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Abstract

This paper is concerned with various combinatorial parameters of classes that can be learned from a
small set of examples. We show that the recursive teaching dimension, recently introduced by Zilles
et al. (2008), is strongly connected to known complexity notions in machine learning, e.g., the self-
directed learning complexity and the VC-dimension. To the best of our knowledge these are the first
results unveiling such relations between teaching and query learning as well as between teaching
and the VC-dimension. It will turn out that for many natural classes the RTD is upper-bounded by
the VCD, e.g., classes of VC-dimension 1, intersection-closed classes and finite maximum classes.
However, we will also show that there are certain (but rare) classes for which the recursive teaching
dimension exceeds the VC-dimension. Moreover, for maximum classes, the combinatorial structure
induced by the RTD, called teaching plan, is highly similar to the structure of sample compression
schemes. Indeed one can transform any repetition-free teaching plan for a maximum class C into an
unlabeled sample compression scheme for C and vice versa, while the latter is produced by (i) the
corner-peeling algorithm of Rubinstein and Rubinstein (2012) and (ii) the tail matching algorithm
of Kuzmin and Warmuth (2007).

Keywords: recursive teaching, combinatorial parameters, Vapnik-Chervonenkis dimension, upper
bounds, compression schemes, tail matching algorithm
1. Introduction

In the design and analysis of machine learning algorithms, the amount of training data that needs
to be provided for the learning algorithm to be successful is an aspect of central importance. In
many applications, training data is expensive or difficult to obtain, and thus input-efficient learning
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algorithms are desirable. In computational learning theory therefore, one way of measuring the
complexity of a concept class is to determine the worst-case number of input examples required
by the best valid learning algorithm. What is a valid learning algorithm depends on the underlying
model of learning. We refer to this kind of complexity measure as information complexity. For
example, in PAC-learning (Valiant, 1984), the information complexity of a concept class C is the
worst-case sample complexity a best possible PAC learner for C can achieve on all concepts in
C. In query learning (Angluin, 1988), it is the best worst-case number of queries a learner would
have to ask to identify an arbitrary concept in C. In the classical model of teaching (Goldman
and Kearns, 1995; Shinohara and Miyano, 1991), the information complexity of C is given by its
teaching dimension, i.e., the largest number of labeled examples that would have to be provided for
distinguishing any concept in C from all other concepts in C.

Besides the practical need to limit the required amount of training data, there are a number of
reasons for formally studying information complexity. Firstly, a theoretical study of information
complexity yields formal guarantees concerning the amount of data that needs to be processed to
solve a learning problem. Secondly, analyzing information complexity often helps to understand
the structural properties of concept classes that are particularly hard to learn or particularly easy
to learn. Thirdly, the theoretical study of information complexity helps to identify connections
between various formal models of learning, for example if it turns out that, for a certain type of
concept class, the information complexity under learning model A is in some relationship with the
information complexity under model B. This third aspect is the main motivation of our study.

In the past two decades, several learning models were defined with the aim of understanding in
which way a low information complexity can be achieved. One such model is learning from partial
equivalence queries (Maass and Turan, 1992), which subsume all types of queries for which negative
answers are witnessed by counterexamples, e.g., membership, equivalence, subset, superset, and
disjointness queries (Angluin, 1988). As lower bounds on the information complexity in this query
model (here called query complexity) hold for numerous other query learning models, they are
particularly interesting objects of study. Even more powerful are self-directed learners (Goldman
et al., 1993). Each query of a self-directed learner is a prediction of a label for an instance of the
learner’s choice, and the learner gets charged only for wrong predictions. The query complexity in
this model lower-bounds the one obtained from partial equivalence queries (Goldman and Sloan,
1994).

Dual to the models of query learning, in which the learner actively chooses the instances it wants
information on, the literature proposes models of teaching (Goldman and Kearns, 1995; Shinohara
and Miyano, 1991), in which a helpful teacher selects a set of examples and presents it to the learner,
again aiming at a low information complexity. A recent model of teaching with low information
complexity is recursive teaching, where a teacher chooses a sample based on a sequence of nested
subclasses of the underlying concept class C (Zilles et al., 2008). The nesting is defined as follows.
The outermost “layer” consists of all concepts in C that are easiest to teach, i.e., that have the
smallest sets of examples distinguishing them from all other concepts in C. The next layers are
formed by recursively repeating this process with the remaining concepts. The largest number
of examples required for teaching at any layer is the recursive teaching dimension (RTD) of C.
The RTD substantially reduces the information complexity bounds obtained in previous teaching
models. It lower bounds not only the teaching dimension—the measure of information complexity
in the “classical” teaching model (Goldman and Kearns, 1995; Shinohara and Miyano, 1991)—
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but also the information complexity of iterated optimal teaching (Balbach, 2008), which is often
substantially smaller than the classical teaching dimension.

A combinatorial parameter of central importance in learning theory is the VC-dimension (Vap-
nik and Chervonenkis, 1971). Among many relevant properties, it provides bounds on the sample
complexity of PAC-learning (Blumer et al., 1989). Since the VC-dimension is the best-studied quan-
tity related to information complexity in learning, it is a natural first parameter to compare to when
it comes to identifying connections between information complexity notions across various models
of learning. For example, even though the self-directed learning complexity can exceed the VC-
dimension, existing results show some connection between these two complexity measures (Gold-
man and Sloan, 1994). However, the teaching dimension, i.e., the information complexity of the
classical teaching model, does not exhibit any general relationship to the VC-dimension—the two
parameters can be arbitrarily far apart in either direction (Goldman and Kearns, 1995). Similarly,
there is no known connection between teaching dimension and query complexity.

In this paper, we establish the first known relationships between the information complexity of
teaching and query complexity, as well as between the information complexity of teaching and the
VC-dimension. All these relationships are exhibited by the RTD. Two of the main contributions of
this work are the following:

e We show that the RTD is never higher (and often considerably lower) than the complexity
of self-directed learning. Hence all lower bounds on the RTD hold likewise for self-directed
learning, for learning from partial equivalence queries, and for a variety of other query learn-
ing models.

e We reveal a strong connection between the RTD and the VC-dimension. Though there are
classes for which the RTD exceeds the VC-dimension, we present a number of quite gen-
eral and natural cases in which the RTD is upper-bounded by the VC-dimension. These
include classes of VC-dimension 1, intersection-closed classes, a variety of naturally struc-
tured Boolean function classes, and finite maximum classes in general (i.e., classes of maxi-
mum possible cardinality for a given VC-dimension and domain size). Many natural concept
classes are maximum, e.g., the class of unions of up to k intervals, for any £ € N, or the
class of simple arrangements of positive halfspaces. It remains open whether every class of
VC-dimension d has an RTD linear in d.

In proving that the RTD of a finite maximum class equals its VC-dimension, we also make a third
contribution:

e We reveal a relationship between the RTD and sample compression schemes (Littlestone and
Warmuth, 1996).

Sample compression schemes are schemes for “encoding” a set of examples in a small subset of
examples. For instance, from the set of examples they process, learning algorithms often extract
a subset of particularly “significant” examples in order to represent their hypotheses. This way
sample bounds for PAC-learning of a class C can be obtained from the size of a smallest sample
compression scheme for C (Littlestone and Warmuth, 1996; Floyd and Warmuth, 1995). Here the
size of a scheme is the size of the largest subset resulting from compression of any sample consistent
with some concept in C.

The relationship between RTD and unlabeled sample compression schemes (in which the com-
pression sets consist only of instances without labels) is established via a recent result by Rubinstein
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and Rubinstein (2012). They show that, for any maximum class of VC-dimension d, a technique
called corner-peeling defines unlabeled compression schemes of size d. Like the RTD, corner-
peeling is associated with a nesting of subclasses of the underlying concept class. A crucial obser-
vation we make in this paper is that every maximum class of VC-dimension d allows corner-peeling
with an additional property, which ensures that the resulting unlabeled samples contain exactly those
instances a teacher following the RTD model would use. Similarly, we show that the unlabeled
compression schemes constructed by Kuzmin and Warmuth’s Tail Matching algorithm (Kuzmin
and Warmuth, 2007) exactly coincide with the teaching sets used in the RTD model, all of which
have size at most d.

This remarkable relationship between the RTD and sample compression suggests that the open
question of whether or not the RTD is linear in the VC-dimension might be related to the long-
standing open question of whether or not the best possible size of sample compression schemes is
linear in the VC-dimension, cf. (Littlestone and Warmuth, 1996; Floyd and Warmuth, 1995). To this
end, we observe that a negative answer to the former question would have implications on potential
approaches to settling the second. In particular, if the RTD is not linear in the VC-dimension,
then there is no mapping that maps every concept class of VC-dimension d to a superclass that is
maximum of VC-dimension O(d). Constructing such a mapping would be one way of proving that
the best possible size of sample compression schemes is linear in the VC-dimension.

Note that sample compression schemes are not bound to any constraints as to how the compres-
sion sets have to be formed, other than that they be subsets of the set to be compressed. In particular,
any kind of agreement on, say, an order over the instance space or an order over the concept class,
can be exploited for creating the smallest possible compression scheme. As opposed to that, the
RTD is defined following a strict “recipe” in which teaching sets are independent of orderings of
the instance space or the concept class. These differences between the models make the relationship
revealed in this paper even more remarkable. Further connections between teaching and sample
compression can in fact be obtained when considering a variant of the RTD introduced by Darn-
stadt et al. (2013). This new teaching complexity parameter upper-bounds not only the RTD and
the VC-dimension, but also the smallest possible size of a sample compression scheme for the un-
derlying concept class. Darnstidt et al. (2013) dubbed this parameter order compression number,
as it corresponds to the smallest possible size of a special form of compression scheme called order
compression scheme of the class.

This paper is an extension of an earlier publication (Doliwa et al., 2010).

2. Definitions, Notation and Facts

Throughout this paper, X denotes a finite set and C denotes a concept class over domain X. For
X" C X, we define C|x/ := {C N X'| C € C}. We treat concepts interchangeably as subsets of X
and as 0, 1-valued functions on X. A labeled example is a pair (z,!) withz € X and € {0,1}. If
S is a set of labeled examples, we define X (S) = {z € X | (x,0) € S or (z,1) € S}. For brevity,
[n] :={1,...,n}. VCD(C) denotes the VC-dimension of a concept class C.

Definition 1 Ler K be a function that assigns a “complexity” K(C) € N to each concept class
C. We say that K is monotonic if C' C C implies that K(C') < K(C). We say that K is twofold
monotonic if K is monotonic and, for every concept class C over X and every X' C X, it holds
that K(Cx+) < K(C).



RECURSIVE TEACHING DIMENSION, VC-DIMENSION AND SAMPLE COMPRESSION

2.1 Learning Complexity

A partial equivalence query (Maass and Turan, 1992) of a learner is given by a function i : X —
{0, 1, %} that is passed to an oracle. The latter returns “YES” if the target concept C* coincides with
honall x € X for which h(z) € {0, 1}; it returns a “witness of inequivalence” (i.e., an x € X
such that C*(z) # h(x) € {0,1}) otherwise. LC-PARTIAL(C) denotes the smallest number ¢ such
that there is some learning algorithm which can exactly identify any concept C* € C with up to ¢
partial equivalence queries (regardless of the oracle’s answering strategy).

A query in the model of self-directed learning (Goldman et al., 1993; Goldman and Sloan, 1994)
consists of an instance x € X and a label b € {0,1}, passed to an oracle. The latter returns the
true label C*(x) assigned to x by the target concept C*. We say the learner made a mistake if
C*(z) # b. The self-directed learning complexity of C, denoted SDC(C), is defined as the smallest
number ¢ such that there is some self-directed learning algorithm which can exactly identify any
concept C* € C without making more than ¢ mistakes.

In the model of online-learning, the learner A makes a prediction b; € {0, 1} for a given instance
x; but, in contrast to self-directed learning, the sequence of instances x1, 22, ... is chosen by an
adversary of A that aims at maximizing A’s number of mistakes. The optimal mistake bound for a
concept class C, denoted M, (C), is the smallest number ¢ such that there exists an online-learning
algorithm which which can exactly identify any concept C* € C without making more than ¢
mistakes (regardless of the ordering in which the instances are presented to A).

Clearly, LC-PARTIAL and SDC are monotonic, and M, is twofold monotonic. The following
chain of inequalities is well-known (Goldman and Sloan, 1994; Maass and Turan, 1992; Littlestone,
1988):

SDC(C) < LC-PARTIAL(C) < Myp(C) < log|C] (1)

2.2 Teaching Complexity

A teaching set for a concept C' € C is a set S of labeled examples such that C', but no other concept
in C, is consistent with S. Let 7S(C, C) denote the family of teaching sets for C' € C, let TS(C';C)
denote the size of the smallest teaching set for C' € C, and let

TSiin(C) := rélégTS(C;C) ,

TSiaz(C) := %gé(TS(C;C) ,

1
TSuuy(C) := I > TS(C50).
ceC

The quantity TD(C) := TS;uq2(C) is called the teaching dimension of C (Goldman and Kearns,
1995). It refers to the concept in C that is hardest to teach. In the sequel, T'S;,;,(C) is called the
best-case teaching dimension of C, and T'S,,4(C) is called the average-case teaching dimension of
C. Obviously, T'S;,in(C) < TSgug(C) < TSpaa(C) = TD(C).

We briefly note that TD is monotonic, and that a concept class C consisting of exactly one
concept C has teaching dimension 0 because ) € TS(C,{C?}).

Definition 2 (Zilles et al. (2011)) A teaching plan for C is a sequence

P =((C1,51),...,(Cxn,SN)) )
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with the following properties:
e N=|ClandC = {Cy,...,Cn}.
e Forallt=1,...,N, S, € TS(Ct,{Ct,...,CN}).

The quantity ord(P) := maxy—1, . n |St| is called the order of the teaching plan P. Finally, we
define

RTD(C) := min{ord(P) | P is a teaching plan for C} ,
TD* = TD ).
RTD*(C) max R (Cix1)

The quantity RTD(C) is called the recursive teaching dimension of C.

A teaching plan (2) is said to be repetition-free if the sets X (S1), ..., X (Sn) are pairwise distinct.
(Clearly, the corresponding labeled sets, S1, ..., Sy, are always pairwise distinct.) Similar to the
recursive teaching dimension we define

rfRTD(C) := min{ord(P) | P is a repetition-free teaching plan for C} .

One can show that every concept class possesses a repetition-free teaching plan. First, by in-
duction on |X| = m, the full cube 2% has a repetition-free teaching plan of order m: It results
from a repetition-free plan for the (m — 1)-dimensional subcube of concepts for which a fixed in-
stance x is labeled 1, where each teaching set is supplemented by the example (z, 1), followed by a
repetition-free teaching plan for the (m — 1)-dimensional subcube of concepts with z = 0. Second,
“projecting” a (repetition-free) teaching plan for a concept class C onto the concepts in a subclass
C' C C yields a (repetition-free) teaching plan for C’. Putting these two observations together, it
follows that every class over instance set X has a repetition-free teaching plan of order | X|.

It should be noted though that rfRTD(C) may exceed RTD(C). For example, consider the class
in Table 1, which is of RTD 2. In any teaching plan of order 2, both C'; and C5 have to be taught
first with the same teaching set {x1, zo} augmented by the appropriate labels. The best repetition
free teaching plan for this class is of order 3.

As observed by Zilles et al. (2011), the following holds:

e RTD is monotonic.

e The recursive teaching dimension coincides with the order of any teaching plan that is in
canonical form, i.e., a teaching plan ((C1, S1),...,(Cn,Sn)) such thatforallt =1,... N
it holds that | S| = TS;in({Ct, ..., Cn}).

Intuitively, a canonical teaching plan is a sequence that is recursively built by always picking an
easiest-to-teach concept C; in the class C \ {C,...,Cy_1} together with an appropriate teaching
set S;.

The definition of teaching plans immediately yields the following result:

Lemma3  [. IfK is monotonic and TS,,;,(C) < K(C) for every concept class C, then RTD(C) <
K (C) for every concept class C.
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| 22 | s | 25 || TSmin | TSmin(Ci\MC1Y) | TSmin(CiC\C2}) | TSmin(Ci,C\Ch/a)) |

1 T4

Ci |OJO0|O0O[O0]O 2 - 2 -
Co 111]0]0]0 2 2 - -
C3 |O|1[0[0]O 4 3 3 2
Cy |O| 1101 ]0 4 4 4 4
Cs |O|1|0|1]1 3 3 3 3
Ce | O 1 |1 [1]0 3 3 3 3
C; |0 11|01 3 3 3 3
Cg O] 1] 1]1][1 3 3 3 3
Cy 110|100 3 3 3 3
Cipl| 110]0|1]0 4 3 3 3
Ciuff 11070111 3 3 3 3
Ce|| 1|01 [1]0 3 3 3 3
Ciz|110]1]0]1 3 3 3 3

Table 1: A class with RTD(C) = 2 but rfRTD(C) = 3.

2. If K is twofold monotonic and TS, (C) < K (C) for every concept class C, then RTD*(C) <
K (C) for every concept class C.

RTD and TS,,,;, are related as follows:
Lemma 4 RTD(C) = maxcice TSpmin(C).

Proof Let C be the first concept in a canonical teaching plan P for C so that TS(C;;C) =
TS,in(C) and the order of P equals RTD(C). It follows that

RTD(C) = max{TS(C1;C),RTD(C \ {C1})} = max{TS;,:»(C), RTD(C \ {C1})},

and RTD(C) < maxcrce TSpin(C') follows inductively. As for the reverse direction, let C, C C
be a maximizer of TS,,;,. Since RTD is monotonic, we get RTD(C) > RTD(C() > TS;nin(Cj) =
maXc/gc Tsmm (C/)

2.3 Intersection-closed Classes and Nested Differences
A concept class C is called intersection-closed if C N C" € C forall C,C" € C. Among the standard
examples of intersection-closed classes are the d-dimensional boxes over domain [r2]%:

BOX? := {[ay :by] x -+~ X [ag:bg] | Vi=1,...,d: 1< a;b <n}

Here, [a : b] is an abbreviation for {a,a + 1,...,b}, where [a : ] is the empty set if a > b. For the
remainder of this section, C is assumed to be intersection-closed.
For T' C X, we define (T")¢ as the smallest concept in C containing 7', i.e.,

(T)e:= () C.

TCCeC
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A spanning set for T C X w.rt. Cis aset S C T such that (S)¢ = (T')¢. S is called a minimal
spanning set w.r.t. C if, for every proper subset S’ of S, (S)¢ # (S)¢. I(C) denotes the size of the
largest minimal spanning set w.r.t. C. It is well-known (Natarajan, 1987; Helmbold et al., 1990) that
every minimal spanning set w.r.t. C is shattered by C. Thus, I(C) < VCD(C). Note that, for every
C° € C, I(Cco) < I(C), because every spanning set for a set 7' C C° w.r.t. C is also a spanning
set for T" w.r.t. Cjco.

The class of nested differences of depth d (at most d) with concepts from C, denoted DIFFd(C )
(DIFF=%(C), resp.), is defined inductively as follows:

DIFF!(C) = ¢,
DIFF(C) := {C\D|CecC,DeDIFF1(C)},
d
DIFF</(C) := | JDIFF'(C).
=1

Expanding the recursive definition of DIFF?(C) shows that, e.g., a set in DIFF#(C) has the form
Cr1\ (C2\ (C5 )\ Cy)) where Cq,Co,C3,Cy € C. We may assume without loss of generality that
C1 D (O3 D --- because C is intersection-closed.

Nested differences of intersection-closed classes were studied in depth at the early stages of
research in computational learning theory (Helmbold et al., 1990).

2.4 Maximum Classes and Unlabeled Compression Schemes

Let @q(n) := 3¢ (7). For d = VCD(C) and for any subset X’ of X, we have |C|x/| < ®q(|X"]),
according to Sauer’s Lemma (Vapnik and Chervonenkis, 1971; Sauer, 1972). The concept class C is
called a maximum class if Sauer’s inequality holds with equality for every subset X’ of X. It is well-
known (Welzl, 1987; Floyd and Warmuth, 1995) that a class over a finite domain X is maximum iff
Sauer’s inequality holds with equality for X’ = X.

The following definition was introduced by Kuzmin and Warmuth (2007):

Definition 5 An unlabeled compression scheme for a maximum class of VC-dimension d is given
by an injective mapping r that assigns to every concept C' a set 7(C) C X of size at most d such
that the following condition is satisfied:

VC,C"eC(C#C"),3xer(C)ur(C’): C(x) #C'(z). 3)

(3) is referred to as the non-clashing property. In order to ease notation, we add the following
technical definitions. A representation mapping of order k for a (not necessarily maximum) class C
is any injective mapping r that assigns to every concept C' a set 7(C') C X of size at most k such
that (3) holds. A representation-mapping r is said to have the acyclic non-clashing property if there
is an ordering C'1, . . ., Cy of the concepts in C such that

V1<i<j<N,Jxer(C): Cix)#Cj(x). 4)

Considering maximum classes, it was shown by Kuzmin and Warmuth (2007) that a represen-
tation mapping with the non-clashing property guarantees that, for every sample S labeled accord-
ing to a concept in C, there is exactly one concept C' € C that is consistent with S and satisfies
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r(C) C X (S). This allows to encode (compress) a labeled sample S by r(C') and, since r is injec-
tive, to decode (decompress) 7(C') by C' (so that the labels in S can be reconstructed). This coined
the term “unlabeled compression scheme”.

A concept class C over a domain X of size n is identified with a subset of {0,1}". The one-
inclusion-graph G(C) associated with C is defined as follows:

e The nodes are the concepts from C.

e Two concepts are connected by an edge if and only if they differ in exactly one coordinate
(when viewed as nodes in the Boolean cube).

A cube C' in C is a subcube of {0,1}" such that every node in C’ represents a concept from C.
In the context of the one-inclusion graph, the instances (corresponding to the dimensions in the
Boolean cube) are usually called “colors” (and an edge along dimension ¢ is said to have color 7).
For a concept C' € C, I(C;G(C)) denotes the union of the instances associated with the colors of
the incident edges of C' in G(C), called incident instances of C'. Recall that the density of a graph
with m edges and n nodes is defined as m/n. As shown by Haussler et al. (1994, Lemma 2.4), the
density of the 1-inclusion graph lower-bounds the VC-dimension, i.e., dens(G(C)) < VCD(C).

The following definitions were introduced by Rubinstein and Rubinstein (2012); we reformulate
the notation in order to stress the similarities to the definition of teaching plans.

Definition 6 A corner-peeling plan for C is a sequence

P:((Claci)>7(CN7C§V)) (5)
with the following properties:
1. N=|C|landC ={C},...,Cn}.

2. Forallt =1,...,N, C}is a cube in {Cy, ..., Cn} which contains Cy and all its neighbors
in G({C4,...,Cn}). (Note that this uniquely specifies C;.)

The nodes Cy are called the corners of the cubes C;, respectively. The dimension of the largest cube
among Ci, ... ,Cl is called the order of the corner-peeling plan P. C can be d-corner-peeled if there
exists a corner-peeling plan of order d.

A concept class C is called shortest-path closed if, for every pair of distinct concepts C, C’ € C,
G(C) contains a path of length |C' A C’| (known as the Hamming distance) that connects C' and C”,
where A denotes the symmetric difference. Note that every maximum class is shortest-path closed,
but not vice versa. Rubinstein and Rubinstein (2012) showed the following:

1. If a maximum class C has a corner-peeling plan (5) of order VCD(C), then an unlabeled
compression scheme for C is obtained by defining 7(C) to be the set of colors in cube C; for
t=1,...,N.

2. Every maximum class C can be VCD(C)-corner-peeled.

Although it had previously been proved (Kuzmin and Warmuth, 2007) that any maximum class
of VC-dimension d has an unlabeled compression scheme of size d, the corner-peeling technique
still provides very useful insights. We will see an application in Section 4.3, where we show that
RTD(C) = VCD(C) for every maximum class C.
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3. Recursive Teaching Dimension and Query Learning

Kuhlmann proved the following result:
Lemma 7 (Kuhlmann (1999)) For every concept class C: TSy, (C) < SDC(C).

In view of (1), the monotonicity of LC-PARTIAL and SDC, the twofold monotonicity of M, and
in view of Lemma 3, we obtain:

Corollary 8 For every concept class C, the following holds:
1. RTD(C) < SDC(C) < LC-PARTIAL(C) < Myp:(C).
2. RTD*(C) < My (C).

As demonstrated by Goldman and Sloan (1994), the model of self-directed learning is ex-
tremely powerful. According to Corollary 8, recursive teaching is an even more powerful model
so that upper bounds on SDC apply to RTD as well, and lower bounds on RTD apply to SDC and
LC-PARTIAL as well. The following result, which is partially known from the work by Goldman
and Sloan (1994) and Zilles et al. (2011), illustrates this:

Corollary9 1. IfVCD(C) = 1, then RTD(C) = SDC(C) = 1.
2. RTD(Monotone Monomials) = SDC(Monotone Monomials) = 1.
3. RTD(Monomials) = SDC(Monomials) = 2.
4. RTD(BOXY) = SDC(BOXY) = 2.
5. RTD(m-Term Monotone DNF) < SDC(m-Term Monotone DNF) < m.
6.

. SDC(m-Term Monotone DNF) > RTD(m-Term Monotone DNF) > m provided that the
number of Boolean variables is at least m? + 1.

Proof All upper bounds on SDC were proved by Goldman and Sloan (1994) and, as mentioned
above, they apply to RTD as well. The lower bound 1 on RTD (for concept classes with at most
two distinct concepts) is trivial. RTD(Monomials) = 2 was shown by Zilles et al. (2011). As a
lower bound, this carries over to BOX? which contains Monomials as a subclass. Thus the first five
assertions are obvious from known results in combination with Corollary 8.

As for the last assertion, we have to show that RTD(m-Term Monotone DNF) > m. To this
end assume that there are n > m? + 1 Boolean variables. According to Lemma 4, it suffices to
find a subclass C’ of m-Term Monotone DNF such that TS,,;,,(C") > m. Let C’ be the class of all
DNF formulas that contain precisely m pairwise variable-disjoint terms of length m each. Let I
be an arbitrary but fixed formula in C’. Without loss of generality, the teacher always picks either a
minimal positive example (such that flipping any 1-bit to O turns it negative) or a maximal negative
example (such that flipping any 0-bit to 1 turns it positive). By construction of C’, the former exam-
ple has precisely m ones (and reveals one of the m terms in F') and the latter example has precisely
m zeroes (and reveals one variable in each term). We may assume that the teacher consistently uses
a numbering of the m terms from 1 to m and augments any O-component (component ¢ say) of a
negative example by the number of the term that contains the corresponding Boolean variable (the
term containing variable x;). Since adding information is to the advantage of the learner, this will
not corrupt the lower-bound argument. We can measure the knowledge that is still missing after
having seen a collection of labeled instances by the following parameters:

10
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e 1/, the number of still unknown terms
® [1,...,ly, where [}, is the number of still unknown variables in term &

The effect of a teaching set on these parameters is as follows: a positive example decrements m/,
and a negative example decrements some of l1, ..., l,,. Note that n was chosen sufficiently large'
so that the formula F' is not uniquely specified as long as none of the parameters has reached level
0. Since all parameters are initially of value m, the size of any teaching set for F' must be at least
m. |

In powerful learning models, techniques for proving lower bounds become an issue. One
technique for proving a lower bound on RTD was applied already in the proof of Corollary 9:
select a subclass ' C C and derive a lower bound on TS,;,,;,(C’). We now turn to the ques-
tion whether known lower bounds for LC-PARTIAL or SDC remain valid for RTD. Maass and
Turdn (1992) showed that LC-PARTIAL is lower-bounded by the logarithm of the length of a
longest inclusion chain in C. This bound does not even apply to SDC, which follows from an
inspection of the class of half-intervals over domain [n]. The longest inclusion chain in this class,
0c {1} c{1,2} c---C{1,2,...,n}, haslength n+ 1, but its self-directed learning complexity
is 1. Theorem 8 in the paper by Ben-David and Eiron (1998) implies that SDC is lower-bounded by
log|C|/log|X]| if SDC(C) > 2. We next show that the same bound applies to RTD:

Lemma 10 Suppose RTD(C) > 2. Then, RTD(C) > 11(;)5"5(".

Proof Samei et al. (2012) have shown that Sauer’s bound holds with RTD(C) in the role of
VCD(C), i.e., for k = RTD(C), the following holds:

~ (1X1 ‘
1< > (M) = @ex < 1x]
i=1
Solving for k yields the desired lower bound on RTD(C). [

A subset X' C X is called C-distinguishing if, for each pair of distinct concepts C,C’ € C,
there is some = € X’ such that C(x) # C’(x). The matrix associated with a concept class C over
domain X is given by M (z,C) = C(z) € {0,1}. We call two concept classes C,C’ equivalent if
their matrices are equal up to permutation of rows or columns, and up to flipping all bits of a subset
of the rows.? The following result characterizes the classes of recursive teaching dimension 1:

Theorem 11 The following statements are equivalent:
1. SDC(C) = 1.

2. RTD(C) = 1.

1. A slightly refined argument shows that requiring n > (m — 1)? + 1 would be sufficient. But we made no serious
attempt to make this assumption as weak as possible.
2. Reasonable complexity measures (including RTD, SDC, VCD) are invariant under these operations.

11
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3. There exists a C-distinguishing set X' C X such that C|x' is equivalent to a concept class

whose matrix M is of the form M = [M’ |6] where M' is a lower-triangular square-matrix
with ones on the main-diagonal and 0 denotes the all-zeroes vector.

Proof 1 implies 2. If SDC(C) = 1, C contains at least two distinct concepts. Thus, RTD(C) > 1.
According to Corollary 8, RTD(C) < SDC(C) = 1.

2 implies 3. Let P be a teaching plan of order 1 for C, and let X' be the set of instances occurring
in P (which clearly is C-distinguishing). Let (C1, {(x1,b1)}) be the first item of P. Let M be the
matrix associated with C (up to equivalence). We make C the first column and x; the first row of
M. We may assume that b; = 1. (Otherwise flip all bits in row 1.) Since {(z1,1)} is a teaching
set for C1, the first row of M is of the form (1,0,...,0). We may repeat this argument for every
item in P so that the resulting matrix M is of the desired form. (The last zero-column represents
the final concept in P with the empty teaching set.)

3 implies 1. Since X' is C-distinguishing, exact identification of a concept C' € C is the same
as exact identification of C restricted to X’. Let 1, ..., xy_1 denote the instances corresponding
to the rows of M. Let C,...,CN denote the concepts corresponding to the columns of M. A
self-directed learner passes (z1,0), (z2,0), ... to the oracle until it makes the first mistake (if any).
If the first mistake (if any) happens for (z, 0), the target concept must be Cj, (because of the form

of M). If no mistake has occurred on items (x1,0), ..., (xx_1,0), there is only one possible target
concept left, namely C'y. Thus the self-directed learner exactly identifies the target concept at the
expense of at most one mistake. |

As we have seen in this section, the gap between SDC(C) and LC-PARTIAL(C) can be arbi-
trarily large (e.g., the class of half-intervals over domain [n]). We will see below, that a similar
statement applies to RTD(C) and SDC(C) (despite the fact that both measures assign value 1 to the
same family of concept classes).

4. Recursive Teaching Dimension and VC-Dimension

The main open question that we pursue in this section is whether there is a universal constant k£ such
that, for all concept classes C, RTD(C) < k-VCD(C). Clearly, T'S,,,;»n(C) < RTD(C) < RTD*(C),
so that the implications from left to right in

VC : RTD*(C) < k- VCD(C) <« VC:RTD(C) < k-VCD(C)
& VC:TSpin(C) < k-VCD(C) (6)

are obvious. But the implications from right to left hold as well as can be seen from the following
calculations based on the assumption that T'S,,;,(-) < k- VCD(+):

* — . / ;) < . ! )< .
RTD*(C) max. Icrflg)c(TSmm( x) <k max ICIIIS?Z(VCD( (x/) < k-VCD(C)

Here, the first equation expands the definition of RTD* and applies Lemma 4. The final inequality
makes use of the fact that VCD is twofold monotonic. As a consequence, the question of whether
RTD(:) < k- VCD(-) for a universal constant k£ remains equivalent if RTD is replaced by TS,
or RTD*.

12
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4.1 Classes with RTD Exceeding VCD

In general the recursive teaching dimension can exceed the VC-dimension. Kuhlmann (1999) presents
a family (C,,)m>1 of concept classes for which VCD(C,,,) = 2m but RTD(C,,) > TSpnin(Crn) =
3m. The smallest class in Kuhlmann’s family, C;, consists of 24 concepts over a domain of size 16.

A smaller class Cy with RTD(Cy) = TSpin(Cw) = 3 and VCD(Cyy) = 2 was communi-
cated to us by Manfred Warmuth. It is shown in Figure 1.

I T2 I3 T4 | Ty

1| 1]0]0]0

ol 1/1]l0]o0

olo|1|1]o0

ol0 |0/ 1]1

1lolo]o|1

ol1]0]1]1 X2____,___‘____X5
ol 1|1]0]1 ~_ v
1ol 1]1]o0 \,’\ /‘\/

N

1lol1]0]1 I 7S
11010 X3 — X4

~~
&
=

(b)

Figure 1: The smallest concept class Cy with RTD(Cyr) > VCD(Cy ). The function table to the
left can be extracted from the graph to the right by picking concept {x;, z;} for every
solid line and X"\ {z;, z;} for every dashed line.

Brute-force enumeration shows that RTD(Cyy) = T'S;in(Cw) = 3 and VCD(Cy) = 2. War-
muth’s class Cy is remarkable in the sense that it is the smallest concept class for which RTD
exceeds VCD. In order to prove this, the following lemmas will be helpful.

Lemma 12 RTD(C) < |X| — 1 unless C = 2.

Proof If C # 2%, then C must contain a concept C such that C' A {z} ¢ C for some instance = € X.
Then, C can be uniquely identified within C using the instances from X \ {x} and the corresponding
labels. Iterative application of this argument leads to a teaching plan for C of order at most | X |—1. H

Note that Lemma 12 transfers to rfRTD, using an argument very similar to the one that im-
plies the existence of a repetition-free teaching plan for every class (see the discussion just below
Definition 2.)

Forz € X and ¢ € {0, 1}, C[z, £] is defined as the following subclass of C:

Clz,l) ={C eC: C(x) =1}
An instance z is called redundant if C[x, (] = () for some ¢ € {0,1}. Note that the label of a

redundant instance does not contain any information about the underlying target concept from C.
With this notation, the following holds:

13
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Lemma 13 Let C be a concept class over domain X such that TS,,;,(C) > 3, and X does not
contain redundant instances. Then, VCD(C[x,¢]) > 2 for all x € X and ¢ € {0, 1}.

Proof By way of contradiction. Assume that VCD(C[z,¢]) < 1 for some choice of = and /.
We will show that TS,,;,(C) < 2. According to Corollary 9, VCD(C[xz,/¢]) < 1 implies that
TSmin(Clz,f]) < RTD(C[x,¢]) < 1. Now it can be seen that T'S,,;,(C) < 2: choose (z,¢) as
the first element in a teaching set and proceed with a teaching set of size VCD(C|[z, ¢]) < 1 for the
(non-empty) subclass C[x, ¢]. [ |

Lemma 14 Let C be a concept class over domain X such that VCD(C) = 2, TS,;,in(C) = 3,
and X does not contain redundant instances. Then |X| > 5 and, for all x € X and ¢ € {0,1},
|Clz, £]] > 5.

Proof Letz € X and ¢ € {0, 1} be arbitrary but fixed. We first show that |C|x, £]| > 5. According
to Lemma 13, VCD(C[z, ¢]) > 2. Since VCD(C) = 2, this implies that VCD(C|z, ¢]) = 2. Let
C1,C9,C5,Cy € Clz, /] be concepts that shatter two points 2/, 2" in X \ {«}. For at least one of
these four concepts, say for C1, the neighboring concept C; A {x} does not belong to C (because
otherwise the VC-dimension of C would be at least 3). If C'q, ...,y were the only concepts in
Clz, ¥, then (2/,Cy(2")) and (2", C1(2")) would form a teaching set for Cy in contradiction to
TSmin(C) = 3. We conclude that C1, Cy, Cs,Cy are not the only concepts in C[z,¢] so that
|Clz, £]] > 5.

We still have to show that |X| > 5. Clearly, |X| > TS,,;»(C) = 3. Let us assume by
way of contradiction that |X| = 4, say X = {z,y,z,u}. We write concepts over X as 4-
tuples (C(x),C(y),C(z),C(u)). The following considerations are illustrated in Figure 2. From
Lemma 13 and from the assumption VCD(C) = 2, we may conclude that VCD(C[u,0]) = 2 =
VCD(C[u, 1]). The set of size 2 shattered by C[u, 0] cannot coincide with the set of size 2 shattered
by Clu, 1] because, otherwise, the VC-dimension of C would be at least 3. Let’s say, C[u, 0] shatters
{z,y} but not {z, z} and C[u, 1] shatters {x, z} but not {z, y}. By symmetry, we may assume that
Clu, 1] does not contain a concept that assigns label 1 to both = and y, i.e., the concepts (1,1,0,1)
and (1,1,1,1) are missing in C[u, 1]. Since {z, z} is shattered, C[u, 1] must contain the concepts
(1,0,0,1) and (1,0, 1,1) so as to realize the label assignments (1, 0), (1, 1) for (x, z). Recall from
the first part of the proof that |C[u, /]| > 5 for £ = 0,1. Note that |C[u,¢]| = 6 would imply
that {y, z} is also shattered by Clu, ¢]. Since VCD(C) = 2, this cannot occur for both subclasses
Clu, 1] and Clu, 0] simultaneously. By symmetry, we may assume that |C[u, 1]| = 5. Thus, be-
sides (1,1,0,1) and (1, 1,1, 1), exactly one more concept is missing in C[u, 1]. We proceed by case
analysis:

Case 1: The additional missing concept in Clu, 1], say C’, has Hamming-distance 1 from one of
(1,1,0,1) and (1, 1,1, 1). For reasons of symmetry, we may assume that C' = (0,1, 1, 1). It
follows that the concept (0, 1,0, 1) belongs to C[u, 1] and has the teaching set {(u, 1), (y,1)}.
This is a contradiction to T'S,,,;,(C) = 3.

Case 2: The additional missing concept in C[u, 1] has Hamming-distance 2 from both of (1,1,0, 1)
and (1,1,1,1). Then Clu, 1] contains (0,1,1,1), (0,1,0,1), (1,0,1,1), and (1,0,0,1). In
particular, Clu, 1] shatters {y, z}. In this case, it cannot happen that {y, z} is shattered by
C[u, 0] too. Thus, |C[u,0]| = 5. We may now expose C[u, 0] to the same case analysis that
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we already applied to C[u, 1]. Since C[u, 0] does not shatter {y, z}, Case 2 is excluded. As
described above, Case 1 leads to a contradiction.

0111 /i>1111

| 0011 1011

y 0101 Y1101

0001 1001
u=0 u=1
x,y shattered x,z shattered

Figure 2: As indicated by circles, the concepts 1101 and 1111 are missing in C[u, 1]. There is
exactly one additional concept C” which is missing. If ¢’ € {0101,0111, 1001, 1011},
then C” has a teaching set of size 2. Otherwise, C[u, 1] shatters y, .

We are now ready to prove the minimality of Warmuth’s class:

Theorem 15 Let C be a concept class over domain X such that RTD(C) > VCD(C). Then |C| >
10 and | X| > 5.

Proof Obviously VCD(C) = 0 implies that RTD(C) = 0. According to Corollary 9, VCD(C) =1
implies that RTD(C) = 1. So we may safely assume that VCD(C) > 2 and RTD(C) > 3. Accord-
ing to Lemma 4, we may assume that RT'D(C) = TS,,:»(C) because, otherwise, our proof could
proceed with the class C' C C such that RTD(C’) = TS, (C"). We may furthermore assume that
Clz,l) # @ forallz € X and ¢ € {0, 1} because, otherwise, x is a redundant instance and the proof
could proceed with the subdomain X \ {x}. We may therefore apply Lemma 13 and conclude that
VCD(C[x,¢]) > 2forallz € X and ¢ € {0,1}. Clearly |[X| > RTD(C) > 3. We claim that
|X| > 5, which can be seen as follows. First, note that C # 2%, because RTD(C) > VCD(C).
Thus RTD(C) < |X| — 1 by Lemma 12 so that |[X| > RTD(C) + 1 > 4. Assume |X| = 4 by
way of contradiction. It follows that RTD(C) < 3 and VCD(C) < 2. Thus, RTD(C) = 3 and
VCD(C) = 2. But then | X| > 5 by Lemma 14. Having established | X | > 5, it remains to prove
that |C| > 10. According to (1), RTD(C) < log |C|. RTD(C) > 4 would imply that |C| > 16 > 10.
We may therefore focus on the case RTD(C) = 3, which implies that VCD(C) = 2. But now it is
immediate from Lemma 14 that |C| > 10, as desired. [

We close this section by showing that RTD(C) — VCD(C) can become arbitrarily large. This
can be shown by a class whose concepts are disjoint unions of concepts taken from Warmuth’s
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class Cyy. Details follow. Suppose that C; and Co are concept classes over domains X; and Xo,
respectively, such that X7 N X = (). Then

CiyCy = {AUB|A€Cl,B€C2} .

We apply the same operation to arbitrary pairs of concept classes with the understanding that, after
renaming instances if necessary, the underlying domains are disjoint. We claim that VCD, TS,
and RTD behave additively with respect to “&”, i.e., the following holds:

Lemma 16 Forall K € {VCD, TS,,in, RTD}: K(C; WC2) = K(C1) + K(Ca).

Proof The lemma is fairly obvious for K = VCD and K = TS,,;,. Suppose that we have an
optimal teaching plan that teaches the concepts from C; in the order A1, ..., Ay (resp. the concepts
from C; in the order By, ..., By). Then, the teaching plan that proceeds in rounds and teaches
A;UBy,...,A;U By inround i € [M] witnesses that RTD(C; W C2) < RTD(C;) + RTD(Cs).
The reverse direction is an easy application of Lemma 4. Choose C; C C; and C, C Cs so that
RTD(C1) = TSpin(C}) and RTD(Ca) = TSnin(Ch). Now it follows that

RTD(Cl ] CQ) > TSmm(Ci &} Cé) = TSmm(Ci) + TSmm(Cé) = RTD(Cl) + RTD(CQ) .

Setting Cjj, = Cw W ... W Cy with n duplicates of Cyy on the right-hand side, we now obtain
the following result as an immediate application of Lemma 16:

Theorem 17 VCD(Cj},) = 2n and RTD(Cyj;,) = 3n.

We remark here that the same kind of reasoning cannot be applied to blow up rfRTD, because
rfRTD(C W C) can in general be smaller than 2 - rfRTD(C): considering again the class C with
rfRTD(C) = 3 from Table 1, simple brute-force computations show that rfRTD(C x C) = 5.

4.2 Intersection-closed Classes

As shown by Kuhlmann (1999), T'S,,,;,(C) < I(C) holds for every intersection-closed concept class
C. Kuhlmann’s central argument (which occurred first in a proof of a related result by Goldman and
Sloan (1994)) can be applied recursively so that the following is obtained:

Lemma 18 For every intersection-closed class C, RTD(C) < I(C).

Proof Let k£ := I(C). We present a teaching plan for C of order at most k. Let Cy,...,Cy be
the concepts in C in topological order such that C; O C; implies ¢ < j. It follows that, for every
i € [N], C; is an inclusion-maximal concept in C; := {C},...,Cn}. Let S; denote a minimal
spanning set for C; w.r.t. C. Then:

e |S;| < k and C; is the unique minimal concept in C that contains .S;.
e As (j; is inclusion-maximal in C;, C; is the only concept in C; that contains .5;.

Thus {(x,1) | x € S;} is a teaching set of size at most & for C; in C;. [ |
Since I(C) < VCD(C), we get
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Corollary 19 For every intersection-closed class C, RTD(C) < VCD(C).

This implies RTD*(C) < VCD(C) for every intersection-closed class C, since the property
“intersection-closed” is preserved when reducing a class C to C|x+ for X "C X.

For every fixed constant d (e.g., d = 2), Kuhlmann (1999) presents a family (Cy;)m>1 of
intersection-closed concept classes such that the following holds:?

¥m >1: VCD(Cy,) = d and SDC(Cp) > m. )

This shows that SDC(C) can in general not be upper-bounded by I(C) or VCD(C). It shows fur-
thermore that the gap between RTD(C) and SDC(C) can be arbitrarily large (even for intersection-
closed classes).

Lemma 18 generalizes to nested differences:

Theorem 20 IfC is intersection-closed then RTD(DIFF=¢(C)) < d - I(C).
Proof Any concept C' € DIFF<%(C) can be written in the form
=:D1

C=C1\(C2\ (- (Ca—1\Cy)--)) 8)

such that, for every j, C; € C U {0}, C; D Cj41, and this inclusion is proper unless C; = (). Let
Dj =Cjt1\ (Cjs2\ (---(C4g—1\ Cq) - - - )). We may obviously assume that the representation (8)
of C'is minimal in the following sense:

ijl,...,d:Cj:<Cj\Dj>c (9)

We define a lexicographic ordering, 1, on concepts from DIFFSd(C) as follows. Let C be a
concept with a minimal representation of the form (8), and let the minimal representation of C’ be
given similarly in terms of C}, D”. Then, by definition, C 3 C"if C1 D €} or Cy = C1ADy O Dy,

Let k := I(C). We present a teaching plan of order at most dk for DIFF<%(C). Therein, the
concepts are in lexicographic order so that, when teaching concept C' with minimal representa-
tion (8), the concepts preceding C' w.r.t. 1 have been discarded already. A teaching set T" for C'is
then obtained as follows:

e Forevery j = 1,...,d, include in 7" a minimal spanning set for C; \ D; w.r.t. C. Augment
its instances by label 1 if j is odd, and by label O otherwise.

By construction, C' as given by (8) and (9) is the lexicographically smallest concept in DIFFSd(C )
that is consistent with 7. Since concepts being lexicographically larger than C' have been discarded
already, 7 is a teaching set for C'. |

Corollary 21 Let Cy,...,C, be intersection-closed classes over the domain X. Assume that the
“universal concept” X belongs to each of these classes.* Then,

RTD (DIFFSd(c1 U---u cT)) <d- il(ci) :
=1

3. A family satisfying (7) but not being intersection-closed was presented previously by Ben-David and Eiron (1998).
4. This assumption is not restrictive: adding the universal concept to an intersection-closed class does not destroy the
property of being intersection-closed.
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Proof Consider the concept classC :=Ci A---AC, :={C1N---NC, | C; €Cifori=1,...,r}.
According to Helmbold et al. (1990), we have:

1. CitU---UC, is a subclass of C.
2. C is intersection-closed.

3. LetC =Ci1N---NC, €C. For all 7, let S; be a spanning set for C' w.r.t. C;, i.e., S; C C' and
(SiYe; = (C)e¢,. Then S; U --- U S, is a spanning set for C' w.r.t. C.

Thus I(C) < I(C1) + --- + I(C,). The corollary follows from Theorem 20. [

4.3 Maximum Classes

In this section, we show that the recursive teaching dimension coincides with the VC-dimension
on the family of maximum classes. In a maximum class C, every set of k& < VCD(C) instances
is shattered, which implies RTD(C) > TS,,,;n(C) > VCD(C). Thus, we can focus on the reverse
direction and pursue the question whether RTD(C) < VCD(C). We shall answer this question in
the affirmative by establishing a connection between “teaching plans” and “corner-peeling plans”.

We say that a corner-peeling plan (5) is strong if Condition 2 in Definition 6 is replaced as
follows:

2. Forallt = 1,...,N, C; is a cube in {C},...,Cn} which contains C; and whose colors
(augmented by their labels according to C;) form a teaching set for Cy € {C},...,Cn}.

We denote the set of colors of C; as X; and its augmentation by labels according to C; as S in what
follows. The following result is obvious:

Lemma 22 A strong corner-peeling plan of the form (5) induces a teaching plan of the form (2) of
the same order.

The following result justifies the attribute “strong” of corner-peeling plans:
Lemma 23 Every strong corner-peeling plan is a corner-peeling plan.

Proof Assume that Condition 2 is violated. Then there is a color x € X \ X; and a concept

C € {Ci41,...,Cn} such that C coincides with C; on all instances except . But then C' is consis-
tent with set Sy so that S; is not a teaching set for Cy € {C}, ..., Cn}, and Condition 2’ is violated
as well. [ |

Lemma 24 Let C be a shortest-path closed concept class. Then, every corner-peeling plan for C is
strong.

Proof Assume that Condition 2’ is violated. Then some C' € {C}1,...,Cn} is consistent with S;.
Thus, the shortest path between C' and Cy in G({Cy,...,Cn}) does not enter the cube C;. Hence
there is a concept C' € {Cy11,...,Cn} \ Cj that is a neighbor of C; in G({C%,...,Cn}), and
Condition 2 is violated. |

As maximum classes are shortest-path closed (Kuzmin and Warmuth, 2007), we obtain:
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Corollary 25 Every corner-peeling plan for a maximum class is strong, and therefore induces a
teaching plan of the same order.

Since Rubinstein and Rubinstein (2012) showed that every maximum class C can be VCD(C)-
corner-peeled, we may conclude that RTD(C) < VCD(C). As mentioned above, RTD(C) >
TS.in(C) > VCD(C) for every maximum class C. Thus the following holds:

Theorem 26 For every maximum class C, RTD(C) = TS, (C) = VCD(C).

The fact that, for every maximum class C and every X’ C X, the class Cx- is still maximum
implies that RTD*(C) = VCD(C) for every maximum class C.

We establish a connection between repetition-free teaching plans and representations having the
acyclic non-clashing property:

Lemma 27 Let C be an arbitrary concept class. Then the following holds:

1. Every repetition-free teaching plan (2) of order d for C induces a representation mapping r
of order d for C given by r(Cy) = X (S¢) fort = 1,...,N. Moreover, r has the acyclic
non-clashing property.

2. Every representation mapping r of order d for C that has the acyclic non-clashing property (4)
induces a teaching plan (2) given by S; = {(z,Ci(x)) | x € r(Cy)} fort = 1,...,N.
Moreover, this plan is repetition-free.

Proof

1. A clash between C; and Cy, t < t/, on X (S;) would contradict the fact that S; is a teaching
set for Cy € {Cy,...,Cn}.

2. Conversely, if S; = {(z,C¢(x)) | = € r(Ct)} is not a teaching set for C; € {Cy,...,Cn},
then there must be a clash on X (.S;) between Cy and a concept from {Cy41,...,Cn}. The
teaching plan induced by r is obviously repetition-free since r is injective.

Corollary 28 Let C be maximum of VC-dimension d. Then, there is a one-one mapping between
repetition-free teaching plans of order d for C and unlabeled compression schemes with the acyclic
non-clashing property.

A closer look at the work by Rubinstein and Rubinstein (2012) reveals that corner-peeling leads
to an unlabeled compression scheme with the acyclic non-clashing property (again implying that
RTD(C) < VCD(C) for maximum classes C). Similarly, an inspection of the work by Kuzmin
and Warmuth (2007) reveals that the unlabeled compression scheme obtained by the Tail Matching
Algorithm has the acyclic non-clashing property, too. Thus, this algorithm too can be used to
generate a recursive teaching plan of order VCD(C) for any maximum class C.

It is not known to date whether every concept class C of VC-dimension d can be embedded into
a maximum concept class C' 2 C of VC-dimension O(d). Indeed, finding such an embedding is
considered as a promising method for settling the sample compression conjecture. It is easy to see
that a negative answer to our question "Is RTD(C) € O(VCD(C))?" would deem this approach
fruitless:
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Theorem 29 IfRTD(C) is not linearly bounded in VCD(C), then there is no mapping C — C' 2 C
such that C' is maximum and VCD(C') is linearly bounded in VCD(C).

Proof Suppose there is a universal constant k£ and a mapping MAXIMIZE that maps every concept
class C to a concept class C' O C such that C’ is maximum and VCD(C’) < k- VCD(C). It follows
that, for any concept class C, the following holds:

RTD(C) < RTD(MAXIMIZE(C)) = VCD(MAXIMIZE(C)) < k - VCD(C))

where the equation RTD(MAXIMIZE(C)) = VCD(MAXIMIZE(C)) follows from Theorem 26.
|

According to (6), this theorem still holds if RTD is replaced by RTD*.

4.4 Shortest-Path Closed Classes

In this section, we study the best-case teaching dimension, T'S,,;,,(C), and the average-case teaching-
dimension, T'S4,4(C), of a shortest-path closed concept class C.

It is known that the instances of I(C; G(C)), augmented by their C-labels, form a unique min-
imal teaching set for C' in C provided that C is a maximum class (Kuzmin and Warmuth, 2007).
Lemma 30 slightly generalizes this observation.

Lemma 30 Let C be any concept class. Then the following two statements are equivalent:
1. C is shortest-path closed.

2. Every C € C has a unique minimum teaching set S, namely the set S such that X (S) =
1(C;6(C)).

Proof 1 =2 is easy to see. Let C be shortest-path closed, and let C be any concept in C. Clearly,
any teaching set S for C' must satisfy I(C;G(C)) € X (S) because C' must be distinguished from
all its neighbors in G(C). Let C’ # C be any other concept in C. Since C' and C’ are connected
by a path P of length |C' A C’|, C and C’ are distinguished by the color of the first edge in P, say
by the color z € I(C;G(C)). Thus, no other instances (=colors) besides I(C; G(C)) are needed to
distinguish C from any other concept in C.

To show 2 = 1, we suppose 2 and prove by induction on k that any two concepts C,C’ € C
with k = |C A C’| are connected by a path of length & in G(C). The case k = 1 is trivial. For a fixed
k, assume all pairs of concepts of Hamming distance k are connected by a path of length & in G(C).
Let C,C" € C with |C A C'| = k+1 > 2. Since I(C;G(C)) = X(S5), there is an z € I(C;G(C))
such that C'(z) # C’'(x). Let C” be the z-neighbor of C in G(C). Note that C”(z) = C’'(x) so
that C” and C’ have Hamming-distance k. According to the inductive hypothesis, there is a path
of length k from C” to C" in G(C). It follows that C' and C" are connected by a path of length k+1. H

Theorem 31 Let C be a shortest-path closed concept class. Then, TS,,4(C) < 2VCD(C).
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Proof According to Lemma 30, the average-case teaching dimension of C coincides with the aver-
age vertex-degree in G(C), which is twice the density of G(C). As mentioned in Section 2.4 already,
dens(G(C)) < VCD(C). [ |

Theorem 31 generalizes a result by Kuhlmann (1999) who showed that the average-case teach-
ing dimension of “d-balls” (sets of concepts of Hamming distance at most d from a center concept)
is smaller than 2d. It also simplifies Kuhlmann’s proof substantially. In Theorem 4 of the same
paper, Kuhlmann (1999) stated furthermore that T'S,,,(C) < 2 if VCD(C) = 1, but his proof is
flawed.> Despite the flawed proof, the claim itself is correct as we show now:

Theorem 32 Let C be any concept class. If VCD(C) = 1 then TS4,4(C) < 2.

Proof By Theorem 31, the average-case teaching dimension of a maximum class of VC-dimension
1 is less than 2. It thus suffices to show that any class C of VC-dimension 1 can be transformed
into a maximum class C’ of VC-dimension 1 without decreasing the average-case teaching dimen-
sion. Let X’ C X be a minimal set that is C-distinguishing, i.e., for every pair of distinct concepts
C,C" € C, there is some x € X' such that C(x) # C(z'). Let m = |X| and C' = C|x/. Obviously,
|C’| = |C|and VCD(C') = 1 sothat |C'| < (') + ('I) = m~+1. Now we prove that C’ is maximum.
Note that every € X’ occurs as a color in G(C’) because, otherwise, X’ \ {z} would still be C-
distinguishing (which would contradict the minimality of X’). As VCD(C’) = 1, no color can occur
twice. Thus |E(G(C"))| = m. Moreover, there is no cycle in G(C’) since a cycle would require at
least one repeated color. As G(C') is an acyclic graph of m edges, it has at least m + 1 vertices, i.e.
IC'| > m + 1. Thus, |C'| = m + 1 and €’ is maximum. This implies that TS,,,(C") < 2VCD(C’).
Since X’ C X but X is still C-distinguishing, we obtain TS(C;C) < TS(C|x/,C’) forall C € C.
Thus, TSgg(C) < TSaug(C’) < 2VCD(C’) = 2, which concludes the proof. |

We briefly note that T'S,,4(C) cannot in general be bounded by O(VCD(C)). Kushilevitz et al.
(1996) present a family (C,,) of concept classes such that TS,4(Cy) = 2(1/[Cn]) but VCD(C,,) <
log |Cyl.

We conclude this section by showing that there are shortest-path closed classes for which RTD
exceeds VCD.

Lemma 33 Ifdegg ) (C) > |X| — 1 forall C € C, then C is shortest-path closed.

Proof Assume by way of contradiction that C is not shortest-path closed. Pick two concepts
C, C’" € C of minimal Hamming-distance, say d, subject to the constraint of not being connected by
a path of length d in G(C). It follows that d > 2. By the minimality of d, any neighbor of C' with
Hamming-distance d — 1 to C’ does not belong to C. Since there are d such missing neighbors, the
degree of C'in G(C) is bounded by | X | — d < | X| — 2. This yields a contradiction. [ |

5. His Claim 2 states the following. If VCD(C) =1, C1,C2 € C, x € X, x ¢ C1, Co = C1 U {z}, then, for either
(4,7) = (1,2) or (4,j) = (2, 1), one obtains TS(Cy;C) = TS(Cs — z;C — ) + 1 and TS(C};C) = 1. This is not
correct, as can be shown by the class C = {{z, : 1 < 2 < k}:0< k <5} over X = {z) : 1 <k < 5}, which
has VC-dimension 1. For C1 = {z1,z2}, C2 = {21, 22,23}, and z = z3, we get TS(C1;C) = TS(Cy;C) =
TS(C1 —z;C —z) = 2.
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Rubinstein et al. (2009) present a concept class C with TS,;,,;,,(C) > VCD(C). An inspection
of this class shows that the minimum vertex degree in its 1-inclusion graph is | X| — 1. According
to Lemma 33, this class must be shortest-path closed. Thus, the inequality TS,,;,(C) < VCD(C)
does not generalize from maximum classes to shortest-path closed classes.

5. Conclusions

This paper relates the RTD, a recently introduced teaching complexity notion, to information com-
plexity parameters of various classical learning models.

One of these parameters is SDC, the information complexity of self-directed learning, which
constitutes the most information-efficient query learning model known to date. Our main result
in this context, namely lower-bounding the SDC by the RTD, has implications for the analysis of
information complexity in teaching and learning. In particular, every upper bound on SDC holds
for RTD; every lower bound on RTD holds for SDC.

The central parameter in our comparison is the VC-dimension. Although the VC-dimension can
be arbitrarily large for classes of recursive teaching dimension 1 (which is well-known and also ev-
ident from Theorem 11) and arbitrarily smaller than SDC (Ben-David and Eiron, 1998; Kuhlmann,
1999), it does not generally lie in between the two. However, while the SDC cannot be upper-
bounded by any linear function of the VC-dimension, it is still open whether such a bound exists for
the RTD. The existence of the latter would mean that the combinatorial properties that determine
the information complexity of PAC-learning (i.e., of learning from randomly drawn examples) are
essentially the same as those that determine the information complexity of teaching (i.e., of learning
from helpfully selected examples), at least when using the recursive teaching model.

As a partial solution to this open question, we showed that the VC-dimension coincides with
the RTD in the special case of maximum classes. Our results, and in particular the remarkable
correspondence to unlabeled compression schemes, suggest that the RTD is based on a combina-
torial structure that is of high relevance for the complexity of information-efficient learning and
sample compression. Analyzing the circumstances under which teaching plans defining the RTD
can be used to construct compression schemes (and to bound their size) seems to be a promising
step towards new insights into the theory of sample compression.
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