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Abstract

In this paper1, we consider the graph G(L|w), resp. the directed graph
~G(L|w), associated with an arbitrary language L ⊆ Σ∗ and an arbitrary
string w ∈ Σ∗. The clique number of L is then defined as the supremum of
the clique numbers of the graphs G(L|w) where w ranges over all strings in
Σ∗. The maximum in- or outdegree of L is defined analogously. We charac-
terize regular languages with an infinite clique number and determine tight
upper bounds in the finite case. We obtain analogous results for the max-
imum indegree and the maximum outdegree of a regular language. As an
application, we consider the problem of determining the maximum activity
level of a prefix-closed regular language — a parameter that is related to the
computational complexity of parsing techniques utilizing unbounded regular
lookahead. Finally, we determine the computational complexity of various
problems arising from our graph-theoretic approach.

Keywords: regular language, lookahead DFA, clique number, maximum
degree, computational complexity, query learning, minimum adequate
teacher

1. Introduction

In Section 1.1, we describe the connection between LR-regular parsing and
the maximum activity level2 of the lookahead DFA utilized during parsing.
In Section 1.2, we describe the more general approach taken in this paper:

1an extended version of (Konitzer and Simon, 2014)
2which was the central notion in the conference version of this paper
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we look at languages from a broader graph-theoretic perspective and relate
structural properties of regular languages to properties of the (di-)graphs
induced by them.

1.1. LR-regular Parsing and Lookahead DFAs

LR-regular (LRR) parsing (Čulik and Cohen, 1973) is one of the few
parsing techniques utilizing unbounded lookahead. LRR languages properly
include the deterministic context-free languages (Knuth, 1965). LRR parsers
allow for a large number of interesting grammars with practical relevance
(such as the original version of the Java language (Gosling et al., 1996), which
cannot be handled by any LR(k) parser). The parsers generated with the
algorithm from (Čulik and Cohen, 1973) clearly have linear runtime, although
they are a little cumbersome. The algorithm is rather of theoretical interest as
membership in the class of LR-regular grammars is undecidable and as some
implementation details remain unclear. Practical LRR parsing techniques
such as (Bermudez and Schimpf, 1990) and (Farré and Gálvez, 2001) basically
work like the well known LR(k) shift-reduce parsers (Knuth, 1965), yet use
regular lookaheads of arbitrary length instead of the normal fixed length
ones. Starting with an inconsistent LR(0) automaton, practical LRR parser
generation techniques set out to build disjoint regular envelopes for each
inconsistent LR(0) state. This aims at separating the state’s conflicting suffix
languages from each other. These regular envelopes are typically built as
deterministic finite automata (DFAs), so called lookahead DFAs, which are
used for lookahead exploration during parsing whenever necessary. Different
explorations of the same lookahead DFA, operating on a common substring
of the input string, may overlap each other. As formally defined in Section 2,
this leads to the notion of the maximum activity level of a prefix-closed
regular language.

If the number of mutually overlapping explorations on strings of length
n is bounded from above by some B ≤ n, the whole parser has time bound
O(Bn) on inputs of length n (as illustrated in Fig. 1). It turns out that
either B is a constant (in the case of a bounded activity level) or B may grow
linearly with the length n of an input string (in the case of an unbounded
activity level). In the latter case, parsing may take O(n2) steps.3 In the

3An LRR-grammar leading to quadratic run time for parsing with (unbounded) looka-
head DFAs is found in (Schmitz, 2007).
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former case, the time bound is linear in n.4 But note that B may still
depend on the size of the employed lookahead DFA, which would become an
issue once we think in terms practical LRR parser generators.

1 2 3 4 5 6 7 8 9

in an input string

letter positions

exploration 1

exploration 2

exploration 3

snapshot with activity level 3

Figure 1: B = 3 mutually overlapping lookahead explorations.

1.2. A Graph-theoretic View on Languages

We consider in this paper arbitrary regular languages and several graph-
theoretic parameters. By associating a family of (di-)graphs with a language
L, we will be in the position to formally define the clique number and the
maximum in- or outdegree of a given language L. Each of these numbers is
defined as a supremum over a family of (di-)graphs and is therefore possibly
infinite. Our main results are as follows:

• We characterize the regular languages with an infinite clique number
and derive a tight upper bound on the clique number in the finite case.
See Section 3.

• We obtain analogous results for the maximum in- and the maximum
outdegree of a regular language. See Section 4.

• We show that it can be efficiently decided whether a regular language,
given as a DFA, has a finite clique number (resp. a finite maximum
indegree or a finite maximum outdegree). Moreover the maximum out-
degree of L (given as a DFA) can be efficiently determined. This algo-
rithm can also be used for the computation of the maximum indegree

4See (Konitzer, 2013) for several grammar constructs leading to lookahead DFAs with a
bounded activity level (e.g. HTML forms (Farré and Gálvez, 2001) and Ada calls (Boullier,
1984; Schmitz, 2007)).
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of a regular language L, but then it runs in time polynomial in the
sizes of the minimum DFAs for L and the reverse of L (which can be
exponential in the size of the minimum DFA for L). See Section 5.1.

• The problem of deciding whether the maximum clique number of a
regular language L (given as a DFA) is above a given threshold is shown
to be PSPACE-complete (even if L is assumed to be prefix-closed).
The corresponding problem for the maximum indegree is PSPACE-
complete too. The corresponding problem for the maximum outdegree
is PSPACE-complete if L is given as an NFA. See Section 5.2.

As explained in Section 2, the maximum activity level of a prefix-closed reg-
ular language L coincides with the maximum indegree of L (with the obvious
implications on the computational complexity of computing the maximum
activity level).

2. Definitions, Notations, Facts and Easy Observations

In Section 2.1, we call to mind some basic notions and facts in the theory
of finite automata. Readers being familiar with the theory of finite automata
may skip this section without much loss of continuity. In Section 2.2, we look
at regular languages from a graph-theoretic perspective thereby presenting
some central notions along with some easy observations and some useful facts.

2.1. Regular Languages and Finite Automata

Let M be a deterministic finite automaton (DFA) given by its finite set
of states, Q, its input alphabet, Σ, its transition function, δ : Q × Σ → Q,
its initial state, q0 ∈ Q, and its set of final (accepting) states, F ⊆ Q. The
states from Q \ F are said to be non-final. A trap state is a state q from Q
such that δ(q, a) = q for all a ∈ Σ (so that a computation that reaches the
state q cannot escape from there). As usual, Σ∗ denotes the set of strings
over Σ, including the empty string ε, and Σ+ = Σ∗ \ {ε}. The mapping δ
can be extended to a mapping δ∗ : Q× Σ∗ → Q:

δ∗(q, ε) = q and δ∗(q, aw) = δ∗(δ(q, a), w) .

Here, q ∈ Q, a ∈ Σ, and w ∈ Σ∗. δ∗(q, w) is the state reached by a compu-
tation of M that was started in state q and has processed all letters of w. A
state q ∈ Q is said to be superfluous if at least one of the following conditions
is satisfied:
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• q is not reachable from the start state, i.e., there does not exist a string
w ∈ Σ∗ such that δ∗(q0, w) = q.

• q is not productive, i.e., there does not exist a string w ∈ Σ∗ such that
δ∗(q, w) ∈ F although q is not a non-final trap state.

Every DFA can be simplified so as to avoid superfluous states.
The transition diagram of a DFA M = (Q,Σ, δ, q0, F ) is a directed graph

DM = (Q,E) with node- and edge-labels and with q0 ∈ Q as a distin-
guished start node. Nodes from F are labeled as “final (accepting)” while
the remaining nodes are labeled “non-final”. For every transition of the form
δ(q, a) = q′, E contains an arc (q, q′) that is labeled “a”. Note that, for all
q, q′ ∈ Q and w ∈ Σ∗, δ∗(q, w) = q′ iff the unique path PM(q, w) that starts
from q and whose edges are labeled by the letters of w ends in q′. Let

L(M) = {w ∈ Σ∗ : δ∗(q0, w) ∈ F}
= {w ∈ Σ∗ : PM(q0, w) ends in a node from F} .

A language L is said to be recognized by M if L = L(M). The class
of languages that can be recognized by some DFA is precisely the class of
regular languages. Suppose that L is a regular language. The Nerode relation
is the following equivalence relation on Σ∗ × Σ∗:

u ≡L v ⇔ (∀w ∈ Σ∗ : uw ∈ L⇔ vw ∈ L) .

The equivalence class containing the string u ∈ Σ∗ is denoted [u]L. The
following facts are well known. L is regular if and only if the Nerode rela-
tion has only finitely many equivalence classes. For all strings u, v, x ∈ Σ∗,
u ≡L v implies that ux ≡L vx. Moreover, u ≡L v and u ∈ L implies
that v ∈ L. These observations make sure that the following automaton
ML = (QL,Σ, δL, q0, FL), called the Nerode automaton for L, is a well de-
fined DFA which recognizes L:

• QL = {[u]L : u ∈ Σ∗}, q0 = [ε]L and FL = {[u]L : u ∈ L}.

• For all u ∈ Σ∗ and a ∈ Σ, δL([u]L, a) = [ua]L.

It is well known that ML is a DFA with the smallest number of states among
all DFAs that recognize L and, with this property, ML is unique up to re-
naming of states. For this reason, the Nerode automaton for L is sometimes
called the minimum DFA for L.

5



A non-deterministic finite automaton (NFA) M is given by its finite set
of states, Q, its input alphabet, Σ, its transition function δ : Q × Σ → 2Q,
its set of initial states, Q0, and its set of final (accepting) states, F . Here 2Q

denotes the powerset of Q. The mapping δ can be extended to a mapping
δ∗ : Q× Σ∗ → 2Q:

δ∗(q, ε) = {q} and δ∗(q, aw) =
⋃

q′∈δ(q,a)

δ∗(q′, w) .

The language that is recognized by M is then given by

L(M) = {w ∈ Σ∗ : (∃q ∈ Q0 : δ∗(q, w) ∩ F 6= ∅)} .

The definition of a transition diagram of an NFA M is similar to the definition
of a transition diagram of a DFA. Here nodes are labeled as either initial or
non-initial and as either final or non-final. We draw an arc labeled a from q
to q′ iff q′ ∈ δ(q, a).

Two finite automata are said to be equivalent if they recognize the same
language. Every NFA M = (Q,Σ, δ, Q0, F ) can be transformed into an equiv-
alent DFA M ′ = (Q′,Σ, δ′, q′0, F

′) by setting Q′ = 2Q (the powerset of Q),
q′0 = Q0, F ′ = {P ⊆ Q : P ∩F 6= ∅} and, for each P ⊆ Q and each a ∈ Σ, by
setting δ′(P, a) = ∪q∈P δ(q, a). An algorithm that performs this transforma-
tion can be made more efficient by generating only those states from Q′ = 2Q

that can be reached from the initial state q′0 = Q0. In what follows, we refer
to this (more efficient) procedure simply as the “powerset construction”.

Given the DFAs Mi = (Qi,Σ, δi, q0,i, Fi) for i = 1, 2, the DFA M =
(Q,Σ, δ, q0, F ) such that Q = Q1 × Q2, q0 = (q0,1, q0,2), and δ((q1, q2), a) =
(δ1(q1, a), δ2(q2, a)) is called the product (automaton) of M1 and M2. Note
that L(M) = L(M1) ∩ L(M2) if we set F = F1 × F2, and L(M) = L(M1) ∪
L(M2) if we set F = (F1 ×Q2) ∪ (Q1 × F2).

A language L ⊆ Σ∗ is called prefix-free (resp. suffix-free) if, for each
w ∈ L, no proper prefix (resp. no proper suffix) of w belongs to L. Let
Pref(L) = {u ∈ Σ∗ : (∃w ∈ L : u is prefix of w)} and Suff(L) = {u ∈ Σ∗ :
(∃w ∈ L : u is suffix of w)} L is called prefix-closed (resp. suffix-closed) if
Pref(L) = L (resp. Suff(L) = L). A DFA M = (Q,Σ, δ, q0, F ) such that
F = Q \ {q−} for a non-final trap state q− ∈ Q is said to be prefix-closed. It
is obvious that L(M) is a prefix-closed language if M is a prefix-closed DFA.
Moreover, each prefix-closed regular language can be recognized by some
prefix-closed DFA. For instance, the Nerode automaton for a prefix-closed
regular language is prefix-closed.
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For a word w = a1 . . . an ∈ Σn, we set wR = an . . . a1. For a language
L ⊆ Σ∗, we set LR = {wR : w ∈ L}. Suppose that M = (Q,Σ, δ, Q0, F ) is
an NFA that recognizes L. Then the NFA MR = (Q,Σ, δR, F,Q0) such that

δR(q′, a) = {q ∈ Q : q′ ∈ δ(q, a)} (1)

recognizes LR. Note that the final (resp. initial) states of M become the
initial (resp. final) states of MR. Equation (1) means that the arcs in the
transition diagram ofMR are obtained from the arcs in the transition diagram
of M by reversing their orientations, respectively. We will refer to the whole
procedure of computing MR from M as “reversing the transition diagram”
of M .

As for a DFA M (which can be considered as a special case of an NFA in
the obvious fashion), we briefly note the following

Lemma 2.1. Let M = (Q,Σ, δ, q0, F ) be a DFA, MR the corresponding NFA
as defined above, and MR

det the DFA obtained from MR by the powerset con-
struction. Then, MR

det has at most 2|Q|−1 final states. Moreover, if M is
prefix-closed with a non-final trap state q−, then the state set of MR can be
set to Q \ {q−} and MR

det has at most 2|Q|−2 final states.

Proof The final states of MR
det are given by the subsets of Q which contain q0

(except for those which are not reachable from the initial state of MR
det).

Moreover, if M is prefix-closed, then q− is not reachable from the initial
states of MR so that MR has the state set Q \ {q−}. In this case, the final
states of MR

det are given by the subsets of Q \ {q−} which contain q0 (except
for those which are not reachable from the initial state of MR

det). �

The following observation of Brzozowski forms the basis of his algorithm
for DFA minimization:

Lemma 2.2 (Brzozowski (1962)). Let M be a DFA all of whose states
are reachable from the start state and let L = L(M). Then the powerset
construction5 applied to the NFA MR yields a minimum DFA for LR.

This clearly implies that, given a DFA M , the minimum DFA for L(M)R can
be computed in time polynomial in the sizes of M and the minimum DFA

5Recall our convention that the powerset construction generates reachable states only.
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for LR. As already exploited by Brzozowski (1962), another application of
the powerset construction, now to the reverse of the minimum DFA for LR,
yields the minimum DFA for L(M).

2.2. A Graph-theoretic Perspective

Let L ⊆ Σ∗ be a language over the alphabet Σ. Let w = a1 · · · an ∈ Σn.
Then, for all 1 ≤ i < j ≤ n + 1, wi,j denotes the substring ai · · · aj−1. The
graph G(L|w) = (V,E) is defined by setting V = {1, . . . , n+ 1} and

E = {{i, j} : 1 ≤ i < j ≤ n+ 1 and wi,j ∈ L} .

We briefly note that V = {1} and E = ∅ for w = ε.
Let G = (V,E) be a graph. As usual, a set C ⊆ V whose nodes are

pairwise adjacent in G is called a clique in G. The clique number of G,
denoted ω(G), is the cardinality of the largest clique in G. In the sequel, the
clique number of G(L|w) is simply denoted as ω(L|w). We define the clique
number of a language L ⊆ Σ∗ as follows:

ω(L) = sup
w∈Σ+

ω(L|w) .

We say that L has a finite clique number if ω(L) <∞.
The directed counterpart of the graph G(L|w) for a language L and a

string w = a1 · · · an ∈ Σn is the digraph ~G(L|w) = (V,A) given by V =
{1, . . . , n+ 1} and

A = {(i, j) : 1 ≤ i < j ≤ n+ 1 and wi,j ∈ L} .

Let ~G = (V,A) be a digraph. Recall that the outdegree (resp. indegree) of a
node v in G, denoted d+

G(v) (resp. d−G(v)) is the number of arcs from A leaving
v (resp. entering v). The maximum outdegree and the maximum indegree in
~G are then given by

d+
max(~G) = max

v∈V
d+
G(v) and d−max(~G) = max

v∈V
d−G(v) ,

respectively. In the sequel, the maximum outdegree of ~G(L|w) is simply
denoted as d+

max(L|w). The analogous remark applies to the maximum in-

degree of ~G(L|w). The maximum outdegree and the maximum indegree of a
language L ⊆ Σ∗ are then given by

d+
max(L) = sup

w∈Σ+

d+
max(L|w) and d−max(L) = sup

w∈Σ+

d−max(L|w) ,
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respectively. We say that L has a finite maximum outdegree (resp. a finite
maximum indegree) if d+

max(L) <∞ (resp. d−max(L) <∞).

If L = ∅ or L = {ε}, then the graphs G(L|w) resp. ~G(L|w) contain
isolated vertices only. All other languages L have a clique number of at least
2 and a maximum outdegree (resp. maximum indegree) of at least 1 as it will
become evident from the following

Example 2.3. Let L ⊆ Σ∗ be a language containing at least one non-empty
string. Let w be a shortest non-empty string in L, say |w| = n ≥ 1.
Setting V = {1, . . . , n, n + 1}, it follows that G(L|w) = (V, {{1, n + 1}})
and ~G(L|w) = (V, {(1, n + 1)}). It follows that ω(L) ≥ ω(L|w) = 2,
d+
max(L) ≥ d+

max(L|w) = 1 and d−max(L) ≥ d−max(L|w) = 1.

For a graph G with nodes numbered from 1 to n, we denote by ~G the
digraph resulting from G by orienting each edge in direction to the larger
node number. Clearly, d+

max(~G) ≥ ω(G)− 1 and d−max(~G) ≥ ω(G)− 1. Since
this holds specifically for the graph G(L|w) and the corresponding digraph
~G(L|w), we get:

Observation 1: Let L ⊆ Σ∗ be a language. Then, d+
max(L) ≥ ω(L)− 1 and

d−max(L) ≥ ω(L)− 1.

We write G1 ' G2 to indicate that a graph G1 is isomorphic to another
graph G2. The same notation is used for digraphs. If ~G is a digraph, then
we denote by ~GR the digraph obtained from ~G by reversing the orientation
of each edge. With these notations (and with the notations wR and LR from
Section 2.1), the following is fairly obvious:

Observation 2: G(L|w) ' G(LR|wR) and ~G(L|w) ' ~G(LR|wR)R.

Clearly isomorphic graphs have the same clique number, d+
max(~G) =

d−max(~G
R) and d−max(~G) = d+

max(~G
R). Since this particularly applies to the

graphs G(L|w) and ~G(L|w), we get:

Corollary 2.4. Let L ⊆ Σ∗ be a language. Then, ω(L) = ω(LR), d+
max(L) =

d−max(L
R) and d−max(L) = d+

max(L
R).

The following result (whose easy proof is included for the sake of complete-
ness) will be used several times in this paper:
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Lemma 2.5. For every language L ⊆ Σ∗, the following holds:

ω(L) ≥ ` ⇔ ∃u1, . . . , u`−1∈Σ+,∀1 ≤ i ≤ j ≤ `− 1 : ui . . . uj ∈ L.(2)

d+
max(L) ≥ ` ⇔ ∃u1, . . . , u` ∈ Σ+,∀1 ≤ i ≤ ` : u1 . . . ui ∈ L . (3)

d−max(L) ≥ ` ⇔ ∃u1, . . . , u` ∈ Σ+,∀1 ≤ i ≤ ` : ui . . . u` ∈ L . (4)

Proof We present the proof for the clique number. (The proof for d+
max

resp. d−max is quite similar.)
Clearly, if ω(L) ≥ `, there must be a “witness” w ∈ Σn such that ω(L|w) ≥ `.
It is easy to see that a minimal string w with this property (so that no proper
substring u of w satisfies ω(L|u) ≥ `) satisfies ω(G|w) = ` and each clique
of size ` in G(L|w) contains the nodes 1 and n + 1. Thus, C is of the form
C = {i1, i2, . . . , i`−1, i`} for 1 = i1 < i2 < . . . < i`−1 < i` = n + 1. Then the
strings uj = wij ,ij+1

for j = 1, . . . , `− 1 satisfy condition (2).
Suppose conversely that condition (2) is valid. Let w = u1 . . . u`−1 and
ij = 1 + |u1| + . . . + |uj−1| for j = 1, . . . , `. It follows that {i1, . . . , i`} is a
clique in G(L|w) so that ω(L) ≥ ω(L|w) ≥ `. �

The following result characterizes languages with maximum outdegree
(resp. maximum indegree) 1. Moreover, it relates the maximum clique num-
ber of a prefix-closed (resp. suffix-closed) language to its maximum indegree
(resp. maximum outdegree).6

Corollary 2.6. 1. L is prefix-free iff d+
max(L) = 1.

2. L is suffix-free iff d−max(L) = 1.

3. If L is prefix-closed, then ω(L) = d−max(L) + 1.

4. If L is suffix-closed, then ω(L) = d+
max(L) + 1.

Proof We start with the first statement. A language L ⊆ Σ∗ is not prefix-
free iff there exist two strings u1, u2 ∈ Σ+ such that u1, u1u2 ∈ L. According
to Lemma 2.5, this is equivalent to d+

max(L) ≥ 2.
The second statement is proved analogously.
We proceed with the proof of the third statement. According to Observation
1 in Section 2, d−max(L) ≥ ω(L)−1. It suffices therefore to show that ω(L) ≥
d−max(L) + 1. Let ` = d−max(L) + 1. Choose u1, . . . , u` ∈ Σ+ according to

6The latter relation makes use the convention ∞ =∞+ 1.
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condition (4) from Lemma 2.5. Since L is assumed as prefix-closed, it follows
that condition (2) from Lemma 2.5 (with `+ 1 in the role of `) is valid too.
Another application of Lemma 2.5 yields that ω(L) ≥ `+ 1.
The fourth statement is proved analogously. �

At the end of this section, we come back to lookahead DFAs that are
utilized for resolving parsing conflicts. Recall from the introduction and
from Figure 1 that, given a lookahead DFA M , we are only interested in the
question of which substrings of an input string are fully processed by M .
Clearly the language of all strings that are fully processed by M is prefix-
closed. Thus it should be clear that the following definition (with L(M) in
the role of L) captures how many computations of M can be active at the
same time if M starts a computation at several positions of the same input
string:

Definition 2.7. The maximum activity level of a prefix-closed regular lan-
guage L is denoted as `(L) and defined as follows:

`(L) = sup{` : (∃u1, . . . , u` ∈ Σ+,∀i = 1, . . . , ` : ui · · ·u` ∈ L)} .

An inspection of Lemma 2.5 shows that `(L) = d−max(L). Moreover, since
Definition 2.7 is concerned with prefix-closed regular languages only, we also
get `(L) = ω(L)−1 according to the third statement in Corollary 2.6. Thus,
the study of ω(L) and d−max(L) for arbitrary regular languages collapses to
the study of `(L) whenever we specialize our results to regular languages that
are prefix-closed.

3. The Clique Number of a Regular Language

The following result characterizes the regular languages with an infinite
clique number:

Theorem 3.1. Let L ⊆ Σ∗ be a regular language. Then the following state-
ments are equivalent:

1. ω(L) =∞.

2. For every DFA M = (Q,Σ, δ, q0, F ) such that L(M) = L, the following
holds:

∃q ∈ F, ∃w ∈ Σ+ : q = δ∗(q0, w) = δ∗(q, w) (5)
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3. ∃w ∈ L \ {ε} : w ≡L w2.

4. ∃w ∈ L \ {ε},∀i ≥ 1 : wi ∈ L.

Proof We first prove that the first statement implies the second one. Suppose
that L has an infinite clique number. Let ` ≥ 1 be a sufficiently large number
whose precise definition is given below. Choose strings u1, . . . , u`−1 ∈ Σ+

according to condition (2) from Lemma 2.5. For the sake of brevity, let wi,j =
ui . . . uj−1 for all 1 ≤ i < j ≤ `. Let K` denote the complete graph with `
nodes. Consider the edge-coloring ofK` where each edge {i, j} such that i < j
is colored by δ∗(q0, wi,j). Note that this coloring uses |F | colors. Let t = |F |
and let r(3, t) denote the smallest number of nodes of a complete graph such
that any t-coloring of its edges leads to at least one monochromatic triangle.7

It is well known (Fredricksen, 1979; Chung and Grinstead, 1983; Wan, 1997)
that

2t < r(3, t) < 1 +
e− e−1 + 3

2
· t! < 3t! .

Let now ` := r(3, t) < 3t!. Then, with the coloring defined above (as for any
t-coloring), K` has at least one monochromatic triangle. By construction of
the coloring, this means that there exist 1 ≤ i < j < k ≤ ` − 1 such that
δ∗(q0, wi,j) = δ∗(q0, wi,k) = δ∗(q0, wj,k). Setting q := δ∗(q0, wi,j), we obtain

δ∗(q, wj,k) = δ∗(q0, wi,k) = δ∗(q0, wj,k) = q

so that the second statement holds with wj,k in the role of w.
The second statement implies the third one because we may choose M espe-
cially as the Nerode automaton for L. Then M satisfies δ∗(q0, x) = [x]L for
all x ∈ Σ∗. From q = δ∗(q0, w) = δ∗(q, w), we may therefore conclude that

[w]L = δ∗(q0, w) = δ∗(q, w) = δ∗(q0, w
2) = [w2]L .

We show now that the third statement implies the fourth one. The condition
w ≡L w2 implies that w2 = ww ≡L w2w = w3 so that w,w2, w3 are Nerode-
equivalent. Iteration of this argument yields that w ≡L wi for all i ≥ 1.
Since w ∈ L, it follows that wi ∈ L for all i ≥ 1.
We finally show that the fourth statement implies the first one. Suppose that
there exists some w ∈ L \{ε} such that, for all i ≥ 1, wi ∈ L. Then, for each
` ≥ 1, ω(L) ≥ ω(L|w`−1) ≥ `. Thus, ω(L) =∞. �

7In Ramsey Theory, r(3, t) is known as the “triangular Ramsey Number with t colors”.
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For the ease of later reference, we note the following. Condition (5) is
satisfied with q = q0 if and only if the following holds:

q0 ∈ F ∧ (∃w ∈ Σ+ : δ∗(q0, w) = q0) . (6)

This condition can clearly be checked in linear time.
The proof of Theorem 3.1 implies that either ω(L) =∞ or ω(L) < r(3, t)

since any clique of size r(3, t) or larger allows us to conclude that the second
statement in Theorem 3.1 is valid, which implies that ω(L) =∞. Typically,
bounds obtained from Ramsey theory are far from being tight. However, the
upper bound r(3, t) on ω(L) is not so far from the following bound (which
later is shown to be tight):

Theorem 3.2. For every regular language L ⊆ Σ∗ with Nerode automaton
M = (Q,Σ, δ, q0, F ), the following holds. If ω(L) <∞, then ω(L) ≤ 2|F\{q0}|.

Proof Let ` = ω(L). Pick a number n ≥ 1 and a string w ∈ Σn such that
ω(L) = ω(L|w). Thus, there are letter positions 1 ≤ k1 < . . . < k` ≤ n + 1
such that, for all 1 ≤ i < j ≤ `, it holds that wki,kj ∈ L. For l′ = 1, . . . , `− 1,
the “l′-snapshot” is defined as the set

Ql′ := {δ∗(q0, wkl,kl′+1
) : l = 1, . . . , l′} ⊆ F .

In other words: if we consider the l′ computational processes created by
starting M in positions k1, . . . , kl′ , then Ql′ records the set of states of these
processes when they have reached position kl′+1. It is easy to see that every
snapshot is a subset of F \ {q0} because the existence of a non-empty string
x ∈ L with δ∗(q0, x) = q0 would imply that the maximum clique number of
L is infinite. Since Ql′ 6= ∅ for all l′ = 1, . . . , ` − 1, there can be at most
2|F\{q0}| − 1 distinct snapshots. All that remains to do is to show that the
` − 1 snapshots actually are distinct. Suppose for the sake of contradiction
that Ql′ = Ql′′ for some 1 ≤ l′ < l′′ ≤ `. It follows that we can push the
clique number beyond any given bound m simply by replacing the substring
u = wkl′ ,kl′′ of w by um. We arrived at a contradiction to the assumption
ω(L) < ∞. It follows that the ` − 1 snapshots are distinct so that ` − 1 ≤
2|F\{q0}| − 1 and ω(L) = ` ≤ 2|F\{q0}|.

�
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4. The Maximum Degree of a Regular Language

We proceed with the characterization of regular languages with an infinite
maximum outdegree:

Theorem 4.1. Let L ⊆ Σ∗ be a regular language. Then the following state-
ments are equivalent:

1. d+
max(L) =∞.

2. For every DFA M = (Q,Σ, δ, q0, F ) such that L(M) = L, the following
holds:

∃q ∈ F, ∃v ∈ Σ∗,∃w ∈ Σ+ : q = δ∗(q0, v) = δ∗(q, w) . (7)

If M does not contain superfluous states, then (7) simplifies to

∃q ∈ F, ∃w ∈ Σ+ : q = δ∗(q, w) . (8)

3. ∃v ∈ L,∃w ∈ Σ+ : v ≡L vw.

4. ∃v,∃w ∈ Σ+,∀i ≥ 0 : vwi ∈ L.

Proof We prove that the first statement implies the second one. Suppose
that L has an infinite maximum outdegree. Let ` = 1 + |F |. Choose
u1, . . . , u` ∈ Σ+ according to condition (3) from Lemma 2.5. Thus, for all
i = 1, . . . , `, δ∗(q0, u1 . . . ui) ∈ F . According to the pigeonhole principle,
there must exist 1 ≤ i < j ≤ ` such that δ∗(q0, u1 . . . ui) = δ∗(q0, u1 . . . uj).
Setting v = u1 . . . ui, w = ui+1 . . . uj and q = δ∗(q0, v), we obtain (7). If M
does not contain superfluous states, then every state can be reached from q0

and (7) clearly simplifies to (8).
The second statement, when specialized to the Nerode automaton for L, is
easily seen to imply the third one: from (7), we may conclude that v ∈ L
and

[v]L = δ∗(q0, v) = δ∗(q, w) = δ∗(q0, vw) = [vw]L .

We show now that the third statement implies the fourth one. The condition
v ≡L vw implies that vw ≡L vww = vw2 so that v, vw, vw2 are Nerode-
equivalent. Iteration of this argument yields that vw ≡L vwi for all i ≥ 0.
Since v ∈ L, it follows that vwi ∈ L for all i ≥ 0.
We finally show that the fourth statement implies the first one. Suppose that
there exist some v ∈ L and some w ∈ Σ+ such that, for all i ≥ 0, vwi ∈ L.
Then, for each ` ≥ 1, d+

max(L) ≥ d+
max(L|vw`−1) ≥ `. Thus, d+

max(L) =∞. �
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According to Corollary 2.4, d−max(L) = d+
max(L

R). In combination with
Theorem 4.1 we get:

Theorem 4.2. Let L ⊆ Σ∗ be a regular language. Then the following state-
ments are equivalent:

1. d−max(L) =∞.

2. For every DFA M = (Q,Σ, δ, q0, F ) such that L(M) = LR, the condi-
tion (7) from the second statement in Theorem 4.1 is valid. If M does
not contain superfluous states, then condition (7) simplifies to condi-
tion (8).

3. ∃v ∈ LR,∃w ∈ Σ+ : v ≡LR vw.

4. ∃v ∈ LR,∃w ∈ Σ+,∀i ≥ 0 : vwi ∈ LR.

5. ∃v ∈ L,∃w ∈ Σ+,∀i ≥ 0 : wiv ∈ L.

6. For every DFA M = (Q,Σ, δ, q0, F ) such that L(M) = L, the following
holds:

∃q ∈ Q,∃v ∈ Σ∗,∃w ∈ Σ+ : q = δ∗(q0, w) = δ∗(q, w) ∧ δ∗(q, v) ∈ F .
(9)

If M has no superfluous states, then (9) simplifies to

∃q ∈ Q, ∃w ∈ Σ+ : q = δ∗(q0, w) = δ∗(q, w) . (10)

Proof The implications “1.⇒ 2.⇒ 3.⇒ 4.” are an immediate consequence
of Corollary 2.4 and Theorem 4.1. The implication “4. ⇒ 5.” is immediate
from the definition of LR. The implication “5.⇒ 6.” can be seen as follows.
Choose v and w so that wiv ∈ L for all i ≥ 0. Let t = |Q| and consider the
states qi = δ∗(q0, w

i) for all i ≥ 0. According to the pigeon-hole principle,
there must exist 0 ≤ i < i+ d ≤ t such that qi = qi+d. It follows that, for all
j ≥ i, qj = qj+d. Let now j ≥ i be the smallest number that is a multiple of
d. Then, δ(q0, w

j) = qj = qj+j = δ∗(qj, w
j). Thus, condition (9) is satisfied

with qj in the role of q, wj in the role of w, and v as chosen above. If M has
no superfluous states, then from every state (except for non-final trap states)
one can reach a final state. In this case, (9) clearly simplifies to (10).
The implication “6. ⇒ 1.” is pretty obvious because, with w, v chosen ac-
cording to (9), we get d−max(L) ≥ d−max(L|w`v) ≥ ` for all choices of `, which
implies that d−max(L) =∞. �
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For the ease of later reference, we note the following. Condition (10) is
satisfied with q = q0 if and only if the following holds:

∃w ∈ Σ+ : δ∗(q0, w) = q0 . (11)

This condition can clearly be checked in linear time.
We move on and present an upper bound on the maximum outdegree in

the finite case:

Theorem 4.3. Let L ⊆ Σ∗ be a regular language. Let M = (Q,Σ, δ, q0, F )
be the Nerode automaton for L. Then d+

max(L) <∞ implies that d+
max(L) ≤

|F \ {q0}|.

Proof It suffices to show that d+
max(L) ≥ 1+|F \{q0}| implies that d+

max(L) =
∞. Let ` = 1 + |F |. Suppose first (Case 1) that q0 /∈ F so that d+

max(L) ≥ `.
Choose u1, . . . , u` ∈ Σ+ according to condition (3) from Lemma 2.5. Thus, for
all i = 1, . . . , `, δ∗(q0, u1 . . . ui) ∈ F . According to the pigeonhole principle,
there must exist 1 ≤ i < j ≤ ` such that δ∗(q0, u1 . . . ui) = δ∗(q0, u1 . . . uj).
But then the strings from u1 . . . ui(ui+1 . . . uj)

∗ witness that d+
max(L) = ∞.

Suppose now (Case 2) that q0 ∈ F so that d+
max(L) ≥ ` − 1. According

to the pigeonhole principle, there must exist 0 ≤ i < j ≤ ` − 1 such that
δ∗(q0, u1 . . . ui) = δ∗(q0, u1 . . . uj). Now we may argue as in Case 1. �

In combination with Corollary 2.4, we get the following

Corollary 4.4. Let L be a regular language with a finite maximum indegree.
Let Q be the set of states of the Nerode automaton for L, and let FR be the
set of final states of the Nerode automaton for LR. Then,

d−max(L) ≤
{
|FR| − 1 ≤ 2|Q|−1 − 1 if ε ∈ L
|FR| ≤ 2|Q|−1 otherwise

.

Moreover, if L is prefix-closed, then d−max(L) ≤ |FR| − 1 ≤ 2|Q|−2 − 1.

Proof The upper bound in terms of |FR| follows immediately from d−max(L) =
d+
max(L

R) and from Theorem 4.3 (with LR in the role of L). The upper bound
in terms of |Q| follows from Lemma 2.1. �

The next result shows that the upper bound on ω(L) from Theorem 3.2,
the upper bound on d+

max(L) from Theorem 4.3 and the upper bound on
d−max(L) from Corollary 4.4 are tight, respectively (even when specialized to
prefix-closed regular languages or their reverse).
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Theorem 4.5. For every t ≥ 1, there exists a prefix-closed DFA M =
(Q,Σ, δ, q0, F ) with t + 1 final states and a non-final trap state q− such that
the following holds:

1. ω(L(M)) = 2|F\{q0}|.
2. Let FR denote the set of final states of the Nerode automaton for
L(M)R. Then, |FR| = 2|Q|−2 and d−max(L(M)) = d+

max(L(M)R) =
|FR| − 1.

Proof Let M = (Q,Σ, δ, q0, F ) be given by F = {q0, q1, . . . , qt}, Q = F ∪
{q−}, Σ = {a1, . . . , at}, δ(q−, a) = q− for all a ∈ Σ and

δ(qi, aj) =


qj if i < j
qi if i > j
q− if i = j

for all 0 ≤ i ≤ t and 1 ≤ j ≤ t. M is obviously prefix-closed. Note that

|F \ {q0}| = t and |FR| ≤ 2|Q|−2 = 2t (12)

where the latter inequality follows from Lemma 2.1. The next step in the
proof is showing that L(M) has a finite clique number and a finite maximum
indegree (so that L(M)R has a finite maximum outdegree). To this end, we
note that the following holds for any qk ∈ Q and any w ∈ Σ+:

δ∗(qk, w) = qk ⇔ k ≥ 2 ∧ w ∈ {a1, . . . , ak−1}+

δ∗(q0, w) = qk ⇒ letter ak occurs in w

It follows that ω(L(M)) <∞ because the second statement in Theorem 3.1
cannot be true. Since M is prefix-closed, L(M) is prefix-closed too so that
Corollary 2.6 applies and we get d+

max(L(M)R) = d−max(L(M)) = ω(L(M))−
1 <∞.
In the next stage of the proof, we inductively define strings w(1), . . . , w(t)
that lead to graphs with a large maximum indegree:

w(1) = a1 and w(k) = w(k − 1)akw(k − 1) .

The first members of this sequence evolve as follows:

w(1) = a1 , w(2) = a1a2a1 , w(3) = a1a2a1a3a1a2a1 , . . .

Clearly |w(t)| = 2t − 1. Consider the digraph ~G(L(M)|w(t)) with nodes
1, . . . , 2t.
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Claim: For i = 1, . . . , 2t − 1, the computation of M on w(t)i,2t avoids the
trap state q−.

Proof of the claim: The claim will become evident from the following ob-
servations:

1. All computations on the string w(k) that are started in a letter po-
sition between 1 and |w(k)| will avoid all states in {qk+1, . . . , qt}∪
{q−}.

2. All computations on the string w(k)ak+1 that are started in a
letter position between 1 and 1 + |w(k)| will end up in the state
qk+1.

The second observation immediately follows from the first one. The
first observation for w(k) follows inductively from the first observation
for w(k− 1) and the second observation for w(k− 1)ak. Observation 1
applied to k = t coincides with the above claim.

The claim implies that the node 2t in ~G(L(M)|w(t)) has indegree 2t− 1. We
may therefore conclude that

d+
max(L(M)R) = d−max(L(M)) ≥ d−max(L(M)|w(t)) ≥ 2t−1

(12)

≥ |FR|−1 (13)

and

ω(L(M)) = d−max(L(M)) + 1 ≥ 2t
(12)
= 2|F\{q0}| . (14)

Since the lower bounds match with the respective upper bounds, the inequal-
ities (13) and (14) hold with equality, respectively. This concludes the proof.

�

5. Complexity Issues

As we will show in Section 5.1, the finiteness of the parameters ω(L)
and d−max(L) can be decided in time O(n2), respectively, provided that L is
given as a DFA with n states. Moreover, d+

max(L) can be determined in time
O(n) and d−max(L) can be determined in time polynomial in the size n of the
given DFA M and the size of the minimum DFA for LR. These good news
are complemented by the following bad news. The problems of computing
ω(L) or d−max(L), where L is given as a DFA, are infeasible. The same can
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be said about the computation of d+
max(L) if L is given as an NFA. More

precisely, we show in Section 5.2 that the decision variants of these problems
are PSPACE-complete.

5.1. Efficiently Solvable Problems

A naive algorithm for checking the validity of (5) from the second statement
in Theorem 3.1 or (10) from the sixth statement in Theorem 4.2 would take
cubic time. The following result establishes a quadratic time bound:

Theorem 5.1. Given a DFA M = (Q,Σ, δ, q0, F ), it can be decided in
O(|Q|2) steps whether ω(L(M)) <∞ (resp. whether d−max(L) <∞).

Proof We first discuss the test for finiteness of the clique number. We make
use of the fact that ω(L(M)) =∞ iff condition (5) from the second statement
in Theorem 3.1 is valid. As mentioned in connection with condition (6)
already, it can be checked in linear time whether (5) holds with q = q0. We
may therefore assume that (5) cannot be satisfied by setting q = q0. Under
this assumption, condition (5) can be checked in quadratic time as follows:

1. Compute the DFA M2 as the product of M with itself and represent
it by its transition diagram, say D.

2. For each q ∈ F \ {q0}, add a “special edge” [(q, q), (q0, q)] to D.

3. Compute the strongly connected components (hereafter simply called
“strong components”) of the digraph D (which, by now, contains the
special edges).

4. If there exists some q ∈ F \ {q0} such that (q0, q) and (q, q) belong to
the same strong component, then return “infinite clique number” else
return “finite clique number”.

The product automaton M2 has O(|Q|2) states. The time bound for the
algorithm is dominated by the computation of M2 resp. D, and the compu-
tation of the strong components of D. Both computations can be performed
in time linear in the size of M2, i.e., in time O(|Q|2). We have still to show
that our procedure returns the correct classification. One direction is im-
mediate: if there exists a state q ∈ F \ {q0} and a word w ∈ Σ+ such that
q = δ∗(q0, w) = δ∗(q, w), then the nodes (q0, q) and (q, q) will end up in the
same strong component of D, which leads to the correct classification “infi-
nite clique number”.
Suppose conversely that there exists some state q ∈ F \{q0} such that (q0, q)
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and (q, q) belong to the same strong component of D, which leads to the clas-
sification “infinite clique number”. Then there exists a path P from (q0, q)
to (q, q) in D (possibly containing special edges). It suffices to show that
a shortest path from (q0, q) to (q, q) does not contain special edges (which
implies that condition (5) from the second statement in Theorem 3.1 holds
and L(M) has an infinite clique number, indeed). We will prove this indi-
rectly by showing that a path P from (q0, q) to (q, q) that contains at least
one special edge is not a shortest one. Let e = [(q′, q′), (q0, q

′)] be the last
special edge on P so that P decomposes into an initial segment P1, the edge
e and a final segment P2. The final segment P2, leading from (q0, q

′) to (q, q),
does not contain any special edge. Thus there exists a word w ∈ Σ+ such
that P2 corresponds to the state transitions δ∗(q0, w) = q and δ∗(q′, w) = q.
But then the special edge [(q′, q′), (q0, q

′)] is superfluous because w gives us
a shortcut: the concatenation of P1 and P2 (without the detour over (q0, q

′))
leads directly from (q′, q′) to (q, q). Thus, P is not a shortest path, as desired.

As for the test for finiteness of the maximum indegree, we may assume
that M has no superfluous states (because the latter can be removed in
O(|Q|) steps). It follows that d−max(L(M)) = ∞ iff Condition (10) from
the sixth statement in Theorem 4.2 holds. A comparison of this condition
with (5) from the second statement in Theorem 3.1 shows that we can almost
proceed as in the test for finiteness of the clique number. Condition (11) is
easily checked in linear time. We may therefore assume that (10) cannot be
satisfied by setting q = q0. Given this assumption, we have to check for each
q ∈ Q \ {q0} whether (q0, q) and (q, q) belong to the same strong component.
This can be done in quadratic time by a procedure that is similar to the one
we had used for checking the validity of condition (5). �

The computation of d+
max(L(M)) takes linear time only:

Theorem 5.2. Given a DFA M = (Q,Σ, δ, q0, F ), the parameter d+
max(L(M))

can be computed within O(|Q|) steps.

Proof We may assume that M has no superfluous states. We first check
whether d+

max(L(M)) = ∞. It follows from the second statement in Theo-
rem 4.1 that we have to check Condition (8). This is easily done in time
O(|Q|). If d+

max(L) =∞, we are done. Otherwise, we know that each q ∈ F
forms a trivial strong component (having no arcs and consisting of node q
only). In order to compute d+

max(L(M)), an auxiliary directed acyclic “super-
graph” G is computed from D as follows:
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1. The “super-nodes” in G are the strong components of D. We refer to
the super-nodes representing a single node from F \{q0} as “F -nodes”.

2. An arc e is drawn from a strong component K1 to another strong
component K2 iff D contains an arc leading from a node in K1 to a
node in K2.

It is fairly straightforward to see that d+
max(L(M)) coincides with the maxi-

mum number of F -nodes that can be found on the same directed path through
G. Since G is acyclic, this number is found in the obvious way while pro-
cessing the nodes of G in topological order.

�

Combining Theorem 5.1 with Corollary 2.4 and Lemma 2.2 (and the short
remark thereafter), we immediately get the following result:

Corollary 5.3. Let M be a DFA with state set Q. Let MR
min be the minimum

DFA for the language L(M)R, and let QR
min be the state set of MR

min. Then
MR

min and d−max(L(M)) can be computed from M in time poly(|Q|+ |QR
min|).

5.2. Inherently Hard Problems

The following result (combined with binary search) implies that each of
the parameters ω(L), d−max(L) and d+

max(L) can be computed by a space-
efficient algorithm even if L is given as an NFA:

Theorem 5.4. The following decision problems belong to PSPACE:

• Given an NFA M and ` ≥ 1, decide whether ω(L(M)) ≥ `.

• Given an NFA M and ` ≥ 1, decide whether d−max(L(M)) ≥ `.

• Given an NFA M and ` ≥ 1, decide whether d+
max(L(M)) ≥ `.

Proof For the sake of brevity, let L = L(M). According to a well known the-
orem of Savitch (1970), every non-deterministic Turing machine with a space
bound S(n) ≥ log(n) can be simulated by a deterministic Turing machine
with a space bound of order S(n)2. Thus, it suffices to present space-efficient
non-deterministic algorithms.
The following algorithm, denoted A1, does the job for the clique number. A1

guesses a string w = a1a2a3 . . . ∈ Σ∗ letter by letter. At every letter position
i, A1 guesses whether a new (non-deterministic) simulation of the NFA M is
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started or not. After a while several simulations of M will be running simul-
taneously. Let Q = {q0, q1, . . . , qt} be the set of states of M . At every letter
position i, A1 makes a “snapshot” of the form (m,m0,m1, . . . ,mt) such that
m = m0 +m1 + . . .+mt with the interpretation that currently m simulations
are running and, for i = 0, 1, . . . , t, mi of them are in state qi when they
reach the actual letter position. As for the start of a new simulation of M
and as for the termination of the simulations, A1 respects the following rules:

(R1) It never starts a new simulation if, for some qj /∈ F , mj ≥ 1.

(R2) If m ≥ ` and, for all qj /∈ F , mj = 0, it aborts all simulations and
accepts.

It is obvious that A1 can use its non-determinism to update the snapshot
(m,m0,m1, . . . ,mt) when getting to the next letter position so that the above
interpretation is valid all the time. Since a snapshot does not require much
space and only the actual snapshot has to be stored, A1 is certainly space-
efficient. We claim that there exists an accepting computation of A1 if and
only if ω(L) ≥ `.
Suppose first that ω(L) ≥ `. Choose strings u1 . . . u`−1 ∈ Σ+ according to
condition (2) from Lemma 2.5. If w = u1 . . . u`−1 is the string guessed by
A1, and if A1 starts a new simulation of M precisely at the first letter of
every subword uj of w, and if A1 guesses M ’s accepting computations for
the strings ui . . . uj, then A1 will accept after having processed the last letter
of w.
Suppose now that there exists an accepting computation of A1 on input
instance (M, `). Let w be the string guessed by A1. Let w = u1 . . . um be the
unique decomposition of w with the property that precisely at the beginning
of each substring ui a new simulation of M was started. Since A1 respects
rule (R1), it follows that condition (2) from Lemma 2.5 is valid. Since A1

respects rule (R2), we may conclude that m ≥ `. It follows that ω(L) ≥ `,
as desired.
According to Lemma 2.5, checking whether d−max(L) ≥ ` is equivalent to
checking the validity of condition (4) from Lemma 2.5. This can be checked
by a space-efficient non-deterministic algorithm A2 which proceeds as A1

except for rule (R1) which is ignored by A2. (This reflects the fact that the
substrings ui . . . uj with j ≤ ` need not be in L.)
According to Lemma 2.5, checking whether d+

max(L) ≥ ` is equivalent to
checking the validity of condition (3) from Lemma 2.5. This can be checked
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by a space-efficient non-deterministic algorithm A3 which runs a single non-
deterministic simulation of M on the string w (where, as before, w is guessed
letter by letter) and by maintaining a counter m which coincides with the
number of (non-empty) prefixes of w that have been accepted so far. As soon
as m ≥ `, A3 aborts the simulation and accepts. �

Algorithm A3 in the above proof looks conceptually simpler than the
algorithms A1 and A2. Therefore, the following might be a good alternative
to A2:

1. Given the NFA M for the language L, compute the NFA MR for the
language LR. This can be done by “reversing the transition diagram”
of M as explained in Section 2.1.

2. Apply the algorithm A3 to input instance (MR, `).

Corollary 2.4 implies that this is a correct test for d−max(L) ≥ `.

Theorem 5.5. The following decision problems are PSPACE-hard:

(a) Given a DFA M and ` ≥ 1, decide whether ω(L(M)) ≥ `.

(b) Given a DFA M and ` ≥ 1, decide whether d−max(L(M)) ≥ `.

(c) Given a DFA M and ` ≥ 1, decide whether d+
max(L(MR)) ≥ `.

Moreover these problems remain PSPACE-hard even if M is prefix-closed.

Proof In order to show PSPACE-hardness, we present a polynomial time
reduction from “Finite Automata Intersection (FAI)” to the decision prob-
lem (b) in the above list. At the end of the proof, we explain why this shows
the PSPACE-hardness of all three problems. FAI, which is known to be
PSPACE-complete (Kozen, 1977), is the following problem: given T ≥ 2 and
a list M1, . . . ,MT of DFAs with the same input alphabet Σ and with one final
state per DFA, does there exist an input string w ∈ Σ+ that is accepted by
every DFA in the list? Let Li = L(Mi) for i = 1, . . . , T . Let `,a/∈ Σ be two
new input symbols. Consider the following prefix-closed regular language:

L = {a} ∪
T⋃
i=1

{
`i w a: w ∈ Li \ {ε}

}
∪ Pref

(
T⋃
i=1

{
`i w : w ∈ Σ∗

})
. (15)
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We claim that there is a word w ∈ Σ+ which is accepted by all of M1, . . . ,MT

iff d−max(L) ≥ ` := T + 1. Suppose first that there exists a string w ∈ ∩Ti=1Li.
Then the word `T w a has T+1 (non-empty) suffixes belonging to L, namely
the suffix a and, for each i ∈ {1, . . . , T}, the suffix `i w a. According to
Lemma 2.5, this implies that d−max(L) ≥ T +1. As for the converse direction,
suppose that d−max(L) ≥ T + 1. According to Lemma 2.5, there must exist
a word u ∈ L which has T proper suffixes belonging to L too. Let S denote
the set of suffixes of u that belong to L. The definition of L implies that each
suffix u′ ∈ S \{a} must be of the form `i w a or `i w for some i ∈ {1, . . . , T}
and some w ∈ Σ∗. Moreover, if u′ ends by a, then w must be a non-empty
word from Li. Note that the same string w is shared by all suffixes in S.
The only explanation why u actually has in total T + 1 suffixes belonging to
L is that the longest such suffix is of the form `T w a and w is a non-empty
word belonging to all languages L1, . . . , LT . This completes the proof of the
claim.
We still have to show how a prefix-closed DFA M that recognizes L can
be computed from M1, . . . ,MT in polynomial time. For i = 1, . . . , T , let
Mi = (Qi,Σ, δi, q

i
0, {qi+}) where qi0 denotes the initial state and qi+ denotes the

unique final state of Mi. We may assume that the sets Q1, . . . , QT are pair-
wise disjoint (by renaming states if necessary). Let Z = {z0

0 , z
1
0 , . . . , z

T
0 , z, z−}

be a collection of new states. We build the DFA M = (Q,Σ′, δ, z0
0 , F ) from

the given DFA M1, . . . ,MT as follows:

• Q =
⋃T
i=1 Qi ∪ Z, Σ′ = Σ ∪ {`,a} and F = Q \ {z−}. z0

0 is the initial
state and z− is a non-final trap state.

• If M reads ` in state zi0 for some 0 ≤ i ≤ T − 1, then M moves to
state zi+1

0 .

• For every i ∈ {1, . . . , T}, every q ∈ Qi and every a ∈ Σ, we set
δ(zi0, a) = δi(q

i
0, a) and δ(q, a) = δi(q, a).

• When reading a in state z0
0 or in state qi+ for some 1 ≤ 1 ≤ T , then M

moves to state z.

• In all cases not covered yet, M moves to the non-final trap state z−.

Clearly the input strings ε and a are accepted by M . Suppose now that
u /∈ {ε,a}. It is easy to see that M reaches its trap state z− unless u is of the
form `i wb for some 1 ≤ i ≤ T , some w ∈ Σ∗, and some b ∈ {ε,a} such that

24



w is non-empty if b =a. Suppose now that u is of this form. The definition
of M implies that, after having processed `i, M will simulate Mi on input
string w ∈ Σ∗. At this stage, M can reach its trap state z− only if b =a and
w /∈ Li. The discussion shows that the strings from the language L, defined
as in (15), are accepted by M while all other strings make M reaching its
non-final trap state z−.
The whole discussion so far can be summarized by saying that M1, . . . ,MT 7→
(M,T + 1) is a polynomial time reduction of FAI to problem (b) in Theo-
rem 5.5. However, since d−max(L(M)) = d+

max(L(MR)), it is a polynomial
time reduction from FAI to problem (c) in Theorem 5.5 too. Moreover,
since M is prefix-closed, it follows that d−max(L(M)) = ω(L(M)) − 1. Thus
M1, . . . ,MT 7→ (M,T + 2) is a polynomial time reduction of FAI to prob-
lem (a) in Theorem 5.5. This completes the proof.

�

Theorems 5.4 and 5.5 immediately lead to the following

Corollary 5.6. The problems listed in Theorem 5.5 are PSPACE-complete.
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