
Learning Deterministic Finite Automatafrom Smallest CounterexamplesAndreas Birkendorf, Andreas B�oker and Hans Ulrich SimonLehrstuhl Informatik II, Universit�at Dortmund, 44221 Dortmund, GermanyE-mail: birkendo,simon@cs.uni-dortmund.deAbstractWe show that deterministic �nite automata (DFAs) with n states and input alphabet � cane�ciently be learned from less than j�jn2 smallest counterexamples. This improves on an earlierresult of Ibarra and Jiang who required j�jn3 smallest counterexamples. We show furthermore,that the special DFAs operating on input words of an arbitrary but �xed length (called leveledDFAs) are e�ciently learnable from j�jn log(n)(1 + o(1)) smallest counterexamples. This im-proves on an earlier result of Ibarra and Jiang who required j�jn2 smallest counterexamples.Finally, we show that our algorithm for leveled DFAs cannot be substantially improved. Forthis purpose, we present a general lower bound on the number of smallest counterexamples (re-quired by any learning algorithm). This bound can be stated in terms of a (new) combinatorialdimension associated with the target class. A computation of this dimension for leveled DFAsleads to a lower bound of the form 14 j�jn logn(1 � o(1)). This coincides with our upper boundmodulo a factor of approximately 4.1 IntroductionLet F be a class of functions of the form f : X ! f0; 1g, i.e., f maps an element of domain X toeither 0 or 1. In this paper, we are concerned with the problem of \learning" an unknown targetfunction f� 2 F . The learning model we consider is related to the query-learning model of Angluin(see [3]). In this model, the learning algorithm A gathers information about f� by asking queries toa teacher. The most popular queries are EQ (equivalence-queries) and MQ (membership-queries).An EQ is issued by A along with a hypothesis f . If f is correct, the teacher answers \YES".Otherwise, the teacher presents a counterexample, that is, a point x 2 X on which f and f�disagree. An MQ is issued by A along with a query point x 2 X and answered with f�(x). If A haswritten a description of hypothesis f or query point x on a special query tape, the correspondinganswer is given in one time step. In the query learning model, a successful learning algorithm Amust �nd a description of f� in polynomial time, where the polynomial may depend on parameters1describing the complexity of f� and on the length of the longest counterexample ever presented bythe teacher2. If only EQs are used, we speak of learning from counterexamples. If both, EQs andMQs, are used, we speak of learning from a minimum adequate teacher.A particular class F , that was intensively studied in the past, is the class of functions repre-sentable by deterministic �nite automata (DFAs), i.e., the class of characteristic functions of regular1These parameters will be formally speci�ed for the concrete learning problem that we consider.2If the teacher always presents a counterexample of shortest length, this additional parameter is not needed.1

languages. The complexity of the target DFA is measured by two parameters: the number n of itsstates and the size of input alphabet �. It is easy to see that DFAs cannot be learned in polynomialtime from MQs alone. It was shown in [4] (using the technique of \approximate �ngerprints") thatalso EQs alone are not su�cient. In contrast to these results, Angluin has presented an e�cientalgorithm that learns DFAs with a minimum adequate teacher (see [2]). This algorithm was laterimproved by Rivest and Schapire whose algorithm is simpler and needs less MQs (see [11]).Ibarra and Jiang have shown that MQs are not needed for learning DFAs if we put someadditional information in the answers to EQs. More precisely, they have shown in [8] that DFAsare learnable from smallest counterexamples. In this model, the teacher presents the \smallest"word c 2 �? on which the current hypothesis DFAM and the target DFAM� disagree. (The word\smallest" refers to the so-called \canonical" ordering, which is formally de�ned below.)The results, presented in this paper, improve on the results of Ibarra and Jiang as follows:We present a new algorithm REDIRECT which e�ciently learns DFAs with n states and input al-phabet � from less than j�jn2 smallest counterexamples. Ibarra and Jiang suggested an algo-rithm which requires j�jn3 smallest counterexamples. Furthermore, we present a new algorithmLEVELED-REDIRECT for learning so-called leveled DFAs3, which operate on input words of an arbi-trary but �xed length. LEVELED-REDIRECT requires j�jn log(n)(1+o(1)) smallest counterexamples.This improves on the corresponding algorithm of Ibarra and Jiang which requires j�jn2 smallestcounterexamples. Finally, we show that LEVELED-REDIRECT cannot be substantially improved. Forthis purpose, we present a general lower bound on the number of smallest counterexamples (re-quired by any learning algorithm). This bound can be stated in terms of a (new) combinatorialdimension associated with the target class. A computation of this dimension for leveled DFAsleads to a lower bound of the form 14 j�jn logn(1� o(1)). This coincides with the bound achievedby LEVELED-REDIRECT modulo a factor of approximately 4. The new general lower bound may beof interest beyond its application on DFAs.In order to design REDIRECT, we invent a new data structure for regular languages: Nerodediagrams and partially correct subdiagrams. It is a very e�cient and useful tool when dealing withsmallest counterexamples. REDIRECT will \grow" an (initially trivial) partially correct subdiagramuntil it is isomorphic to the full transition diagram of the target DFA. The correct edges in thediagram are found by a sort of exhaustive search in the case of arbitrary DFAs, and by a sort ofbinary search in the case of leveled DFAs. In order to prove the correctness of our algorithms,we present a series of structural results concerning Nerode diagrams and their partially correctsubdiagrams. The new data structure and the structural insights, gained by its analysis, may beof independent interest.In order to make the notion of learning from smallest counterexamples well-de�ned, we proceedwith the formal de�nition of the lexicographical and canonical ordering on �?. For notationalconvenience, we assume that � = f0; : : : ; j�j� 1g. The letters (digits) have their natural ordering.We denote the empty word by �. Word x 2 �? is called a pre�x of word w 2 �? if w can be writtenas xz for some z 2 �?. If additionally z 6= �, x is called a proper pre�x of w. Two words v; wcan always be written as v = xv0 and w = xw0, where x 2 �? is the greatest common pre�x of vand w. We say that v is lexicographically smaller than w (denoted as v <LEX w) if either v is aproper pre�x of w or v0 starts with a smaller letter than w0 in the above decomposition. (That'sthe ordering used in a lexicon.) We say that v is canonically smaller than w (denoted as v < w) ifv is shorter than w or, in case of equal length, v is lexicographically smaller than w. We note that3Leveled DFAs, as de�ned in Section 4, are basically equivalent to a data structure known as \Ordered BinaryDecision Diagrams" (or OBDDs) in the literature (see [10, 1, 6]). In this paper, it is more convenient to use the sameterminology as for DFAs. 2

the canonical ordering is more natural for learning applications, because short counterexamples arelikely to be more helpful than long-ones.We close the introduction by mentioning a relation between query-learning and combinatorialoptimization, which was has been discovered recently (see [5]). The computation of the smallestDFA that is consistent with a given set S of labeled examples is an important and computation-ally intractable optimization problem. Query learning algorithms for DFAs can be converted intopromising heuristics for this problem, as explained in detail in [5] for algorithms using EQs andMQs. The basic idea is to simulate the teacher, to guide its answers by a preoptimized (suboptimal)DFA M 0, and to stop when hypothesis M is (perfectly or almost) consistent with S, but beforeM is equivalent to M 0. Often M has considerably less states than M 0. Since the computation ofa canonically smallest counterexample can be done e�ciently, one can similarly convert REDIRECTinto an algorithm for the optimization problem. We leave the analysis of this convertion as aproblem for future research.2 Nerode Diagrams and Partially Correct SubdiagramsWe assume some familiarity with basic concepts in formal language theory as given by any standardbook (e.g., [7]). In the sequel, we recall some classical notions concerning DFAs and de�ne a newdata structure for their representation.Let M = (Q; q0; �; Q+) be a DFA, where Q denotes the set of states, q0 the initial state, � thetransition function, and Q+ the set of accepting states. We will represent M by its state diagramwhich visualizes the states as nodes and the transitions as edges. An example is shown in Figure 1.As usual, we say that M accepts a word w if the path PM (w), which starts in the initial state andfollows the edges labeled with the letters of w, ends at an accepting state of M . Let L(M) denotethe language of words accepted by M . We associate with M the indicator function M(w) withvalue 1 if w 2 L(M), and value 0 otherwise.
3

2

q

qq 41q0q
0

1

0

1

1

0

1
0

0
1Figure 1: State diagram of a DFA M = (fq0; q1; : : : ; q4g; q0; �; fq2; q3g) accepting language L =(f0; 1g�f00; 1 �f0; 1gg)��f0; 1g�f0; 1g. Accepting states are drawn darker than non-accepting states.Two DFAs are called equivalent if they accept the same language. Let M be a minimum DFAfor L, i.e., L = L(M) an no other DFA with this property has less states than M . Then M isuniquely determined (up to isomophism), and its states are in a one-to-one correspondence to theclasses given by the following equivalence relation �L, called Nerode relation:8s; t 2 �? : s �L t :() 8 z 2 �? : sz 2 L () tz 2 L:We call a word r 2 �? the minimum representant of its Nerode class [r]L = fs 2 �? j s �L rg if ris the smallest word in [r]L. The set of all minimum representants is denoted by R(L).3

It is easy to see that ra 2 R(L), where r 2 �? and a 2 �, implies that r 2 R(L). Inductivelywe get the followingLemma 2.1 R(L) is pre�x-closed, i.e., if r 2 R(L) then r0 2 R(L) for all pre�ces r0 of r.The Nerode diagram DL of L is de�ned as follows. Its nodes are in one-to-one correspondenceto the words in R(L) and denoted by qr for r 2 R(L). We call qr \accepting" if r 2 L and \non-accepting", otherwise. The edge starting from qr and being labeled by a points to qs, where s isthe minimum representant of [ra]L. It is denoted by qr a! qs in the sequel. An example is shownin Figure 2(a).
q

0

110

0

1

010

1

1

0

1

0

(a) (b)

1

00q 01q

0q 0

q

q

0

01

q q

001Figure 2: (a) The Nerode diagram of language L from Fig. 1. R(L) = f�; 0; 00; 01; 001g. F -edgesare drawn thick, B-edges are drawn thin.(b) Partially correct subdiagram of the Nerode diagram in (a).Obviously, DL represents the minimum DFA for L. The edges of DL decompose according tothe following de�nition. Edge qr a! qs is called backward edge (or B-edge) if s < ra. Otherwise, itis called forward edge (or F -edge). In the latter case, s = ra. Since R(L) is pre�x-closed, it followsthat the F -edges form the pre�x-tree of R(L) (as illustrated in Figure 2(a)).Given a pre�x-closed subset R � R(L), a partially correct subdiagram of DL w.r.t. R consistsof the pre�x-tree of R and additional B-edges, not necessarily identical to the B-edges of DL. Thepartitioning of nodes qr into \accepting" and \non-accepting" ones is done as for DL. Figure 2(b)shows an example.A DFA M , represented by a partially correct subdiagram of DL w.r.t. R, is called partiallycorrect for L w.r.t. R. 4 (In particular, M is correct for each r 2 R, i.e., M(r) = 1 i� r 2 L.)If path PM (w) ends in state qr, we say that qr is visited by w and call w a visitor of qr . Weclose this section with the following obvious result.Lemma 2.2 (Visitor Lemma) All visitors w of qr satisfy r � w with equality if and only ifPM (w) contains F -edges exclusively.4We will sometimes omit the expression \for L w.r.t R" when the sets L and R are clear from context.4

3 The DFA learning algorithmLetM� denote the unknown target DFA, n the number of its states, and L� = L(M�). Throughoutthe remainder of this paper, let M be a DFA, partially correct for L� w.r.t to a pre�x-closed subsetR � R(L�), but L(M) 6= L�. We denote the smallest counterexample for M by mincex(M;M�).In order to convert the state diagram of M into the correct Nerode diagram of L�, one has toovercome two di�culties:1. The pre�x-tree of R has to be extended to the complete pre�x-tree of R(L�).2. Wrong B-edges, i.e., B-edges of the form qr a! qs; r; s 2 R; s < ra; s 6�L� ra must be redirectedsuch as to point to the correct node qs0 with s0 �L� ra.The following lemma describes how to detect wrong B-edges.Lemma 3.1 Let c = mincex(M;M�). Then the following holds.1. PM (c) contains at least one B-edge.2. The �rst B-edge qr a! qs on PM (c) is wrong, i.e., s 6�L� ra.Proof.1. If PM (r) contains F -edges exclusively, then r 2 R. Because M is correct on R, r cannot be acounterexample. Thus, PM (c) must contain at least one B-edge.2. If qr a! qs is the �rst B-edge on PM (c), c can be written as c = raz for some z 2 �?. Usingsz < raz = mincex(M;M�), we get M�(sz) =M(sz) =M(raz) 6=M�(raz): Thus, ra 6�L� s.�Lemma 3.1 blames the �rst B-edge qr a! qs on PM (c) for receiving counterexample c. Itis a straightforward idea to redirect (by way of trial-and-error) the B-edge starting from r andbeing labeled by a to another state qs0 , where s0 2 R; s0 < ra. We call the resulting DFA theTEST-DFA for B-edge qr a! qs0 and denote it by M(r; a; s0). Note that the partial correctness ofM carries over to M(r; a; s0). The following result blames qr a! qs0 for receiving counterexamplec0 = mincex(M(r; a; s0);M�) unless c0 > c.Lemma 3.2 Let c = mincex(M;M�), qr a! qs the �rst B-edge on PM (c), qs0 a state of M withs0 < ra, M 0 =M(r; a; s0) the TEST-DFA for B-edge qr a! qs0 , and c0 = mincex(M 0;M�).If c0 � c, then qr a! qs0 is the �rst B-edge on PM 0(c0) and s0 6�L� ra.Proof. If c0 = c, then qr a! qs0 is certainly the �rst B-edge on PM 0(c0).If c0 < c = mincex(M;M�), then M(c0) =M�(c0) 6=M 0(c0). PM 0(c0) must therefore contain B-edgeqr a! qs0 . (Otherwise,M andM 0 would coincide on c0.) The following considerations are illustratedin Figure 3.Let us assume for the sake of contradiction that qr a! qs0 is not the �rst B-edge on PM 0(c0).Hence, c0 can be written as c0 = r0az0, where r0 > r is a visitor of qr. Let c = raz be thecorresponding decomposition of c along the �rst B-edge qr a! qs on PM (c). From r0 > r andr0az0 = c0 < c = raz, we obtain z0 < z. We consider the word raz0. Since raz0 < r0az0 < raz, Mand M 0 are correct on raz0, and M is correct on r0az0. On the other hand, we obtainM(raz0) =M(r0az0) =M�(r0az0) 6=M 0(r0az0) =M 0(raz0);5

q

rqsq qs’

M(c)

r

s
s’

M M’

r’

z
z’

M’(c’)

a a

Figure 3: Illustration for the proof of Lemma 3.2.because neither M nor M 0 can distinguish between r and r0. It follows that either M or M 0 mustbe wrong on raz0 | a contradiction. An application of Lemma 3.1 yields s0 6�L� ra. �We are now prepared to describe the algorithm REDIRECT5 which learns an unknown DFA M�from smallest counterexamples. REDIRECT proceeds in rounds. Round k is entered with a partiallycorrect DFA Mk for L� w.r.t. a pre�x-closed subset Rk � R(L�) and its smallest counterexampleck. During round k, REDIRECT either stops with a DFA equivalent to M� or enters the next roundwith a partially correct DFA Mk+1 and its smallest counterexample ck+1. In order to measurethe progress made in each round, REDIRECT keeps track of Rk and the candidate sets C(r; a)containing all s 2 Rk such that s < ra and B-edge qr a! qs has not been blamed for one of thecounterexamples received so far. In the following description, we focus on a round not leadingto the stopping condition. (Compare with Table 1.) According to Lemma 3.1, REDIRECT willblame at least one B-edge, say qr a! qs, for getting counterexample ck = mincex(Mk;M�), andmay therefore safely eliminate s from C(r; a). Afterwards, it skims through C(r; a) and inspectsthe corresponding TEST-DFAs M 0k = Mk(r; a; s0). According to Lemma 3.2, this either leads toa counterexample c0k = mincex(M 0k;M�) > ck or to the safe elimination of s0 from C(r; a). In theformer case, REDIRECT enters round k + 1 with Mk+1 equal to M 0k . In the latter case, it proceedswith the next candidate from C(r; a). If all elements of C(r; a) are eliminated without receiving acounterexample c0k > ck, REDIRECT decides to extend Rk to Rk+1 = Rk [frag. In order to de�neMk+1 appropriately, REDIRECT calls procedure EXTEND(Mk; ra). The task of this procedure is toinclude the new state qra in the state diagram of Mk . Afterwards the state diagram contains thepre�x-tree of Rk [frag. The modi�cations are performed carefully in order to guarantee correctaccepting behaviour on ra (which is necessary to achieve partial correctness), and to modify L(Mk)as less as possible. Finally, round k + 1 is entered.To get started, REDIRECT needs a �rst partially correct DFA M1. Let M01 and M11 be the DFAsshown in Figure 4.5The redirection of B-edges is one of its central features.6

1
0

1M 1
M

1

0

q

1

0

qFigure 4: Initial DFAs M01 and M11 for � = f0; 1g.Step 1 Find the �rst B-edge on PMk(ck), say qr a! qs.Step 2 Eliminate s from C(r; a). (* cf. Lemma 3.1 *)Step 3 SAMEROUND TRUE.Step 4 while C(r; a) 6= ; and SAMEROUND doStep 4.1 s0 next element in C(r; a)Step 4.2 M 0k Mk(r; a; s0).Step 4.3 c0k mincex(M 0k;M�).Step 4.4 if c0k � ck then eliminate s0 from C(r; a). (* cf. Lemma 3.2 *)else SAMEROUND FALSE.Step 5 if SAMEROUND thenStep 5.1 Mk+1 EXTEND(Mk; ra).Step 5.2 Rk+1 Rk [frag.Step 5.3 ck+1 = mincex(Mk+1;M�).Step 5.4 8b 2 � : C(ra; b) ft 2 Rk+1j t < rabg.Step 5.5 8t 2 Rk;8b 2 � : if ra < tb then insert ra into C(t; b).else Mk+1 M 0k; Rk+1 Rk, ck+1 = c0k.Procedure EXTEND(Mk; ra):Step E1 Insert the new state qra into the state diagram of Mk+1.Step E2 Replace B-edge qr a! qs by F -edge qr a! qra.Step E3 For each b 2 �, create the B-edge starting from qra and being labeled by b.Let it point to the same node as the edge starting from qs and being labeled by b.Step E4 if ck = ra then declare qra as \accepting" i� qs is \non-accepting"else declare qra as \accepting" i� qs is \accepting".Table 1: Round k of algorithm REDIRECTTheir state diagrams consist of a single state q� and the B-edges q� a! q� for all a 2 �. Stateq� is accepting in M11 and non-accepting in M01 . Thus, M01 and M11 are acceptors of ; and �?,respectively. Note that M01 is partially correct if M�(�) = 0. Otherwise, M11 is partially correct.Thus, M1 can be set to MM�(�)0 at the expense of one counterexample used to determine M�(�).Round 1 can be entered withM1, c1 = mincex(M1;M�), R1 = f�g, and C(�; a) = f�g for all a 2 �.We will prove later that the DFAsMk, k � 1, are partially correct. This implies that REDIRECTcreates only the n states qu for u 2 R(L�), and we can easily show the followingTheorem 3.3 REDIRECT learns M� in polynomial time from at most 1 + j�jn2 � j�jn smallestcounterexamples.Proof. The number of counterexamples is bounded by 1 plus the number of eliminated candidatesfrom sets of the form C(r; a), because the �rst counterexample is used to de�ne M1 properly, and7

each new counterexample leads to the elimination of a candidate. The total size of all candidatesets equals the number of candidate B-edges of the form qr a! qs, where a 2 �, r; s 2 R(L�), ands < ra. This number is obviously bounded by j�jn2. Since the j�jn candidates for the correctB-edges are not eliminated, the total number of eliminated candidates is at most j�jn2�j�jn. Thisleads to the desired bound on the number of counterexamples.Since the run time per round is certainly polynomially bounded, it follows that the total run timeis polynomially bounded. �The following observations show that REDIRECT has time bound O(j�jn3).The central data structure in the implementation of REDIRECT is the pre�x tree of the actualset Rk. It forms the skeleton of the actual hypothesis DFA Mk. The edges are labeled with lettersfrom �. Each node in the tree represents a state qr, where r 2 Rk is given implicitly by the pathfrom the root to qr . Each state qr is correctly labeled as either \accepting" or \non-accepting".In addition, we use pointers associated with qr to store the B-edges starting from qr and the j�jcandidate lists C(r; a), a 2 �.Let us �rst consider Steps 1 to 4 of REDIRECT. According to Theorem 3.3, each of these stepsis executed less than j�jn2 times during one run of REDIRECT. Furthermore, it is easy to see thateach step can be performed in time O(n) using the data structure described above. In particular,note that each word in R(L�) has length at most n (the number of states of M�). Each shortestcounterexample, presented to a hypothesis DFA, has length smaller than 2n (the total number ofstates in M� and the current hypothesis DFA).6 It follows that the total time spent for Steps 1 to 4during one run of REDIRECT is bounded by O(j�jn3).Step 5 is executed exactly n � 1 times by REDIRECT, because the �nal hypothesis consists of nstates and each call of procedure EXTEND leads to the creation of a new state. The most expansiveSubsteps are 5.4 and 5.5, which can be performed during j�j appropriate walks through the pre�xtree. In Substep 5.4, REDIRECT directs the walk to states qt with t < rab. In substep 5.5, the walkis directed to states qt with ra < tb. Since each walk takes time O(n), the total time spent forStep 5 during one run of REDIRECT is bounded by O(j�jn2).We proceed with the proof of the partial correctness of the Mk. We start with the followingeasy observations that hold for all k � 1:1. M1 is partially correct for L� w.r.t R1 = f�g.2. The state diagram of Mk contains exactly the nodes qu for u 2 Rk, and decomposes into thepre�x-tree of Rk and additional B-edges.3. For all u 2 Rk: Mk+1(u) =Mk(u).4. If Mk+1 =Mk(r; a; s0), then Rk+1 = Rk and ck+1 > ck.5. If Mk+1 = Mk(r; a; s0) and Mk is partially correct for L� w.r.t. Rk, then Mk+1 is partiallycorrect for L� w.r.t. Rk+1.6. If Mk+1 = EXTEND(Mk; ra), then Rk+1 = Rk [frag.These observations fall short of proving the partial correctness of allMk by induction: the inductivestep is only performed for Mk+1 = Mk(r; a; s0) | see Observation 5| but not yet for Mk+1 =EXTEND(Mk; ra). Note that the partial correctness ofMk carries over toMk+1 = EXTEND(Mk; ra) ifwe can show that ra 2 R(L�) and Mk+1(ra) =M�(ra).6This bound on the length of shortest counterexamples is well known, although we do not know its origin. A proofis contained in [5], for instance. 8

We start with the proof of the latter assertion. (For technical reasons, we prove also thatck+1 � ck.)Lemma 3.4 If Mk+1 = EXTEND(Mk; ra), then Mk+1(ra) =M�(ra) and ck+1 � ck.Proof. Remember that ck decomposes into ck = raz for some z 2 �?. Thus, ck � ra. We provethe lemma separately for the cases ck > ra and ck = ra.If ck > ra, then EXTEND(M; ra) was de�ned in such a way that states qs and qra are equivalent.7 Itfollows that L(Mk) = L(Mk+1). Mk is correct on all words smaller than ck = mincex(Mk;M�), inparticular on ra. Thus, the same must hold for Mk+1 (implying ck+1 � ck).If ck = ra, then EXTEND(M; ra) was de�ned in such a way that Mk+1(ra) 6= Mk(ra). Since Mk iswrong on ra = ck = mincex(Mk;M�), Mk+1 is correct on ra. For any word w < ck = ra, the pathPMk(w) does not reach the part of the diagram that has been modi�ed by procedure EXTEND. Thus,Mk+1(w) = Mk(w) = M�(w), where the latter equality follows from w < ck = mincex(Mk;M�).Hence ck+1 > ck. �All that remains to be done is showing ra 2 R(L�). The proof for this requires the followingmonotonicity property of the sequence ck, given by Observation 4 and Lemma 3.4.Corollary 3.5 The sequence ck, k � 1, is nondecreasing.Using this monotonicity, we are able to showLemma 3.6 If Mk+1 = EXTEND(Mk; ra), then ra 2 R(L�).Proof. Let us assume for the sake of contradiction that ra =2 R(L�), i.e., there exists a wordt 2 �? satisfying t < ra and t �L� ra.Let qw denote the state visited by t in Mk. According to the visitor lemma, w � t < ra, soqr a! qw was a candidate B-edge. This B-edge was eliminated during some round j � k, becauseall candidates from C(r; a) are eliminated after round k. LetM 0 denote the DFA in round j leadingto the elimination of w in Step 2 or Step 4.4 due to counterexample c0. Hence, M 0 is either Mj(and c0 = cj) or M 0 is the TEST-DFA M 0j for B-edge qr a! qw (and c0 = c0j). We obtain c0 � cksince cj � ck and c0j � cj � ck by monotonicity. According to Lemma 3.2, c0 can be written asc0 = raz0 for some z0 2 �? and we getwz0 � tz0 < raz0 = c0 = mincex(M 0;M�) � ck = mincex(Mk;M�): (1)Hence, Mk is correct on wz0 and tz0. Since Mk cannot distinguish between t and w, we obtainM�(tz0) =Mk(tz0) =Mk(wz0) =M�(wz0): (2)According to (1), M 0 is correct on wz0, but wrong on raz0. Since M 0 cannot distinguish betweenra and w and t �L� ra, we obtainM�(tz0) =M�(raz0) 6=M 0(raz0) =M 0(wz) =M�(wz): (3)We arrived at a contradiction between (2) and (3). �Lemmas 3.4 and 3.6 imply that all hypotheses Mk, k � 1, are partially correct for L� w.r.t. Rk,which concludes the analysis of REDIRECT.7As usual, states q; q0 of a DFA M are called equivalent, if the following holds for each w 2 �?: M started in qaccepts w i� M started in q0 accepts w. 9

4 The Learning Algorithm for Leveled DFAsAn m-leveled DFA M is a DFA with the following special properties:{ State set Q is partitioned into Q0; : : : ; Qm, where Qj denotes the set of states on level j.{ Q0 = fq0g contains the initial state.{ If the DFA is in state q 2 Qj�1 and reads the j-th input symbol xj = a 2 �, it passes to aunique state �(q; a) 2 Qj for j = 1; : : : ; m.{ Qm is a non-empty subset of fq+; q�g, where q+ is accepting and q� is non-accepting.The corresponding state diagrams are leveled acyclic graphs with nodes on levels 0; : : : ; m. A wordw 2 �m is accepted if the computation path PM (w) ends in q+. All other words are rejected (inparticular all words of a length di�ering from m). Thus, L(M) is a subset of �m. Let DFAm denotethe class of all m-leveled DFAs.All concepts and results considered so far for DFAs can be transferred to m-leveled DFAs inthe obvious way. This transfer is used in the sequel without explicit mentioning.As outlined in the preceding section, general DFAs are e�ciently learnable from less than j�jn2smallest counterexamples. In this section, we will show that �(j�jn logn) smallest counterexamplesare su�cient and necessary (even with unlimited computational resources) for learning m-leveledDFAs. To demonstrate su�ciency, we design an e�cient algorithm called LEVELED-REDIRECT thatis similar to REDIRECT. The main changes are as follows:1. The hypotheses DFAs will be m-leveled. Consequently, only counterexamples of length m arereceived.2. Each round will be concerned with exactly one of the candidate sets C(r; a). C(r; a) will shrinkto either the empty set (in which case EXTEND(M; ra) is called) or a singleton set fs0g (in whichcase the B-edge starting from qr and being labeled by a will point to qs0).3. Each counterexample concerned with C(r; a) will at least halve the size of C(r; a).The next result reveals the reason why the candidate sets can be treated one after the other.The notations are as in Lemma 3.2, but here they refer to m-leveled DFAs.Lemma 4.1 Let c = mincex(M;M�), qr a! qs the �rst B-edge on PM (c), qs0 a state of M locatedat the same level as qs, M 0 =M(r; a; s0) the TEST-DFA for B-edge qr a! qs0, c0 = mincex(M 0;M�),and qr0 a0! qt the �rst B-edge on PM 0(c0).If ra is not a pre�x of c0 (i.e., if ra 6= r0a0), then ra <LEX r0a0 and s0 �L� ra.Proof. Lemma 3.2 implies that c0 > c. (Otherwise, ra must be a pre�x of c0.) Since c and c0both have length m, c < c0 implies that ra <LEX r0a0.Assume for the sake of contradiction that s0 6�L� ra. Then there exists a word z 2 �? such thatM�(s0z) 6= M�(raz). Since M 0 cannot distinguish between s0 and ra, it is wrong on either s0z orraz. This contradicts to s0z < raz < c0 = mincex(M 0;M�). �LEVELED-REDIRECT can use this lemma as follows. Whenever a TEST-DFA for B-edge qr a! qs0leads to a counterexample referring to a candidate set C(r0; a0) di�erent from C(r; a), B-edgeqr a! qs0 is correct, and C(r; a) can safely be set to singleton fs0g.Assume that Mk; Rk; ck; r; a (as de�ned within REDIRECT) are given. Next, we want to explainhow C(r; a) can be halved per counterexample. REDIRECT used Lemma 3.1 and 3.2 to perform asort of \exhaustive search" for the correct candidate in C(r; a). Each counterexample led to the10

elimination of one candidate only. It is a straightforward idea to use \binary search" instead. Forthis purpose, we de�ne in the sequel a carefully selected candidate s(C(r; a)) which is either corrector leads to the simultaneous removal of all elements from a set E(C(r; a)) containing at least half ofthe former candidates. Since the operators for selection and elimination are de�ned (and computed)recursively in the sequel, the following de�nitions refer to an arbitrary set C � C(r; a):1. D(C) := fd 2 �?j 9s1; s2 2 C :M(r; a; s1)(d) 6=M(r; a; s2)(d)g.2. C is called homogenous if D(C) = ;, and heterogenous otherwise.3. For heterogenous C, we de�ne d(C) := minD(C), i.e., d(C) is the smallest word on which atleast two of the TEST-DFAs disagree. For homogenous C, we de�ne d(C) := 1 by default(where 1 represents an \in�nite word" greater than any word from �?).4. Word d(C) leads to the following partition of C into C0 and C1.Ci := fs0 2 Cj M(r; a; s0)(d(C)) = ig; i = 0; 1:Denote by CMAJ the bigger-one of the two sets (say C0 if there is a tie), and by CMIN theother-one.5. The selection operator is given recursively bys(C) := (minC; if C is homogenous;s(CMAJ); otherwise.6. Let M 0 = M(r; a; s(C)) and c0 = mincex(M 0;M�). Assume that c0 has pre�x ra. Then theelimination operator is given recursively byE(C) := 8><>: C; if c0 < d(C);CMAJ; if c0 = d(C);CMIN [E(CMAJ); if c0 > d(C).It follows inductively from the recursive de�nition that jE(C)j � 12 jCj. (In particular, E(C) = Cif C is homogenous.) The \binary search"paradigm is therefore established by the following resultstating that all elements in E(C) may be blamed for getting counterexample c0.Lemma 4.2 1. If C is heterogenous, then ra is a pre�x of d(C).2. If ra is pre�x of c0, then t 6�L� ra for all t 2 E(C).Proof.1. Pick s1 and s2 from C such that d(C) = mincex(M1;M2). where M1 = M(r; a; s1) andM2 = M(r; a; s2). Obviously, the computation path PM1(d(C)) contains B-edge qr a! qs1 . Itremains to show that this B-edge is the �rst B-edge on the path. Since M1 is partially correctfor L(M2), we may apply Lemma 3.1 identifying M by M1 and M� by M2. We get that the�rst B-edge on PM1(d(C)) is wrong, i.e., this B-edge is not contained in M2. The only B-edgenot contained in M2 is qr a! qs1 , yielding the claim.2. If c0 < d(C), then c0 =2 D(C). Thus c0 is a smallest counterexample for each M(r; a; t) witht 2 C. Since ra is pre�x of c0, Lemma 3.1 yields t 6�L� ra for all t 2 C.If c0 = d(C), then M 0 votes on c0 as the majority of all TEST-DFAs. Thus c0 is a smallestcounterexample not only for M 0, but for all M(r; a; t) with t 2 CMAJ. Again, Lemma 3.1applies. This time, it yields t 6�L� ra for all t 2 CMAJ.11

If c0 > d(C), then M 0 is correct on d(C). Thus d(C) is a smallest counterexample for eachM(r; a; t) with t 2 CMIN. Since d(C) has pre�x ra, Lemma 3.1 applies again. Now, it yieldst 6�L� ra for all t 2 CMIN. Furthermore, t 6�L� ra for all t 2 E(CMAJ) follows inductively. �The initialization of LEVELED-REDIRECT is performed analogously to the starting phase ofREDIRECT. This time we �nd a �rst partially correct m-leveled DFA M1 using the m-leveled DFAM01 and M11 shown in Figure 5.
q

0m

q

q
1
0

0

00

q

0

0

0

0

1

1

1

1

.....

q

q

0m

q
M

0

00

q

0

0

0

0

1

1

1

1

.....

M 1
1

Figure 5: Initial m-leveled DFAs M01 and M11 for � = f0; 1g.An arbitrary round k of algorithm LEVELED-REDIRECT is similarly structured as the correspond-ing round in REDIRECT. For this reason, we restrict ourselves to stress the main di�erences:{ The former Step 4.1 is replaced by s0 s(C(r; a)), i.e., the next candidate B-edge is determinedby the selection operator.{ The former Step 4.4 is replaced byif ra is pre�x of c0k then eliminate all elements of E(C(r; a)) from C(r; a)else SAMEROUND FALSE.Hence, we treat C(r; a) completely in one round, and halve it per counterexample.{ The updates in Step 5 are adapted to m-leveled DFAs. In the else-part (i.e., if ra is not pre�xof c0), we add the command C(r; a) fs0g. This re
ects that B-edge qr a! qs0 is known to becorrect in this case.We note that the selection and elimination operator allow, even in the case of unleveled DFAs, tohalve one of the candidate sets per smallest counterexample. The problem with unleveled DFAsis that Lemma 4.1 does not hold. Thus, iterated halving of a set C(r; a) and the insertion of upto n elements in C(r; a) are possibly interleaved. This may cause linear in n many halvings. (Forthis reason, REDIRECT uses the simpler exhaustive search paradigm.) Because of Lemma 4.1,REDIRECT is not faced with this problem. When candidate set C(r; a) is shrunken to the emptyor a singleton set during one round, no later round will cause insertions into C(r; a). From theseconsiderations, we obtainTheorem 4.3 LEVELED-REDIRECT learnsM� in polynomial time from at most j�jn log(n)(1+o(1))smallest counterexamples. 12

We brie
y describe how LEVELED-REDIRECT can be implemented such as to run in time pro-portional to j�j2mn3. We use the same data structure as for REDIRECT to represent the actualhypothesis Mk . Obviously, it is su�cient to show that the total run time, spent for the recursiveevaluations of the selection and elimination operator, is bounded by O(j�j2mn3). Since there arej�jn rounds, each round being concerned with a speci�c candidate set C(r; a), the problem boilsdown to showing that the recursive evaluations during one round have time bound O(j�jmn2).Towards this end, we consider the call of selection operator s on C � C(r; a). (The analysis ofcall E(C) is similar.) C is stored as list of pointers (pointing to states qs for s 2 C). Let K denotethe cardinality of C and N(K) the number of steps needed to compute s(C). It is easy to showthat, for each s 2 C, the following holds:d(C) = mint2C fmincex(Mk(r; a; s);Mk(r; a; t))g:Hence, we have to �nd the minimum of K smallest counterexamples between TEST-DFAs in orderto compute d(C). If we adapt a procedure, presented in [5] for the corresponding problem onOBDDs, it is possible to compute each counterexample in time proportional to j�jm. Hence afterat most O(j�jmK) steps, we either know that C is homogenous (which stops the recursion) or wecan use d(C) to compute CMAJ of cardinality at most K � 1 and enter the next level of recursion.Since CMAJ is easy to compute from d(C), we get the recursionN(K) � �1j�jmK +N(K � 1); N(1) = �2for constants �1; �2. Obviously, N(K) = O(j�jmK2). We note without proof that the recursiveevaluation of E(C) has the same time bound.During one round, candidate set C(r; a) is iteratively halved. Before each halving, the operatorss and E are applied to C(r; a). In the beginning of a round, the cardinality of C(r; a) is at most n.The recursive calls are therefore initiated on sets of sizes n; n2 ; n4 ; : : :. It follows that the total timespent in one round is bounded byO(j�jmn2) � 12 + �12�2 + �14�2 + � � �! ;which is proportional to j�jmn2 (as desired).We close this section by showing that any learning algorithm for leveled DFAs requires at least
(j�jn logn) smallest counterexamples. (Thus, LEVELED-REDIRECT is optimal in this respect.) Onthe way to this result, we prove a general lower bound in terms of a combinatorial dimensionassociated with the target class. Then we apply this result to the class of DFAs with at most nstates and input alphabet �.Let F be a class of functions of the form f : X ! f0; 1g, where X is a linearly ordered domain.We say that a �nite set S � X is SC-shattered8 by F , if F contains 2jSj functions that are pairwisedi�erent on S, but coincide on X<S := fx 2 X n S j x < maxSg. Note that these functions canrealize each binary output pattern on S. The SC-dimension9 of F is de�ned as follows:SCdim(F) := supf d j 9S � X : jSj = d and S is SC-shattered by Fg:We show the following general lower bound:8SC stands for \Smallest Counterexamples".9The reader, familiar with the theory of Vapnik and Chervonenkis (see [12]), will notice the similarity betweenthe SC-dimension and the VC-dimension. In general, SCdim(F) �VCdim(F).13

Lemma 4.4 Each learning algorithm for F requires at least SCdim(F) smallest counterexamples.Proof. Let S be an SC-shattered set of size d, F0 � F the set containing the 2d SC-shatteringfunctions for S, and v(x) 2 f0; 1g their common value on a point x 2 X<S . The lower bound isobvious from the following \adversary-argument":Let s1 < s2 < � � � < sd denote the ordered sequence of elements from S. The strategy of theadversary is to present s1; s2; : : : ; sd (in this order) as smallest counterexamples. When si is pre-sented, the value of the target function on si is revealed, but still all values on si+1; : : : ; sd areconceivable. The mistakes on s1; : : : ; sd are therefore not avoidable. This strategy can be slightlydisturbed by a hypothesis h with an \additional" mistake on an sj , j � i, already presented, oron an element s < si+1; s =2 S. Now the adversary presents the smallest point smin on which hmakes an additional mistake. In case of smin = sj , the learner does not gain information. In caseof smin =2 S, the learner only comes to know value v(smin) being common for all functions in F0.Thus, the additional mistakes do not restrict the variability of the adversary on si+1; : : : ; sd. �Lemma 4.5 The SC-dimension d(n;�) of the class of DFAs (leveled or unleveled) with at most nstates and input alphabet � has a lower and an upper bound of the following form:14 j�jn log(n)(1� o(1)) � d(n;�) � j�jn log(n)(1 + o(1)):Proof. The upper bound j�jn log(n)(1 + o(1)) follows from the fact that SC-dim(F) � log jFjand from counting the number N(n;�) = n2nnnj�jof unleveled DFAs (which are more powerful than the leveled-ones, and represent a larger functionclass therefore).The lower bound follows from showing that the setS = f0; 1glogn�f0; 1glog(logn�log logn)is SC-shattered by leveled DFAs of less than 4n states. A word w from S has the form w = sat,where s is a binary word of length log n, a is an arbitrary letter, and t is a binary word of lengthlog(logn� log logn). It is convenient to represent a binary output pattern on S as a collection of j�jbinary matrices with n rows and m = logn � log logn columns, respectively. Given w = sat 2 S,we obtain the corresponding output bit from entry (s; t) of the matrixMa associated with lettera. We now show that an arbitrary collection (Ma)a2� of such matrices can be realized by a leveledDFA M with less than 4n states. Figure 6 shows the structure of the transition diagram D.We describe the resulting computation on a correctly formed input w = sat 2 S:Diagram D starts with a complete binary tree of depth logn with 2n � 1 nodes and n leaves.The leaves are in one-to-one correspondence to the possible pre�ces s of w. In other words: whenreaching a leaf, s is stored in the �nite control. NowM reads letter a. At this moment, it perfectlyknows the relevant matrix Ma, and the relevant row s. The remainder of the computation doesonly depend on the binary pattern in row s of matrix Ma. Instead of storing (s; a) in the �nitecontrol, it is more economical to store the binary pattern of the row. Consequently, the next levelin D contains 2m = n= logn nodes, which is precisely the number of binary patterns of lengthm = logn � log log n. Each of these n= logn nodes is the root of a complete binary tree of depthlogm. When M reaches a leaf in one of these trees, it has stored su�x t (and still the relevant14

\ {0,1}

\ {0,1}

q-
q+

....

s

a

t

.

.

.

.

.

Rejection Path

. . .

Figure 6: State diagram D for the proof of Lemma 4.5. The path for an input word w = sat 2 Sthrough D is displayed accentuated.
15

binary pattern p 2 f0; 1gm) in its �nite control, and can select and output the correct bit.If the input word w has not the correct form, i.e., w = sat =2 S, either s or t contains a digitdi�erent from 0 and 1. In this case, diagram D feds the computation path into a \rejection path",which assigns default value 0 to each w =2 S. The number of nodes in diagram D is easily seen tobe less than 4n. This shows that S is SC-shattered by the class of leveled DFAs with less than 4nstates. �A similar result was shown recently in [9] for the VC-dimension of the class of arbitrary DFAswith at most n states and input alphabet �. Our lower bound is stronger for two reasons. First, itapplies to leveled DFAs. Second, it applies to the SC-dimension which is smaller, in general, thanthe VC-dimension. Besides that, our proof is much simpler.We have shown that �(j�jn logn) smallest counterexamples are necessary and su�cient to learnleveled DFAs. For unleveled DFAs, we leave the gap between the lower bound 14 j�jn log(n)(1�o(1))and the upper bound j�jn2 (achieved by REDIRECT) as an object of future research.References[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, 27:509{516, 1978.[2] Dana Angluin. Learning regular sets from queries and counterexamples. Information andComputation, 75:87{106, 1987.[3] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319{342, 1988.[4] Dana Angluin. Negative results for equivalence queries. Machine Learning, 5:121{150, 1990.[5] Andreas Birkendorf and Hans Ulrich Simon. Using computational learning strategies as a toolin combinatorial optimization. To appear in Annals of Mathematics and Arti�cial Intelligenceand presented at the 4th International Symposium on Arti�cial Intelligence and Mathematics,1996.[6] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACMComputing Surveys, 24(3):293{318, 1992.[7] John E. Hopcroft and Je�rey D. Ullman. Formal Languages and their Relation to Automata.Addison Wesley, 1969.[8] Oscar H. Ibarra and Tao Jiang. Learning regular languages from counterexamples. Journal ofComputer and System Sciences, 43:299{316, 1991.[9] Yoshiyasu Ishigami and Sei'ichi Tani. VC-dimensions of �nite automata and commutative�nite automata with k letters and n states. Discrete Applied Mathematics, 74:123{134, 1997.[10] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell SystemsTechnical Journal, 38:985{999, 1959.[11] Ronald L. Rivest and Robert E. Schapire. Inference of �nite automata using homing sequences.Information and Computation, 103(2):299{347, 1993.[12] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies ofevents to their probabilities. Theor. Probability and Appl., 16(2):264{280, 1971.16

