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Abstract

Co-training under the Conditional Independence Assumption is among the models which demonstrate how
radically the need for labeled data can be reduced if a huge amount of unlabeled data is available. In
this paper, we explore how much credit for this saving must be assigned solely to the extra assumptions
underlying the Co-training model. To this end, we compute general (almost tight) upper and lower bounds
on the sample size needed to achieve the success criterion of PAC-learning in the realizable case within
the model of Co-training under the Conditional Independence Assumption in a purely supervised setting.
The upper bounds lie significantly below the lower bounds for PAC-learning without Co-training. Thus,
Co-training saves labeled data even when not combined with unlabeled data. On the other hand, the saving
is much less radical than the known savings in the semi-supervised setting.
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1. Introduction

In the framework of semi-supervised learning, it is usually assumed that there is a kind of compatibility
between the target concept and the domain distribution.1 This intuition is supported by recent results
indicating that, without extra assumptions, there exist purely supervised learning strategies which can
compete fairly well against semi-supervised learners (or even against learners with full prior knowledge of
the domain distribution) [3, 9].

In this paper, we go one step further and consider the following general question: given a particular
extra assumption which makes semi-supervised learning quite effective, how much credit must be given to
the extra assumption alone? In other words, to which extent can labeled examples be saved by exploiting the
extra assumption in a purely supervised setting? We provide a first answer to this question in a case study
which is concerned with the model of Co-training under the Conditional Independence Assumption [5].

1.1. Related work

Supervised and semi-supervised learning. In the semi supervised learning framework the learner is assumed
to have access both to labeled and unlabeled data. The former is supposed to be expensive and the latter
to be cheap, thus unlabeled data should be used to minimize the amount of labeled data required. Indeed,
a large set of unlabeled data provides extra information about the underlying distribution.

Already in 1991, Benedek and Itai [4] studied learning under a fixed distribution, which can be seen
as an extreme case of semi-supervised learning, where the learner has full knowledge of the underlying
distribution. They derive upper and lower bounds on the number of required labels based on ε-covers and
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-packings. Later in 2005, Kääriäinen [13] developed a semi-supervised learning strategy, which can save up
to one half of the required labels. These results don’t make use of extra assumptions that relate the target
concept to the data distribution.

However, some recent results by Ben-David et al. in [3] and later by Darnstädt and Simon in [9]
indicate that even knowing the data distribution perfectly does not help the learner for most distributions
asymptotically, i.e. a reduction by a constant factor is the best possible. In fact, they conjecture a general
negative result, which is nonetheless still absent. These results can be regarded as a justification of using
extra assumptions in the semi-supervised framework in order to make real use of having access to unlabeled
data.

Our work provides a similar analysis of these assumptions in the fashion of the above results: we investi-
gate to what extent does such an assumption (Co-training with the Conditional Independence Assumption)
alone help the learner, and how much is to be credited to having perfect knowledge about the underlying
distribution.

Likewise, a study for the popular Cluster Assumption was done by Singh, Nowak and Zhu in [15]. They
show that the value of unlabeled data under their formalized Cluster Assumption varies with the minimal
margin between clusters.

Co-training and the Conditional Independence Assumption. The co-training model was introduced by Blum
and Mitchell in [5], and has an extensive literature in the semi-supervised setting, especially from an empirical
and practical point of view. (For the formal definition see Section 2.) A theoretical analysis of Co-training
under the Conditional Independence Assumption [5], and the weaker α-expanding Assumption [2], was
accomplished by Balcan and Blum in [1]. They work in Valiant’s model of PAC-learning [16] and show that
one labeled example is enough for achieving the success criterion of PAC-learning provided that there are
sufficiently many unlabeled examples.2

Our paper complements their results: we also work in the PAC model and prove label complexity bounds,
but in our case the learner has no access to unlabeled data. As far as we know, our work is the first that
studies Co-training in a fully supervised setting. Assuming Conditional Independence, our label complexity
bound is much smaller than the standard PAC bound (which must be solely awarded to Co-training itself),
while it is still larger than Balcan and Blum’s (which must also be awarded to the use of unlabeled data).
See Section 1.2 for more details.

Agnostic active learning. We make extensive use of a suitably defined variant of Hanneke’s disagreement
coefficient, which was introduced in [11] to analyze agnostic active learning. (See Section 2.2 for a comparison
of the two notions.) To our knowledge this is, besides a remark about classical PAC-learning in Hanneke’s
thesis [12], the first use of the disagreement coefficient outside of agnostic learning. Furthermore, our work
doesn’t depend on results from the active learning community, which makes the prominent appearance of
the disagreement coefficient even more remarkable.

Learning from positive examples only. Another unsuspected connection that emerged from our analysis
relates our work to the “learning from positive examples only” model from [10]. As already mentioned,
we can upper bound the product of the VC-dimension and the disagreement coefficient by a combinatorial
parameter that is strongly connected to Geréb-Graus’ “unique negative dimension”. Furthermore, we derive
worst case lower bounds that make use of this parameter.

1.2. Our main result

Our paper is a continuation of the line of research started out by Ben-David et al. in [3] aiming at
investigating the problem: how much can the learner benefit from knowing the underlying distribution. We

2This is one of the results which impressively demonstrate the striking potential of properly designed semi-supervised
learning strategies although the underlying compatibility assumptions are somewhat idealized and therefore not likely to be
strictly satisfied in practice. See [2, 17] for suggestions of relaxed assumptions.
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investigate this problem focusing on a popular assumption in the semi supervised literature. Our results are
purely theoretical, which also stems from the nature of the problem.

As mentioned above, the model of Co-training under the Conditional Independence Assumption was
introduced in [5] as a setting where semi supervised can be superior to fully supervised learning. Indeed,
in [1] it was shown that a single labeled example suffices for PAC-learning in the realizable case if unlabeled
data is available. Recall that supervised, realizable PAC-learning without any extra assumption requires d/ε
labeled samples (up to logarithmic factors) where d denotes the VC-dimension of the concept class and ε is
the accuracy parameter [6]. The step from d/ε to just a single labeled example is a giant one. In this paper,
we show however that part of the credit must be assigned to just the Co-training itself. More specifically, we
show that the number of sample points needed to achieve the success criterion of PAC-learning in the purely
supervised model of Co-training under the Conditional Independence Assumption has a linear growth in
√

d1d2/ε (up to some hidden logarithmic factors) as far as the dependence on ε and on the VC-dimensions

of the two involved concept classes is concerned. Note that, as ε approaches 0,
√

d1d2/ε becomes much
smaller than the well-known lower bound Ω(d/ε) on the number of examples needed by a traditional (not
co-trained) PAC-learner.

1.3. Organization of the paper

The remainder of the paper is structured as follows. Section 2 gives a short introduction to PAC-
learning, clarifies the notations and formal definitions that are used throughout the paper and mentions
some elementary facts. Section 3 presents a fundamental inequality that relates a suitably defined variant of
Hanneke’s disagreement coefficient [11] to a purely combinatorial parameter, s(C), which is closely related
to the “unique negative dimension” from [10]. This will later lead to the insight that the product of the
VC-dimension of a (suitably chosen) hypothesis class and a (suitably defined) disagreement coefficient has
the same order of magnitude as s(C). Section 3 furthermore investigates how a concept class can be padded
so as to increase the VC-dimension while keeping the disagreement coefficient invariant. The padding can be
used to lift lower bounds that hold for classes of low VC-dimension to increased lower bounds that hold for
some classes of arbitrarily large VC-dimension. The results of Section 3 seem to have implications for active
learning and might be of independent interest. Section 4.1 presents some general upper bounds in terms of
the relevant learning parameters (including ε, the VC-dimension, and the disagreement coefficient, where
the product of the latter two can be replaced by the combinatorial parameters from Section 3). Section 4.2
shows that all general upper bounds from Section 4.1 are (nearly) tight. Interestingly, the learning strategy
that is best from the perspective of a worst case analysis has one-sided error. Section 4.3 presents improved
bounds for classes with special properties. Section 4.4 shows a negative result in the more relaxed model of
Co-training with α-expansion. The closing Section 5 contains some final remarks and open questions.

2. Definitions, Notations, and Facts

We first want to recall a result from probability theory that we will use several times:

Theorem 1 (Chernoff-bounds). Let X1, . . . , Xm be a sequence of independent Bernoulli random vari-
ables, each with the same probability of success p = P(X1 = 1). Let S = X1 + . . . +Xm denote their sum.
Then for 0 ≤ γ ≤ 1 the following holds:P(S > (1 + γ) · p ·m) ≤ e−mpγ2/3

andP(S < (1 − γ) · p ·m) ≤ e−mpγ2/2

2.1. The PAC-learning framework

We will give a short introduction to Valiant’s model of Probably Approximately Correct Learning (PAC-
learning) [16] with results from [6]. This section can be skipped if the reader is already familiar with this
model.
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Let X be any set, called the domain, and P be a probability distribution over X . For any m ≥ 1, Pm

denotes the corresponding product measure. Let 2X denote the power-set of X (set of all subsets of X). In
learning theory a family C ⊆ 2X of subsets of X is called a concept class over domain X . Members c ∈ C
are sometimes viewed as functions from X to {0, 1} (with the obvious one-to-one correspondence between
these functions and subsets of X). We call any family H ⊆ 2X with C ⊆ H a hypothesis class for C. An
algorithm A is said to PAC-learn C by H with sample size m(ε, δ) if, for any 0 < ε, δ < 1, any (so-called)
target concept h∗ ∈ C, and any domain distribution P the following holds:

1. If A is applied to a (so-called) sample (x1, h
∗(x1)), . . . , (xm, h∗(xm)), it returns (a “natural” represen-

tation of) a hypothesis h ∈ H.

2. If m = m(ε, δ) and the instances x1, . . . , xm in the sample are drawn at random according to Pm,
then, with probability at least 1− δ, P(h(x) = 0 ∧ h∗(x) = 1) +P(h(x) = 1 ∧ h∗(x) = 0) ≤ ε.

Obviously, the term P(h(x) = 0∧ h∗(x) = 1)+P(h(x) = 1∧ h∗(x) = 0) is the probability of A’s hypothesis
h to err on an random example. We often call this probability the error rate of the learner. The number
m of examples that the best algorithm needs to PAC-learn C by H for the worst case choice of P and h∗ is
called the sample complexity of (C,H). We briefly note that in the original definition of PAC-learning [16]
m(ε, δ) is required to be polynomially bounded in 1/ε, 1/δ and A has to be polynomially time-bounded. In
this paper, we do obtain polynomial bounds on the sample size, but we do not care about computational or
efficiency issues.

We will now state two classic results from the PAC-learning framework, which show that there are (up
to logarithmic factors) matching upper and lower bounds on the sample complexity. To this end we need to
introduce some more definitions:

We say that a set A ⊆ X is shattered by H if, for any B ⊆ A, there exists a set C ∈ H such that
B = A ∩ C. The VC-dimension of H is ∞ if there exist arbitrarily large sets that are shattered by H, and
the cardinality of the largest set shattered by H otherwise.

For every h∗ ∈ C and every X ′ ⊆ X , the corresponding version space in H is given by

VH(X ′, h∗) := {h ∈ H| ∀x ∈ X ′ : h(x) = h∗(x)} .

For X ′ = {x1, . . . , xm}, we call the hypotheses in VH(X ′, h∗) consistent with the sample (x1, h
∗(x1)), . . . ,

(xm, h∗(xm)).

Theorem 2 ([6]). Let 0 < ε, δ < 1 and let d denote the VC-dimension of H. An algorithm, that returns a
consistent hypothesis, achieves an error rate of at most ε with probably 1− δ after receiving a sample of size

m = O

(
1

ε
·
(

ln
1

δ
+ d · ln 1

ε

))

as its input.

Thus we have an upper bound of Õ(d/ε) on the sample complexity of learning C by H. Õ is defined like
Landau’s O but also hides logarithmic factors.

Theorem 3 ([7]). Let dC denote the VC-dimension of C. For small enough ǫ, δ > 0, any algorithm learning
C (by any H) for all choices of h∗ and P must use at least

m = Ω

(
1

ε
·
(

ln
1

δ
+ dC

))

many sample points.

So if we choose a hypothesis class with a VC-dimension in the same order as the VC-dimension of the
concept class (e.g. H = C), we have a lower bound of Ω(d/ε) on the sample size, which matches the upper
bound up to logarithmic factors.
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The standard PAC-learning model described above is fully supervised, in the sense that the learner is
provided with the correct label h∗(xi) for each sample point xi. In semi-supervised learning, which we
mention several times in this paper, the learner has access to a second (usually large) sample of unlabeled
data and tries to use her increased knowledge about the domain distribution P to reduce the number of
needed labels. For an analysis of semi-supervised learning in an augmented version of the PAC-learning
model we refer to [1].

2.2. Co-training and the disagreement coefficient

In Co-training [5], it is assumed that there is a pair of concept classes, C1 and C2, and that random
examples come in pairs (x1, x2) ∈ X1 ×X2. Moreover, the domain distribution P, according to which the
random examples are generated, is perfectly compatible with the target concepts, say h∗

1 ∈ C1 and h∗
2 ∈ C2,

in the sense that h∗
1(x1) = h∗

2(x2) with probability 1. (For this reason, we sometimes denote the target
label as h∗(x1, x2).) As in [5, 1], our analysis builds on the Conditional Independence Assumption: x1, x2,
considered as random variables that take “values” in X1 and X2, respectively, are conditionally independent
given the label. As in [1], we perform a PAC-style analysis of Co-training under the Conditional Independence
Assumption. But unlike [1], we assume that there is no access to unlabeled examples. The resulting model
is henceforth referred to as the “PAC Co-training Model under the Conditional Independence Assumption”.

Let C be a concept class over domain X and H ⊇ C a hypothesis class over the same domain. Let V ⊆ C.
The disagreement region of V is given by

DIS(V ) := {x ∈ X | ∃h, h′ ∈ V : h(x) 6= h′(x)} .

We define the following variants of disagreement coefficients:

θ(C,H|P, X ′, h∗) :=
P(DIS(VC(X

′, h∗)))

suph∈VH(X′,h∗)P(h 6= h∗)

θ(C,H) := supP,X′,h∗

θ(C,H|P, X ′, h∗)

For sake of brevity, let θ(C) := θ(C, C). Note that

θ(C,H) ≤ θ(C) ≤ |C| − 1 . (1)

The first inequality is obvious from C ⊆ H and h∗ ∈ C, the second follows from

DIS(VC(X
′, h∗)) =

⋃

h∈VC(X′,h∗)\{h∗}

{x| h(x) 6= h∗(x)}

and an application of the union bound.
To become more familiar with these definitions we present the following example:

Example 1. Let X be R
2 and let C = H be the class of homogeneous half planes. The target concept h∗ is

illustrated in Figure 1 by the dashed line. The learner now receives a sample X ′, which consists of finitely
many points (we have eight in our example), chosen randomly according to distribution P . Let us assume
in this example, that P is the uniform distribution on [−1, 1]× [−1, 1]. A positive or negative label, produced
by h∗, is attached to each sample point, which we represent in Figure 1 by “+” and “−”.

VC(X
′, h∗), which is not shown explicitly in the figure, consists of all homogeneous half planes covering

all positively labeled points from X ′ while excluding the negative ones. One arbitrarily chosen hypothesis h
from VC(X

′, h∗), which the learner may pick as her answer, is shown in the left image. The error of the
hypothesis h is the weight of the gray area, on which h and h∗ differ, measured by P .

The disagreement region, which consists of all points where some hypothesis from VC(X
′, h∗) disagrees

with the target h∗, is shown in the right-hand part of Figure 1.
The disagreement coefficient θ(C,H|P, X ′, h∗) is the ratio of the size of the disagreement region, measured

again by P, and the largest possible error of a half plane consistent with the sample. Please note that in this
example, for any choice of h∗, P and X ′, the largest error can never exceed the whole disagreement region,
and therefore θ(C,H) ≥ 1.
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Figure 1: An illustration of h∗, X′, h, the error of h and the disagreement region for Example 1.

Figure 2: The drawing depicts the concepts {0, 1} and {0} in SF7. Each concept in SFn consists of the kernel 0 and at
most one of the petals 1, . . . , n. The class is named after the sunflower and fulfills the well known definition of “sunflower” in
combinatorics, but is otherwise unrelated.

We would like to compare our variant of the disagreement coefficient with Hanneke’s definition from [12].
Let B(h, r) denote the closed ball of radius r around h in C and let θH(C|P, h∗) denote Hanneke’s disagree-
ment coefficient:

B(h∗, r) = {h ∈ C|P(h 6= h∗) ≤ r}

θH(C|P, h∗) = sup
r>0

P(DIS(B(h∗, r)))

r

Let r∗ := suph∈VC(X′,h∗)P(h 6= h∗). Obviously, the version space is contained in a ball of radius r∗, thus:

θ(C, C|P, X ′, h∗) =
P(DIS(VC(X

′, h∗)))

r∗
≤ P(DIS(B(h∗, r∗)))

r∗
≤ θH(C|P, h∗)

Please note that the gap can be arbitrarily large: if P is the uniform distribution over a finite set X , it is
easy to see that θH(2X |P, ∅) = |X |, while θ(2X) ≤ 2, as we show in Example 2.

We will now calculate θ for the following class, which will be useful for proving lower bounds in section 4.2:

SFn = {{0}, {0, 1}, {0, 2}, . . . , {0, n}}
See Figure 2 for a visualization SFn.

Lemma 1. θ(SFn) = n.

Proof. Let P be uniform on {1, . . . , n}, let X ′ = h∗ = {0}. Then V := VSFn
(X ′, h∗) = SFn and DIS(V ) =

{1, . . . , n} has probability mass 1. Thus,

θ(SFn) ≥ θ(SFn, SFn|P, X ′, h∗) =
P(DIS(V ))

suph∈V P(h 6= h∗)
=

1

1/n
= n .

Conversely, θ(SFn) ≤ |SFn| − 1 = n (according to (1)). 2
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The main usage of this disagreement coefficient is as follows. First note that we have P(DIS(VC(X
′, h∗)))

≤ θ(C,H) · suph∈VH(X′,h∗)P(h 6= h∗) for every choice of P, X ′, h∗. This inequality holds in particular when
X ′ consists of m points in X chosen independently at random according to P. According to the classical
sample size bound of Theorem 2, there exists a sample size m = Õ(VCdim(H)/ε) such that, with probability
at least 1− δ, suph∈VH(X′,h∗)P(h 6= h∗) ≤ ε. Thus, with probability at least 1− δ (taken over the random
sample X ′), P(DIS(VC(X

′, h∗))) ≤ θ(C,H) · ε. This discussion is summarized in the following

Lemma 2. There exists a sample size m = Õ(VCdim(H)/ε) such that the following holds for every prob-
ability measure P on domain X and for every target concept h∗ ∈ C. With probability 1 − δ, taken over a
random sample X ′ of size m, P((DIS(VC(X

′, h∗))) ≤ θ(C,H) · ε.

This lemma indicates that one should choose H so as to minimize θ(C,H) · VCdim(H). Note that making
H more powerful leads to smaller values of θ(C,H) but comes at the price of an increased VC-dimension.

We say that H contains hypotheses with plus-sided errors (or minus-sided errors, resp.) w.r.t. concept
class C if, for every X ′ ⊆ X and every h∗ ∈ C, there exists h ∈ VH(X ′, h∗) such that h(x) = 0 (h(x) = 1,
resp.) for every x ∈ DIS(VC(X

′, h∗)). A sufficient (but, in general, not necessary) condition for a class H
making plus-sided errors only (or minus-sided errors only, resp.) is being closed under intersection (or closed
under union, resp.). See also Theorem 4 and its proof.

Lemma 3. Let C ⊆ H. If H contains hypotheses with plus-sided errors and hypotheses with minus-sided
errors w.r.t. C, then θ(C,H) ≤ 2.

Proof. Consider a fixed but arbitrary choice of P, X ′, h∗. Let hmin be the hypothesis in VH(X ′, h∗) that
errs on positive examples of h∗ only, and let hmax be the hypothesis in VH(X ′, h∗) that errs on negative
examples of h∗ only. We conclude that DIS(VC(X

′, h∗)) ⊆ {x| hmin(x) 6= hmax(x)}. From this and the
triangle inequality, it follows thatP(DIS(VC(X

′, h∗))) ≤ P(hmin 6= hmax) ≤ P(hmin 6= h∗) +P(hmax 6= h∗) .

The claim made by the lemma is now obvious from the definition of θ(C,H). 2

Example 2. Since POWERSET, the class consisting of all subsets of a finite set X, and HALFINTER-
VALS, the class consisting of sets of the form (−∞, a) with a ∈ R, are closed under intersection and union,
we obtain θ(POWERSET) ≤ 2 and θ(HALFINTERVALS) ≤ 2.

Let the class C consist of both the open and the closed homogeneous half planes and let H be the class
of unions and intersections of two half planes from C. It is easy to see that H contains hypotheses with
plus-sided errors (the smallest pie slice with apex at ~0 that includes all positive examples in a sample; see
Figure 3) and hypotheses with minus-sided errors (the complement of the smallest pie slice with apex at ~0
that includes all negative examples in a sample) w.r.t. C. Thus, θ(C,H) ≤ 2. Note that H is neither closed
under intersection nor closed under union.

3. A Closer Look at the Disagreement Coefficient

In Section 3.1 we investigate the question how small the product VCdim(C) · θ(C,H) can become if
H ⊇ C is cleverly chosen. The significance of this question should be clear from Lemma 2. In Section 3.2
we introduce a padding technique which leaves the disagreement coefficient invariant but increases the
VC-dimension (and, as we will see later, also increases the error rates in the PAC Co-training Model).

3.1. A Combinatorial Upper Bound

Let s+(C) denote the largest number of instances in X such that every binary pattern on these instances
with exactly one “+”-label can be realized by a concept from C. In other words: s+(C) denotes the cardinality
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Figure 3: The shaded areas represent hypotheses with plus- and minus-sided errors. Note that the disagreement region, as seen
in Figure 1, lies inside of the minus-sided hypothesis and outside of the plus-sided one.

of the largest singleton subclass3 of C. If C contains singleton subclasses of arbitrary size, we define s+(C)
as infinite. Let C+ denote the class of all unions of concepts from C. As usual, the empty union is defined
to be the empty set.

Lemma 4. C ⊆ C+, C+ is closed under union, and VCdim(C+) = s+(C). Moreover, if C is closed under
intersection, then C+ is closed under intersection too, and θ(C, C+) ≤ 2 so that VCdim(C+) · θ(C, C+) ≤
2s+(C).

Proof. By construction, C ⊆ C+ and C+ is closed under union. From this it follows that s+(C) ≤
VCdim(C+). Consider now instances x1, . . . , xd that are shattered by C+. Thus, for every i = 1, . . . , d,
there exists a concept hi in C+ that contains xi but none of the other d−1 instances. Therefore, by the con-
struction of C+, C must contain some hypothesis h′

i smaller than hi satisfying h′
i(xi) = 1. We conclude that

VCdim(C+) ≤ s+(C). For the remainder of the proof, assume that C is closed under intersection. Consider
two sets A,B of the form A = ∪iAi and B = ∪jBj where all Ai and Bj are concepts in C. Then, according
to the distributive law, A ∩ B = ∪i,jAi ∩ Bj . Since C is closed under intersection, Ai ∩ Bj ∈ C ⊆ C+. We
conclude that C+ is closed under intersection. Closure under intersection and union implies that C+ contains
hypotheses with plus-sided errors and hypotheses with minus-sided errors w.r.t. C. According to Lemma 3,
θ(C, C+) ≤ 2. 2

We aim at a similar result that holds for arbitrary (not necessarily intersection-closed) concept classes.
To this end, we proceed as follows. Let s−(C) denote the largest number of instances in X such that every
binary pattern on these instances with exactly one “−”-label can be realized by a concept from C. In other
words: s−(C) denotes the cardinality of the largest co-singleton subclass4 of C. If C contains co-singleton
subclasses of arbitrary size, we define s−(C) as infinite. Let C− denote the class of all intersections of
concepts from C. As usual, the empty intersection is defined to be the full set X . By duality, Lemma 4
translates into the following

Corollary 1. C ⊆ C−, C− is closed under intersection, and VCdim(C−) = s−(C). Moreover, if C is closed
under union, then C− is closed under union too, and θ(C, C−) ≤ 2 so that VCdim(C−) · θ(C, C−) ≤ 2s−(C).

We now arrive at the following general bound:

Theorem 4. Let H := C+ ∪ C−. Then, C ⊆H, VCdim(H)≤ 2max{s+(C), s−(C)}, and θ(C,H) ≤ 2 so that
VCdim(H) · θ(C,H) ≤ 4max{s+(C), s−(C)} =: s(C).

3A singleton subclass of C is a set C′ ⊆ C such that for each h ∈ C′ there exists an x ∈ h that is not contained in any other
h′ ∈ C′.

4A co-singleton subclass of C is a set C′ ⊆ C such that for each h ∈ C′ there exists an x 6∈ h that is contained in every other
h′ ∈ C′.
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Figure 4: Using four fixed points, one can find the singletons of size four as a subclass of the open, homogeneous half planes.
A co-singleton class of size four is induced by the complementary, closed half planes.

Proof. C ⊆ H is obvious. The bound on the VC-dimension is obtained as follows. If m instances are
given, then, by Lemma 4 and Corollary 1, the number of binary patterns imposed on them by concepts from
H = C+ ∪ C− is bounded by Φs+(C)(m) + Φs−(C)(m) where

Φd(m) =

{
2m if m ≤ d
∑d

i=0

(
m
i

)
otherwise

is the upper bound from Sauer’s Lemma [14]. Note that Φd(m) < 2m−1 for m > 2d. Thus, for m >
2max{s+(C), s−(C)}, Φs+(C)(m) + Φs−(C)(m) < 2m−1 + 2m−1 = 2m. We can conclude that VCdim(H) ≤
2max{s+(C), s−(C)}. Finally note that θ(C,H) ≤ 2 follows from Lemma 3 and the fact that, because of
Lemma 4 and Corollary 1, H = C+ ∪ C− contains hypotheses with plus-sided errors and hypotheses with
minus-sided errors. 2

Please note that the parameter s−(C) was originally introduced by Mihály Geréb-Graus in [10] as the
“unique negative dimension” of C. He showed that it characterizes PAC-learnability from positive examples
alone.

Example 3. Let us continue with the classes from Example 2. As noted before, POWERSET and HALF-
INTERVALS are closed under union and intersection, and we yield C+ = C− = C for both classes. Yet
they differ strongly in their singleton sizes: the power set over n elements contains both a singleton and a
co-singleton class of size n, so we have s+(POWERSET) = s−(POWERSET) = n, while the class of half
intervals only satisfies s+(HALFINTERVALS) = s−(HALFINTERVALS) = 1. The latter is due to the fact
that for any two points on the real line no half interval can assign a negative label to the lower point and a
positive label to the higher one simultaneously.

Now, let C denote the class of both the open and the closed homogeneous half planes again. We have
already seen the classes C− and C+ in Example 2: clearly, C− consists of all open and closed pie slices with
apex ~0 and C+ consists of the complements of such pie slices (see Figure 3). It is also easy to see that both
s+ and s− are at least four (see Figure 4). We can see that four is also an upper bound of s+ (analogous
for s−), because for any choice of five half planes each of which contains at least one of five previously fixed
points it holds that one of the points is contained by at least two of the half planes.

9



Let us conclude with two new examples: the class SFn and the class INTERVALS, which consists of the
closed and open intervals over R.

Since SFn is closed under intersection, we yield C−(SFn) = SFn. On the other hand, constructing all
possible unions results in the power set over {1, . . . , n}, thus C+(SFn) = {{0} ∪ S|S ⊆ {1, . . . , n}}. This
stark difference is also reflected in the singleton and co-singleton sizes: because the elements {1, . . . , n} form
a singleton class of size n, the singleton size s+(SFn) is n, while the co-singleton size s−(SFn) is just one.

The INTERVALS are even more extreme in this regard. This class is also closed under intersection, thus
C− = INTERVALS, and the co-singleton size s− is obviously just two. However, the set of all unions is a
intricate set of infinite VC-dimension and, because each element in the set N can be covered solitarily by a
small interval, the singleton size s+ of the INTERVALS is also infinite.

3.2. Invariance of the Disagreement Coefficient under Padding

For every domain X , let X(i) and X [k] be given by

X(i) = {(x, i)| x ∈ X} and X [k] = X(1) ∪ · · · ∪X(k) .

For every concept h ⊆ X , let
h(i) = {(x, i)| x ∈ h} .

For every concept class C over domain X , let

C[k] := {h(1)
1 ∪ · · · ∪ h

(k)
k | h1, . . . , hk ∈ C} .

Loosely speaking, C[k] contains k-fold “disjoint unions” of concepts from C. It is obvious that VCdim(C[k]) =
k ·VCdim(C). The following result shows that the disagreement-coefficient is invariant under k-fold disjoint
union:

Lemma 5. For all k ≥ 1: θ(C[k],H[k]) = θ(C,H).

Proof. The probability measures P on X [k] can be written as convex combinations of probability measures
on the X(i), i.e., P = λ1P1 + · · · + λkPk where Pi is a probability measure on X(i), and the λi are non-
negative numbers that sum-up to 1. A sample S ⊆ X [k] decomposes into S = S(1) ∪ · · · ∪ S(k) with
S(i) ⊆ X(i). An analogous remark applies to concepts c ∈ C[k] and hypotheses h ∈ H[k]. Thus,

θ(C[k],H[k]|P, S, c) =
P(DIS(VC[k](S, c)))

suph∈V
H[k](S,c)

P(h 6= c)

=

∑k
i=1 λi

=:ai

︷ ︸︸ ︷Pi(DIS(VC(i)(S(i), c(i))))
∑k

i=1 λi sup
h
(i)
i

∈V
H(i) (S(i),c(i))

Pi(h
(i) 6= c(i))

︸ ︷︷ ︸

=:bi

≤ θ(C,H) .

The last inequality holds because, obviously, ai/bi ≤ θ(C(i),H(i)) = θ(C,H). On the other hand, ai/bi can
be made equal (or arbitrarily close) to θ(C,H) by choosing Pi, S

(i), c(i) properly. 2

4. Supervised learning and Co-training

Let p+ = P(h∗ = 1) denote the probability of seeing a positive example of h∗. Similarly, p− = P(h∗ =
0) denotes the probability of seeing a negative example of h∗. Let P(·|+),P(·|−) denote probabilities
conditioned to positive or to negative examples, respectively. The error probability of a hypothesis h
decomposes into conditional error probabilities according toP(h 6= h∗) = p+ ·P(h 6= h∗|+) + p− ·P(h 6= h∗|−) . (2)
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In the PAC-learning framework, a sample size that, with high probability, bounds the error by ε typically
bounds the plus-conditional error by ε/p+ and the minus-conditional error by ε/p−. According to (2), these
conditional error terms lead to an overall error that is bounded by ε, indeed. For this reason, the hardness
of a problem in the PAC-learning framework does not significantly depend on the values of p+, p−. As
we will see shortly, the situation is much different in the PAC Co-training Model under the Conditional
Independence Assumption where small values of pmin := min{p+, p−} (though not smaller than ε) make
the learning problem harder. Therefore, we refine the analysis and present our bounds on the sample size
not only in terms of distribution-independent quantities like θ, ε and the VC-dimension but also in terms
of pmin. This will lead to “smart” learning policies that take advantage of “benign values” of pmin. In
the following subsections, we present (almost tight) upper and lower bounds on the sample size in the PAC
Co-training Model under the Conditional Independence Assumption.

4.1. General Upper Bounds on the Sample size

Let us first fix some more notation that is also used in subsequent sections. V1 ⊆ C1 and V2 ⊆ C2 denote
the version spaces induced by the labeled sample within the concept classes, respectively, and DIS1 =
DIS(V1), DIS2 = DIS(V2) are the corresponding disagreement regions. The VC-dimension of H1 is denoted
d1; the VC-dimension of H2 is denoted d2. θ1 = θ(C1,H1) and θ2 = θ(C2,H2). θmin = min{θ1, θ2} and
θmax = max{θ1, θ2}. s+1 = s+(C1), s+2 = s+(C2), s−1 = s−(C1), and s−2 = s−(C2). The learner’s empirical
estimates for p+, p−, pmin (inferred from the labeled random sample) are denoted p̂+, p̂−, p̂min, respectively.
Let h1 ∈ VH1 and h2 ∈ VH2 denote two hypotheses chosen according to some arbitrary but fixed learning
rules.

According to the Conditional Independence Assumption, a pair (x1, x2) for the learner is generated at
random as follows:

1. With probability p+ commit to a positive example, and with probability p− = 1 − p+ commit to a
negative example of h∗.

2. Conditioned to “+”, (x1, x2) is chosen at random according to P(·|+)×P(·|+). Conditioned to “−”,
(x1, x2) is chosen at random according to P(·|−)×P(·|−).

The error probability of the learner is the probability for erring on an unlabeled “test-instance” (x1, x2).
Note that the learner has a safe decision if x1 /∈ DIS1 or x2 /∈ DIS2. As for the case x1 ∈ DIS1 and x2 ∈ DIS2,
the situation for the learner is ambiguous, and we consider the following resolution-rules, the first two of
which depend on the hypotheses h1 and h2:

R1: If h1(x1) = h2(x2), then vote for the same label. If h1(x1) 6= h2(x2), then go with the hypothesis that
belongs to the class with the disagreement coefficient θmax.

R2: If h1(x1) = h2(x2), then vote for the same label. If h1(x1) 6= h2(x2), then vote for the label that
occurred less often in the sample (i.e., vote for “+” if p̂− ≥ 1/2, and for “−” otherwise).

R3: If p̂− ≥ 1/2, then vote for label “+”. Otherwise, vote for label “−”. (These votes are regardless of the
hypotheses h1, h2.)

The choice applied in rules R2 and R3 could seem counterintuitive at first. However, p̂+ > p̂− means that
the learner has more information about the behavior of the target concept on the positive instances than
on the negative ones, indicating that the positive instances in the disagreement regions might have smaller
probability than the negative ones. This choice is also in accordance with the common strategy applied in
the “learning from positive examples only” model, which outputs a negative label if in doubt, although the
learner has never seen any negative examples.

Theorem 5. The number of labeled examples sufficient for learning (C1, C2) in the PAC Co-training Model
under the Conditional Independence Assumption by learners applying one of the rules R1, R2, R3 is given
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asymptotically as follows:






Õ
(√

d1d2

ε · θmin

pmin

)

if rule R1 is applied

Õ

(√

d1d2

ε ·max
{

1
pmin

, θmax

})

if rule R2 is applied

Õ

(√
d1d2

ε · θ1θ2
)

resp. Õ

(√
max{s+1 s+2 ,s−1 s−2 }

ε

)

if rule R3 is applied

(3)

Proof. By an application of Chernoff-bounds, Õ(1) examples are sufficient to achieve that (with high
probability) the following holds: if pmin < 1/4, then p̂min < 1/2. Assume that this is the case. For reasons
of symmetry, we may assume furthermore that θ1 = θmax and p̂− ≥ 1/2 so that p− ≥ 1/4. Please recall
that the rules R1 to R3 are only applied if x1 ∈ DIS1 and x2 ∈ DIS2.

Assume first that ambiguities are resolved according to rule R1. Note that the sample size specified in (3)
is, by Theorem 2, sufficient to bound (with high probability) the error rate of hypotheses h1, h2, respectively,
as follows:

ε1 =

√

d1
d2

· pmin

θmin
· ε and ε2 =

√

d2
d1

· pmin

θmin
· ε

If R1 assigns a wrong label to (x1, x2), then, necessarily, h1 errs on x1 and x2 ∈ DIS2. Thus the error rate
induced by R1 is bounded (with high probability) as follows:P(h1(x1) = 0 ∧ x2 ∈ DIS2|+)p+ +P(h1(x1) = 1 ∧ x2 ∈ DIS2|−)p−

≤ 1

pmin
·
(P(h1(x1) = 0|+)p+ ·P(x2 ∈ DIS2|+)p+ +P(h1(x1) = 1|−)p− ·P(x2 ∈ DIS2|−)p−

)

≤ 1

pmin
·
(P(h1(x1) = 0|+)p+ +P(h1(x1) = 1|−)p−

)

︸ ︷︷ ︸

≤ε1

·
(P(x2 ∈ DIS2|+)p+ +P(x2 ∈ DIS2|−)p−

)

︸ ︷︷ ︸

≤θ2ε2=θminε2

≤ θmin

pmin
· ε1ε2 = ε

The first inequality in this calculation makes use of Conditional Independence and the third applies Lemma 2.
As for rule R2, the proof proceeds analogously. We may assume that (with high probability) the error rate
of hypotheses h1, h2, respectively, is bounded as follows:

ε1 =

√

d1
2d2

·min

{

pmin,
1

8θmax

}

· ε and ε2 =

√

d2
2d1

·min

{

pmin,
1

8θmax

}

· ε

If R2 assigns a wrong label to (x1, x2), then (h1(x1) = h2(x2) = 0∧ h∗(x1, x2) = 1)∨ (x1 ∈ DIS1 ∧ h2(x2) =
1 ∧ h∗(x1, x2) = 0) ∨ (x2 ∈ DIS2 ∧ h1(x1) = 1 ∧ h∗(x1, x2) = 0). Thus, the error rate induced by R2 is
bounded (with high probability) as follows:P(h1(x1) = h2(x2) = 0|+)p+ +P(x1 ∈ DIS1 ∧ h2(x2) = 1|−)p−

+P(x2 ∈ DIS2 ∧ h1(x1) = 1|−)p−
≤ 1

p+
·P(h1(x1) = 0|+)p+
︸ ︷︷ ︸

≤ε1

·P(h2(x2) = 0|+)p+
︸ ︷︷ ︸

≤ε2

+
1

p−
︸︷︷︸

≤4

·
(P(x1 ∈ DIS1|−)p−
︸ ︷︷ ︸

≤θ1ε1

·P(h2(x2) = 1|−)p−
︸ ︷︷ ︸

≤ε2

+P(x2 ∈ DIS2|−)p−
︸ ︷︷ ︸

≤θ2ε2

·P(h1(x1) = 1|−)p−
︸ ︷︷ ︸

≤ε1

)

≤ 1
pmin

· ε1ε2 + 4ε1ε2 · (θ1 + θ2)

≤
(

1
pmin

+ 8θmax

)

· ε1ε2
≤ 2 ·max

{
1

pmin

, 8θmax

}

· ε1ε2 ≤ ε
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As for rule R3, sample size Õ

(√
d1d2

ε · θ1θ2
)

is sufficient to bound (with high probability) the error rate of

h1, h2, respectively, as follows:

ε1 =
1

2
·
√

d1
d2

· 1

θ1θ2
· ε and ε2 =

1

2
·
√

d2
d1

· 1

θ1θ2
· ε

If R3 assigns a wrong label to (x1, x2), then x1 ∈ DIS1, x2 ∈ DIS2, and the true label is “−”. Thus the
error rate induced by R3 is bounded (with high probability) as follows:P(x1 ∈ DIS1 ∧ x2 ∈ DIS2|−)p− =

1

p−
︸︷︷︸

≤4

·P(x1 ∈ DIS1|−)p−
︸ ︷︷ ︸

≤θ1ε1

·P(x2 ∈ DIS2|−)p−
︸ ︷︷ ︸

≤θ2ε2

≤ 4θ1θ2ε1ε2 ≤ ε

There is an alternative analysis for rule R3 which proceeds as follows. Since we have assumed that p̂− ≥ 1/2,
R3 assigns label “+” to every instance x1 ∈ DIS1 (resp. to every instance x2 ∈ DIS2). We can also
achieve this behavior by choosing h1 (resp. h2) as the union of all hypotheses from the version space
and assigning the label “+” to (x1, x2) exactly if both h1 and h2 agree on a positive label. Recall that,
according to our definition of C+

1 , C+
2 , h1 ∈ C+

1 and h2 ∈ C+
2 . Recall furthermore that VCdim(C+

1 ) = s+1 and

VCdim(C+
2 ) = s+2 . Thus, sample size Õ

(√
s+1 s+2

ε

)

is sufficient to bound (with high probability) the error

rate of h1, h2, respectively, as follows:

ε1 =
1

2
·
√

s+1
s+2

· ε and ε2 =
1

2
·
√

s+2
s+1

· ε

An error of rule R3 can occur only when h1 errs on x1 and h2 errs on x2, which implies that the true label
of (x1, x2) is “−”. According to conditional independence, the probability for this to happen is bounded as
follows:P(h1 errs on x1 and h2 errs on x2) = P(h1 errs on x1 and h2 errs on x2|−)p−

=
1

p−
·P(h1 errs on x1|p−)p− ·P(h2 errs on x2|p−)p−

=
1

p−
·P(h1 errs on x1) ·P(h2 errs on x2)

≤ 4 · ε1 · ε2 = ε

By symmetry, assuming that p̂− < 1/2, the upper bound Õ
(
√

s−1 s
−
2 /ε

)
on the sample size holds. Thus the

bound Õ

(√
max{s+1 s+2 ,s−1 s−2 }

ε

)

takes care of all values for p̂−. This concludes the proof of the theorem. 2

Please observe that the second upper bound for rule R3 is given completely in combinatorial parameters.
Also note that, in the case p̂− < 1/2, finding h1 ∈ C−

1 (resp. h2 ∈ C−
2 ), which is the smallest consistent

hypothesis in C1, is possible using negative examples only. This shows a strong connection to the results
by Geréb-Graus in [10], where it was shown that Õ

(
s−(C)/ε

)
many positive examples are sufficient (and

necessary) to PAC-learn a class C from positive examples alone.
We now describe a strategy named “Combined Rule” that uses rules R1, R2, R3 as sub-routines. Given

(x1, x2) ∈ DIS1 × DIS2, it proceeds as follows. If ε > 2/(θ1θ2) and p̂+ < ε/2 (or p̂− < ε/2, resp.), it votes
for label “−” (or for label “+”, resp.). If ε ≤ 2/(θ1θ2) or p̂min := min{p̂+, p̂−} ≥ ε/2, then it applies the
rule 





R1 if θmin

θmax
≤ p̂min

R2 if 1
θ1θ2

≤ p̂min < θmin

θmax

R3 if p̂min < 1
θ1θ2

. (4)
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Corollary 2. If the learner applies the Combined Rule, then






Õ
(√

d1d2

ε · θmin

pmin

)

if θmin

θmax

≤ pmin

Õ

(√
d1d2

ε · θmax

)

if 1
θmax

≤ pmin < θmin

θmax

Õ
(√

d1d2

ε · 1
pmin

)

if 1
θ1θ2

≤ pmin < 1
θmax

Õ

(√
d1d2

ε · θ1θ2
)

resp. Õ

(√
max{s+1 s+2 ,s−1 s−2 }

ε

)

if pmin < 1
θ1θ2

(5)

labeled examples are sufficient for learning C1, C2 in the PAC Co-training Model under the Conditional
Independence Assumption.

Proof. We first would like to note that, according to (5), we have at least

Õ

(√

min{θ1θ2, 1/pmin}
ε

)

(6)

labeled examples at our disposal. Furthermore, (5) is a continuous function in pmin (even for pmin =
θmin/θmax, 1/θmax, 1/(θ1θ2)). We proceed by case analysis:

Case 1: 4/ε < min{2θ1θ2, 1/pmin} so that pmin < ε/4 and ε > 2/(θ1θ2).
Then (6) is at least Õ(1/ε) in order of magnitude. We can apply Chernoff-bounds and conclude that,
with high probability, p̂min < ε/2. But then the Combined Rule outputs the empirically more likely
label, which leads to error rate pmin ≤ ε/4.

Case 2: 2θ1θ2 ≤ min{4/ε, 1/pmin} so that pmin ≤ 1/(2θ1θ2) and ε ≤ 2/(θ1θ2).
Then, (6) is at least Õ(θ1θ2). We can apply Chernoff-bounds and conclude that, with high probability,
p̂min ≤ 1

θ1θ2
. But then rule R3 is applied which, according to Theorem 5, leads to the desired upper

bound on the sample size.

Case 3: 1/pmin ≤ min{4/ε, 2θ1θ2}.
We can apply Chernoff-bounds and conclude that, with high probability, p̂min and pmin differ by
factor 2 only. If the Combined Rule outputs the empirically more likely label, then p̂min < ε/2 and,
therefore, the resulting error rate pmin is bounded by ε. Let us now assume that p̂min ≥ ε/2 so that
the Combined Rule proceeds according to (4). If the learner could substitute the (unknown) pmin for
p̂min within (4), we could apply Theorem 5 and would be done. But since, as mentioned above, (5) is
a continuous function in pmin, even the knowledge of p̂min is sufficient. 2

4.2. Lower Bounds on the Sample Size

4.2.1. A lower bound archetype

In this section, we prove a lower bound on the sample complexity for the class SFn from Lemma 1. Note
that all lower bounds obtained for SFn immediately generalize to concept classes containing SFn as subclass.

All other lower bounds in this paper apply Lemma 6 directly or use the same proof technique.

Lemma 6. Let n1, n2 ≥ 1, and let Cb = SFnb+2 so that θb = nb + 2 for b = 1, 2. Then, for every
pmin ≤ 1/(θ1θ2) and every sufficiently small ε > 0, the number of examples needed to learn C1, C2 in the
PAC Co-training Model under the Conditional Independence Assumption is at least Ω(

√

n1n2/ε).

Proof. Let “+” be the (a-priori) less likely label, i.e., p+ = pmin, let C1 be a concept class over domain
X1 = {a0, a1, . . . , an1+2} (with a0 in the role of the center-point belonging to every concept from C1), and
let C2 be a concept class over domain X2 = {b0, b1, . . . , bn2+2}, respectively. Let ε1 = ε2 = ε. Obviously,

p+ = pmin ≤ 1

(n1 + 2)(n2 + 2)
=

1

θ1θ2
. (7)

Consider the following malign scenario:
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• Index s is uniformly chosen at random from X1 \ {0, 1}. It represents a randomly chosen target
concept h∗

1 = {a0, as} ∈ C1. Similarly, index t is uniformly chosen at random from X2 \ {0, 1} and
represents a randomly chosen target concept h∗

2 = {b0, bt} ∈ C2. We define P(as|+) =
√

ε1/p+ andP(bt|+) =
√

ε2/p+. In the sequel, points as and bt are called “secret”: if one of them occurs in the
sample, the learner will have enough knowledge to be error-free on test-points. Note that the secret
points have a high chance to remain hidden from the learner (i.e., to not occur in the sample) but still
have too much probability mass for being neglected.

• P(a0|+) = 1−P(as|+) and P(b0|+) = 1−P(bt|+). Note that a0, a positive example for every concept
in C1, is a redundant instance that absorbs a high fraction of the total probability mass. The analogous
remark applies to b0.

• P(a1|−) = 1− 4 ·
√

n1ε1/n2 and P(b1|−) = 1− 4 ·
√

n2ε2/n1. The effect of assigning much probability
mass to a1 and b1 is that many negative examples different from a1 or b1 will not find their way into
the sample.

• The instances from X1 \ {a0, a1, as} evenly share a minus-conditional probability mass of 1−P(a1|−).
The instances from X2 \ {b0, b1, bt} evenly share a minus-conditional probability mass of 1−P(b1|−).

Let us assume that the sample size satisfies m ≤ m0 for

m0 =

√
n1n2

40
·
√

1/ε .

We will show that, with a probability of at least 1/2, an error rate of at least ε is unavoidable. To this end,
we proceed as follows: Let Z1 count the number of sample points that hit X1 \ {a0, a1, as} (the “interesting
points” in X1, besides as) and let Z2 count the number of sample points that hit X2 \ {b0, b1, bt} (the
“interesting points” in X2, besides bt). Then the following holds:

• We can bound the expectation of Zb for b = 1, 2 (recall that ε1 = ε2 = ε):E[Zb] ≤ (1− p+) · 4 ·
√

nbεb/n3−b ·
√
n1n2

40
·
√

1/ε ≤ nb

10

By the Markov-inequality it follows that the probability that Zb > n1/2 is at most pb = 1/5.

• Using Equation (7) the number of occurrences of as (or bt, resp.) in the sample can be upper bounded
by

p+ ·
√

ε1/p+ ·
√
n1n2

40
·
√

1/ε =
√
n1n2p+/40 ≤ 1/40 .

Consequently with probability p3 = 1/40 as does not occur in the sample. The same holds for bt with
probability p4 = 1/40.

Denote by H1 (resp. H2) the subset of X1 \ {a0, a1, as} (resp. X2 \ {b0, b1, bt}) consisting of all those
points that do not occur in the sample. According to the above calculations, the probability that H1 and
H2 contain at least half of the possible points, and neither as nor bt occurs in the sample, is at least
1− p1 − p2 − p3 − p4 > 1/2. In the rest of the proof we assume that this holds.

Before we analyze the Bayes-error (smallest possible error-rate), we assume, to the advantage of the
learner, that not only the labeled sample is revealed but also the probabilities p+, P(a0|+), P(b0|+),P(H1|−), P(H2|−), and the fact that s (or t, resp.) was chosen uniformly at random from {2, . . . , n1 + 2}
(or from {2, . . . , n2 + 2}, resp.). Let E+ (or E−, resp.) denote the set of instance-pairs which are labeled
“+” (or labeled “−”, resp.). For b = 1, 2, let Ub ⊆ Xb be the set of points in Xb that did not occur in
the sample, and let U = U1 × U2. For test-instances (x1, x2) /∈ U , the learner can infer the label from the
information provided by the sample.

How is the situation for test-instances from U? The crucial observation is that the plus- and the minus-
conditional a-posteriori probabilities assign precisely the same value to each pair in U . This might look
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wrong at first glance because, for example, U1 = H1 ∪{as} and as is the only positive example in U1. Thus,P(as|+) = 1 − P(a0|+) > 0 whereas P(x1|+) = 0 for every x1 ∈ H1. But recall that s had been chosen
uniformly at random from {2, . . . , n1 + 2}. Thus, the a-posteriori distribution of the random variable as
(reflecting the perspective of the learner after its evaluation of the labeled random sample) is uniform on
U1. The arguments for X2 and for negative examples are similar. Thus, by symmetry, the plus- and minus-
conditional a-posteriori probabilities assign the same value to every point in U so that the Bayes-decision
on instances (x1, x2) ∈ U takes the following mutually equivalent forms:

• Vote for the label with the higher a-posteriori probability given (x1, x2).

• Always vote for the label with the higher a-posteriori probability given U (the information that the
test-instance belongs to U).

• If P(E+ ∩ U) ≥ P(E− ∩ U) vote always for “+”, otherwise vote always for “−”.

Clearly, the resulting Bayes-error equals min{P(E+ ∩ U),P(E− ∩ U)}. It can be bounded from below as
follows: P(U ∩ E+) ≥ p+ ·

(√
ε

p+

)2

= ε ,

because
√

ε
p+

coincides with the plus-conditional probability of as and bt, respectively. A similar computa-

tion shows that P(U ∩ E−) ≥ (1− p+)
︸ ︷︷ ︸

≥1/2

·(2
√

n1ε1/n2) · (2
√

n2ε2/n1) ≥ 2ε .

Thus, the Bayes-error is at least ε. 2

The following corollary demonstrates the use of the padding argument to boost lower bounds of the type
used in Lemma 6 to classes with arbitrary VC-dimensions:

Corollary 3. Let n1, n2, d1, d2 ≥ 1, and, for b = 1, 2, let Cb = SFnb+2 so that θ(Cb) = θ(C[db]
b ) = nb + 2.

Then, for every pmin ≤ 1/(θ1θ2) and every sufficiently small ε > 0, the number of examples needed to

learn C[d1]
1 , C[d2]

2 in the PAC Co-training Model under the Conditional Independence Assumption is at least

Ω(
√

d1d2n1n2/ε).

Proof. θ(Cb) = θ(C[db]
b ) follows from Lemma 5.

A malicious scenario for the classes C[db]
b is obtained by installing the malicious scenario from the proof

of Lemma 6 (with minor modifications that will be explained below) for each of the d1 many copies of C1, X1

and for each of the d2 many copies of C2, X2:

• The role of the secret point as is now played by the secret points (as(i), i) for i = 1, . . . , d1. Here, s(i)
is uniformly chosen at random from {2, . . . , n1 + 2}. The analogous remark applies to bt.

• Instead of setting ε1 = ε2 = ε, we set

ε1 =

√

d1
d2

· ε and ε2 =

√

d2
d1

· ε .

• The plus- and minus-conditional probabilities for elements of X
(i)
1 , i = 1, . . . , d1, are given by the same

formulas as the probabilities for the corresponding elements of X1 except for a scaling factor of 1/d1
(for reasons of normalization). But note that these formulas are given in terms of (the redefined) ε1.

The analogous remark applies to the plus- and minus-conditional probabilities for elements of X
(j)
2 ,

j = 1, . . . , d2.
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Let us assume that the sample size satisfies

m ≤
√
d1d2n1n2

40
·
√

1/ε

In comparison to Lemma 6, the sample size is scaled-up by factor
√
d1d2. We will show that, with a

probability of at least 1/2, an error rate of at least ε/4 is unavoidable (which, after consistently replacing ε
by 4ε, would settle the proof for the theorem). To this end, we proceed as follows:

• Z
(i)
1 counts the number of sample points that hit X

(i)
1 \{(a0, i), (a1, i), (as(i), i)}, and Z

[d1]
1 =

∑d1

i=1 Z
(i)
1 .

The hitting probability (except for scaling-factor 1/d1 and the redefinition of ε1 the same as in the
proof of Lemma 6) is

1

d1
(1 − p+) · 4 ·

√
n1ε1
n2

=
1√
d1d2

(1− p+) · 4 ·
√

n1ε

n2
.

The number of trials is m. Thus,E[Z(i)
1 ] =

1√
d1d2

(1− p+) · 4 ·
√

n1ε

n2
·m ≤ n1

10
.

In other words, E[Z(i)
1 ] has the same upper bound as E[Z1]. We may now conclude that E[Z [d1]

1 ] ≤
d1n1/10. Thus, with a probability of at least 1− 1/5, Z

[d1]
1 ≤ d1n1/2, which is assumed in the sequel.

Note that d1n1 is the number of interesting negative examples in X
[d1]
1 . Thus at least half of them

remain hidden from the learner. Their total minus-conditional probability mass is therefore at least
2 ·
√

n1ε1/n2 (the same as in the proof of Lemma 6).

• The fact that E[Z(i)
1 ] has the same upper bound as E[Z1] is no accident: compared to Lemma 6, the

upper bound on the sample size scales-up by factor
√
d1d2 and the hitting probabilities for events

in X(i) scale-down by the same factor. For this reason, we obtain similar considerations for random
variable Z2 and may conclude that, with a probability of at least 1−1/5, half of the interesting negative

examples in X
[d2]
2 remain hidden from the learner. Their total negative-conditional probability mass

is therefore at least 2 ·
√

n2ε2/n1 (the same as in the proof of Lemma 6).

• Similarly, we get that the expected number of sample points that hit {a(i)s(i)| i = 1, . . . , d1} is bounded

by d1/40. Thus, with a probability of at least 1−1/20, at least half of the secret points in X
[d1]
1 remain

hidden from the learner. Their total plus-conditional probability mass is at least 1/2 ·
√

ε1/p+ (half of
the probability mass of the secret point as in the proof of Lemma 6). Analogously with probability at

least 1 − 1/20, at least half of the secret points in X
[d2]
2 remain hidden from the learner. Their total

plus-conditional probability mass is therefore at least 1/2 ·
√

ε2/p+.

Let U denote the set of test-instances from X
[d1]
1 × X

[d2]
2 such that none of its two components occurred

in the sample. By symmetry (as in the proof of Lemma 6), the plus- and minus-conditional probabilities
assign the same value to any point in U , respectively. Let E+ (or E−, resp.) denote the set of test-instances
which are labeled “+” (or labeled “−”, resp.). As in in the proof of Lemma 6, the Bayes-error is given by
min{P(E+∩U),P(E−∩U)}, and an easy calculation (similar to the calculation in in the proof of Lemma 6)
shows that it is bounded from below by ε/4.5 2

5Factor 4 is lost in comparison to Lemma 6 because now half of the secret points in X
[d1]
1 and X

[d2]
2 , respectively, might

perhaps occur in the sample whereas, in the proof of Lemma 6, we could assume that as and bt remained hidden from the
learner.

17



4.2.2. A purely combinatorial lower bound

Here comes the lower bound that is tight from the perspective of a worst case analysis, which is making
use of rather small values of pmin. It matches nicely with the combinatorial upper bound from Theorem 5:

Theorem 6. Assume that 3 ≤ s+b , s
−
b < ∞ for b ∈ {0, 1}. Then the following holds. For every suffi-

ciently small ε > 0, the number of examples needed to learn C1, C2 in the PAC Co-training Model under the

Conditional Independence Assumption is at least Ω
(
√

max{s+1 s+2 , s−1 s−2 }/ε
)
.

Proof. We show first that each learner needs at least Ω
(
√

s+1 s
+
2 /ε

)
many labels in the worst case. By

duality we also get the bound of Ω
(
√

s−1 s
−
2 /ε

)
. Now taking the maximum of both cases yields the theorem.

The former bound can be proved as follows: in the proof of Lemma 6, we may set p+ = pmin = ε. Thus
the probability assigned to the redundant points a0 and b0 is now 0, respectively. Removal of the redundant
point in a class of type SF will lead to the class of singletons. Thus, the proof of Lemma 6 with the special
setting p+ = pmin = ε shows that at least Ω

(√

n1n2/ε
)
many examples are needed for every pair C1, C2 of

concept classes such that, for b = 1, 2, Cb contains a singleton subclass of size nb + 2. 2

One can drop the restriction “3 ≤ s+b , s
−
b ” and still prove tight bounds. The corresponding results, which

need a tedious case distinction, are to be published in a follow-up paper.
Note that Theorem 6 implies a weak converse of Theorem 4 where we have shown that VCdim(H) ·

θ(C,H) ≤ s(C) for H = C+ ∪ C−. More precisely s(C) = Õ
(
VCdim(H) · θ(C,H)

)
must hold for every

H ⊇ C because, otherwise, the lower bound in Theorem 6 would exceed the first upper bound for rule R3 in
Theorem 5 with C1 = C2 = C.

4.2.3. Matching lower bounds for Corollary 2

The next step will be to provide lower bounds that remain valid even when pmin takes more “benign
values” than it does in the worst case. Actually, Corollary 3 is a first step in this direction because the lower
bound in this result matches with the upper bound in Corollary 2 when pmin ≤ 1/(θ1θ2). We list here some
more results of this kind which together witness that all upper bounds mentioned in Corollary 2 are fairly
tight. The proof technique is the same as for the “archetypical” lower bounds from section 4.2.1.

For any concept class C over domain X , the class co(C) is given by

co(C) = {X \A| A ∈ C} .

Clearly, VCdim(C) = VCdim(co(C)) and θ(C) = θ(co(C)).
Theorem 7. For sufficiently small ε > 0 at least







Ω
(√

d1d2

ε · θmin

pmin

)

for C1 = SFθ1 , C2 = co(SFθ2) and θmin

θmax

≤ pmin

Ω

(√
d1d2

ε · θmax

)

for C1 = SFθ1 , C2 = co(SFθ2) and 1
θmax

≤ pmin < θmin

θmax

Ω
(√

d1d2

ε · 1
pmin

)

for C1 = C2 = SFθ1 and 1
θ1θ2

≤ pmin < 1
θmax

Ω

(√
d1d2

ε · θ1θ2
)

for C1 = SFθ1 , C2 = SFθ2 and pmin < 1
θ1θ2

many examples are needed to learn C[d1]
1 , C[d2]

2 in the PAC Co-training Model under the Conditional Inde-
pendence Assumption.

Proof. Note that the lower bound Ω (d1d2θ1θ2/ǫ) is already proved in Corollary 3. The table in Appendix
A contains the necessary modifications to the proof of Lemma 6 to obtain the rest of the desired results in
case d1 = d2 = 1. The general versions then can be proved from these along the line of Corollary 3. 2

Notice that the lower bounds in Theorem 6 and 7 nicely match with the general upper bounds given in
Corollary 2.
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4.3. Sample Size in Case of One-sided Errors

In the upper bounds presented in this section, any term of the form dbθb can be safely replaced by s(Cb)
provided that Hb = C+

b ∪ C−
b .

Theorem 8. For b = 1, 2, let Cb,Hb be classes such that Hb contains hypotheses with plus-sided errors (or
with minus-sided errors, resp.) w.r.t. Cb. Then sample size







Õ
(√

d1d2

ε · 1
pmin

)

if pmin ≥ 1
θ1θ2

Õ

(√
d1d2

ε · θ1θ2
)

otherwise

is asymptotically sufficient for learning C1, C2 with hypotheses from H1,H2 in the PAC Co-training Model
under the Conditional Independence Assumption.

Proof. If ε > 4/(θ1θ2) and p̂min ≤ ε/2, the learner will output the less likely label (and this is analyzed
as in the proof of Corollary 2). Assume now that ε ≤ 4/(θ1θ2) or p̂min > ε/2. For reasons of symmetry, we
may assume that, for b = 1, 2, Hb contains hypotheses with plus-sided errors w.r.t. Cb. Let h1, h2 be two
hypotheses that err on positive examples only. Thus, if h(x1) = 1 or h(x2) = 1, the learner may safely vote
for label “+”. Assume that h(x1) = h(x2) = 0. If p̂min ≥ 1/(θ1θ2) (Case 1), the learner votes for label
“−”. Otherwise (Case 2), the learner applies rule R3. According to Theorem 5. R3 leads to the sample size

bound Õ

(√
d1d2

ε · θ1θ2
)

.6 So we may focus on Case 1. The sample size Õ
(√

d1d2

ε · 1
pmin

)

is sufficient to

bound (with high probability) the error rate of h1, h2, respectively, as follows:

ε1 =

√

d1
d2

· pmin · ε and ε2 =

√

d2
d1

· pmin · ε

Thus, the error rate for guessing label “−” in Case 1 is bounded as follows:P(h1(x1) = h(x2) = 0|+)p+ ≤ 1

p+
·P(h1(x1) = 0|+)p+
︸ ︷︷ ︸

≤ε1

·P(h(x2) = 0|+)p+
︸ ︷︷ ︸

≤ε2

≤ 1

pmin
· ε1ε2 = ε

2

Note that the upper bound from Theorem 8 applies to the special case where, for b = 1, 2, Hb = Cb and
Cb is intersection-closed (or union-closed, resp.). In this case, the upper bound nicely matches with the third
and fourth lower bound from Theorem 7.

Theorem 9. For b = 1, 2, let Cb,Hb be classes such that H1 contains hypotheses with plus-sided errors
w.r.t. C1, and H2 contains hypotheses with minus-sided errors w.r.t. C2. Then sample size







Õ
(√

d1d2

ε · θmin

pmin

)

if pmin ≥ θmin

θmax

Õ

(√
d1d2

ε · θmax

)

otherwise

is asymptotically sufficient for learning C1, C2 with hypotheses from H1,H2 in the PAC Co-training Model
under the Conditional Independence Assumption.

6Recall from the proof of Corollary 2 that knowing the empirical estimate p̂min instead of the true value pmin does not
cause much trouble.
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Proof. As in the proof of Theorem 8, we may focus on the case where ε ≤ 4/(θ1θ2) or p̂min > ε/2. Let
h1, h2 be two hypotheses such that h1 errs on positive examples only, and h2 errs on negative examples
only. The learner has an error-free decision unless x1 ∈ DIS1 and x2 ∈ DIS2. Note that x1 ∈ DIS1 implies
that h1(x1) = 0, and x2 ∈ DIS2 implies that h2(x2) = 1. In case of conflict, the learner applies rule R1 if
p̂min ≥ θmin/θmax (Case 1), and rule R2 (voting for the empirically less likely label) otherwise. According

to Theorem 5, R1 leads to the sample size bound Õ
(√

d1d2

ε · θmin

pmin

)

. So we may focus on Case 2. As in

the proof of Theorem 5, we may assume that, if pmin < 1/4, then p̂min < 1/2. For reasons of symmetry,
we may assume furthermore that p̂− ≥ 1/2 (so that R2, in case of conflict, makes the learner vote for label

“+”). Our assumptions imply that p− ≥ 1/4. Note that the sample size Õ

(√
d1d2

ε · θmax

)

is sufficient to

bound (with high probability) the error rates of h1, h2, respectively, as follows:

ε1 =

√

d1
d2

· 1

θmax
· ε and ε2 =

√

d2
d1

· 1

θmax
· ε

Thus, the error rate induced by R2 in Case 2 is bounded as follows:P(x1 ∈ DIS1 ∧ h2(x2) = 1|−)p− ≤ 1

p−
︸︷︷︸

≤4

·P(h1(x1) = 0|−)p−
︸ ︷︷ ︸

≤θ1ε1

·P(h2(x2) = 1|−)p−
︸ ︷︷ ︸

≤ε2

≤ 4 · θmaxε1ε2

= ε

2

Note that the upper bound from Theorem 9 applies to the special case where H1 = C1 is intersection-
closed and H2 = C2 is union-closed. In this case, the upper bound nicely matches with the first and second
lower bound from Theorem 7.

4.4. Co-training with α-expansion

Because the Conditional Independence assumption is very strict and rarely fulfilled in practical problems,
there is some effort to replace Conditional Independence with relaxed assumptions that still allow semi-
supervised Co-training to save a significant amount of labels.

To this end, a model called “Co-training with α-expansion” was introduced by Balcan, Blum and Yang
in [2]. The learner in this framework learns from positive examples alone, and is required to use a hypothesis
with plus-sided error (i.e., one that always returns label “−” if there is any doubt about the true label).
One motivation from [2] for this restriction stems from the fact that the assumption we have to make on P
is now only necessary to be satisfied on the positively labeled part of the domain, which is said to be a more
realistic assumption in practice.

In this model, just as before, two concept classes C1 and C2 over domains X1 resp. X2 are given, and
the domain distribution P, from which the random examples (x1, x2) ∈ X1 × X2 are drawn, is perfectly
compatible with the target concepts h∗

1 ∈ C1 and h∗
2 ∈ C2, meaning that h∗

1(x1) = h∗
2(x2) with probability 1.

Let D+ denote the distribution conditioned on positive labels and let X+
1 and X+

2 denote the support of the
marginal distributions of D+ over X1 resp. X2. We say that D+ is α-expanding with respect to hypothesis
classes H1, H2 if for all h1 ∈ H1 and h2 ∈ H2:P(h1(x1) 6= h2(x2)

∣
∣+
)
≥ α ·min

{P(h1(x1) = h2(x2) = 1
∣
∣+
)
,P(h1(x1) = h2(x2) = 0

∣
∣+
)}

where condition “+” refers to the event h∗(x1) = h∗(x2) = 1.
The authors of [2] show that the α-expansion assumption is weaker than Conditional Independence and

in [1] it is mentioned, that, if both D+ and D− are α-expanding (with α > 0), a semi-supervised learner
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only needs to see just one (positively or negatively) labeled example to learn successfully, just like under the
Conditional Independence Assumption.

One can ask whether this weaker assumption is also always helpful for a fully supervised learner. Below
we answer this in the negative by showing an example where, in comparison with general PAC-learning, fully
supervised Co-training requires significantly less examples under the Conditional Independence Assumption,
but not under the α-expansion assumption.

We use the setting of Example 1 from [2]. The two concept classes, which are also the hypothesis classes,
are axis-aligned rectangles in R

d, the two target concepts are chosen to be always identical h∗
1 = h∗

2 = h∗

and non-empty. Note that this also implies X+
1 = X+

2 . Let p+ = p− = 1/2. Distribution D+ over X+
1 ×X+

2

is defined as follows.7 First x1 is drawn uniformly at random from X+
1 , i is drawn uniformly at random

from {1, . . . , d} and then x2 is identified with x1 except for its i-th component which is chosen uniformly at
random so that x2 still lies in X+

2 . This distribution is Ω(1/d)-expanding [2].

Theorem 10. For d ≥ 2 and ε ≤ 1/2 the following holds in the 1/d-expanding rectangle learning setting
described above: any fully supervised PAC-learner needs at least

m = Ω

(
d

ε

)

many labeled examples to learn successfully.

Proof. We will reduce learning the pair (h∗
1, h

∗
2) to learning the rectangle h∗ in the normal, non co-training

setting.
To guarantee that the combined hypothesis has a plus-sided error, the learner has to choose h1 and h2

as the smallest rectangles consistent with the sample so that it outputs “−” whenever both of x1 and x2 lie
in the disagreement region. However, from the symmetry h∗

1 = h∗
2 follows that all information in the sample

about h∗
1 can also be applied to learn h∗

2 and vice versa. Thus the learner can always output a hypothesis
of the form (h, h) without risking a higher error rate.

Because p+ = 1/2 and the learner is required to use hypothesis with plus-sided error, it suffices to bound
the error under distribution D+. Let h be any rectangle contained in h∗. We denote the error of (h, h) with
respect to the distribution D+ by errD+(h). To model the standard learning setting, let U be the uniform
distribution over h∗ and denote the error of h with respect to U by errU (h). We claim that

errD+(h) ≥ d− 1

d
· errU (h) . (8)

The reason is as follows. Let x1 be a misclassified point in the normal PAC-learning setting. Then there
can be at most one axis along which x1 can be moved inside the rectangle h. But then (x1, x2) can only
be classified correctly, if x1 and x2 differ exactly on the corresponding component. The probability of the
latter event is 1/d so that the error probability errU (h) is reduced by factor (d− 1)/d only.

Observe that one positive training example (x1, x2) in the co-training model does not contain more
information about the target rectangle than two examples in standard learning where all components of
x2 ∈ X+

2 (not just the i-th component for a randomly chosen i) are chosen uniformly at random.
Because of (8), it suffices to show that the best learner in the standard setting needs Ω(d/ε) many

examples to reach an error smaller than ε with high probability.
Let us choose a target rectangle h∗ with sides of length 1 (i.e., a cube of volume 1). Assume furthermore

that m ≤ d/(8ε) and let x1, ..., xm be a sample drawn independently from U .
According to the union bound, the probability that the i-th component of at least one of the m examples

lies outside of an interval of length 1− 4ε/d is at most

4ε

d
·m ≤ 1

2
.

7The distribution on the negative points is not important.
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Thus the probability of the complementary event, that the i-th component of all sample points lies on said
interval, is at least 1/2.

Additionally, the probability that this holds for at least half of the d components is at least 1/2. But
then, with probability at least 1/2, the error of the smallest consistent rectangle h is at least

1− (1− 4ε/d)d/2 ≥ 1− e−2ε ≥ ǫ ,

where the last inequality holds thanks to ε ≤ 1/2. This completes the proof. 2

Note that the authors of [3] show a lower bound of Ω(1/ε) on the sample size of any learner (even semi-
supervised learners) which learns thresholds, and thereby also intervals, under any continuous distribution.
Although it looks like one could apply their result in the last part of the proof of Theorem 10, this is not
possible since we fixed p+.

Also observe that the bound from Theorem 10 is of the same order of magnitude as in the case of standard
PAC-learning. So the learner doesn’t gain any advantage from Co-training with α-expansion in this example.
In contrast, we may conclude from Theorem 8 that Õ

(
d/

√
ε
)
labeled examples are sufficient for learning

d-dimensional axis-aligned rectangles in the PAC Co-training Model under the Conditional Independence
Assumption.

5. Final Remarks and Open Questions

We close this paper with some final remarks and open questions.

The framework with k views. We looked into a generalized framework where the learner is provided with
sample points consisting of k-tuples (x1, . . . , xk) instead of pairs and deals with k concept classes C1, . . .Ck
and the corresponding disagreement coefficients θ1, . . . , θk. respectively. We can show that the upper bound
for rule R3 becomes Õ

(
k

√

d1θ1 · · · dkθk/ε
)
. Furthermore we can find a corresponding lower bound that differs

from the upper bound by a factor of 1/k only. For the other rules, R1 and R2, we have similar results (that
we plan to publish in a follow-up paper). We conjecture that the number of resolution rules, needed to get
tight bounds, grows with k. How to prove matching lower and upper bounds for general values of k (up to
logarithmic factors, say) is an open problem.

The case of subclasses with infinitely many singletons. The lower bound given in Theorem 6 is only valid
for finite s+b , s

−
b because the constraint on ε is essentially 1/ε ≥ max{s+1 s+2 , s−1 s−2 }. But even when these

parameters are infinite, one easily obtains (from a close inspection of the proof of Theorem 6) a lower bound
of Ω(1/ε). For special classes, we obtain even larger lower bounds. E.g., let S∞ denote a class consisting of

infinitely many singletons. Then, for the classes C1 = S
[d1]
∞ and C2 = S

[d2]
∞ , a sample of size Θ̃(min{d1, d2}/ε)

is necessary and sufficient for learning under the Co-training assumption. On the other hand, we get a
significantly smaller sample complexity of Θ̃(1/ε + d/

√
ε) for the classes C1 = C2 = S∞ ∪ {0, 1}[d]. This

shows that we cannot expect to get tight bounds in terms of d and ε alone. To determine how much the
Co-training assumption can help for classes with infinite values of s+b , s

−
b is work in progress.

Connections to supervised and active learning. In a broader context, it would be interesting to see whether
the techniques of this paper can be applied to get new bounds on the unlabeled sample complexity in semi-
supervised learning, or whether existing upper bounds in active learning can be reformulated in completely
combinatorial terms using Theorem 4. At least for the realizable case we obtained first results in this
direction: we can show that Õ(dC/ε) unlabeled and Õ(θ · dH) labeled examples are sufficient to learn a
concept class of VC-dimension dC actively using a hypothesis class of VC-dimension dH. This is similar to
results from [12], but note that our definition of a disagreement coefficient differs from the original definition
by Hanneke and, in general, leads to smaller values. For finite values of s+b , s

−
b , it is furthermore possible, to

replace θ · dH by s(C) and to prove a matching lower bound. We are looking forward to publish the details
of these proofs together with further results in a separate paper.
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Learning under noise and agnostic learning. The results presented in this paper are only valid for the
realizable case of PAC-learning, where we assume that the sample is no subject to noise and that the
concept class contains a perfectly compatible target concept. There are several well known generalizations
on the PAC framework that incorporate these extensions (e.g. classification noise, malicious noise and
agnostic learning). It is an open question if and how our results can be applied to these more relaxed
settings.

Acknowledgements. Many thanks to two unknown reviewers for valuable suggestions.
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[3] Shai Ben-David, Tyler Lu, and Dávid Pál. Does unlabeled data provably help? Worst-case analysis of the sample

complexity of semi-supervised learning. In Proceedings of the 21st Annual Conference on Learning Theory, pages 33–44,
2008.

[4] Gyora M. Benedek, Alon Itai. Learnability with respect to fixed distributions. Theoretical Computer Science, 86(2):377–
389, 1991.

[5] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings of the 11th Annual

Conference on Computational Learning Theory, pages 92–100, 1998.
[6] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. Journal of the Association on Computing Machinery, 36(4):929–965, 1989.
[7] Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A General Lower Bound on the Number of

Examples Needed for Learning. Information and Computation, 82(3):247–261, 1989.
[8] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learning. MIT Press, 2006.
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Appendix A. Table for Theorem 7

Assume n, k ≥ 2.

Ω
(√

1
ǫ · θmin

pmin

)

Ω
(√

1
ǫ · θmax

)

Ω
(√

1
ǫ · 1

pmin

)

C1 SFkn+2 SFkn+2 SFn+2

C2 co(SFn+2) co(SFn+2) SFn+2

pmin ∈
[
1
k , 12

] [
1

kn+2 ,
n+2
kn+2

] [
1

(n+2)2 ,
1

n+2

]

X1 {a1, . . . , akn+2} {a1, . . . , akn+2} {a1, . . . , an+2}
X2 {b1, . . . , bn+2} {b1, . . . , bn+2} {b1, . . . , bn+2}
h∗
1 {a0, as} {a0, as} {a0, as}

h∗
2 X2 \ {b0, bt} X2 \ {b0, bt} {b0, bt}P(as|+) 2

√
ǫ

np+
2
√

kǫ
n

√
ǫ
p+

bt P(bt|−) = 4
√

ǫp+

n P(bt|−) = 4
√

ǫ
kn P(bt|+) =

√
ǫ
p+P(a1|−) 1−

√
nǫ
p+

1−
√
knǫ 1− 8n · √ǫp+

b1 P(b1|+) = 1−
√

nǫ
p+

P(b1|+) = 1− 1
p+

√
nǫ
k P(b1|−) = 1− 8n · √ǫp+

m0
1
32

√
n

ǫp+

1
32

√
kn
ǫ

1
80

√
1

ǫp+E[Z1] p− · (1−P(a1|−)) ·m p− · (1−P(a1|−)) ·m p− · (1−P(a1|−)) ·m
≤ kn

32 ≤ kn
32 ≤ n

10

by Markov p1 = P (Z1 > kn
2

)
< 1

16 p1 = P (Z1 > kn
2

)
< 1

16 p1 = P (Z1 > n
2

)
< 1

5E[Z2] p+ · (1 −P(b1|+)) ·m p+ · (1−P(b1|+)) ·m p− · (1−P(b1|−)) ·m
≤ n

32 ≤ n
32 ≤ n

10
by Markov p2 = P (Z1 > n

2

)
< 1

16 p2 = P (Z1 > n
2

)
< 1

16 p2 = P (Z1 > n
2

)
< 1

5E[#as occurrance] p+ ·P(as|+) ·m ≤ 1
16 p+ ·P(as|+) ·m ≤ kp+

16 ≤ 1
8 p+ ·P(as|+) ·m ≤ 1

80P[as occurrs] p3 ≤ 1
16 p3 ≤ 1

8 p3 ≤ 1
80E[#bt occurrance] p− ·P(bt|−) ·m ≤ 1

8 p− ·P(bt|−) ·m ≤ 1
8 p− ·P(bt|+) ·m ≤ 1

80P[bt occurrs] p4 ≤ 1
8 p4 ≤ 1

8 p4 ≤ 1
80

p1 + p2 + p3 + p4 ≤ 0.5 ≤ 0.5 ≤ 0.5P(U ∩ E+) p+ ·P(as|+)1−P(b1|+)
2 p+ ·P(as|+)1−P(b1|+)

2 p+ ·P(as|+)P(bt|+)
≥ ǫ ≥ ǫ ≥ ǫP(U ∩ E−) p− · 1−P(a1|−)

2 P(bt|−) p− · 1−P(a1|−)
2 P(bt|−) p− · 1−P(a1|−)

2
1−P(b1|−)

2
≥ ǫ ≥ ǫ ≥ ǫ
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