, H) ∈ E is witnessed by the sample {(x1, 0), (x2, 1)}
(this also shows that indeed H ∈ H), while (H,H ′) ∈ E is witnessed by
{(x1, 0), (x2, 1), (x3, 1), (x4, 0), (x5, 1)}.

In fact, we already know that no sample compression scheme of size 2 for
CMW can be acyclic since OCN(CMW ) ≥ RTD(CMW ) = 3. The reverse direction
OCN(CMW ) ≤ 3 is obtained by the following claim which provides us with a
proper order scheme of size 3:

Every CMW -realizable sample S contains a subsample S′ of size at most 3
such that every concept from CMW which is consistent with S′ is consistent with
S too. The claim is obvious if |S| ≤ 3. It is obvious if |S| = 5 because every
concept has a teaching set of size 3 (consisting either of three positive or of three
negative examples). Let now |S| = 4. If S still contains one of the teaching sets
of size 3, we are done. Otherwise we may assume for reasons of symmetry that
S = {(x1, 0), (x2, 1), (x3, 1), (x4, 0)}. But then S′ = {(x1, 0), (x2, 1), (x3, 1) fits
our purpose.

Example 2 demonstrates that the size of the best order scheme (with acyclic
compression graph) can occasionally be larger than the size of the best arbitrary
scheme (with a non-acyclic compression graph).

5 Order Schemes for Special Classes

The following families of concept classes C are known to have sample compression
schemes of size VCD(C):

– the family F∩ of intersection-closed classes,
– the family Fmax of maximum classes,
– the family FDudley of Dudley classes,
– the family F1 of classes of VC-dimension 1.

In the sequel, we show that (some of) the standard sample compression
schemes for classes from these families induce an acyclic compression graph so
that, according to Theorem 2, they actually are order schemes. Before start-
ing our investigation with intersection-closed and maximum classes, we briefly
remind the reader of some standard definitions and facts. A class C is called
intersection-closed if the intersection of any two concepts from C is itself a con-
cept in C as well. For T ⊆ X, 〈T 〉C denotes the unique smallest concept in C con-
taining T . A spanning set for a set T ⊆ X is a set T ′ ⊆ T such that 〈T ′〉C = 〈T 〉C .



It is called minimal if no proper subset T ′′ of T ′ satisfies 〈T ′′〉C = 〈T ′〉C . It is
well known that the size of any minimal spanning set is bounded from above by
VCD(C) [16, 17].

A class C of VC-dimension d over a domain X of cardinality n is called
maximum if |C| =

∑d
i=0

(
n
i

)
[9, 10]. The following definition was introduced by

Kuzmin and Warmuth [7]. An unlabeled sample compression scheme for a max-
imum class C of VC-dimension d is given by a bijective mapping r that assigns
to every concept C ∈ C a set r(C) ⊆ X of size at most d such that the following
condition, referred to as the non-clashing property, is satisfied:

∀C 6= C ′ ∈ C,∃x ∈ r(C) ∪ r(C ′) : C(x) 6= C ′(x) (2)

As shown in [7], the non-clashing property guarantees that, for every C-realiz-
able sample S, there is exactly one concept C ∈ C that is consistent with S
and satisfies r(C) ⊆ X(S). This allows to compress S by f(S) = r(C) and to
decompress r(C) by g(r(C)) = C, i.e., the decompression function g is the inverse
of the bijective function r. The acyclic non-clashing property with respect to an
ordering C1 < . . . < Cm of the concepts in C = {C1, . . . , Cm} is the following
modification of (2):

∀1 ≤ i < j ≤ m,∃x ∈ r(Ci) : Ci(x) 6= Cj(x) (3)

For instance, the representation function resulting from the Tail Matching Al-
gorithm [7] has the acyclic non-clashing property.

Theorem 5. There are proper order schemes for C of size VCD(C) provided
that C is intersection-closed or maximum.

Proof. First, suppose that C is intersection-closed. Let S be a C-realizable sam-
ple, and let S+ be the subsample consisting precisely of all positive examples in
S. Then the standard scheme (known to be of size VCD(C)) compresses S to a
minimal spanning set S′ ⊆ S+ for S+. A sample S′ = f(S) (always consisting of
positive examples only) is decompressed to the smallest set in C that contains
S′, i.e., g(S′) = 〈X(S′+)〉C . Consider now the compression graph G associated
with (f, g). Every sample S′ = f(S) induces edges leading from concepts prop-
erly containing 〈X(S′+)〉C to 〈X(S′+)〉C . Since edges always lead from sets to
proper subsets, G is acyclic. We may therefore conclude from Theorem 2 that
the scheme is an order scheme.

Second, suppose that C is a maximum class. We will argue that the scheme
(f, g) induced by a representation function r is an order scheme provided that r
satisfies (3). Again it suffices to show that the compression graph G associated
with (f, g) is acyclic. To this end, let (Ci, Cj) be an edge in G. Thus there
exists a sample S such that Ci, Cj ∈ Cons(S, C) and Cj = g(f(S)). The latter
condition is equivalent to Cj being the unique concept that is consistent with
S and satisfies r(Cj) ⊆ X(S). Since both of Ci, Cj are consistent with S, they
do not disagree on r(Cj). According to the acyclic non-clashing property, they
disagree on r(Ci) and i < j. Thus edges in G always go from smaller to larger
indexes so that G is acyclic. ut



The proper order schemes for the classes mentioned in Theorem 5 can be
used as (non-proper) order-schemes for subclasses. The family of subclasses of
maximum classes is very rich and comprises the so-called Dudley classes.

Definition 5 (Dudley [11]). Let F be a vector space of real-valued functions
over some domain X and h : X → R. For every f ∈ F , let

Cf (x) :=

{
1, if f(x) + h(x) ≥ 0

0, else
.

Then DF,h = {Cf |f ∈ F} is called a Dudley class. The dimension of DF,h is
equal to the dimension of the vector space F .

Some popular examples of Dudley classes include:

– collections of half spaces over Rn, which are very common objects of study
in machine learning, such as in artificial neural networks and support vector
machines, see, e.g., [18],

– unions of at most k intervals over R,
– n-dimensional balls.

Now, the following well-known result comes into play:

Lemma 2 (Ben-David and Litman [4]). Dudley classes of dimension k are
embeddable in maximum classes of VC-dimension k.

Lemma 2 combined with Theorem 5 yields

Corollary 3. Let C be a Dudley class. Then C has a (possibly improper) order
scheme of size VCD(C).

Another family for which we obtain order schemes of size VC-dimension is
the one consisting of all classes of VC-dimension 1. Such classes are known to
be contained in maximum classes of VC-dimension 1 [19].

Corollary 4. Let C be a concept class of VC-dimension 1. Then C has a (pos-
sibly improper) order scheme of size 1.

In combination, we obtain:

Corollary 5. OCN(C) = VCD(C) provided that C belongs to at least one of the
families F∩,Fmax,FDudley,F1.

Finally, we can generalize our result on intersection-closed classes to the case
of nested differences of such classes. A nested difference of depth d over C is a
concept C1 \ (C2 \ (. . . (Cd−1 \ Cd) . . .)) where each Ci belongs to C. The class
of nested differences of depth at most d over C is denoted by DIFF≤d(C). Our
generalization of the result on intersection-closed classes is the following.

Theorem 6. OCN(DIFF≤d(C)) ≤ d · VCD(C) provided that C is intersection-
closed.



In the proof of this theorem, we assume that any concept in DIFF≤d(C) is
given in a normal form as follows (see [6]). We can represent C ∈ H as

C = C1 \
=:D1︷ ︸︸ ︷

(C2 \ (· · · (Cd−1 \ Cd) · · · )) (4)

such that for every j it holds that Cj ∈ C ∪ {∅} and, unless Cj = ∅, Cj+1 is
a proper subset of Cj . Then, for Dj = Cj+1 \ (Cj+2 \ (. . . (Cd−1 \ Cd) . . .)), we
can assume that the representation of the form (4) is minimal in the sense that
Cj = 〈Cj \Dj〉C holds for all 1 ≤ j ≤ d.

Proof. Let H = DIFF≤d(C). We define a partial order A on H. Given two con-
cepts C,C ′ ∈ H let C = C1 \D1 and C = C ′1 \D′1 be their normalized represen-
tations. Then C A C ′ iff C1 ⊃ C ′1 or C1 = C ′1 ∧D1 A D′1.

Let (H1, . . . ,Hm) be any order over H such that j < i if Hj A Hi and let
(f, g) be the corresponding proper order scheme.

Recall that, given a H-realizable sample S, the compression function f finds
the largest t such that Ht ∈ Cons(S,H) and then compresses S to a teaching
set for Ht with respect to {Ht, . . . ,Hm}. We will now describe a method for
constructing this hypothesis Ht: let S1 = {x|(x, 1) ∈ S} and C1 = 〈S1〉C , i.e.,
C1 is the smallest concept in C that is consistent with all examples in S that are
labeled with 1. Note that C1 can be inconsistent with some of the examples in
S that are labeled with 0 – hence, let S2 = {x ∈ C1|(x, 0) ∈ S} and C2 = 〈S2〉C .
Then C1 \C2 itself can disagree with some S on some examples contained with
label 1 in S. Again, let S3 = {x ∈ C2|(x, 1) ∈ S} and C3 = 〈S3〉C . Proceed
inductively in this manner until the nested difference HS = C1\(C2\(. . . (Cd−1\
Cd) . . .)) is consistent with S. This procedure will find a concept consistent with
S in at most d steps, because of the normal form assumption on all the underlying
concepts in H. By construction, every H ∈ Cons(S,H) fulfills H w HS , and thus
HS is the last concept in the underlying order that is consistent with S. Hence,
HS equals the desired concept Ht. Now f(S) is a smallest teaching set for Ht

with respect to {Ht, . . . ,Hm}, among the subsets of S.
We can now give an upper bound on the size of the order compression scheme

defined above: for any i, let S′i ⊆ Si be smallest such that 〈S′i〉C = 〈Si〉C , i.e. S′i
is a minimal spanning set. Augment the instances of S′i by the label 1 if i is odd
and by 0 otherwise. Then let S′ be the union over all S′i for 1 ≤ i ≤ d. It follows
that S′ is a (not necessarily minimal) teaching set for Ht in {Ht, . . . ,Hm}. Thus
|f(S)| ≤ |S′| and, because |S′i| ≤ VCD(C), we obtain |f(S)| ≤ d ·VCD(C). ut

6 Conclusions

Order compression schemes obey a very simple structure and exhibit interesting
connections to teaching and graph theory. Furthermore, in most of the cases
where the sample compression conjecture is known to be true, it can already be
verified using order compression schemes. We hence believe that order compres-
sion schemes provide a useful notion for studying sample compression schemes
in general.



While we presented a number of important fundamental properties of order
compression schemes, several questions remain open, most notably the question
of how VCD and OCN relate in general. One of many challenges in this context
could be to devise a method for finding a best possible hypothesis space H for
C, so that an order compression scheme for H induces the best possible order
compression scheme for C, i.e., so that OCN(C,H) = OCN(C).
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