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Abstract
We introduce a new model of teaching named “preference-based teaching” and a corresponding
complexity parameter—the preference-based teaching dimension (PBTD)—representing the worst-
case number of examples needed to teach any concept in a given concept class. Although the PBTD
coincides with the well-known recursive teaching dimension (RTD) on finite classes, it is radically
different on infinite ones: the RTD becomes infinite already for trivial infinite classes (such as
half-intervals) whereas the PBTD evaluates to reasonably small values for a wide collection of
infinite classes including classes consisting of so-called closed sets w.r.t. a given closure operator,
including various classes related to linear sets over N0 (whose RTD had been studied quite recently)
and including the class of Euclidean half-spaces. On top of presenting these concrete results, we
provide the reader with a theoretical framework (of a combinatorial flavor) which helps to derive
bounds on the PBTD.
Keywords: teaching dimension, preference relation, recursive teaching dimension, learning half-
spaces, linear sets

1. Introduction

The classical model of teaching (Shinohara and Miyano, 1991; Goldman and Kearns, 1995) formu-
lates the following interaction protocol between a teacher and a student:

• Both of them agree on a “classification-rule system”, formally given by a concept class L.

• In order to teach a specific concept L ∈ L, the teacher presents to the student a teaching set,
i.e., a set T of labeled examples so that L is the only concept in L that is consistent with T .

• The student determines L as the unique concept in L that is consistent with T .

Goldman and Mathias (1996) pointed out that this model of teaching is not powerful enough,
since the teacher is required to make any consistent learner successful. A challenge is to model
powerful teacher/student interactions without enabling unfair “coding tricks”. Intuitively, the term
“coding trick” refers to any form of undesirable collusion between teacher and learner, which would
reduce the learning process to a mere decoding of a code the teacher sent to the learner. There is no

c©2017 Ziyuan Gao, Christoph Ries, Hans U. Simon, and Sandra Zilles.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v18/16-460.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-460.html


GAO ET AL.

generally accepted definition of what constitutes a coding trick, in part because teaching an exact
learner could always be considered coding to some extent: the teacher presents a set of examples
which the learner “decodes” into a concept.

In this paper, we adopt the notion of “valid teacher/learner pair” introduced by Goldman and
Mathias (1996). They consider their model to be intuitively free of coding tricks while it provably
allows for a much broader class of interaction protocols than the original teaching model. In partic-
ular, teaching may thus become more efficient in terms of the number of examples in the teaching
sets. Further definitions of how to avoid unfair coding tricks have been suggested (Zilles et al.,
2011), but they were less stringent than the one proposed by Goldman and Mathias. The latter
simply requests that, if the learner hypothesizes concept L upon seeing a sample set S of labeled
examples, then the learner will still hypothesize Lwhen presented with any sample set S∪S′, where
S′ contains only examples labeled consistently with L. A coding trick would then be any form of
exchange between the teacher and the learner that does not satisfy this definition of validity.

The model of recursive teaching (Zilles et al., 2011; Mazadi et al., 2014), which is free of
coding tricks according to the Goldman-Mathias definition, has recently gained attention because
its complexity parameter, the recursive teaching dimension (RTD), has shown relations to the VC-
dimension and to sample compression (Chen et al., 2016; Doliwa et al., 2014; Moran et al., 2015;
Simon and Zilles, 2015), when focusing on finite concept classes. Below though we will give
examples of rather simple infinite concept classes with infinite RTD, suggesting that the RTD is
inadequate for addressing the complexity of teaching infinite classes.

In this paper, we introduce a model called preference-based teaching, in which the teacher and
the student do not only agree on a classification-rule system L but also on a preference relation (a
strict partial order) imposed on L. If the labeled examples presented by the teacher allow for several
consistent explanations (= consistent concepts) in L, the student will choose a concept L ∈ L that
she prefers most. This gives more flexibility to the teacher than the classical model: the set of
labeled examples need not distinguish a target concept L from any other concept in L but only from
those concepts L′ over which L is not preferred.1 At the same time, preference-based teaching
yields valid teacher/learner pairs according to Goldman and Mathias’s definition. We will show that
the new model, despite avoiding coding tricks, is quite powerful. Moreover, as we will see in the
course of the paper, it often allows for a very natural design of teaching sets.

Assume teacher and student choose a preference relation that minimizes the worst-case number
M of examples required for teaching any concept in the class L. This number M is then called the
preference-based teaching dimension (PBTD) of L. In particular, we will show the following:

(i) Recursive teaching is a special case of preference-based teaching where the preference re-
lation satisfies a so-called “finite-depth condition”. It is precisely this additional condition that
renders recursive teaching useless for many natural and apparently simple infinite concept classes.
Preference-based teaching successfully addresses these shortcomings of recursive teaching, see Sec-
tion 3. For finite classes, PBTD and RTD are equal.

(ii) A wide collection of geometric and algebraic concept classes with infinite RTD can be taught
very efficiently, i.e., with low PBTD. To establish such results, we show in Section 4 that spanning
sets can be used as preference-based teaching sets with positive examples only — a result that is
very simple to obtain but quite useful.

1. Such a preference relation can be thought of as a kind of bias in learning: the student is “biased” towards concepts
that are preferred over others, and the teacher, knowing the student’s bias, selects teaching sets accordingly.
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(iii) In the preference-based model, linear sets over N0 with origin 0 and at most k generators
can be taught with k positive examples, while recursive teaching with a bounded number of positive
examples was previously shown to be impossible and it is unknown whether recursive teaching
with a bounded number of positive and negative examples is possible for k ≥ 4. We also give some
almost matching upper and lower bounds on the PBTD for other classes of linear sets, see Section 6.

(iv) The PBTD of halfspaces inRd is upper-bounded by 6, independent of the dimensionality d
(see Section 7), while its RTD is infinite.

(v) We give full characterizations of concept classes that can be taught with only one example
(or with only one example, which is positive) in the preference-based model (see Section 8).

Based on our results and the naturalness of the teaching sets and preference relations used in
their proofs, we claim that preference-based teaching is far more suitable to the study of infinite
concept classes than recursive teaching.

Parts of this paper were published in a previous conference version (Gao et al., 2016).

2. Basic Definitions and Facts

N0 denotes the set of all non-negative integers and N denotes the set of all positive integers. A
concept classL is a family of subsets over a universeX , i.e.,L ⊆ 2X where 2X denotes the powerset
of X . The elements of L are called concepts. A labeled example is an element of X × {−,+}.
We slightly deviate from this notation in Section 7, where our treatment of halfspaces makes it
more convenient to use {−1, 1} instead of {−,+}, and in Section 8, where we perform Boolean
operations on the labels and therefore use {0, 1} instead of {−,+}. Elements of X are called
examples. Suppose that T is a set of labeled examples. Let T+ = {x ∈ X : (x,+) ∈ T} and
T− = {x ∈ X : (x,−) ∈ T}. A set L ⊆ X is consistent with T if it includes all examples in T that
are labeled “+” and excludes all examples in T that are labeled “−”, i.e, if T+ ⊆ L and T−∩L = ∅.
A set of labeled examples that is consistent with L but not with L′ is said to distinguish L from L′.
The classical model of teaching is then defined as follows.

Definition 1 (Shinohara and Miyano (1991); Goldman and Kearns (1995)) A teaching set for a
concept L ∈ L w.r.t. L is a set T of labeled examples such that L is the only concept in L that is
consistent with T , i.e., T distinguishes L from any other concept in L. Define TD(L,L) = inf{|T | :
T is a teaching set for L w.r.t. L}. i.e., TD(L,L) is the smallest possible size of a teaching set for
L w.r.t. L. If L has no finite teaching set w.r.t. L, then TD(L,L) = ∞. The number TD(L) =
supL∈LTD(L,L) ∈ N0 ∪ {∞} is called the teaching dimension of L.

For technical reasons, we will occasionally deal with the number TDmin(L) = infL∈LTD(L,
L), i.e., the number of examples needed to teach the concept from L that is easiest to teach.

In this paper, we will examine a teaching model in which the teacher and the student do not only
agree on a classification-rule system L but also on a preference relation, denoted as ≺, imposed on
L. We assume that ≺ is a strict partial order on L, i.e., ≺ is asymmetric and transitive. The partial
order that makes every pair L 6= L′ ∈ L incomparable is denoted by ≺∅. For every L ∈ L, let

L≺L = {L′ ∈ L : L′ ≺ L}

be the set of concepts over which L is strictly preferred. Note that L≺∅L = ∅ for every L ∈ L.
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As already noted above, a teaching set T of L w.r.t. L distinguishes L from any other concept
in L. If a preference relation comes into play, then T will be exempted from the obligation to
distinguish L from the concepts in L≺L because L is strictly preferred over them anyway.

Definition 2 A teaching set for L ⊆ X w.r.t. (L,≺) is defined as a teaching set for L w.r.t. L\L≺L.
Furthermore define

PBTD(L,L,≺) = inf{|T | : T is a teaching set for L w.r.t. (L,≺)} ∈ N0 ∪ {∞} .

The number PBTD(L,≺) = supL∈L PBTD(L,L,≺) ∈ N0 ∪ {∞} is called the teaching dimen-
sion of (L,≺).

Definition 2 implies that

PBTD(L,L,≺) = TD(L,L \ L≺L) . (1)

Let L 7→ T (L) be a mapping that assigns a teaching set for L w.r.t. (L,≺) to every L ∈ L. It is
obvious from Definition 2 that T must be injective, i.e., T (L) 6= T (L′) if L and L’ are distinct con-
cepts from L. The classical model of teaching is obtained from the model described in Definition 2
when we plug in the empty preference relation ≺∅ for ≺. In particular, PBTD(L,≺∅) = TD(L).

We are interested in finding the partial order that is optimal for the purpose of teaching and we
aim at determining the corresponding teaching dimension. This motivates the following notion:

Definition 3 The preference-based teaching dimension of L is given by

PBTD(L) = inf{PBTD(L,≺) : ≺ is a strict partial order on L} .

A relationR′ onL is said to be an extension of a relationR ifR ⊆ R′. The order-extension prin-
ciple states that any partial order has a linear extension (Jech, 1973). The following result (whose
second assertion follows from the first one in combination with the order-extension principle) is
pretty obvious:

Lemma 4 1. Suppose that ≺′ extends ≺. If T is a teaching set for L w.r.t. (L,≺), then T is a
teaching set for L w.r.t. (L,≺′). Moreover PBTD(L,≺′) ≤ PBTD(L,≺).

2. PBTD(L) = inf{PBTD(L,≺) : ≺ is a strict linear order on L}.

Recall that Goldman and Mathias (1996) suggested to avoid coding tricks by requesting that any
superset S of a teaching set for a concept L remains a teaching set, if S is consistent with L. This
property is obviously satisfied in preference-based teaching. A preference-based teaching set needs
to distinguish a concept L from all concepts in L that are preferred over L. Adding more labeled
examples from L to such a teaching set will still result in a set distinguishing L from all concepts in
L that are preferred over L.
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Preference-based teaching with positive examples only. Suppose that L contains two concepts
L,L′ such that L ⊂ L′. In the classical teaching model, any teaching set for L w.r.t. L has to
employ a negative example in order to distinguish L from L′. Symmetrically, any teaching set for
L′ w.r.t. L has to employ a positive example. Thus classical teaching cannot be performed with one
type of examples only unless L is an antichain w.r.t. inclusion. As for preference-based teaching,
the restriction to one type of examples is much less severe, as our results below will show.

A teaching set T forL ∈ Lw.r.t. (L,≺) is said to be positive if it does not make use of negatively
labeled examples, i.e., if T− = ∅. In the sequel, we will occasionally identify a positive teaching set
T with T+. A positive teaching set for L w.r.t. (L,≺) can clearly not distinguish L from a proper
superset of L in L. Thus, the following holds:

Lemma 5 Suppose that L 7→ T+(L) maps each L ∈ L to a positive teaching set for L w.r.t. (L,≺).
Then ≺ must be an extension of ⊃ (so that proper subsets of a set L are strictly preferred over L)
and, for every L ∈ L, the set T+(L) must distinguish L from every proper subset of L in L.

Define

PBTD+(L,L,≺) = inf{|T | : T is a positive teaching set for L w.r.t. (L,≺)} . (2)

The number PBTD+(L,≺) = supL∈L PBTD+(L,L,≺) (possibly∞) is called the positive teach-
ing dimension of (L,≺). The positive preference-based teaching dimension of L is then given by

PBTD+(L) = inf{PBTD+(L,≺) : ≺ is a strict partial order on L} . (3)

Monotonicity. A complexity measure K that assigns a number K(L) ∈ N0 to a concept class L
is said to be monotonic if L′ ⊆ L implies that K(L′) ≤ K(L). It is well known (and trivial to see)
that TD is monotonic. It is fairly obvious that PBTD is monotonic, too:

Lemma 6 PBTD and PBTD+ are monotonic.

As an application of monotonicity, we show the following result:

Lemma 7 For every finite subclass L′ of L, we have PBTD(L) ≥ PBTD(L′) ≥ TDmin(L′).

Proof The first inequality holds because PBTD is monotonic. The second inequality follows from
the fact that a finite partially ordered set must contain a minimal element. Thus, for any fixed choice
of ≺, L′ must contain a concept L′ such that L′≺L′ = ∅. Hence,

PBTD(L′,≺) ≥ PBTD(L′,L′,≺)
(1)
= TD(L′,L′ \ L′≺L′) = TD(L′,L′) ≥ TDmin(L′) .

Since this holds for any choice of ≺, we get PBTD(L′) ≥ TDmin(L′), as desired.
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3. Preference-based versus Recursive Teaching

The preference-based teaching dimension is a relative of the recursive teaching dimension. In fact,
both notions coincide on finite classes, as we will see shortly. We first recall the definitions of the
recursive teaching dimension and of some related notions (Zilles et al., 2011; Mazadi et al., 2014).

A teaching sequence for L is a sequence of the form S = (Li, di)i≥1 where L1,L2,L3, . . . form
a partition of L into non-empty sub-classes and, for every i ≥ 1, we have that

di = sup
L∈Li

TD
(
L,L \ ∪i−1j=1Lj

)
. (4)

If, for every i ≥ 1, di is the supremum over all L ∈ Li of the smallest size of a positive teaching
set for L w.r.t. ∪j≥iLj (and di = ∞ if some L ∈ Li does not have a positive teaching set w.r.t.
∪j≥iLj), then S is said to be a positive teaching sequence for L. The order of a teaching sequence
or a positive teaching sequence S (possibly ∞) is defined as ord(S) = supi≥1 di. The recursive
teaching dimension of L (possibly ∞) is defined as the order of the teaching sequence of lowest
order for L. More formally, RTD(L) = infS ord(S) where S ranges over all teaching sequences
for L. Similarly, RTD+(L) = infS ord(S), where S ranges over all positive teaching sequences for
L. Note that the following holds for every L′ ⊆ L and for every teaching sequence S = (Li, di)i≥1
for L′ such that ord(S) = RTD(L′):

RTD(L) ≥ RTD(L′) = ord(S) ≥ d1 = sup
L∈L1

TD(L,L′) ≥ TDmin(L′) . (5)

Note an important difference between PBTD and RTD: while RTD(L) ≥ TDmin(L′) for all
L′ ⊆ L, in general the same holds for PBTD only when restricted to finite L′, cf. Lemma 7. This
difference will become evident in the proof of Lemma 10.

The depth of L ∈ L w.r.t. a strict partial order imposed on L is defined as the length of the
longest chain in (L,≺) that ends with the ≺-maximal element L (resp. as ∞ if there is no bound
on the length of these chains). The recursive teaching dimension is related to the preference-based
teaching dimension as follows:

Lemma 8 RTD(L) = inf≺ PBTD(L,≺) and RTD+(L) = inf≺ PBTD+(L,≺) where ≺ ranges
over all strict partial orders on L that satisfy the following “finite-depth condition”: every L ∈ L
has a finite depth w.r.t. ≺.

The following is an immediate consequence of Lemma 8 and the trivial observation that the
finite-depth condition is always satisfied if L is finite:

Corollary 9 PBTD(L) ≤ RTD(L), with equality if L is finite.

While PBTD(L) and RTD(L) refer to the same finite number when L is finite, there are classes
for which the RTD is infinity and yet the PBTD is finite, as Lemma 10 will show.

Lemma 10 There exists an infinite class L∞ of VC-dimension 1 such that PBTD+(L∞) = 1 and
RTD(L∞) =∞.
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Proof Let L∞ be the family of closed half-intervals over [0, 1), i.e., L∞ = {[0, a] : 0 ≤ a < 1}.
We first prove that PBTD+(L∞) = 1. Consider the preference relation given by [0, b] ≺ [0, a] iff
a < b. Then, for each 0 ≤ a < 1, we have

PBTD([0, a],L∞,≺)
(1)
= TD([0, a], {[0, b] : 0 ≤ b ≤ a}) = 1

because the single example (a,+) suffices for distinguishing [0, a] from any interval [0, b] with
b < a.

It was observed by Moran et al. (2015) already that RTD(L∞) =∞ because every teaching set
for some [0, a] must contain an infinite sequence of distinct reals that converges from above to a.
Thus, using Equation (5) with L′ = L, we have RTD(L∞) ≥ TDmin(L∞) =∞.

Remark 11 For every k ≥ 1, there exists an infinite class Lk such that PBTD+(Lk) = 1 and
RTD(Lk) = k; see (Gao et al., 2017, Lemma 6).

4. Preference-based Teaching with Positive Examples Only

The main purpose of this section is to relate positive preference-based teaching to “spanning sets”
and “closure operators”, which are well-studied concepts in the computational learning theory lit-
erature. Let L be a concept class over the universe X . We say that S ⊆ X is a spanning set of
L ∈ L w.r.t. L if S ⊆ L and any set in L that contains S must contain L as well.2 In other words,
L is the unique smallest concept in L that contains S. We say that S ⊆ X is a weak spanning set
of L ∈ L w.r.t. L if S ⊆ L and S is not contained in any proper subset of L in L.3 We denote
by I(L) (resp. I ′(L)) the smallest number k such that every concept L ∈ L has a spanning set
(resp. a weak spanning set) w.r.t. L of size at most k. Note that S is a spanning set of L w.r.t. L iff
S distinguishes L from all concepts in L except for supersets of L, i.e., iff S is a positive teaching
set for L w.r.t. (L,⊃). Similarly, S is a weak spanning set of L w.r.t. L iff S distinguishes L from
all its proper subsets in L (which is necessarily the case when S is a positive teaching set). These
observations can be summarized as follows:

I ′(L) ≤ PBTD+(L) ≤ PBTD+(L,⊃) ≤ I(L) . (6)

The last two inequalities are straightforward. The inequality I ′(L) ≤ PBTD+(L) follows from
Lemma 5, which implies that no concept L can have a preference-based teaching set T smaller than
its smallest weak spanning set. Such a set T would be consistent with some proper subset of L,
which is impossible by Lemma 5.

Suppose L is intersection-closed. Then ∩L∈L:S⊆LL is the unique smallest concept in L con-
taining S. If S ⊆ L0 is a weak spanning set of L0 ∈ L, then ∩L∈L:S⊆LL = L0 because, on the one
hand, ∩L∈L:S⊆LL ⊆ L0 and, on the other hand, no proper subset of L0 in L contains S. Thus the
distinction between spanning sets and weak spanning sets is blurred for intersection-closed classes:

2. This generalizes the classical definition of a spanning set (Helmbold et al., 1990), which is given w.r.t. intersection-
closed classes only.

3. Weak spanning sets have been used in the field of recursion-theoretic inductive inference under the name “tell-tale
sets” (Angluin, 1980).
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Lemma 12 Suppose that L is intersection-closed. Then I ′(L) = PBTD+(L) = I(L).

Example 1 LetRd denote the class of d-dimensional axis-parallel hyper-rectangles (= d-dimensio-
nal boxes). This class is intersection-closed and clearly I(Rd) = 2. Thus PBTD+(Rd) = 2.

A mapping cl : 2X → 2X is said to be a closure operator on the universe X if the following
conditions hold for all sets A,B ⊆ X :

A ⊆ B ⇒ cl(A) ⊆ cl(B) and A ⊆ cl(A) = cl(cl(A)) .

The following notions refer to an arbitrary but fixed closure operator. The set cl(A) is called the
closure of A. A set C is said to be closed if cl(C) = C. It follows that precisely the sets cl(A) with
A ⊆ X are closed. With this notation, we observe the following lemma.

Lemma 13 Let C be the set of all closed subsets of X under some closure operator cl, and let
L ∈ C. If L = cl(S), then S is a spanning set of L w.r.t. C.

Proof Suppose L′ ∈ C and S ⊆ L′. Then L = cl(S) ⊆ cl(L′) = L′.

For every closed set L ∈ L, let scl(L) denote the size (possibly∞) of the smallest set S ⊆ X
such that cl(S) = L. With this notation, we get the following (trivial but useful) result:

Theorem 14 Given a closure operator, let C[m] be the class of all closed subsets C ⊆ X with
scl(C) ≤ m. Then PBTD+(C[m]) ≤ PBTD+(C[m],⊃) ≤ m. Moreover, this holds with equality
provided that C[m] \ C[m− 1] 6= ∅.

Proof The inequality PBTD+(C[m],⊃) ≤ m follows directly from Equation (6) and Lemma 13.
Pick a concept C0 ∈ C[m] such that scl(C0) = m. Then any subset S of C0 of size less than m
spans only a proper subset of C0, i.e., cl(S) ⊂ C0. Thus S does not distinguish C0 from cl(S).
However, by Lemma 5, any preference-based learner must strictly prefer cl(S) over C0. It follows
that there is no positive teaching set of size less than m for C0 w.r.t. C[m].

Many natural classes can be cast as classes of the form C[m] by choosing the universe and the
closure operator appropriately; the following examples illustrate the usefulness of Theorem 14 in
that regard.

Example 2 Let
LINSETk = {〈G〉 : (G ⊂ N) ∧ (1 ≤ |G| ≤ k)}

where 〈G〉 =
{∑

g∈G a(g)g : a(g) ∈ N0

}
. In other words, LINSETk is the set of all non-empty

linear subsets of N0 that are generated by at most k generators. Note that the mapping G 7→ 〈G〉 is
a closure operator over the universe N0. Since obviously LINSETk \ LINSETk−1 6= ∅, we obtain
PBTD+(LINSETk) = k.

Example 3 LetX = R
2 and let Ck be the class of convex polygons with at most k vertices. Defining

cl(S) to be the convex closure of S, we obtain C[k] = Ck and thus PBTD+(Ck) = k.

Example 4 Let X = Rn and let Ck be the class of polyhedral cones that can be generated by k (or
less) vectors in Rn. If we take cl(S) to be the conic closure of S ⊆ Rn, then C[k] = Ck and thus
PBTD+(Ck) = k.
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5. A Convenient Technique for Proving Upper Bounds

In this section, we give an alternative definition of the preference-based teaching dimension using
the notion of an “admissible mapping”. Given a concept class L over a universe X , let T be a
mapping L 7→ T (L) ⊆ X ×{−,+} that assigns a set T (L) of labeled examples to every set L ∈ L
such that the labels in T (L) are consistent with L. The order of T , denoted as ord(T ), is defined as
supL∈L |T (L)| ∈ N ∪ {∞}. Define the mappings T+ and T− by setting T+(L) = {x : (x,+) ∈
T (L)} and T−(L) = {x : (x,−) ∈ T (L)} for every L ∈ L. We say that T is positive if T−(L) = ∅
for every L ∈ L. In the sequel, we will occasionally identify a positive mapping L 7→ T (L) with
the mapping L 7→ T+(L). The symbol “+” as an upper index of T will always indicate that the
underlying mapping T is positive.
The following relation will help to clarify under which conditions the sets (T (L))L∈L are teaching
sets w.r.t. a suitably chosen preference relation:

RT = {(L,L′) ∈ L × L : (L 6= L′) ∧ (L is consistent with T (L′))} .

The transitive closure of RT is denoted as trcl(RT ) in the sequel. The following notion will play
an important role in this paper:

Definition 15 A mapping L 7→ T (L) with L ranging over all concepts in L is said to be admissible
for L if the following holds:

1. For every L ∈ L, L is consistent with T (L).

2. The relation trcl(RT ) is asymmetric (which clearly implies that RT is asymmetric too).

If T is admissible, then trcl(RT ) is transitive and asymmetric, i.e., trcl(RT ) is a strict partial order
on L. We will therefore use the notation ≺T instead of trcl(RT ) whenever T is known to be
admissible.

Lemma 16 Suppose that T+ is a positive admissible mapping for L. Then the relation ≺T+ on L
extends the relation ⊃ on L. More precisely, the following holds for all L,L′ ∈ L:

L′ ⊂ L⇒ (L,L′) ∈ RT+ ⇒ L ≺T+ L′ .

Proof If T+ is admissible, then L′ is consistent with T+(L′). Thus T+(L′) ⊆ L′ ⊂ L so that L is
consistent with T+(L′) too. Therefore (L,L′) ∈ RT+ , i.e., L ≺T+ L′.

The following result clarifies how admissible mappings are related to preference-based teaching:

Lemma 17 For each concept class L, the following holds:

PBTD(L) = inf
T

ord(T ) and PBTD+(L) = inf
T+

ord(T+)

where T ranges over all mappings that are admissible for L and T+ ranges over all positive map-
pings that are admissible for L.
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Proof We restrict ourselves to the proof for PBTD(L) = infT ord(T ) because the equation
PBTD+(L) = infT+ ord(T+) can be obtained in a similar fashion. We first prove that PBTD(L)
≤ infT ord(T ). Let T be an admissible mapping for L. It suffices to show that, for every L ∈ L,
T (L) is a teaching set for L w.r.t. (L,≺T ). Suppose L′ ∈ L \ {L} is consistent with T (L). Then
(L′, L) ∈ RT and thus L′ ≺T L. It follows that ≺T prefers L over all concepts L′ ∈ L \ {L} that
are consistent with T (L). Thus T is a teaching set for L w.r.t. (L,≺T ), as desired.

We now prove that infT ord(T ) ≤ PBTD(L). Let ≺ be a strict partial order on L and let T
be a mapping such that, for every L ∈ L, T (L) is a teaching set for L w.r.t. (L,≺). It suffices to
show that T is admissible for L. Consider a pair (L′, L) ∈ RT . The definition of RT implies that
L′ 6= L and that L′ is consistent with T (L). Since T (L) is a teaching set w.r.t. (L,≺), it follows that
L′ ≺ L. Thus, ≺ is an extension of RT . Since ≺ is transitive, it is even an extension of trcl(RT ).
Because ≺ is asymmetric, trcl(RT ) must be asymmetric, too. It follows that T is admissible.

6. Preference-based Teaching of Linear Sets

Some work in computational learning theory (Abe, 1989; Gao et al., 2015; Takada, 1992) is con-
cerned with learning semi-linear sets, i.e., unions of linear subsets of Nk for some fixed k ≥ 1,
where each linear set consists of exactly those elements that can be written as the sum of some
constant vector c and a linear combination of the elements of some fixed set of generators, see
Example 2. While semi-linear sets are of common interest in mathematics in general, they play a
particularly important role in the theory of formal languages, due to Parikh’s theorem, by which the
so-called Parikh vectors of strings in a context-free language always form a semi-linear set (Parikh,
1966).

A recent study (Gao et al., 2015) analyzed computational teaching of classes of linear subsets
of N (where k = 1) and some variants thereof, as a substantially simpler yet still interesting special
case of semi-linear sets. In this section, we extend that study to preference-based teaching.

Within the scope of this section, all concept classes are formulated over the universe X = N0.
Let G = {g1, . . . , gk} be a finite subset of N. We denote by 〈G〉 resp. by 〈G〉+ the following sets:

〈G〉 =


k∑

i=1

aigi : a1, . . . , ak ∈ N0

 and 〈G〉+ =


k∑

i=1

aigi : a1, . . . , ak ∈ N

 .

We will determine (at least approximately) the preference-based teaching dimension of the fol-
lowing concept classes over N0:

LINSETk = {〈G〉 : (G ⊂ N) ∧ (1 ≤ |G| ≤ k)} .
CF-LINSETk = {〈G〉 : (G ⊂ N) ∧ (1 ≤ |G| ≤ k) ∧ (gcd(G) = 1)} .
NE-LINSETk = {〈G〉+ : (G ⊂ N) ∧ (1 ≤ |G| ≤ k)} .

NE-CF-LINSETk = {〈G〉+ : (G ⊂ N) ∧ (1 ≤ |G| ≤ k) ∧ (gcd(G) = 1)} .

A subset of N0 whose complement in N0 is finite is said to be co-finite. The letters “CF” in
CF-LINSET mean “co-finite”. The concepts in LINSETk have the algebraic structure of a monoid
w.r.t. addition. The concepts in CF-LINSETk are also known as “numerical semigroups” (Rosales

10
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and Garcı́a-Sánchez, 2009). A zero coefficient aj = 0 erases gj in the linear combination
∑k

i=1 aigi.
Coefficients from N are non-erasing in this sense. The letters “NE” in “NE-LINSET” mean “non-
erasing”.

The shift-extension L′ of a concept class L over the universe N0 is defined as follows:

L′ = {c+ L : (c ∈ N0) ∧ (L ∈ L)} . (7)

The following bounds on RTD and RTD+ (for sufficiently large values of k)4 are known
from (Gao et al., 2015):

RTD+ RTD

LINSETk =∞ ?
CF-LINSETk = k ∈ {k − 1, k}
NE-LINSET′k = k + 1 ∈ {k − 1, k, k + 1}

Here NE-LINSET′k denotes the shift-extension of NE-LINSETk .
The following result shows the corresponding bounds with PBTD in place of RTD:

Theorem 18 The bounds in the following table are valid:

PBTD+ PBTD

LINSETk = k ∈ {k − 1, k}
CF-LINSETk = k ∈ {k − 1, k}

NE-LINSETk ∈
[⌊

k−1
2

⌋
: k

]
∈
[⌊

k−1
2

⌋
: k

]
NE-CF-LINSETk ∈

[⌊
k−1
2

⌋
: k

]
∈
[⌊

k−1
2

⌋
: k

]
Moreover

PBTD+(L′) = k + 1 ∧ PBTD(L′) ∈ {k − 1, k, k + 1} (8)

holds for all L ∈ {LINSETk,CF-LINSETk,NE-LINSETk,NE-CF-LINSETk}.

Note that the equation PBTD+(LINSETk) = k was already proven in Example 2, using the
fact that G 7→ 〈G〉 is a closure operator. Since G 7→ 〈G〉+ is not a closure operator, we give a
separate argument to prove an upper bound of k on PBTD+(NE-LINSETk) (see Lemma 37 in
Appendix A). All other upper bounds in Theorem 18 are then easy to derive. The lower bounds
in Theorem 18 are much harder to obtain. A complete proof of Theorem 18 will be given in Ap-
pendix A.

Remark 19 The lower bound on PBTD+(NE-LINSETk) and PBTD+(NE-CF-LINSETk) may
be improved to k − 1; see (Gao et al., 2017, Theorem 2, Appendix A.3).

4. For instance, RTD+(LINSETk) = ∞ holds for all k ≥ 2 and RTD(LINSETk) = ? (where “?” means “un-
known”) holds for all k ≥ 4.
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7. Preference-based Teaching of Halfspaces

In this section, we study preference-based teaching of halfspaces. We will denote the all-zeros
vector as ~0. The vector with 1 in coordinate i and with 0 in the remaining coordinates is denoted as
~ei. The dimension of the Euclidean space in which these vectors reside will always be clear from
the context. The sign of a real number x (with value 1 if x > 0, value −1 if x < 0, and value 0 if
x = 0) is denoted by sign(x).

Suppose that w ∈ Rd \ {~0} and b ∈ R. The (positive) halfspace induced by w and b is then
given by

Hw,b = {x ∈ Rd : w>x+ b ≥ 0} .

Instead of Hw,0, we simply write Hw. Let Hd denote the class of d-dimensional Euclidean half-
spaces:

Hd = {Hw,b : w ∈ Rd \ {~0} ∧ b ∈ R} .

Similarly,H0
d denotes the class of d-dimensional homogeneous Euclidean halfspaces:

H0
d = {Hw : w ∈ Rd \ {~0}} .

Let Sd−1 denote the (d − 1)-dimensional unit sphere in Rd. Moreover S+
d−1 = {x ∈ Sd−1 :

xd > 0} denotes the “northern hemisphere”. If not stated explicitly otherwise, we will represent
homogeneous halfspaces with normalized vectors residing on the unit sphere. We remind the reader
of the following well-known fact:

Remark 20 The orthogonal group in dimension d (i.e., the multiplicative group of orthogonal (d×
d)-matrices) acts transitively on Sd−1 and it conserves the inner product.

We now prove a helpful lemma, stating that each vector w∗ in the northern hemisphere may
serve as a representative for some homogeneous halfspace Hu in the sense that all other elements
of Hu in the northern hemisphere have a strictly smaller d-th component than w∗. This will later
help to teach homogeneous halfspaces with a preference that orders vectors by the size of their last
coordinate.

Lemma 21 Let d ≥ 2, let 0 < h ≤ 1 and let Rd,h = {w ∈ Sd−1 : wd = h}. With this notation the
following holds. For every w∗ ∈ Rd,h, there exists u ∈ Rd \ {~0} such that

(w∗ ∈ Hu) ∧ (∀w ∈ (S+
d−1 ∩Hu) \ {w∗} : wd < h) . (9)

Proof For h = 1, the statement is trivial, since Rd,1 = {~ed}. So let h < 1.
Because of Remark 20, we may assume without loss of generality that the vector w∗ ∈ Rd,h

equals (0, . . . , 0,
√

1− h2, h). It suffices therefore to show that, with this choice of w∗, the vector
u = (0, . . . , 0, w∗d,−w∗d−1) satisfies (9). Note that w ∈ Hu iff 〈u,w〉 = w∗dwd−1 − w∗d−1wd ≥ 0.
Since 〈u,w∗〉 = 0, we have w∗ ∈ Hu. Moreover, it follows that

S+
d−1 ∩Hu =

{
w ∈ S+

d−1 :
wd−1
wd

≥
w∗d−1
w∗d

> 0

}
.

It is obvious that no vector w ∈ S+
d−1 ∩Hu can have a d-th component wd exceeding w∗d = h and

that setting wd = h = w∗d forces the settings wd−1 = w∗d−1 =
√

1− h2 and w1 = . . . = wd−2 = 0.

12
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Consequently, (9) is satisfied, which concludes the proof.

With this lemma in hand, we can now prove an upper bound of 2 for the preference-based teach-
ing dimension of the class of homogeneous halfspaces, independent of the underlying dimension d.

Theorem 22 PBTD(H0
1) = TD(H0

1) = 1 and, for every d ≥ 2, we have PBTD(H0
d) ≤ 2.

Proof Clearly, PBTD(H0
1) = TD(H0

1) = 1 since H0
1 consists of the two sets {x ∈ R : x ≥ 0}

and {x ∈ R : x ≤ 0}.
Suppose now that d ≥ 2. Let w∗ be the target weight vector (i.e., the weight vector that has to be
taught). Under the following conditions, we may assume without loss of generality that w∗d 6= 0:

• For any 0 < s1 < s2, the student prefers any weight vector that ends with s2 zero coordinates
over any weight vector that ends with only s1 zero coordinates.

• If the target vector ends with (exactly) s zero coordinates, then the teacher presents only
examples ending with (at least) s zero coordinates.

In the sequel, we specify a student and a teacher such that these conditions hold, so that we will
consider only target weight vectors w∗ with w∗d 6= 0.
The student has the following preference relation:

• Among the weight vectors w with wd 6= 0, the student prefers vectors with larger values of
|wd| over those with smaller values of |wd|.

The teacher will use two examples. The first one is chosen as{
(−~ed,−) if w∗d > 0
(~ed,−) if w∗d < 0

.

This example reveals whether the unknown weight vector w∗ ∈ Sd−1 has a strictly positive or a
strictly negative d-th component. For reasons of symmetry, we may assume that w∗d > 0. We are
now precisely in the situation that is described in Lemma 21. Given w∗ and h = w∗d, the teacher
picks as a second example (u,+) where u ∈ Rd \ {~0} has the properties described in the lemma. It
follows immediately that the student’s preferences will make her choose the weight vector w∗.

The upper bound of 2 given in Theorem 22 is tight, as is stated in the following lemma.

Lemma 23 For every d ≥ 2, we have PBTD(H0
d) ≥ 2.

Proof We verify this lemma via Lemma 7, by providing a finite subclass F of H0
2 such that

TDmin(F) = 2. Let F = {Hw : ~0 6= w ∈ {−1, 0, 1}2}. It is easy to verify that each of the
8 halfspaces in F has a teaching dimension of 2 with respect to F . This example can be extended
to higher dimensions in the obvious way.

We thus conclude that the class of homogeneous halfspaces has a preference-based teaching
dimension of 2, independent of the dimensionality d ≥ 2.

13
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Corollary 24 For every d ≥ 2, we have PBTD(H0
d) = 2.

By contrast, we will show next that the recursive teaching dimension of the class of homoge-
neous halfspaces grows with the dimensionality.

Theorem 25 For any d ≥ 2, TD(H0
d) = RTD(H0

d) = d+ 1.

Proof Assume by normalization that the target weight vector has norm 1, i.e., it is taken from Sd−1.
Remark 20 implies that all weight vectors in Sd−1 are equally hard to teach. It suffices therefore to
show that TD(H~e1 ,H0

d) = d+ 1.
We first show that TD(H~e1 ,H0

d) ≤ d + 1. Define u = −
∑d

i=2 ~ei. We claim that T =
{(~ei,+) : 2 ≤ i ≤ d} ∪ {(u,+), (~e1,+)} is a teaching set for H~e1 w.r.t. H0

d. Consider any w ∈
Sd−1 such that Hw is consistent with T . Note that wi = 〈~ei, w〉 ≥ 0 for all i ∈ {2, . . . , d} and
〈u,w〉 = −

∑d
i=2wi ≥ 0 together imply that wi = 0 for all i ∈ {2, . . . , d} and therefore w = ±~e1.

Furthermore, w1 = 〈w,~e1〉 ≥ 0, and so w = ~e1, as required.
Now we show that TD(H~e1 ,H0

d) ≥ d + 1 holds for all d ≥ 2. It is easy to see that two ex-
amples do not suffice for distinguishing ~e1 ∈ R2 from all weight vectors in S1. In other words,
TD(H~e1 ,H0

2) ≥ 3. Suppose now that d ≥ 3. It is furthermore easy to see that a teaching set T
which distinguishes ~e1 from all weight vectors in Sd−1 must contain at least one positive example u
that is orthogonal to ~e1. The inequality TD(H~e1 ,H0

d) ≥ d+ 1 is now obtained inductively because
the example (u,+) ∈ T leaves open a problem that is not easier than teaching ~e1 w.r.t. the (d− 2)-
dimensional sphere {x ∈ Sd−1 : x ⊥ u}.

We have thus established that the class of homogeneous halfspaces has a recursive teaching
dimension growing linearly with d, while its preference-based teaching dimension is constant. In
the case of general (i.e., not necessarily homogeneous) d-dimensional halfspaces, the difference
between RTD and PBTD is even more extreme. On the one hand, by generalizing the proof of
Lemma 10, it is easy to see that RTD(Hd) =∞ for all d ≥ 1. On the other hand, we will show in
the remainder of this section that PBTD(Hd) ≤ 6, independent of the value of d.

We will assume in the sequel (by way of normalization) that an inhomogeneous halfspace has a
bias b ∈ {±1}. We start with the following result:

Lemma 26 Let w∗ ∈ Rd be a vector with a non-trivial d-th component w∗d 6= 0 and let b∗ ∈ {±1}
be a bias. Then there exist three examples labeled according toHw∗,b∗ such that the following holds.
Every weight-bias pair (w, b) consistent with these examples satisfies b = b∗, sign(wd) = sign(w∗d)
and {

|wd| ≥ |w∗d| if b∗ = −1
|wd| ≤ |w∗d| if b∗ = +1

. (10)

Proof Within the proof, we use the label “1” instead of “+” and the label “−1” instead of “−”. The
pair (w, b) denotes the student’s hypothesis for the target weight-bias pair (w∗, b∗). The examples
shown to the student will involve the unknown quantities w∗ and b∗. Each example will lead to a
new constraint on w and b. We will see that the collection of these constraints reveals the required
information. We proceed in three stages:

1. The first example is chosen as (~0, b∗). The pair (w, b) can be consistent with this example
only if b = −1 in the case that b∗ = −1 and b ∈ {0, 1} in the case that b∗ = 1.

14



PREFERENCE-BASED TEACHING

2. The next example is chosen as ~a2 = −2b∗

w∗d
· ~ed and labeled “−b∗”. Note that 〈w∗,~a2〉+ b∗ =

−b∗. We obtain the following new constraint:

〈w,~a2〉+ b =


−2wd

w∗d
+

∈{0,1}︷︸︸︷
b < 0 if b∗ = 1

+2wd
w∗d

+ b︸︷︷︸
=−1

≥ 0 if b∗ = −1
.

The pair (w, b) with b = b∗ if b∗ = −1 and b ∈ {0, 1} if b∗ = 1 can satisfy the above
constraint only if the sign of wd equals the sign of w∗d.

3. The third example is chosen as the example ~a3 = − b∗

w∗d
· ~ed with label “1”. Note that

〈w∗,~a3〉∗ + b∗ = 0. We obtain the following new constraint:

〈w,~a3〉 = −b
∗wd

w∗d
+ b ≥ 0 .

Given that w is already constrained to weight vectors satisfying sign(wd) = sign(w∗d), we
can safely replace wd/w

∗
d by |wd|/|w∗d|. This yields |wd|/|w∗d| ≤ b if b∗ = 1 and |wd|/|w∗d| ≥

−b if b∗ = −1. Since b is already constrained as described in stage 1 above, we obtain
|wd|/|w∗d| ≤ b ∈ {0, 1} if b∗ = 1 and |wd|/|w∗d| ≥ −b = 1 if b∗ = −1. The weight-bias pair
(w, b) satisfies these constraints only if b = b∗ and if (10) is valid.

The assertion of the lemma is immediate from this discussion.

Theorem 27 PBTD(Hd) ≤ 6.

Proof As in the proof of Lemma 26, we use the label “1” instead of “+” and the label “−1” instead
of “−”. As in the proof of Theorem 22, we may assume without loss of generality that the target
weight vector w∗ ∈ Rd satisfies w∗d 6= 0. The proof will proceed in stages. On the way, we specify
six rules which determine the preference relation of the student.

Stage 1 is concerned with teaching homogeneous halfspaces given by w∗ (and b∗ = 0). The
student respects the following rules:

Rule 1: She prefers any pair (w, 0) over any pair (w′, b) with b 6= 0. In other words, any homoge-
neous halfspace is preferred over any non-homogeneous halfspace.

Rule 2: Among homogeneous halfspaces, her preferences are the same as the ones that were used
within the proof of Theorem 22 for teaching homogeneous halfspaces.

Thus, if b∗ = 0, then we can simply apply the teaching protocol for homogeneous halfspaces. In
this case, w∗ can be taught at the expense of only two examples.

Stage 1 reduces the problem to teaching inhomogeneous halfspaces given by (w∗, b∗) with b∗ 6=
0. We assume, by way of normalization, that b∗ ∈ {±1}, but note that w∗ can now not be assumed
to be of unit (or any other fixed) length.

In stage 2, the teacher presents three examples in accordance with Lemma 26. It follows that the
student will take into consideration only weight-bias pairs (w, b) such that the constraints b = b∗,
sign(wd) = sign(w∗d) and (10) are satisfied. The following rule will then induce the constraint
wd = w∗d:
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Rule 3: Among the pairs (w, b) such that wd 6= 0 and b ∈ {±1}, the student’s preferences are as
follows. If b = −1 (resp. b = 1), then she prefers vectors w with a smaller (resp. larger) value
of |wd| over those with a larger (resp. smaller) value of |wd|.

Thanks to Lemma 26 and thanks to Rule 3, we may from now on assume that b = b∗ and wd = w∗d.
In the sequel, let w∗ be decomposed according to w∗ = (~w∗d−1, w

∗
d) ∈ Rd−1 × R. We think of

~wd−1 as the student’s hypothesis for ~w∗d−1.
Stage 3 is concerned with the special case where ~w∗d−1 = ~0. The student will automatically set

~wd−1 = ~0 if we add the following to the student’s rule system:

Rule 4: Given that the values for wd and b have been fixed already (and are distinct from 0), the
student prefers weight-bias pairs with ~wd−1 = ~0 over any weight-bias pair with ~wd−1 6= ~0.

Stage 3 reduces the problem to teaching (w∗, b∗) with fixed non-zero values for wd and b∗

(known to the student) and with ~w∗d−1 6= ~0. Thus, essentially, only ~w∗d−1 has still to be taught. In the
next stage, we will argue that the problem of teaching ~w∗d−1 is equivalent to teaching a homogeneous
halfspace.

In stage 4, the teacher will present only examples a such that ad = − b∗

w∗d
so that the contribu-

tion of the d-th component to the inner product of w∗ and a cancels with the bias b∗. Given this
commitment for ad, the first d − 1 components of the examples can be chosen so as to teach the
homogeneous halfspace H~w∗d−1

. According to Theorem 22, this can be achieved at the expense of
two more examples. Of course the student’s preferences must match with the preferences that were
used in the proof of this theorem:

Rule 5: Suppose that the values of wd and b have been fixed already (and are distinct from 0)
and suppose that ~wd−1 6= ~0. Then the preferences for the choice of ~wd−1 match with the
preferences that were used in the protocol for teaching homogeneous halfspaces.

After stage 4, the student takes into consideration only weight-bias pairs (w, b) such that wd =
w∗d, b = b∗ and H~wd−1

= H~w∗d−1
. However, since we had normalized the bias and not the weight

vector, this does not necessarily mean that ~wd−1 = ~w∗d−1. On the other hand, the two weight vectors
already coincide modulo a positive scaling factor, say

~wd−1 = s · ~w∗d−1 for some s > 0 . (11)

In order to complete the proof, it suffices to teach the L1-norm of ~w∗d−1 to the student (because (11)
and ‖~wd−1‖1 = ‖~w∗d−1‖1 imply that ~wd−1 = ~w∗d−1). The next (and final) stage serves precisely this
purpose.

As for stage 5, we first fix some notation. For i = 1, . . . , k − 1, let βi = sign(w∗i ). Note
that (11) implies that βi = sign(wi). Let L = ‖~w∗d−1‖1 denote the L1-norm of ~w∗d−1. The final
example is chosen as ~a6 = (β1, . . . , βd−1,−(L+ b∗)/w∗d) and labeled “1”. Note that〈

w∗, ~a6
〉

+ b∗ = |w∗1|+ . . .+ |w∗d−1| − L = 0 .

Given that βi = sign(wi), wd = w∗d and b = b∗, the student can derive from ~a6 and its label the
following constraint on ~wd−1:

〈w, ~a6〉+ b = |w1|+ . . .+ |wd−1| − L ≥ 0 .

In combination with the following rule, we can now force the constraint ‖~wd−1‖1 = L:
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Rule 6: Suppose that the values of wd and b have been fixed already (and are distinct from 0) and
suppose that H~wd−1

has already been fixed. Then, among the vectors representing H~wd−1
, the

ones with a smaller L1-norm are preferred over the ones with a larger L1-norm.

An inspection of the six stages reveals that at most six examples altogether were shown to the stu-
dent (three in stage 2, two in stage 4, and one in stage 5). This completes the proof of the theorem.

Note that Theorems 22 and 27 remain valid when we allow w to be the all-zero vector, which
extends H0

d by {Rd} and Hd by {Rd, ∅}. Rd will be taught with a single positive example, and
∅ with a single negative example. The student will give the highest preference to Rd, the second
highest to ∅, and among the remaining halfspaces, the student’s preferences stay the same.

8. Classes with PBTD or PBTD+ Equal to One

In this section, we will give complete characterizations of (i) the concept classes with a positive
preference-based teaching dimension of 1, and (ii) the concept classes with a preference-based
teaching dimension of 1. Throughout this section, we use the label “1” to indicate positive examples
and the label “0” to indicate negative examples.

Let I be a (possibly infinite) index set. We will consider a mapping A : I × I → {0, 1} as a
binary matrix A ∈ {0, 1}I×I . A is said to be lower-triangular if there exists a linear ordering ≺ on
I such that A(i, i′) = 0 for every pair (i, i′) such that i ≺ i′.

We will occasionally identify a set L ⊆ X with its indicator function by setting L(x) = 1[x∈L].
For each M ⊆ X , we define

M ⊕ L = (L \M) ∪ (M \ L)

and
M ⊕ L = {M ⊕ L : L ∈ L} .

For T ⊆ X × {0, 1}, we define similarly

M ⊕ T = {(x, ȳ) : (x, y) ∈ T and x ∈M} ∪ {(x, y) ∈ T : x /∈M} .

Moreover, given M ⊆ X and a linear ordering ≺ on L, we define a linear ordering ≺M on M ⊕ L
as follows:

M ⊕ L′ ≺M M ⊕ L⇔M ⊕ (M ⊕ L′)︸ ︷︷ ︸
=L′

≺M ⊕ (M ⊕ L)︸ ︷︷ ︸
=L

.

Lemma 28 With this notation, the following holds. If the mapping L 3 L 7→ T (L) ⊆ X × {0, 1}
assigns a teaching set to L w.r.t. (L,≺), then the mapping M ⊕ L 3 M ⊕ L 7→ M ⊕ T (L) ⊆
X × {0, 1} assigns a teaching set to M ⊕ L w.r.t. (M ⊕ L,≺M ).

Since this result is rather obvious, we skip its proof.
We say that L and L′ are equivalent if L′ = M ⊕ L for some M ⊆ X (and this clearly is an

equivalence relation). As an immediate consequence of Lemma 28, we obtain the following result:

Lemma 29 If L is equivalent to L′, then PBTD(L) = PBTD(L′).
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The following lemma provides a necessary condition for a concept class to have a preference-
based teaching dimension of one.

Lemma 30 Suppose that L ⊆ 2X is a concept class of PBTD 1. Pick a linear ordering≺ on L and
a mapping L 3 L 7→ (xL, yL) ∈ X × {0, 1} such that, for every L ∈ L, {(xL, yL)} is a teaching
set for L w.r.t. (L,≺). Then

• either every instance x ∈ X occurs at most once in (xL)L∈L

• or there exists a concept L∗ ∈ L that is preferred over all other concepts in L and xL∗ is the
only instance from X that occurs twice in (xL)L∈L.

Proof Since the mapping T must be injective, no instance can occur twice in (xL)L∈L with the same
label. Suppose that there exists an instance x ∈ X and concepts L ≺ L∗ such that x = xL = xL∗

and, w.l.o.g., yL = 1 and yL∗ = 0. Since {(x, 1)} is a teaching set for L w.r.t. (L,≺), every concept
L′ � L (including the ones that are preferred over L∗) must satisfy L′(x) = 0. For analogous
reasons, every concept L′ � L∗ (if any) must satisfy L′(x) = 1. A concept L′ ∈ L that is preferred
over L∗ would have to satisfy L′(x) = 0 and L′(x) = 1, which is impossible. It follows that there
can be no concept that is preferred over L∗.

The following result is a consequence of Lemmas 28 and 30.

Theorem 31 If PBTD(L) = 1, then there exists a concept class L′ that is equivalent to L and
satisfies PBTD(L′) = PBTD+(L′) = 1.

Proof Pick a linear ordering ≺ on L and, for every L ∈ L, a pair (xL, yL) ∈ X × {0, 1} such that
T (L) = {(xL, yL)} is a teaching set for L w.r.t. (L,≺).

Case 1: Every instance x ∈ X occurs at most once in (xL)L∈L.
Then choose M = {xL : yL = 0} and apply Lemma 28.

Case 2: There exists a concept L∗ ∈ L that is preferred over all other concepts in L and xL∗ is the
only instance from X that occurs twice in (xL)L∈L.
Then choose M = {xL : yL = 0 ∧ L 6= L∗} and apply Lemma 28. With this choice,
we obtain M ⊕ T (L) = {(xL, 1)} for every L ∈ L \ {L∗}. Since L∗ is preferred over all
other concepts in L, we may teach L∗ w.r.t. (L,≺) by the empty set (instead of employing a
possibly 0-labeled example).

The discussion shows that there is a class L′ that is equivalent to L and can be taught in the
preference-based model with positive teaching sets of size 1 (or size 0 in case of L∗).

We now have the tools required for characterizing the concept classes whose positive PBTD
equals 1.

Theorem 32 PBTD+(L) = 1 if and only if there exists a mapping L 3 L 7→ xL ∈ X such that
the matrix A ∈ {0, 1}(L\{∅})×(L\{∅}) given by A(L,L′) = L′(xL) is lower-triangular.
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Proof Suppose first that PBTD+(L) = 1. Pick a linear ordering≺ onL and, for every L ∈ L\{∅},
pick xL ∈ X such that {xL} is a positive teaching set for L w.r.t. (L,≺).5 If L ≺ L′ (so that L′

is preferred over L), we must have L′(xL) = 0. It follows that the matrix A, as specified in the
theorem, is lower-triangular.

Suppose conversely that there exists a mapping L 3 L 7→ xL ∈ X such that the matrix
A ∈ {0, 1}(L\{∅})×(L\{∅}) given by A(L,L′) = L′(xL) is lower-triangular, say w.r.t. the linear
ordering ≺ on L \ {∅}. Then, for every L ∈ L \ {∅}, the singleton {xL} is a positive teaching
set for L w.r.t. (L,≺) because it distinguishes L from ∅ (of course) and also from every concept
L′ ∈ L \ {∅} such that L′ � L. If ∅ ∈ L, then extend the linear ordering ≺ by preferring ∅ over
every other concept from L (so that ∅ is a positive teaching set for ∅ w.r.t. (L,≺)).

In view of Theorem 31, Theorem 32 characterizes every class L with PBTD(L) = 1 up to
equivalence.

Let Sg(X ) = {{x} : x ∈ X} denote the class of singletons over X and suppose that Sg(X ) is a
sub-class of L and PBTD(L) = 1. We will show that only fairly trivial extensions of Sg(X ) with
a preference-based dimension of 1 are possible.

Lemma 33 LetL ⊆ 2X be a concept class of PBTD 1 that contains Sg(X ). Let T be an admissible
mapping for L that assigns a labeled example (xL, yL) ∈ X × {0, 1} to each L ∈ L. For b = 0, 1,
let Lb = {L ∈ L : yL = b}. Similarly, let X b = {x ∈ X : y{x} ∈ Lb}. With this notation, the
following holds:

1. If L ∈ L1 and L ⊂ L′ ∈ L, then L′ ∈ L1.

2. If L′ ∈ L0 and L′ ⊃ L ∈ L, then L ∈ L0.

3. |X 0| ≤ 2. Moreover if |X 0| = 2, then there exist q 6= q′ ∈ X such that X 0 = {q, q′} and
x{q} = q′.

Proof Recall that RT = {(L,L′) ∈ L × L : (L 6= L′) ∧ (L is consistent with T (L′))} and that
RT (and even the transitive closure of RT ) is asymmetric if T is admissible.

1. If L ∈ L1 and L ⊂ L′, then yL = 1 so that L′ is consistent with the example (xL, yL). It
follows that (L′, L) ∈ RT . L′ ∈ L0 would similarly imply that (L,L′) ∈ RT so that RT

would not be asymmetric. This is in contradiction with the admissibility of T .

2. The second assertion in the lemma is a logically equivalent reformulation of the first assertion.

3. Suppose for the sake of contradiction that X 0 contains three distinct points, say q1, q2, q3.
Since, for i = 1, 2, 3, T assigns a 0-labeled example to {qi}, at least one of the remaining
two points is consistent with T ({qi}). Let G be the digraph with the nodes q1, q2, q3 and with
an edge from qj to qi iff {qj} is consistent with T ({qi}). Then each of the three nodes has
an indegree of at least 1. Digraphs of this form must contain a cycle so that trcl(RT ) is not
asymmetric. This is in contradiction with the admissibility of RT .

5. Such an xL always exists, even if ∅ is a teaching set for L, because every superset of a teaching set for L that is still
consistent with L is still a teaching set for L, cf. the discussion immediately after Lemma 4.
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A similar argument holds if X 0 contains only two distinct elements, say q and q′. If neither
x{q} = q′ nor x{q′} = q, then ({q′}, {q}) ∈ RT and ({q}, {q′}) ∈ RT so that RT is not
asymmetric — again a contradiction to the admissibility of RT .

We are now in the position to characterize those classes of PBTD one that contain all singletons.

Theorem 34 Suppose that L ⊆ 2X is a concept class that contains Sg(X ). Then PBTD(L) = 1
if and only if the following holds. Either L coincides with Sg(X ) or L contains precisely one
additional concept, which is either the empty set or a set of size 2.

Proof We start with proving “⇐”. It is well known that PBTD+(L) = 1 for L = Sg(X ) ∪ {∅}:
prefer ∅ over any singleton set, set T (∅) = ∅ and, for every x ∈ X , set T ({x}) = {(x, 1)}. In
a similar fashion, we can show that PBTD(L) = 1 for L = Sg(X ) ∪ {{q, q′}} for any choice of
q 6= q′ ∈ X . Prefer {q, q′} over {q} and {q′}, respectively. Furthermore, prefer {q} and {q′} over
all other singletons. Finally, set T ({q, q′}) = ∅, T ({q}) = {(q′, 0)}, T ({q′}) = {(q, 0)} and, for
every x ∈ X \ {q, q′}, set T ({x}) = {(x, 1)}.

As for the proof of “⇒”, we make use of the notions T, xL, yL,L0,L1,X 0,X 1 that had been
introduced in Lemma 33 and we proceed by case analysis.

Case 1: X 0 = ∅.
Since X 0 = ∅, we have X = X 1. In combination with the first assertion in Lemma 33, it
follows that L \ {∅} = L1. We claim that no concept in L contains two distinct elements.
Assume for the sake of contradiction that there is a concept L ∈ L such that |L| ≥ 2. It
follows that, for every q ∈ L, x{q} = q and y{q} = 1 so that (L, {q}) ∈ RT . Moreover,
there exists q0 ∈ L such that xL = q0 and yL = 1. It follows that ({q0}, L) ∈ RT , which
contradicts the fact that RT is asymmetric.

Case 2: X 0 = {q} for some q ∈ X .
Set q′ = x{q} and note that y{q} = 0. Moreover, since X 1 = X \ {q}, we have x{p} = p
and y{p} = 1 for every p ∈ X \ {q}. We claim that L cannot contain a concept L of size
at least 2 that contains an element of X \ {q, q′}. Assume for the sake of contradiction, that
there is a set L such that |L| ≥ 2 and p ∈ L for some p ∈ X \ {q, q′}. The first assertion in
Lemma 33 implies that yL = 1 (because y{p} = 1 and {p} ⊆ L). Since all pairs (x, 1) with
x 6= q are already in use for teaching the corresponding singletons, we may conclude that
q ∈ L and T (L) = {(q, 1)}. This contradicts the fact that trcl(RT ) is asymmetric, because
our discussion implies that (L, {p}), ({p}, {q}), ({q}, L) ∈ RT . We may therefore safely
assume that there is no concept of size at least 2 in L that has a non-empty intersection with
X \ {q, q′}. Thus, except for the singletons, the only remaining sets that possibly belong to L
are ∅ and {q, q′}. We still have to show that not both of them can belong to L. Assume for the
sake of contradiction that ∅, {q, q′} ∈ L. Since ∅ is consistent with T ({q}) = {(q′, 0)}, we
have (∅, {q}) ∈ RT . Clearly, y∅ = 0. Since {q} is consistent with every pair (x, 0) except for
(q, 0), we must have x∅ = q. (Otherwise, we have ({q}, ∅) ∈ RT and arrive at a contradic-
tion.) Let us now inspect the possible teaching sets for L = {q, q′}. Since {q, q′} is consistent
with T ({q′}) = {(q′, 1)}, setting yL = 0 would lead to a contradiction. The example (q′, 1)
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is already in use for teaching {q′}. It is therefore necessary to set T (L) = {(q, 1)}. An in-
spection of the various teaching sets shows that (∅, {q}), ({q}, L), (L, {q′}), ({q′}, ∅) ∈ RT ,
which contradicts the fact that trcl(RT ) is asymmetric.

Case 3: X 0 = {q, q′} for some q 6= q′ ∈ X .
Note first that y{q} = y{q′} = 0 and y{p} = 1 for every p ∈ X \ {q, q′}. We claim that
∅ /∈ L. Assume for the sake of contradiction that ∅ ∈ L. Then (∅, {q}), (∅, {q′}) ∈ RT since
∅ is consistent with the teaching sets for instances from X 0. But then, no matter how x in
T (∅) = {(x, 0)} is chosen, at least one of the sets {q} and {q′} will be consistent with T (∅)
so that at least one of the pairs ({q}, ∅) and ({q′}, ∅) belongs to RT . This contradicts the
fact that RT must be asymmetric. Thus ∅ /∈ L, indeed. Now it suffices to show that L cannot
contain a concept of size at least 2 that contains an element ofX \{q, q′}. Assume for the sake
of contradiction that there is a setL ∈ L such that |L| ≥ 2 and p ∈ L for some p ∈ X \{q, q′}.
Observe that (L, {p}) ∈ RT . Another application of the first assertion in Lemma 33 shows
that yL = 1 (because y{p} = 1 and p ∈ L) and xL ∈ {q, q′} (because the other 1-labeled
instances are already in use for teaching the corresponding singletons). It follows that one of
the pairs ({q}, L) and ({q′}, L) belongs to RT . The third assertion of Lemma 33 implies that
T (q) = {(q′, 0)} or T (q′) = {(q, 0)}. For reasons of symmetry, we may assume that T (q) =
{(q′, 0)}. This implies that ({p}, {q}) ∈ RT . Let q′′ be given by T (q′) = {(q′′, 0)}. Note that
either q′′ = q or q′′ ∈ X \{q, q′}. In the former case, we have that ({p}, {q′}) ∈ RT and in the
latter case we have that ({q}, {q′}) ∈ RT . Since ({p}, {q}) ∈ RT (which was observed above
already), we conclude that in both cases, ({p}, {q}), ({p}, {q′}) ∈ trcl(RT ). Combining
this with our observations above that (L, {p}) ∈ RT and that one of the pairs ({q}, L) and
({q′}, L) belongs to RT , yields a contradiction to the fact that trcl(RT ) is asymmetric.

Corollary 35 Let L ⊆ 2X be a concept class that contains Sg(X ). If PBTD(L) = 1, then
RTD(L) = 1.

Proof According to Theorem 34, either L coincides with Sg(X ) or L contains precisely one addi-
tional concept that is ∅ or a set of size 2. The partial ordering ≺ on L that is used in the first part of
the proof of Theorem 34 (proof direction “⇐”) is easily compiled into a recursive teaching plan of
order 1 for L.6

The characterizations proven above can be applied to certain geometric concept classes.
Consider a class L, consisting of bounded and topologically closed objects in the d-dimensional

Euclidean space, that satisfies the following condition: for every pair (A,B) ∈ Rd, there is exactly
one object in L, denoted as LA,B in the sequel, such that A,B ∈ L and such that ‖A − B‖
coincides with the diameter of L. This assumption implies that |L \ Sg(Rd)| = ∞. By setting
A = B, it furthermore implies Sg(Rd) ⊆ L. Let us prefer objects with a small diameter over
objects with a larger diameter. Then, obviously, {A,B} is a positive teaching set for LA,B . Because

6. This also follows from Lemma 8 and the fact that there are no chains of a length exceeding 2 in (L,≺).
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of |L \ Sg(Rd)| = ∞, L does clearly not satisfy the condition in Theorem 34, which is necessary
for L to have a PBTD of 1. We may therefore conclude that PBTD(L) = PBTD+(L) = 2.

The family of classes with the required properties is rich and includes, for instance, the class of
d-dimensional balls as well as the class of d-dimensional axis-parallel rectangles.

9. Conclusions

Preference-based teaching uses the natural notion of preference relation to extend the classical
teaching model. The resulting model is (i) more powerful than the classical one, (ii) resolves dif-
ficulties with the recursive teaching model in the case of infinite concept classes, and (iii) is at the
same time free of coding tricks even according to the definition by Goldman and Mathias (1996).
Our examples of algebraic and geometric concept classes demonstrate that preference-based teach-
ing can be achieved very efficiently with naturally defined teaching sets and based on intuitive
preference relations such as inclusion. We believe that further studies of the PBTD will provide in-
sights into structural properties of concept classes that render them easy or hard to learn in a variety
of formal learning models.

We have shown that spanning sets lead to a general-purpose construction for preference-based
teaching sets of only positive examples. While this result is fairly obvious, it provides further
justification of the model of preference-based teaching, since the teaching sets it yields are often
intuitively exactly those a teacher would choose in the classroom (for instance, one would represent
convex polygons by their vertices, as in Example 3). It should be noted, too, that it can sometimes
be difficult to establish whether the upper bound on PBTD obtained this way is tight, or whether
the use of negative examples or preference relations other than inclusion yield smaller teaching sets.
Generally, the choice of preference relation provides a degree of freedom that increases the power of
the teacher but also increases the difficulty of establishing lower bounds on the number of examples
required for teaching.
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A.1 The Shift Lemma

In this section, we assume that L is a concept class over a universe X ∈ {N0,Q+
0 ,R

+
0 }. We

furthermore assume that 0 is contained in every concept L ∈ L. We can extend L to a larger class,
namely the shift-extension L′ of L, by allowing each of its concepts to be shifted by some constant
which is taken from X :

L′ = {c+ L : (c ∈ X ) ∧ (L ∈ L)} .

The next result states that this extension has little effect only on the complexity measures PBTD
and PBTD+:

Lemma 36 (Shift Lemma) With the above notation and assumptions, the following holds:

PBTD(L) ≤ PBTD(L′) ≤ 1+PBTD(L) and PBTD+(L) ≤ PBTD+(L′) ≤ 1+PBTD+(L) .

Proof It suffices to verify the inequalities PBTD(L′) ≤ 1 + PBTD(L) and PBTD+(L′) ≤ 1 +
PBTD+(L) because the other inequalities hold by virtue of monotonicity. Let T be an admissible
mapping for L. It suffices to show that T can be transformed into an admissible mapping T ′ for L′
such that ord(T ′) ≤ 1+ord(T ) and such that T ′ is positive provided that T is positive. To this end,
we define T ′ as follows:

T ′(c+ L) = {(c,+)} ∪ {(c+ x, b) : (x, b) ∈ T (L)} .

Obviously ord(T ′) ≤ 1+ord(T ). Note that c ∈ c+L because of our assumption that 0 is contained
in every concept in L. Moreover, since the admissibility of T implies that L is consistent with T (L),
the above definition of T ′(c+L) makes sure that c+L is consistent with T ′(c+L). It suffices there-
fore to show that the relation trcl(RT ′) is asymmetric. Consider a pair (c′+L′, c+L) ∈ RT ′ . By the
definition ofRT ′ , it follows that c′+L′ is consistent with T ′(c+L). Because of (c,+) ∈ T ′(c+L),
we must have c′ ≤ c. Suppose that c′ = c. In this case, L′ must be consistent with T (L). Thus
L′ ≺T L. This reasoning implies that (c′ + L′, c + L) ∈ RT ′ can happen only if either c′ < c or
(c′ = c)∧(L′ ≺T L). Since≺T is asymmetric, we may now conclude that trcl(RT ′) is asymmetric,
as desired. Finally note that, according to our definition above, the mapping T ′ is positive provided
that T is positive. This concludes the proof.

A.2 The Upper Bounds in Theorem 18

We remind the reader that the equality PBTD+(LINSETk) = k was stated in Example 2. We will
show in Lemma 37 that PBTD+(NE-LINSETk) ≤ k. In combination with the Shift Lemma, this
implies that PBTD+(LINSET′k) ≤ k + 1 and PBTD+(NE-LINSET′k) ≤ k + 1. All remaining
upper bounds in Theorem 18 follow now by virtue of monotonicity.

Lemma 37 PBTD+(NE-LINSETk) ≤ k.

Proof We want to show that there is a preference relation for which k positive examples suffice to
teach any concept in NE-LINSETk. To this end, letG = {g1, . . . , g`} be a generator set with ` ≤ k
where g1 < . . . < g`. We use sum(G) = g1 + . . .+ g` to denote the sum of all generators in G. We
say that gi is a redundant generator in G if gi ∈

〈
{g1, . . . , gi−1}

〉
. Let G∗ = {g∗1, . . . , g∗`∗} ⊆ G
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with g∗1 < . . . < g∗`∗ be the set of non-redundant generators in G and let tuple(G) = (g∗1, . . . , g
∗
`∗)

be the corresponding ordered sequence. ThenG∗ is an independent subset ofG generating the same
linear set as G when allowing zero coefficients, i.e., we have 〈G∗〉 = 〈G〉 (although 〈G∗〉+ 6= 〈G〉+
whenever G∗ is a proper subset of G).

To define a suitable preference relation, letG, Ĝ be generator sets of size k or less with tuple(G)
= (g∗1, . . . , g

∗
`∗) and tuple(Ĝ) = (ĝ∗1, . . . , ĝ

∗̂̀∗). Let the student prefer G over Ĝ if any of the
following conditions is satisfied:

Condition 1: sum(G) > sum(Ĝ).

Condition 2: sum(G) = sum(Ĝ) and tuple(G) is lexicographically greater than tuple(Ĝ) without
having tuple(Ĝ) as prefix.

Condition 3: sum(G) = sum(Ĝ) and tuple(G) is a proper prefix of tuple(Ĝ).

To teach a concept 〈G〉 ∈ NE-LINSETk with sum(G) = g and tuple(G) = (g∗1, . . . , g
∗
`∗), one

uses the teaching set
S = {(g,+), (g + g∗1,+), . . . , (g + g∗h∗ ,+)}

where

h =

{
`∗ − 1 if G∗ = G
`∗ if G∗ ⊂ G . (12)

Note that S contains at most |G| ≤ k examples. Let Ĝ with
〈
Ĝ
〉
+
∈ NE-LINSETk denote the

generator set that is returned by the student. Clearly
〈
Ĝ
〉

satisfies sum(Ĝ) = g since

• concepts with larger generator sums are inconsistent with (g,+), and

• concepts with smaller generator sums have a lower preference (compare with Condition 1
above).

It follows that g + g∗i ∈
〈
Ĝ
〉
+

is equivalent to g∗i ∈
〈
Ĝ
〉

=
〈
Ĝ∗
〉

. We conclude that the smallest

generator in tuple(Ĝ) equals g∗1 since

• a smallest generator in tuple(Ĝ) that is greater than g∗1 would cause an inconsistency with
(g + g∗1,+), and

• a smallest generator in tuple(Ĝ) that is smaller than g∗1 would have a lower preference (com-
pare with Condition 2 above).

Assume inductively that the i − 1 smallest generators in tuple(Ĝ) are g∗1, . . . , g
∗
i−1. Since g∗i /∈〈

{g∗1, . . . , g∗i−1}
〉

, we may apply a reasoning that is similar to the above reasoning concerning g∗1
and conclude that the i’th smallest generator in tuple(Ĝ) equals g∗i . The punchline of this discussion
is that the sequence tuple(Ĝ) starts with g∗1, . . . , g

∗
h with h given by (12). Let G′ = G \G∗ be the

set of redundant generators in G and note that

g −
h∑

i=1

g∗i =

{
g∗`∗ if G∗ = G∑

g′∈G′ g
′ if G∗ ⊂ G .

Let Ĝ′ = Ĝ \ {g∗1, . . . , g∗h}. We proceed by case analysis:
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Case 1: G∗ = G.
Since Ĝ is consistent with (g,+), we have

∑
g′∈Ĝ′ g

′ = g∗`∗ . Since g∗`∗ /∈
〈
{g∗1, . . . , g∗`∗−1}

〉
,

the set Ĝ′ must contain an element that cannot be generated by g∗1, . . . , g
∗
`∗−1. Given the

preferences of the student (compare with Condition 2), she will choose Ĝ′ = {g∗`∗}. It follows
that Ĝ = G.

Case 2: G∗ ⊂ G.
Here, we have

∑
g′∈Ĝ′ g

′ =
∑

g′∈G′ g
′. Given the preferences of the student (compare with

Condition 3), she will choose Ĝ such that Ĝ∗ = G∗ and Ĝ′ consists of elements from 〈G∗〉
that sum up to

∑
g′∈G′ g

′ (with Ĝ′ =
{∑

g′∈G′ g
′
}

among the possible choices). Clearly,〈
Ĝ
〉
+

= 〈G〉+.

Thus, in both cases, the student comes up with the right hypothesis.

A.3 The Lower Bounds in Theorem 18

The lower bounds in Theorem 18 are an immediate consequence of the following result:

Lemma 38 The following lower bounds are valid:

PBTD+(NE-CF-LINSET′k) ≥ k + 1 . (13)

PBTD(NE-CF-LINSET′k) ≥ k − 1 . (14)

PBTD(NE-CF-LINSETk) ≥ k − 1

2
. (15)

PBTD(CF-LINSETk) ≥ k − 1 . (16)

This lemma can be seen as an extension and a strengthening of a similar result in (Gao et al.,
2015) where the following lower bounds were shown:

RTD+(NE-LINSET′k) ≥ k + 1 .

RTD(NE-LINSET′k) ≥ k − 1 .

RTD(CF-LINSETk) ≥ k − 1 .

The proof of Lemma 38 builds on some ideas that are found in (Gao et al., 2015) already, but it
requires some elaboration to obtain the stronger results.

We now briefly explain why the lower bounds in Theorem 18 directly follow from Lemma 38.
Note that the lower bound k − 1 in (8) is immediate from (14) and a monotonicity argument.
This is because NE-LINSET′k ⊇ NE-CF-LINSET′k as well as LINSET′k ⊇ CF-LINSET′k ⊇
NE-CF-LINSET′k. Note furthermore that PBTD+(CF-LINSET′k) ≥ k + 1 because of (13) and
a monotonicity argument. Then the Shift Lemma implies that PBTD+(CF-LINSETk) ≥ k. All
remaining lower bounds in Theorem 18 are obtained from these observations by virtue of mono-
tonicity.

The proof of Theorem 18 can therefore be accomplished by proving Lemma 38. It turns out
that the proof of this lemma is quite involved. We will present in Section A.3.1 some theoretical
prerequisites. Sections A.3.2 and A.3.3 are devoted to the actual proof of the lemma.
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A.3.1 SOME BASIC CONCEPTS IN THE THEORY OF NUMERICAL SEMIGROUPS

Recall from Section 6 that 〈G〉 =
{∑

g∈G a(g)g : a(g) ∈ N0

}
. The elements of G are called

generators of 〈G〉. A set P ⊂ N is said to be independent if none of the elements in P can be
written as a linear combination (with coefficients from N0) of the remaining elements (so that

〈
P ′
〉

is a proper subset of 〈P 〉 for every proper subset P ′ of P ). It is well known (Rosales and Garcı́a-
Sánchez, 2009) that independence makes generating systems unique, i.e., if P, P ′ are independent,
then 〈P 〉 =

〈
P ′
〉

implies that P = P ′. Moreover, for every independent set P , the following
implication is valid:

(S ⊆ 〈P 〉 ∧ P 6⊆ S) ⇒ (〈S〉 ⊂ 〈P 〉) . (17)

Let P = {a1, . . . , ak} be independent with a1 = minP . It is well known7 and easy to see
that the residues of a1, a2, . . . , ak modulo a1 must be pairwise distinct (because, otherwise, we
would obtain a dependence). If a1 is a prime and |P | ≥ 2, then the independence of P implies that
gcd(P ) = 1. Thus the following holds:

Lemma 39 If P ⊂ N is an independent set of cardinality at least 2 and minP is a prime, then
gcd(P ) = 1.

In the remainder of the paper, the symbols P and P ′ are reserved for denoting independent sets of
generators.

It is well known that 〈G〉 is co-finite iff gcd(G) = 1 (Rosales and Garcı́a-Sánchez, 2009). Let P
be a finite (independent) subset of N such that gcd(P ) = 1. The largest number in N \ 〈P 〉 is called
the Frobenius number of P and is denoted as F (P ). It is well known (Rosales and Garcı́a-Sánchez,
2009) that

F ({p, q}) = pq − p− q (18)

provided that p, q ≥ 2 satisfy gcd(p, q) = 1.

A.3.2 PROOF OF (13)

The shift-extension of NE-CF-LINSETk is (by way of definition) the following class:

NE-CF-LINSET′k = {c+ 〈P 〉+ : (c ∈ N0) ∧ (P ⊂ N) ∧ (|P | ≤ k) ∧ (gcd(P ) = 1)} . (19)

It is easy to see that this can be written alternatively in the form

NE-CF-LINSET′k =

N + 〈P 〉 : N ∈ N0 ∧ P ⊂ N ∧ |P | ≤ k ∧ gcd(P ) = 1 ∧
∑
p∈P

p ≤ N


(20)

where N in (20) corresponds to c+
∑

p∈P p in (19).
For technical reasons, we define the following subfamilies of NE-CF-LINSET′k. For each

N ≥ 0, let
NE-CF-LINSET′k[N ] = {N + L : L ∈ LINSETk[N ]}

7. E.g., see (Rosales and Garcı́a-Sánchez, 2009)
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where

LINSETk[N ] =

〈P 〉 ∈ LINSETk : (gcd(P ) = 1) ∧

∑
p∈P

p ≤ N


 .

In other words, NE-CF-LINSET′k[N ] is the subclass consisting of all concepts in NE-CF-LINSET′k
(written in the form (20)) whose constant is N .
A central notion for proving (13) is the following one:

Definition 40 Let k,N ≥ 2 be integers. We say that a set L ∈ NE-CF-LINSET′ is (k,N)-special
if it is of the form L = N + 〈P 〉 such that the following holds:

1. P is an independent set of cardinality k and minP is a prime (so that gcd(P ) = 1 according
to Lemma 39, which furthermore implies that 〈P 〉 is co-finite).

2. Let q(P ) denote the smallest prime that is greater than F (P ) and greater than maxP . For
a = minP and r = 0, . . . , a− 1, let

tr(P ) = min{s ∈ 〈P 〉 : s ≡ r (mod a)} and tmax(P ) = max
0≤r≤a−1

tr(P ) .

Then
N ≥ k(a+ tmax(P )) and N ≥ q(P ) +

∑
p∈P\{a}

p . (21)

We need at least k positive examples in order to distinguish a (k,N)-special set from all its
proper subsets in NE-CF-LINSET′k[N ], as the following result shows:

Lemma 41 For all k ≥ 2, the following holds. If L ∈ NE-CF-LINSET′ is (k,N)-special, then
L ∈ NE-CF-LINSET′[N ] and I ′(L,NE-CF-LINSETk[N ]) ≥ k.

Proof Suppose that L = N + 〈P 〉 is of the form as described in Definition 40. Let P =
{a, a2 . . . , ak} with a = minP . For the sake of simplicity, we will write tr instead of tr(P )
and tmax instead of tmax(P ). The independence of P implies that tai mod a = ai for i = 2, . . . , k.
It follows that tmax ≥ maxP . Since, by assumption, N ≥ k · tmax, it becomes obvious that
L ∈ NE-CF-LINSET′[N ].

Assume by way of contradiction that the following holds:

(A) There is a weak spanning set S of size k − 1 for L w.r.t. NE-CF-LINSET′k[N ].

Since N is contained in any concept from NE-CF-LINSET′k[N ], we may assume that N /∈ S so
that S is of the form S = {N + x1, . . . , N + xk−1} for integers xi ≥ 1. For i = 1, . . . , k − 1, let
ri = xi mod a ∈ {0, 1, . . . , a − 1}. It follows that each xi is of the form xi = qia + tri for some
integer qi ≥ 0. Let X = {x1, . . . , xk−1}. We proceed by case analysis:

Case 1: X ⊆ {a2, . . . , ak} (so that, in view of |X| = k − 1, we even have X = {a2, . . . , ak}).
Let L′ = N + 〈X〉. Then S ⊆ L′. Note that X ⊆ P but P 6⊆ X . We may conclude
from (17) that 〈X〉 ⊂ 〈P 〉 and, therefore, L′ ⊂ L. Thus L′ is a proper subset of L which
contains S. Note that (21) implies that N ≥

∑k
i=2 ai =

∑k−1
i=1 xi. If gcd(X) = 1, then L′ ∈

NE-CF-LINSET[N ] and we have an immediate contradiction to the above assumption (A).
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Otherwise, if gcd(X) ≥ 2, then we defineL′′ = N+
〈
X ∪ {q(P )}

〉
. Note that S ⊆ L′ ⊆ L′′.

Since q(P ) > F (P ), we have X ∪ {q(P )} ⊆ 〈P 〉 and, since q(P ) > maxP , we have
P 6⊆ X ∪ {q(P )}. We may conclude from (17) that

〈
X ∪ {q(P )}

〉
⊂ 〈P 〉 and, therefore,

L′′ ⊂ L. Thus, L′′ is a proper subset of L which contains S. Because X = {a2, . . . , ak}
and q(P ) is a prime that is greater than maxP , it follows that gcd(X ∪ {q(P )}) = 1.
In combination with (21), it easily follows now that L′′ ∈ NE-CF-LINSET[N ]. Putting
everything together, we arrive at a contradiction to the assumption (A).

Case 2: X 6⊆ {a2, . . . , ak}.
If ri = 0 for i = 1, . . . , k − 1, then each xi is a multiple of a. In this case, N +

〈
a, q(P )

〉
is

a proper subset of L = N + 〈P 〉 that is consistent with S, which yields a contradiction. We
may therefore assume that there exists i′ ∈ {1, . . . , k − 1} such that ri′ 6= 0. From the case
assumption, X 6⊆ {a2, . . . , ak}, it follows that there must exist an index i′′ ∈ {1, . . . , k − 1}
such that qi′′ ≥ 1 or tri′′ /∈ {a2, . . . , ak}. For i = 1, . . . , k − 1, let q′i = min{qi, 1}
and x′i = q′ia + tri . Note that q′i′′ = 1 iff qi′′ ≥ 1. Define L′′ = N +

〈
X ′
〉

for X ′ =
{a, x′1, . . . , x′k−1} and observe the following. First, the set L′′ clearly contains S. Second,
the choice of x′1, . . . , x

′
k−1 implies that X ′ ⊆ 〈P 〉. Third, it easily follows from q′i′′ = 1 or

tri′′ /∈ {a2, . . . , ak} that P 6⊆ {a, x′1, . . . , x′k−1}. We may conclude from (17) that
〈
X ′
〉
⊂

〈P 〉 and, therefore, L′′ ⊂ L. Thus, L′′ is a proper subset of L which contains S. Since ri′ 6= 0
and a is a prime, it follows that gcd(a, x′i′) = 1 and, therefore, gcd(X ′) = 1. In combination
with (21), it easily follows now that L′′ ∈ NE-CF-LINSET[N ]. Putting everything together,
we obtain again a contradiction to the assumption (A).

For the sake of brevity, let L = NE-CF-LINSET′. Assume by way of contradiction that there
exists a positive mapping T of order k that is admissible for Lk. We will pursue the following
strategy:

1. We define a set L ∈ Lk of the form L = N + p+ 〈1〉.

2. We define a second set L′ = N + 〈G〉 ∈ L that is (k,N)-special and consistent with T+(L).
Moreover, L′ \ L = {N}.

If this can be achieved, then the proof will be accomplished as follows:

• According to Lemma 41, T+(L′) must contain at least k examples (all of which are different
from N ) for distinguishing L′ from all its proper subsets in Lk[N ].

• Since L′ is consistent with T+(L), the set T+(L′) must contain an example which distin-
guishes L′ from L. But the only example which fits this purpose is (N,+).

• The discussion shows that T+(L′) must contain k examples in order to distinguish L′ from
all its proper subsets in Lk plus one additional example, N , needed to distinguish L′ from L.

• We obtain a contradiction to our initial assumption that T+ is of order k.
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We still have to describe how our proof strategy can actually be implemented. We start with the
definition of L. Pick the smallest prime p ≥ k + 1. Then {p, p + 1, . . . , p + k} is independent.

Let M = F ({p, p + 1}) (18)
= p(p + 1) − p − (p + 1). An easy calculation shows that k ≥ 2 and

p ≥ k + 1 imply that M ≥ p + k. Let I = {p, p + 1, . . . ,M}. Choose N large enough so that all
concepts of the form

N + 〈P 〉 where |P | = k, p = minP and P ⊆ I

are (k,N)-special. With these choices of p andN , let L = N+p+〈1〉. Note thatN+p,N+p+1 ∈
T+(L) because, otherwise, one of the concepts N + p + 1 + 〈1〉, N + p + 〈2, 3〉 ⊂ L would be
consistent with T+(L) whereas T+(L) must distinguish L from all its proper subsets in Lk. Setting
A = {x : N + x ∈ T+(L)}, it follows that |A| = |T+(L)| ≤ k and p, p + 1 ∈ A. The set A
is not necessarily independent but it contains an independent subset B such that p, p + 1 ∈ B and
〈A〉 = 〈B〉. Since M = F ({p, p + 1}), it follows that any integer greater than M is contained in
〈p, p+ 1〉. Since B is an independent extension of {p, p+ 1}, it cannot contain any integer greater
than M . It follows that B ⊆ I . Clearly, |B| ≤ k and gcd(B) = 1. We would like to transform B
into another generating system G ⊆ I such that

〈B〉 ⊆ 〈G〉, gcd(G) = 1 and |G| = k .

If |B| = k, we can simply set G = B. If |B| < k, then we make use of the elements in the indepen-
dent set {p, p+ 1, . . . , p+ k} ⊆ I and add them, one after the other, to B (thereby removing other
elements from B whenever their removal leaves 〈B〉 invariant) until the resulting set G contains k
elements. We now define the set L′ by setting L′ = N + 〈G〉. Since G ⊆ I = {p, p+ 1, . . . ,M},
and p, p + 1 ∈ G, it follows that p = minG, gcd(G) = 1 and min(L′ \ {N}) is N + p. Thus,
L′ \ L = {N}, as desired. Moreover, since N had been chosen large enough, the set L′ is (k,N)-
special. Thus L and L′ have all properties that are required by our proof strategy and the proof
of (13) is complete.

A.3.3 PROOF OF (14), (15), AND (16)

We make use of some well known (and trivial) lower bounds on TDmin:

Example 5 For every k ∈ N, let [k] = {1, 2, . . . , k}, let 2[k] denote the powerset of [k] and, for all
` = 0, 1, . . . , k, let (

[k]

`

)
= {S ⊆ [k] : |S| = `}

denote the class of those subsets of [k] that have exactly ` elements. It is trivial to verify that

TDmin

(
2[k]
)

= k and TDmin

((
[k]

`

))
= min{`, k − `} .

In view of PBTD+(LINSETk) = k, the next results show that negative examples are of limited
help only as far as preference-based teaching of concepts from LINSETk is concerned:
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Lemma 42 For every k ≥ 1 and for all ` = 0, . . . , k − 1, let

Lk = {〈k, p1, . . . , pk−1〉 : pi ∈ {k + i, 2k + i}} ,
Lk,` = {{〈k, p1, . . . , pk−1〉 ∈ Lk : |{i : pi = k + i}| = `} .

With this notation, the following holds:

TDmin(Lk) ≥ k − 1 and TDmin(Lk,`) ≥ min{`, k − 1− `} .

Proof For k = 1, the assertion in the lemma is vacuous. Suppose therefore that k ≥ 2. An
inspection of the generators k, p1, . . . , pk−1 with pi ∈ {k + i, 2k + i} shows that

Lk = {Lk,S : S ⊆ {k + 1, k + 2, . . . , 2k − 1}}
Lk,` = {Lk,S : (S ⊆ {k + 1, k + 2, . . . , 2k − 1}) ∧ (|S| = `)}

where
Lk,S = {0, k} ∪ {2k, 2k + 1, . . .} ∪ S .

Note that the examples in {0, 1, . . . , k} ∪ {2k, 2k+ 1, . . . , } are redundant because they do not dis-
tinguish between distinct concepts from Lk. The only useful examples are therefore contained
in the interval {k + 1, k + 2, . . . , 2k − 1}. From this discussion, it follows that teaching the
concepts of Lk (resp. of Lk,`) is not essentially different from teaching the concepts of 2[k−1](

resp. of
([k−1]

`

))
. This completes the proof of the lemma because we know from Example 5 that

TDmin(2[k−1]) = k − 1 and TDmin

(([k−1]
`

))
= min{`, k − 1− `}.

We claim now that the inequalities (14), (15) and (16) are valid, i.e., we claim that the following
holds:

1. PBTD(CF-LINSETk) ≥ k − 1.

2. PBTD(NE-CF-LINSETk) ≥ b(k − 1)/2c.

3. PBTD(NE-CF-LINSET′k) ≥ k − 1.

Proof For k = 1, the inequalities are obviously valid. Suppose therefore that k ≥ 2.

1. Since gcd(k, k + 1) = gcd(k, 2k + 1) = 1, it follows that Lk is a finite subclass of
CF-LINSETk. Thus PBTD(CF-LINSETk) ≥ PBTD(Lk) ≥ TDmin(Lk) ≥ k − 1.

2. Define Lk[N ] = {N + L : L ∈ Lk} and Lk,`[N ] = {N + L : L ∈ Lk,`}. Clearly
TDmin(Lk[N ]) = TDmin(Lk) and TDmin(Lk,`[N ]) = TDmin(Lk,`) holds for every N ≥
0. It follows that the lower bounds in Lemma 42 are also valid for the classes Lk[N ] and
Lk,`[N ] in place of Lk and Lk,`, respectively. Let

N(k) = k2+(k−1−b(k−1)/2c)k+
k−1∑
i=1

i = k2+(k−1−b(k−1)/2c)k+
1

2
(k−1)k . (22)
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It suffices to show that N(k) +Lk,b(k−1)/2c is a finite subclass of NE-CF-LINSETk. To this
end, first note that

〈k, p1, . . . , pk−1〉+ = k +
k−1∑
i=1

pi + 〈k, p1, . . . , pk−1〉 .

Call pi “light” if pi = k + i and call it “heavy” if pi = 2k + i. Note that a concept L from
N(k) + Lk,` is of the general form

L = N(k) + 〈k, p1, . . . , pk−1〉 (23)

with exactly ` light parameters among p1, . . . , pk−1. A straightforward calculation shows that,
for ` = b(k− 1)/2c, the sum k+

∑k−1
i=1 pi equals the number N(k) as defined in (22). Thus,

the concept L from (23) with exactly b(k−1)/2c light parameters among {p1, . . . , pk−1} can
be rewritten as follows:

L = N(k) + 〈k, p1, . . . , pk−1〉 = 〈k, p1, . . . , pk−1〉+ .

This shows that L ∈ NE-CF-LINSETk. As L is a concept from N(k) +Lk,b(k−1)/2c in gen-
eral form, we may conclude thatN(k)+Lk,b(k−1)/2c is a finite subclass of NE-CF-LINSETk,
as desired.

3. The proof of the third inequality is similar to the above proof of the second one. It suf-
fices to show that, for every k ≥ 2, there exists N ∈ N such that N + Lk is a subclass of
NE-CF-LINSET′k. To this end, we set N = 3k2. A concept L from 3k2 + Lk is of the
general form

L = 3k2 + 〈k, p1, . . . , pk−1〉

with pi ∈ {k+ i, 2k+ i} (but without control over the number of light parameters). It is easy
to see that the constant 3k2 is large enough so that L can be rewritten as

L = 3k2 −

k +
k−1∑
i=1

pi

+ 〈k, p1, . . . , pk−1〉+

where 3k2 −
(
k +

∑k−1
i=1 pi

)
≥ 0. This shows that L ∈ NE-CF-LINSET′k. As L is a

concept from 3k2 + Lk in general form, we may conclude that 3k2 + Lk is a finite subclass
of NE-CF-LINSET′k, as desired.
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