Learning Deterministic Finite Automata
from Smallest Counterexamples

ANDREAS BIRKENDORF, ANDREAS BOKER AND HANS ULRICH SIMON

Lehrstuhl Informatik 11, Universitat Dortmund, 44221 Dortmund, Germany

E-mail: birkendo,simon@cs.uni-dortmund.de

Abstract

We show that deterministic finite automata (DFAs) with n states and input alphabet X can
efficiently be learned from less than |X|n? smallest counterexamples. This improves on an earlier
result of Ibarra and Jiang who required |X|n3 smallest counterexamples. We show furthermore,
that the special DFAs operating on input words of an arbitrary but fixed length (called leveled
DFAs) are efficiently learnable from |X|nlog(n)(1 + o(1)) smallest counterexamples. This im-
proves on an earlier result of Ibarra and Jiang who required |X|n? smallest counterexamples.
Finally, we show that our algorithm for leveled DFAs cannot be substantially improved. For
this purpose, we present a general lower bound on the number of smallest counterexamples (re-
quired by any learning algorithm). This bound can be stated in terms of a (new) combinatorial
dimension associated with the target class. A computation of this dimension for leveled DFAs
leads to a lower bound of the form 1|X|nlogn(l — o(1)). This coincides with our upper bound
modulo a factor of approximately 4.

1 Introduction

Let F be a class of functions of the form f: X — {0,1}, i.e., f maps an element of domain X to
either 0 or 1. In this paper, we are concerned with the problem of “learning” an unknown target
function f, € F. The learning model we consider is related to the query-learning model of Angluin
(see [3]). In this model, the learning algorithm A gathers information about f. by asking queries to
a teacher. The most popular queries are EQ (equivalence-queries) and MQ (membership-queries).
An EQ is issued by A along with a hypothesis f. If f is correct, the teacher answers “YES”.
Otherwise, the teacher presents a counterexample, that is, a point z € X on which f and f,
disagree. An MQ is issued by A along with a query point € X and answered with f.(z). If A has
written a description of hypothesis f or query point & on a special query tape, the corresponding
answer is given in one time step. In the query learning model, a successful learning algorithm A
must find a description of f, in polynomial time, where the polynomial may depend on parameters!
describing the complexity of f. and on the length of the longest counterexample ever presented by
the teacher?. If only EQs are used, we speak of learning from counterezamples. If both, EQs and
MQs, are used, we speak of learning from a minimum adequate teacher.

A particular class F, that was intensively studied in the past, is the class of functions repre-
sentable by deterministic finite automata (DFAs), i.e., the class of characteristic functions of regular

'These parameters will be formally specified for the concrete learning problem that we consider.
2]f the teacher always presents a counterexample of shortest length, this additional parameter is not needed.

languages. The complexity of the target DFA is measured by two parameters: the number n of its
states and the size of input alphabet 2. It is easy to see that DFAs cannot be learned in polynomial
time from MQs alone. It was shown in [4] (using the technique of “approximate fingerprints”) that
also EQs alone are not sufficient. In contrast to these results, Angluin has presented an efficient
algorithm that learns DFAs with a minimum adequate teacher (see [2]). This algorithm was later
improved by Rivest and Schapire whose algorithm is simpler and needs less MQs (see [11]).

Ibarra and Jiang have shown that MQs are not needed for learning DFAs if we put some
additional information in the answers to EQs. More precisely, they have shown in [8] that DFAs
are learnable from smallest counterexamples. In this model, the teacher presents the “smallest”
word ¢ € ¥* on which the current hypothesis DFA M and the target DFA M, disagree. (The word
“smallest” refers to the so-called “canonical” ordering, which is formally defined below.)

The results, presented in this paper, improve on the results of Ibarra and Jiang as follows:

We present a new algorithm REDIRECT which efficiently learns DFAs with n states and input al-
phabet ¥ from less than |X|n? smallest counterexamples. Ibarra and Jiang suggested an algo-
rithm which requires |X|n® smallest counterexamples. Furthermore, we present a new algorithm
LEVELED-REDIRECT for learning so-called leveled DFAs®, which operate on input words of an arbi-
trary but fixed length. LEVELED-REDIRECT requires |X|nlog(n)(14 o(1)) smallest counterexamples.
This improves on the corresponding algorithm of Ibarra and Jiang which requires |X|n? smallest
counterexamples. Finally, we show that LEVELED-REDIRECT cannot be substantially improved. For
this purpose, we present a general lower bound on the number of smallest counterexamples (re-
quired by any learning algorithm). This bound can be stated in terms of a (new) combinatorial
dimension associated with the target class. A computation of this dimension for leveled DFAs
leads to a lower bound of the form ¥|X|nlogn(1l — o(1)). This coincides with the bound achieved
by LEVELED-REDIRECT modulo a factor of approximately 4. The new general lower bound may be
of interest beyond its application on DFAs.

In order to design REDIRECT, we invent a new data structure for regular languages: Nerode
diagrams and partially correct subdiagrams. 1t is a very efficient and useful tool when dealing with
smallest counterexamples. REDIRECT will “grow” an (initially trivial) partially correct subdiagram
until it is isomorphic to the full transition diagram of the target DFA. The correct edges in the
diagram are found by a sort of exhaustive search in the case of arbitrary DFAs, and by a sort of
binary search in the case of leveled DFAs. In order to prove the correctness of our algorithms,
we present a series of structural results concerning Nerode diagrams and their partially correct
subdiagrams. The new data structure and the structural insights, gained by its analysis, may be
of independent interest.

In order to make the notion of learning from smallest counterexamples well-defined, we proceed
with the formal definition of the lexicographical and canonical ordering on ¥*. For notational
convenience, we assume that ¥ = {0,...,|X| — 1}. The letters (digits) have their natural ordering.
We denote the empty word by A. Word x € 3% is called a prefixz of word w € >* if w can be written
as zz for some z € ¥*. If additionally z # A, x is called a proper prefiz of w. Two words v, w
can always be written as v = zv’ and w = aw’, where & € ¥* is the greatest common prefix of v
and w. We say that v is lezicographically smaller than w (denoted as v <ppx w) if either v is a
proper prefix of w or v’ starts with a smaller letter than w’ in the above decomposition. (That’s
the ordering used in a lexicon.) We say that v is canonically smaller than w (denoted as v < w) if
v is shorter than w or, in case of equal length, v is lexicographically smaller than w. We note that

*Leveled DFAs, as defined in Section 4, are basically equivalent to a data structure known as “Ordered Binary
Decision Diagrams” (or OBDDs) in the literature (see [10, 1, 6]). In this paper, it is more convenient to use the same
terminology as for DFAs.

the canonical ordering is more natural for learning applications, because short counterexamples are
likely to be more helpful than long-ones.

We close the introduction by mentioning a relation between query-learning and combinatorial
optimization, which was has been discovered recently (see [5]). The computation of the smallest
DFA that is consistent with a given set S of labeled examples is an important and computation-
ally intractable optimization problem. Query learning algorithms for DFAs can be converted into
promising heuristics for this problem, as explained in detail in [5] for algorithms using EQs and
MQs. The basic idea is to simulate the teacher, to guide its answers by a preoptimized (suboptimal)
DFA M’, and to stop when hypothesis M is (perfectly or almost) consistent with S, but before
M is equivalent to M’. Often M has considerably less states than M’. Since the computation of
a canonically smallest counterexample can be done efficiently, one can similarly convert REDIRECT
into an algorithm for the optimization problem. We leave the analysis of this convertion as a
problem for future research.

2 Nerode Diagrams and Partially Correct Subdiagrams

We assume some familiarity with basic concepts in formal language theory as given by any standard
book (e.g., [7]). In the sequel, we recall some classical notions concerning DFAs and define a new
data structure for their representation.

Let M = (Q, qo,9,Q+) be a DFA, where) denotes the set of states, ¢o the initial state, § the
transition function, and)4 the set of accepting states. We will represent M by its state diagram
which visualizes the states as nodes and the transitions as edges. An example is shown in Figure 1.
As usual, we say that M accepts a word w if the path Pys(w), which starts in the initial state and
follows the edges labeled with the letters of w, ends at an accepting state of M. Let L(M) denote
the language of words accepted by M. We associate with M the indicator function M (w) with
value 1 if w € L(M), and value 0 otherwise.

Figure 1: State diagram of a DFA M = ({qo,¢1,---,¢4}, qo, 6,{¢2,¢3}) accepting language L =
({0,1}-{00,1-{0,1}})*-{0,1}-{0,1}. Accepting states are drawn darker than non-accepting states.

Two DFAs are called equivalent if they accept the same language. Let M be a minimum DFA
for L, i.e., L = L(M) an no other DFA with this property has less states than M. Then M is
uniquely determined (up to isomophism), and its states are in a one-to-one correspondence to the
classes given by the following equivalence relation =y, called Nerode relation:

Vs, t€X*: s=pt < VzeX:sz¢€L < tzeL.

We call a word r € ¥* the minimum representant of its Nerode class [r]p = {s € X" | s =g r}if r
is the smallest word in [r]r. The set of all minimum representants is denoted by R(L).

It is easy to see that ra € R(L), where r € ¥* and a € X, implies that r € R(L). Inductively
we get the following

Lemma 2.1 R(L) is prefiz-closed, i.e., if r € R(L) then r' € R(L) for all prefices v’ of r.

The Nerode diagram Dy, of L is defined as follows. Its nodes are in one-to-one correspondence
to the words in R(L) and denoted by ¢, for r € R(L). We call ¢, “accepting” if r € L and “non-
accepting”, otherwise. The edge starting from ¢, and being labeled by a points to gs, where s is
the minimum representant of [ra]y. It is denoted by ¢, = ¢, in the sequel. An example is shown
in Figure 2(a).

@

(b) (%)

=

Figure 2: (a) The Nerode diagram of language L from Fig. 1. R(L) = {A,0,00,01,001}. F-edges
are drawn thick, B-edges are drawn thin.
(b) Partially correct subdiagram of the Nerode diagram in (a).

Obviously, Dy, represents the minimum DFA for L. The edges of Dy decompose according to
the following definition. Edge ¢, - ¢, is called backward edge (or B-edge) if s < ra. Otherwise, it
is called forward edge (or F-edge). In the latter case, s = ra. Since R(L) is prefix-closed, it follows
that the F-edges form the prefix-tree of R(L) (as illustrated in Figure 2(a)).

Given a prefix-closed subset R C R(L), a partially correct subdiagram of Dy, w.r.t. R consists
of the prefix-tree of R and additional B-edges, not necessarily identical to the B-edges of Dy. The
partitioning of nodes ¢, into “accepting” and “non-accepting” ones is done as for Dy,. Figure 2(b)
shows an example.

A DFA M, represented by a partially correct subdiagram of Dy w.r.t. R, is called partially
correct for L w.r.t. R. * (In particular, M is correct for each r € R, i.e., M(r)=1iff r € L.)

If path Pyps(w) ends in state ¢., we say that ¢, is visited by w and call w a visitor of ¢.. We
close this section with the following obvious result.

Lemma 2.2 (Visitor Lemma) All visitors w of q, satisfy r < w with equality if and only if
Prr(w) contains F-edges exclusively.

*We will sometimes omit the expression “for L w.r.t R” when the sets L and R are clear from context.

3 The DFA learning algorithm

Let M, denote the unknown target DFA, n the number of its states, and L. = L(M,). Throughout
the remainder of this paper, let M be a DFA, partially correct for L, w.r.t to a prefix-closed subset
R C R(L.), but L(M) # L.. We denote the smallest counterexample for M by mincex(M, M,).
In order to convert the state diagram of M into the correct Nerode diagram of L., one has to
overcome two difliculties:

1. The prefix-tree of R has to be extended to the complete prefix-tree of R(L.).

2. Wrong B-edges, i.e., B-edges of the form ¢, % ¢,,7,5 € R, s < ra, s Z, ra must be redirected
such as to point to the correct node gy with s’ =p, ra.

The following lemma describes how to detect wrong B-edges.

Lemma 3.1 Let ¢ = mincex(M, M,). Then the following holds.

1. Py(c) contains at least one B-edge.
2. The first B-edge q, % q, on Py(c) is wrong, i.e., s 1, ra.

Proof.

1. If Pp(r) contains F-edges exclusively, then r € R. Because M is correct on R, r cannot be a
counterexample. Thus, Pys(c) must contain at least one B-edge.

2. If ¢, % ¢, is the first B-edge on Pps(c), ¢ can be written as ¢ = raz for some z € ¥*. Using
sz < raz = mincex(M, M,), we get M, (sz) = M (sz) = M(raz) # My (raz). Thus, ra #y, s.

Lemma 3.1 blames the first B-edge ¢, — ¢, on Pys(c) for receiving counterexample c. It
is a straightforward idea to redirect (by way of trial-and-error) the B-edge starting from r and
being labeled by @ to another state ¢y, where s’ € R,s’ < ra. We call the resulting DFA the
TEST-DFA for B-edge ¢, — ¢y and denote it by M(r,a,s’). Note that the partial correctness of
M carries over to M (r,a,s'). The following result blames ¢, 3 g, for receiving counterexample
¢’ = mincex (M (r, a, s'), M) unless ¢ > c.

Lemma 3.2 Let ¢ = mincex(M, M.), ¢, > ¢, the first B-edge on Py(c), qo a state of M with
s' <ra, M' = M(r,a,s') the TEST-DFA for B-edge q, = qs, and ¢’ = mincex(M’, M..).
If ¢ < ¢, then q. % qg is the first B-edge on Pyp(c') and s' #1, ra.

Proof. If ¢ = ¢, then ¢, % ¢y is certainly the first B-edge on Pyp(c').
If ¢ < ¢ = mincex(M, M.), then M(') = M.(¢') # M'(¢'). Py(c’) must therefore contain B-edge
¢ = qg. (Otherwise, M and M’ would coincide on ¢.) The following considerations are illustrated
in Figure 3.

Let us assume for the sake of contradiction that ¢, - ¢y is not the first B-edge on Py (c').

" = r'az’, where ' > r is a visitor of ¢.. Let ¢ = raz be the

Hence, ¢’ can be written as c
corresponding decomposition of ¢ along the first B-edge ¢, — ¢ on Py(c). From r’ > r and
r'az’ = ¢’ < ¢ = raz, we obtain z’ < z. We consider the word raz’. Since raz’ < r'az’ < raz, M

and M’ are correct on raz’, and M is correct on r’az’. On the other hand, we obtain

M(raz'y = M(r'az’) = M.(r'az’) # M'(r'az’) = M’ (raz'),

Figure 3: Illustration for the proof of Lemma 3.2.

because neither M nor M’ can distinguish between r and r’. It follows that either M or M’ must
be wrong on raz’ — a contradiction. An application of Lemma 3.1 yields s’ #1, ra. °

We are now prepared to describe the algorithm REDIRECT® which learns an unknown DFA M,
from smallest counterexamples. REDIRECT proceeds in rounds. Round k is entered with a partially
correct DFA M, for L, w.r.t. a prefix-closed subset R C R(L.) and its smallest counterexample
ci. During round k, REDIRECT either stops with a DFA equivalent to M, or enters the next round
with a partially correct DFA Mp,q and its smallest counterexample cgiq. In order to measure
the progress made in each round, REDIRECT keeps track of Rj and the candidate sets C'(r,a)
containing all s € Ry such that s < ra and B-edge ¢, 2 ¢, has not been blamed for one of the
counterexamples received so far. In the following description, we focus on a round not leading
to the stopping condition. (Compare with Table 1.) According to Lemma 3.1, REDIRECT will
blame at least one B-edge, say ¢, — ¢s, for getting counterexample ¢, = mincex(My, M,), and
may therefore safely eliminate s from C'(r,a). Afterwards, it skims through C(r,a) and inspects
the corresponding TEST-DFAs M| = M(r,a,s’). According to Lemma 3.2, this either leads to
a counterexample ¢, = mincex(M], M.) > ¢ or to the safe elimination of s’ from C(r,a). In the
former case, REDIRECT enters round k 4 1 with My4q equal to M]. In the latter case, it proceeds
with the next candidate from C'(r,a). If all elements of C'(r, a) are eliminated without receiving a
counterexample ¢, > ¢, REDIRECT decides to extend Ry to Rpy1 = Ri U {ra}. In order to define
My.41 appropriately, REDIRECT calls procedure EXTEND(My, ra). The task of this procedure is to
include the new state ¢,, in the state diagram of M. Afterwards the state diagram contains the
prefix-tree of Ry U {ra}. The modifications are performed carefully in order to guarantee correct
accepting behaviour on ra (which is necessary to achieve partial correctness), and to modify L(My)
as less as possible. Finally, round k + 1 is entered.

To get started, REDIRECT needs a first partially correct DFA M;. Let M? and M} be the DFAs
shown in Figure 4.

5The redirection of B-edges is one of its central features.

Figure 4: Initial DFAs M and M} for ¥ = {0, 1}.

Step 1 Find the first B-edge on Par, (cx), say gr — ge.
Step 2 Eliminate s from C(r,a). (* cf. Lemma 3.1 *)
Step 3 SAMEROUND<+TRUE.
Step 4 while C(r,a) # 0 and SAMEROUND do
Step 4.1 s’ <next element in C(r, a)
Step 4.2 M + Mx(r,a,s').
Step 4.3 ¢}, + mincex(M,, My).

Step 4.4 if ¢j, < cx then eliminate s’ from C(r,a). (* cf. Lemma 3.2 *)
else SAMEROUND «FALSE.

Step 5 if SAMEROUND then
Step 5.1 M1 < EXTEND(My, ra).
Step 5.2 Riy1 < Rr U{ra}.
Step 5.3 cr41 = mincex(Myy1, My).
Step 5.4 Vb€ X: C(ra,b) « {t € Ri41| t < rab}.
Step 5.5 Vt € Ri,Vb € X : if ra < tb then insert ra into C(¢,b).

else Mk+1 — M;/C,Rk+1 — Rk, Ck+1 = C;v

Procedure EXTEND(My, ra):
Step E1 Insert the new state ¢, into the state diagram of M.
Step E2 Replace B-edge qr — q. by F-edge ¢r — ¢ra.
Step E3 For each b € X, create the B-edge starting from g,, and being labeled by b.
Let 1t point to the same node as the edge starting from g. and being labeled by b.
Step E4 if c¢; = ra then declare ¢, as “accepting” iff ¢. is “non-accepting”
else declare g, as “accepting” iff ¢. is “accepting”.

Table 1: Round k of algorithm REDIRECT

Their state diagrams consist of a single state ¢y and the B-edges ¢y — ¢y for all a € . State
qx is accepting in M{ and non-accepting in M. Thus, M and Mj are acceptors of () and ¥*,
respectively. Note that MY is partially correct if M,(\) = 0. Otherwise, M is partially correct.
Thus, M; can be set to MéW*(A) at the expense of one counterexample used to determine M, (A).
Round 1 can be entered with My, ¢; = mincex(My, M,.), Ry = {\}, and C'(A,a) = {A} forall a € 3.

We will prove later that the DFAs My, k > 1, are partially correct. This implies that REDIRECT
creates only the n states ¢, for v € R(L.), and we can easily show the following

Theorem 3.3 REDIRECT learns M, in polynomial time from at most 1+ |X|n? — |X|n smallest

counterexamples.

Proof. The number of counterexamples is bounded by 1 plus the number of eliminated candidates
from sets of the form C'(r, a), because the first counterexample is used to define M; properly, and

each new counterexample leads to the elimination of a candidate. The total size of all candidate
sets equals the number of candidate B-edges of the form ¢, % ¢,, where a € X, r,;s € R(L,), and
s < ra. This number is obviously bounded by |[X|n?. Since the |X|n candidates for the correct
B-edges are not eliminated, the total number of eliminated candidates is at most |3|n? —|X|n. This
leads to the desired bound on the number of counterexamples.

Since the run time per round is certainly polynomially bounded, it follows that the total run time
is polynomially bounded. °

The following observations show that REDIRECT has time bound O(|%|n?).

The central data structure in the implementation of REDIRECT is the prefix tree of the actual
set Ry. It forms the skeleton of the actual hypothesis DFA Mj. The edges are labeled with letters
from . Each node in the tree represents a state g., where r € Ry is given implicitly by the path
from the root to ¢.. Each state ¢, is correctly labeled as either “accepting” or “non-accepting”.
In addition, we use pointers associated with ¢, to store the B-edges starting from ¢, and the |X|
candidate lists C'(r,a), a € X.

Let us first consider Steps 1 to 4 of REDIRECT. According to Theorem 3.3, each of these steps
is executed less than |X|n? times during one run of REDIRECT. Furthermore, it is easy to see that
each step can be performed in time O(n) using the data structure described above. In particular,
note that each word in R(L,) has length at most n (the number of states of M,). Each shortest
counterexample, presented to a hypothesis DFA, has length smaller than 2n (the total number of
states in M, and the current hypothesis DFA).% It follows that the total time spent for Steps 1 to 4
during one run of REDIRECT is bounded by O(|%|n?).

Step 5 is executed exactly n — 1 times by REDIRECT, because the final hypothesis consists of n
states and each call of procedure EXTEND leads to the creation of a new state. The most expansive
Substeps are 5.4 and 5.5, which can be performed during |¥| appropriate walks through the prefix
tree. In Substep 5.4, REDIRECT directs the walk to states ¢; with ¢t < rab. In substep 5.5, the walk
is directed to states ¢; with ra < tb. Since each walk takes time O(n), the total time spent for
Step 5 during one run of REDIRECT is bounded by O(|3|n?).

We proceed with the proof of the partial correctness of the M. We start with the following
easy observations that hold for all £ > 1:
1. M is partially correct for L, w.r.t Ry = {A}.
2. The state diagram of M} contains exactly the nodes ¢, for u € Ry, and decomposes into the
prefix-tree of R; and additional B-edges.
3. For all uw € Ry: Myyq1(u) = My (u).
4. If Mygy1 = My(r,a,8"), then Rpyy = Ry and 41 > ck.
5. If Mpy1 = Mg(r,a,s’) and My, is partially correct for L, w.r.t. Rg, then My is partially
correct for L. w.r.t. Rpyq.
6. If Myy1 = EXTEND(My, ra), then Rpy = R U{ra}.
These observations fall short of proving the partial correctness of all M by induction: the inductive
step is only performed for M1 = My(r,a,s’) — see Observation 5— but not yet for My, =

EXTEND(Mjp, ra). Note that the partial correctness of My, carries over to My = EXTEND(My, ra) if
we can show that ra € R(Ly) and Myyq(ra) = M. (ra).

5This bound on the length of shortest counterexamples is well known, although we do not know its origin. A proof
is contained in [5], for instance.

We start with the proof of the latter assertion. (For technical reasons, we prove also that
Ckt1 > Ck-)

Lemma 3.4 If My, = EXTEND(My,ra), then Mygyq(ra) = M. (ra) and cpy1 > ck.

Proof. Remember that ¢ decomposes into ¢ = raz for some z € ¥*. Thus, ¢; > ra. We prove
the lemma separately for the cases ¢; > ra and ¢ = ra.

If ¢}, > ra, then EXTEND(M, ra) was defined in such a way that states ¢, and ¢,, are equivalent.” It
follows that L(My) = L(Myy1). My is correct on all words smaller than ¢, = mincex(My, M.), in
particular on ra. Thus, the same must hold for My, (implying cx41 > ci).

If ¢, = ra, then EXTEND(M, ra) was defined in such a way that My4q(ra) # My (ra). Since My is
wrong on ra = ¢, = mincex(My, M), My4q is correct on ra. For any word w < ¢ = ra, the path
Py, (w) does not reach the part of the diagram that has been modified by procedure EXTEND. Thus,
Myy1(w) = My (w) = M.(w), where the latter equality follows from w < ¢; = mincex(My, M,).
Hence cgy1 > ck. °

All that remains to be done is showing ra € R(L,). The proof for this requires the following
monotonicity property of the sequence cg, given by Observation 4 and Lemma 3.4.

Corollary 3.5 The sequence ci, k > 1, is nondecreasing.

Using this monotonicity, we are able to show

Lemma 3.6 If M}, = EXTEND(My, ra), then ra € R(L,).

Proof. Let us assume for the sake of contradiction that ra ¢ R(L.), i.e., there exists a word
t € X" satisfying t < ra and ¢t =g, ra.

Let ¢, denote the state visited by ¢ in M. According to the visitor lemma, w < ¢ < ra, so
¢ = ¢, was a candidate B-edge. This B-edge was eliminated during some round j < k, because
all candidates from C'(r, a) are eliminated after round k. Let M’ denote the DFA in round j leading
to the elimination of w in Step 2 or Step 4.4 due to counterexample ¢/. Hence, M’ is either M;
(and ¢ = ¢;) or M’ is the TEST-DFA M/ for B-edge ¢, = ¢, (and ¢ = ¢;). We obtain ¢ < ¢
since ¢; < ¢ and c; < ¢; < ¢ by monotonicity. According to Lemma 3.2, ¢/ can be written as
' = raz' for some z' € ¥* and we get

wz' <tz < raz’ = = mincex(M', M) < ¢ = mincex(My, M.,). (1)
Hence, Mj, is correct on wz’ and tz’. Since M}, cannot distinguish between ¢ and w, we obtain
M. (tz') = My (t2") = Mg (wz') = M (wz'). (2)

According to (1), M’ is correct on wz’, but wrong on raz’. Since M’ cannot distinguish between
ra and w and t =p, ra, we obtain

M. (tz') = M. (raz') # M'(raz') = M'(wz) = M.(wz). (3)
We arrived at a contradiction between (2) and (3). o

Lemmas 3.4 and 3.6 imply that all hypotheses My, k& > 1, are partially correct for L. w.r.t. Ry,
which concludes the analysis of REDIRECT.

TAs usual, states q,¢’ of a DFA M are called equivalent, if the following holds for each w € ©*: M started in ¢
accepts w iff M started in ¢’ accepts w.

4 The Learning Algorithm for Leveled DFAs

An m-leveled DFA M is a DFA with the following special properties:
— State set () is partitioned into Qo, ..., @, where (); denotes the set of states on level j.
— Qo = {qo} contains the initial state.
— If the DFA is in state ¢ € ;1 and reads the j-th input symbol z; = @ € X, it passes to a
unique state 6(q,a) € Q; for j=1,...,m.
— @, is a non-empty subset of {q4,¢_}, where ¢y is accepting and ¢_ is non-accepting.

The corresponding state diagrams are leveled acyclic graphs with nodes on levels 0,...,m. A word
w € X™ is accepted if the computation path Pys(w) ends in ¢4. All other words are rejected (in
particular all words of a length differing from m). Thus, L(M) is a subset of ¥™. Let DFA,, denote
the class of all m-leveled DFAs.

All concepts and results considered so far for DFAs can be transferred to m-leveled DFAs in
the obvious way. This transfer is used in the sequel without explicit mentioning.

As outlined in the preceding section, general DFAs are efficiently learnable from less than |X|n?
smallest counterexamples. In this section, we will show that #(]X|n logn) smallest counterexamples
are sufficient and necessary (even with unlimited computational resources) for learning m-leveled
DFAs. To demonstrate sufficiency, we design an efficient algorithm called LEVELED-REDIRECT that
is similar to REDIRECT. The main changes are as follows:

1. The hypotheses DFAs will be m-leveled. Consequently, only counterexamples of length m are
received.

2. Each round will be concerned with exactly one of the candidate sets C'(r, a). C'(r, a) will shrink
to either the empty set (in which case EXTEND(M, ra) is called) or a singleton set {s'} (in which
case the B-edge starting from ¢, and being labeled by a will point to g,).

3. Each counterexample concerned with C'(r,a) will at least halve the size of C'(r, a).

The next result reveals the reason why the candidate sets can be treated one after the other.
The notations are as in Lemma 3.2, but here they refer to m-leveled DFAs.

Lemma 4.1 Let ¢ = mincex(M, M.), q, > q5 the first B-edge on Pys(c), qs a state of M located
at the same level as q5, M' = M(r,a, s') the TEST-DFA for B-edge ¢, = qy, ¢’ = mincex(M', M),
and ¢, LN q: the first B-edge on Pyi(c').

If ra is not a prefix of ¢ (i.e., if ra #r'd’), then ra <pgpx r'a’ and 8 =p, ra.

Proof. Lemma 3.2 implies that ¢/ > ¢. (Otherwise, ra must be a prefix of ¢/.) Since ¢ and ¢
both have length m, ¢ < ¢ implies that ra <pgx r'a’.

Assume for the sake of contradiction that s’ £y, ra. Then there exists a word z € ¥* such that
M. (s'z) # M.(raz). Since M’ cannot distinguish between s’ and ra, it is wrong on either s’z or
raz. This contradicts to 'z < raz < ¢’ = mincex(M’, M,). o

LEVELED-REDIRECT can use this lemma as follows. Whenever a TEST-DFA for B-edge ¢, = ¢y
leads to a counterexample referring to a candidate set C'(r/,a’) different from C'(r,a), B-edge
¢ = qy is correct, and C'(r, a) can safely be set to singleton {s'}.

Assume that My, R, cg,r, a (as defined within REDIRECT) are given. Next, we want to explain
how C'(r,a) can be halved per counterexample. REDIRECT used Lemma 3.1 and 3.2 to perform a
sort of “exhaustive search” for the correct candidate in C'(r,a). Each counterexample led to the

10

elimination of one candidate only. It is a straightforward idea to use “binary search” instead. For
this purpose, we define in the sequel a carefully selected candidate s(C'(r, a)) which is either correct
or leads to the simultaneous removal of all elements from a set £(C(r, a)) containing at least half of
the former candidates. Since the operators for selection and elimination are defined (and computed)
recursively in the sequel, the following definitions refer to an arbitrary set C' C C'(r, a):

1. D(C) :={d e X*| 351,50 € C : M(r,a,s1)(d) # M(r,a,s)(d)}.
2. (C'is called homogenous if D(C') = (), and heterogenous otherwise.
3. For heterogenous C', we define d(C') := min D(C'), i.e., d(C') is the smallest word on which at

least two of the TEST-DFAs disagree. For homogenous C', we define d(C) := oo by default
(where oo represents an “infinite word” greater than any word from ¥*).

4. Word d(C') leads to the following partition of C' into Cy and Cf.
Cii={seC| M(rya,s(d(C)) =}, i =0, 1.

Denote by Cyag the bigger-one of the two sets (say Cy if there is a tie), and by Cyvin the
other-one.

5. The selection operator is given recursively by

() = min C, if C is homogenous;
5 "] s(Cmaj), otherwise.

6. Let M' = M(r,a,s(C)) and ¢ = mincex(M’, M,). Assume that ¢’ has prefix ra. Then the
elimination operator is given recursively by

C, if ¢ < d(C);
E(C) =< CwMmaj, if ¢ =d(C);
CMINUE(CMAJ), if ¢ > d(C).

It follows inductively from the recursive definition that |[E(C)| > |C|. (In particular, E(C) = C
if C'is homogenous.) The “binary search”paradigm is therefore established by the following result
stating that all elements in F(C') may be blamed for getting counterexample ¢'.

Lemma 4.2 1. If C is heterogenous, then ra is a prefiz of d(C').
2. If ra is prefix of ¢, then t Zr,, ra for allt € E(C).

Proof.

1. Pick sy and sy from C such that d(C') = mincex(My, My). where My = M(r,a,s;) and
My = M(r,a,s3). Obviously, the computation path Py, (d(C)) contains B-edge q. — qs,. It
remains to show that this B-edge is the first B-edge on the path. Since M is partially correct
for L(M;), we may apply Lemma 3.1 identifying M by M; and M, by M;. We get that the
first B-edge on Py, (d(C)) is wrong, i.e., this B-edge is not contained in AM;. The only B-edge
not contained in My is ¢, — ¢5,, yielding the claim.

2. If ¢ < d(C), then ¢ ¢ D(C). Thus ¢ is a smallest counterexample for each M (r,a,t) with
t € C. Since ra is prefix of ¢/, Lemma 3.1 yields ¢t #y, ra for all t € C.

If ¢ = d(C), then M’ votes on ¢’ as the majority of all TEST-DFAs. Thus ¢ is a smallest
counterexample not only for M’ but for all M(r,a,t) with ¢ € Cyvay. Again, Lemma 3.1
applies. This time, it yields t £y, ra for all t € Cyiay.

11

If ¢ > d(C), then M’ is correct on d(C'). Thus d(C') is a smallest counterexample for each
M (r,a,t) with t € Cyvn. Since d(C') has prefix ra, Lemma 3.1 applies again. Now, it yields
t #r, ra for all ¢t € Cyn. Furthermore, ¢ #g,, ra for all ¢t € E(Cymayg) follows inductively. o

The initialization of LEVELED-REDIRECT is performed analogously to the starting phase of
REDIRECT. This time we find a first partially correct m-leveled DFA M; using the m-leveled DFA
MY and M{ shown in Figure 5.

0 1
Ml Ivll

Figure 5: Initial m-leveled DFAs MY and M{ for ¥ = {0,1}.

An arbitrary round k of algorithm LEVELED-REDIRECT is similarly structured as the correspond-
ing round in REDIRECT. For this reason, we restrict ourselves to stress the main differences:

— The former Step 4.1 is replaced by s’ < s(C(r, a)), i.e., the next candidate B-edge is determined
by the selection operator.

— The former Step 4.4 is replaced by
if ra is prefix of ¢} then eliminate all elements of E(C(r,a)) from C(r, a)
else SAMEROUND<+FALSE.

Hence, we treat C'(r, a) completely in one round, and halve it per counterexample.

— The updates in Step 5 are adapted to m-leveled DFAs. In the else-part (i.e., if ra is not prefix
of '}, we add the command C(r,a) < {s'}. This reflects that B-edge ¢, % ¢, is known to be
correct in this case.

We note that the selection and elimination operator allow, even in the case of unleveled DFAs, to
halve one of the candidate sets per smallest counterexample. The problem with unleveled DFAs
is that Lemma 4.1 does not hold. Thus, iterated halving of a set C'(r,a) and the insertion of up
to n elements in C(r, a) are possibly interleaved. This may cause linear in n many halvings. (For
this reason, REDIRECT uses the simpler exhaustive search paradigm.) Because of Lemma 4.1,
REDIRECT is not faced with this problem. When candidate set C'(r, a) is shrunken to the empty
or a singleton set during one round, no later round will cause insertions into C'(r,a). From these
considerations, we obtain

Theorem 4.3 LEVELED-REDIRECT learns M. in polynomial time from at most |X|nlog(n)(1+o(1))
smallest counterezamples.

12

We briefly describe how LEVELED-REDIRECT can be implemented such as to run in time pro-
portional to |X|?>mn3. We use the same data structure as for REDIRECT to represent the actual
hypothesis M. Obviously, it is sufficient to show that the total run time, spent for the recursive
evaluations of the selection and elimination operator, is bounded by O(|3|*mn?>). Since there are
|X|n rounds, each round being concerned with a specific candidate set C'(r, a), the problem boils
down to showing that the recursive evaluations during one round have time bound O(|X|mn?).

Towards this end, we consider the call of selection operator s on C' C C'(r,a). (The analysis of
call E(C') is similar.) C'is stored as list of pointers (pointing to states g, for s € C'). Let K denote
the cardinality of C' and N(K) the number of steps needed to compute s(C'). It is easy to show
that, for each s € C', the following holds:

d(C) = Eréi(r}{mincex(Mk(r, a,s), Mg(r,a,t))}.
Hence, we have to find the minimum of K smallest counterexamples between TEST-DFAs in order
to compute d(C). If we adapt a procedure, presented in [5] for the corresponding problem on
OBDDs, it is possible to compute each counterexample in time proportional to |¥|m. Hence after
at most O(|X|mkK) steps, we either know that C' is homogenous (which stops the recursion) or we
can use d(C') to compute Cyay of cardinality at most K — 1 and enter the next level of recursion.
Since Cyag is easy to compute from d(C'), we get the recursion

N(K) < ay|S|mK + N(K — 1), N(1) = a

for constants a, az. Obviously, N(K) = O(|S|mK?). We note without proof that the recursive
evaluation of F/(C') has the same time bound.

During one round, candidate set C'(r, a) is iteratively halved. Before each halving, the operators
s and E are applied to C'(r,a). In the beginning of a round, the cardinality of C'(r, a) is at most n.
The recursive calls are therefore initiated on sets of sizes n, 5,7, It follows that the total time
spent in one round is bounded by

O(|Zmn?) - (m)+ (Y +) |

which is proportional to |X|mn? (as desired).

We close this section by showing that any learning algorithm for leveled DFAs requires at least
Q(|X|nlogn) smallest counterexamples. (Thus, LEVELED-REDIRECT is optimal in this respect.) On
the way to this result, we prove a general lower bound in terms of a combinatorial dimension
associated with the target class. Then we apply this result to the class of DFAs with at most n
states and input alphabet X.

Let F be a class of functions of the form f: X — {0,1}, where X is a linearly ordered domain.
We say that a finite set S C X is SC-shattered® by F, if F contains 2/°! functions that are pairwise
different on S, but coincide on X<% := {z € X \ S | # < maxS}. Note that these functions can
realize each binary output pattern on S. The SC-dimension® of F is defined as follows:

SCdim(F) :=sup{d| IS C X : |S|=d and S is SC-shattered by F}.

We show the following general lower bound:

83C stands for “Smallest Counterexamples”.
®The reader, familiar with the theory of Vapnik and Chervonenkis (see [12]), will notice the similarity between
the SC-dimension and the VC-dimension. In general, SCdim(F) <VCdim(F).

13

Lemma 4.4 Fach learning algorithm for F requires at least SCdim(F) smallest counterezamples.

Proof. Let S be an SC-shattered set of size d, Fy C F the set containing the 2¢ SC-shattering
functions for S, and v(z) € {0,1} their common value on a point x € X<°. The lower bound is
obvious from the following “adversary-argument”:

Let s1 < s9 < --- < sq denote the ordered sequence of elements from S. The strategy of the

adversary is to present sy, sg,...,S4 (in this order) as smallest counterexamples. When s; is pre-
sented, the value of the target function on s; is revealed, but still all values on s;41,...,54 are
conceivable. The mistakes on sq,...,sq are therefore not avoidable. This strategy can be slightly

disturbed by a hypothesis & with an “additional” mistake on an s;, j < i, already presented, or
on an element s < s;41,s ¢ S. Now the adversary presents the smallest point s,,;, on which h
makes an additional mistake. In case of s,,;, = s;, the learner does not gain information. In case
of Spmin ¢ S, the learner only comes to know value v(s,,;,) being common for all functions in Fy.
Thus, the additional mistakes do not restrict the variability of the adversary on $;41,..., 34 °

Lemma 4.5 The SC-dimension d(n,X) of the class of DFAs (leveled or unleveled) with at most n
states and input alphabet 3 has a lower and an upper bound of the following form:

1Sl log(m) (1~ o(1)) < d(n,) < [Slnlog(n) (1 +o{1))

Proof. The upper bound |X|nlog(n)(1+ o(1)) follows from the fact that SC-dim(F) < log|F]|
and from counting the number
N(n,¥) = n2"n"*!

of unleveled DFAs (which are more powerful than the leveled-ones, and represent a larger function
class therefore).
The lower bound follows from showing that the set

S = {07 1}lognz{o7 1}10g(10gn—10g logn)

is SC-shattered by leveled DFAs of less than 4n states. A word w from S has the form w = sat,
where s is a binary word of length logn, @ is an arbitrary letter, and ¢ is a binary word of length
log(log n—loglogn). It is convenient to represent a binary output pattern on S as a collection of |3
binary matrices with n rows and m = logn — loglogn columns, respectively. Given w = sat € S,
we obtain the corresponding output bit from entry (s,t) of the matrix M, associated with letter
a. We now show that an arbitrary collection (M,).ex of such matrices can be realized by a leveled
DFA M with less than 4n states. Figure 6 shows the structure of the transition diagram D.
We describe the resulting computation on a correctly formed input w = sat € S:

Diagram D starts with a complete binary tree of depth logn with 2n — 1 nodes and n leaves.
The leaves are in one-to-one correspondence to the possible prefices s of w. In other words: when
reaching a leaf, s is stored in the finite control. Now M reads letter a. At this moment, it perfectly
knows the relevant matrix M,, and the relevant row s. The remainder of the computation does
only depend on the binary pattern in row s of matrix M,. Instead of storing (s,a) in the finite
control, it is more economical to store the binary pattern of the row. Consequently, the next level
in D contains 2" = n/logn nodes, which is precisely the number of binary patterns of length
m = logn — loglog n. Each of these n/logn nodes is the root of a complete binary tree of depth
logm. When M reaches a leaf in one of these trees, it has stored suffix ¢ (and still the relevant

14

Rejection Path

Figure 6: State diagram D for the proof of Lemma 4.5. The path for an input word w = sat € S
through D is displayed accentuated.

15

binary pattern p € {0,1}™) in its finite control, and can select and output the correct bit.

If the input word w has not the correct form, i.e., w = sat ¢ S, either s or t contains a digit
different from 0 and 1. In this case, diagram D feds the computation path into a “rejection path”,
which assigns default value 0 to each w ¢ S. The number of nodes in diagram D is easily seen to
be less than 4n. This shows that 5 is SC-shattered by the class of leveled DFAs with less than 4n
states. °

A similar result was shown recently in [9] for the VC-dimension of the class of arbitrary DFAs
with at most n states and input alphabet 3. Our lower bound is stronger for two reasons. First, it
applies to leveled DFAs. Second, it applies to the SC-dimension which is smaller, in general, than
the VC-dimension. Besides that, our proof is much simpler.

We have shown that 6(|X|n logn) smallest counterexamples are necessary and sufficient to learn
leveled DFAs. For unleveled DFAs, we leave the gap between the lower bound 1|3|nlog(n)(1—o0(1))
and the upper bound |X|n? (achieved by REDIRECT) as an object of future research.

References

[1] S. B. Akers. Binary decision diagrams. IFEFE Transactions on Computers, 27:509-516, 1978.

[2] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87-106, 1987.

[3] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.
[4] Dana Angluin. Negative results for equivalence queries. Machine Learning, 5:121-150, 1990.

[5] Andreas Birkendorf and Hans Ulrich Simon. Using computational learning strategies as a tool
in combinatorial optimization. To appear in Annals of Mathematics and Artificial Intelligence
and presented at the 4th International Symposium on Artificial Intelligence and Mathematics,
1996.

[6] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys, 24(3):293-318, 1992.

[7] John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and their Relation to Automata.
Addison Wesley, 1969.

[8] Oscar H. Ibarra and Tao Jiang. Learning regular languages from counterexamples. Journal of
Computer and System Sciences, 43:299-316, 1991.

[9] Yoshiyasu Ishigami and Sei’ichi Tani. VC-dimensions of finite automata and commutative
finite automata with k letters and n states. Discrete Applied Mathematics, 74:123-134, 1997.

[10] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell Systems
Technical Journal, 38:985-999, 1959.

[11] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing sequences.
Information and Computation, 103(2):299-347, 1993.

[12] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theor. Probability and Appl., 16(2):264-280, 1971.

16

