
E�cient Learning of Linear PerceptronsShai Ben-DavidDepartment of Computer ScienceTechnionHaifa 32000, Israelshai@cs.technion.ac.il Hans Ulrich SimonFakult�at f�ur MathematikRuhr Universit�at BochumD-44780 Bochum, Germanysimon@lmi.ruhr-uni-bochum.deAbstractWe consider the existence of e�cient algorithms for learning theclass of half-spaces in <n in the agnostic learning model (i.e., mak-ing no prior assumptions on the example-generating distribution).The resulting combinatorial problem - �nding the best agreementhalf-space over an input sample - is NP hard to approximate towithin some constant factor. We suggest a way to circumvent thistheoretical bound by introducing a new measure of success for suchalgorithms. An algorithm is �-margin successful if the agreementratio of the half-space it outputs is as good as that of any half-spaceonce training points that are inside the �-margins of its separatinghyper-plane are disregarded. We prove crisp computational com-plexity results with respect to this success measure: On one hand,for every positive �, there exist e�cient (poly-time) �-margin suc-cessful learning algorithms. On the other hand, we prove thatunless P=NP, there is no algorithm that runs in time polynomialin the sample size and in 1=� that is �-margin successful for all� > 0.1 IntroductionWe consider the computational complexity of learning linear perceptrons for arbi-trary (i.e. non -separable) data sets. While there are quite a few perceptron learningalgorithms that are computationally e�cient on separable input samples, it is clearthat `real-life' data sets are usually not linearly separable. The task of �nding a lin-ear perceptron (i.e. a half-space) that maximizes the number of correctly classi�edpoints for an arbitrary input labeled sample is known to be NP-hard. Furthermore,even the task of �nding a half-space whose success rate on the sample is withinsome constant ratio of an optimal one is NP-hard [1].A possible way around this problem is o�ered by the support vector machinesparadigm (SVM) . In a nutshell, the SVM idea is to replace the search for a linearseparator in the feature space of the input sample, by �rst embedding the sampleinto a Euclidean space of much higher dimension, so that the images of the samplepoints do become separable, and then applying learning algorithms to the imageof the original sample. The SVM paradigm enjoys an impressive practical success,however, it can be shown ([3]) that there are cases in which such embeddings are



bound to require high dimension and allow only small margins, which in turn entailsthe collapse of the known generalization performance guarantees for such learning.We take a di�erent approach. While sticking with the basic empirical risk mini-mization principle, we propose to replace the worst-case-performance analysis by analternative measure of success. The common de�nition of the approximation ratioof an algorithm, requires the pro�t of an algorithm to remain within some �xedratio from that of an optimal solution for all inputs, we allow the relative qualityof our algorithm to vary between di�erent inputs. For a given input sample, thenumber of points that the algorithm's output half-space should classify correctlyrelates not only to the success rate of the best possible half-space, but also to therobustness of this rate to perturbations of the hyper-plane. This new success re-quirement is intended to provide a formal measure that, while being achievable bye�cient algorithms, retains a guaranteed quality of the output `whenever possible'.The new success measure depends on a margin parameter �. An algorithm iscalled �-margin successful if, for any input labeled sample, it outputs a hypothesishalf-space that classi�es correctly as many sample points as any half-space canclassify correctly with margin � (that is, discounting points that are too close tothe separating hyper-plane).Consequently, a �-margin successful algorithm is required to output a hypothesiswith close-to-optimal performance on the input data (optimal in terms of the num-ber of correctly classi�ed sample points), whenever this input sample has an optimalseparating hyper-plane that achieves larger-than-� margins for most of the pointsit classi�es correctly. On the other hand, if for every hyper-plane h that achievesclose-to-maximal number of correctly classi�ed input points, a large percentage ofthe correctly classi�ed points are close to h's boundary, then an algorithm can settlefor a relatively poor success ratio without violating the �-margin success criterion.We obtain a crisp analysis of the computational complexity of perceptron learningunder the �-margin success requirement:On one hand, for every � > 0 we present an e�cient �-marginsuccessful learning algorithm (that is, an algorithm that runs intime polynomial in both the input dimension and the sample size).On the other hand, unless P=NP, no algorithmwhose running timeis polynomial in the sample size and dimension and in 1=� can be�-margin successful for all � > 0.Note, that by the hardness of approximating linear perceptrons result of [1] citedabove, for � = 0, �-margin learning is NP hard (even NP-hard to approximate).We conclude that the new success criterion for learning algorithms provides a rigor-ous success guarantee that captures the constraints imposed on perceptron learningby computational e�ciency requirements.It is well known by now that margins play an important role in the analysis of genera-lization performance (or sample complexity). The results of this work demonstratethat a similar notion of margins is a signi�cant component in the determination ofthe computational complexity of learning as well.Due to lack of space, in this extended abstract we skip all the technical proofs.



2 De�nition and NotationWe shall be interested in the problem of �nding a half-space that maximizes theagreement with a given labeled input data set. More formally,Best Separating Hyper-plane (BSH) Inputs are of the form (n; S), where n �1, and S = f(x1; �1); : : : ; (xm; �m)g is �nite labeled sample, that is, each xiis a point in <n and each �i is a member of f+1;�1g. A hyper-plane h(w; t),where w 2 <n and t 2 <, correctly classi�es (x; �) if sign(< wx > �t) = �where < wx > denotes the dot product of the vectors w and x.We de�ne the pro�t of h = h(w; t) on S aspro�t(hjS) = jf(xi; �i) : h correctly classi�es (xi; �i)gjjSjThe goal of a Best Separating Hyper-plane algorithm is to �nd a pair (w; t)so that pro�t(h(w; t)jS) is as large as possible.In the sequel, we refer to an input instance with parameter n as a n-dimensionalinput.On top of the Best Separating Hyper-plane problem we shall also refer to the fol-lowing combinatorial optimization problems:Best separating Homogeneous Hyper-plane (BSHH) { The same problemas BSH, except that the separating hyper-plane must be homogeneous,that is, t must be set to zero. The restriction of BSHH to input points fromSn�1, the unit sphere in <n, is called Best Separating Hemisphere Problem(BSHem) in the sequel.Densest Hemisphere (DHem) Inputs are of the form (n; P ), where n � 1 andP is a list of (not necessarily di�erent) points from Sn�1 - the unit spherein <n. The problem is to �nd the Densest Hemisphere for P , that is, aweight vector w 2 <n such that H+(w; 0) contains as many points from Pas possible (accounting for their multiplicity in P ).Densest Open Ball (DOB) Inputs are of the form (n; P ), where n � 1, and Pis a list of points from <n. The problem is to �nd the Densest Open Ball ofradius 1 for P , that is, a center z 2 <n such that B(z; 1) contains as manypoints from P as possible (accounting for their multiplicity in P ).For the sake of our proofs, we shall also have to address the following well studiedoptimization problem:MAX-E2-SAT Inputs are of the form (n;C), where n � 1 and C is a collection of2-clauses over n Boolean variables. The problem is to �nd an assignmenta 2 f0; 1gn satisfying as many 2-clauses of C as possible.More generally, a maximization problem de�nes for each input instance I a setof legal solutions, and for each (instance, legal-solution) pair (I; �), it de�nespro�t(I; �) 2 <+ { the pro�t of � on I .For each maximization problem � and each input instance I for �, opt�(I) denotesthe maximum pro�t that can be realized by a legal solution for I . Subscript � isomitted when this does not cause confusion. The pro�t realized by an algorithm Aon input instance I is denoted by A(I). The quantityopt(I)�A(I)opt(I)



is called the relative error of algorithm A on input instance I . A is called �-approximation algorithm for �, where � 2 <+, if its relative error on I is at most �for all input instances I .2.1 The new notion of approximate optimization: �-marginapproximationAs mentioned in the introduction, we shall discuss a variant of the above commonnotion of approximation for the best separating hyper-plane problem (as well as forthe other geometric maximization problems listed above). The idea behind this newnotion, that we term `�-margin approximation', is that the required approximationrate varies with the structure of the input sample. When there exist optimal solu-tions that are `stable', in the sense that minor variations to these solutions will note�ect their cost, then we require a high approximation ratio. On the other hand,when all optimal solutions are `unstable' then we settle for lower approximationratios.The following de�nitions focus on separation problems, but extend to densest setproblems in the obvious way.De�nition 2.1 Given a hypothesis class H = [nHn, where each Hn is a collectionof subsets of <n, and a parameter � � 0,� A margin function is a function M : [n(Hn � <n) 7! <+. That is, givena hypothesis h � <n and a point x 2 <n, M(h; x) is a non-negative realnumber - the margin of x w.r.t. h. In this work, in most cases M(h; x)is the Euclidean distance between x and the boundary of h, normalized byjjxjj2 and, for linear separators, by the 2-norm of the hyper-plane h as well.� Given a �nite labeled sample S and a hypothesis h 2 Hn, the pro�t realizedby h on S with margin � ispro�t(hjS; �) = jf(xi; �i) : h correctly classi�es (xi; �i) and M(h; xi) � �gjjSj� For a labeled sample S, let opt�(S) def= maxh2H(pro�t(hjS; �))� h 2 Hn is a �-margin approximation for S w.r.t. H if pro�t(hjS) �opt�(S).� an algorithm A is �-successful for H if for every �nite n-dimensional inputS it outputs A(S) 2 Hn which is a �-margin approximation for S w.r.t. H.� Given any of the geometric maximization problem listed above, �, its �-relaxation is the problem of �nding, for each input instance of � a �-marginapproximation. For a given parameter � > 0, we denote the �-relaxationof a problem � by �[�].3 E�cient � - margin successful learning algorithmsOur Hyper-plane learning algorithm is based on the following result of Ben-David,Eiron and Simon [2]Theorem 3.1 For every (constant) � > 0, there exists a �-margin successful poly-nomial time algorithm A� for the Densest Open Ball Problem.



We shall now show that the existence of a �-successful algorithm for Densest OpenBalls implies the existence of �-successful algorithms for Densest Hemispheres andBest Separating Homogeneous Hyper-planes. Towards this end we need notions ofreductions between combinatorial optimization problems. The �rst de�nition, ofa cost preserving polynomial reduction, is standard, whereas the second de�nitionis tailored for our notion of �-margin success. Once this, somewhat technical,preliminary stage is over we shall describe our learning algorithms and prove theirperformance guarantees.De�nition 3.2 Let � and �0 be two maximization problems. A cost preservingpolynomial reduction from � to �0, written as ��cppol�0 consists of the followingcomponents:� a polynomial time computable mapping which maps input instances of � toinput instances of �0, so that whenever I is mapped to I 0, opt(I 0) � opt(I).� for each I, a polynomial time computable mapping which maps each legalsolutions �0 for I 0 to a legal solution � for I having the same pro�t that �0.The following result is evident:Lemma 3.3 If ��cppol�0 and there exists a polynomial time �-approximation algo-rithm for �0, then there exists a polynomial time �-approximation algorithm for�.Claim 3.4 BSH�cppolBSHH�cppolBSHem�cppolDHem.Proof Sketch: By adding a coordinate one can translate hyper-planes to homoge-neous hyper-planes (i.e., hyper-planes that pass through the origin). To get from thehomogeneous hyper-planes separating problem to the best separating hemisphereproblem, one applies the standard scaling trick. To get from there to the densesthemisphere problem, one applies the standard reection trick. �We are interested in �-relaxations of the above problems. We shall therefore in-troduce a slight modi�cation of the de�nition of a cost-preserving reduction whichmakes it applicable to �-relaxed problems.De�nition 3.5 Let � and �0 be two geometric maximization problems, and�; �0 > 0. A cost preserving polynomial reduction from �[�] to �0[�0], writtenas �[�]�cppol�0[�0], consists of the following components:� a polynomial time computable mapping which maps input instances of �to input instances of �0, so that whenever I is mapped to I 0, opt�0(I 0) �opt�(I).� for each I, a polynomial time computable mapping which maps each legalsolutions �0 for I 0 to a legal solution � for I having the same pro�t that �0.The following result is evident:Lemma 3.6 If �[�]�cppol�0[�0] and there exists a polynomial time �-margin suc-cessful algorithm for �, then there exists a polynomial time �0-margin successfulalgorithm for �0.



Claim 3.7 For every � > 0, BSH[�]�cppolBSHH[�]�cppolBSHem[�]�cppolDHem[�].To conclude our reduction of the Best Separating Hyper-plane problem to the Dens-est open Ball problem we need yet another step.Lemma 3.8 For � > 0, let �0 = 1�p1� �2 and �00 = �2=2. Then,DHem[�]�cppolDOB[�0]�cppolDOB[�00]The proof is a bit technical and is deferred to the full version of this paper.Applying Theorem 3.1 and the above reductions, we therefore get:Theorem 3.9 For each (constant) � > 0, there exists a �-successful polynomialtime algorithm A� for the Best Separating Hyper-plane problem.Clearly, the same result holds for the problems BSHH, DHem and BSHem as well.Let us conclude by describing the learning algorithms for the BSH (or BSHH)problem that results from this analysis.We construct a family (Ak)k2N of polynomial time algorithms. Given a labeledinput sample S, the algorithm Ak exhaustively searches through all subsets of S ofsize� k. For each such subset, it computes a hyper-plane that separates the positivefrom the negative points of the subset with maximummargin (if a separating hyper-plane exists). The algorithm then computes the number of points in S that eachof these hyper-planes classi�es correctly, and outputs the one that maximizes thisnumber.In [2] we prove that our Densest Open Ball algorithm is �-successful for � =1=pk � 1 (when applied to all k-size subsamples). Applying Lemma 3.8, we mayconclude for problem BSH that, for every k, Ak is (4=(k�1))1=4-successful. In otherwords: in order to be �-successful, we must apply algorithm Ak for k = 1+ d4=�4e.4 NP-Hardness ResultsWe conclude this extended abstract by proving some NP-hardness results that com-plement rather tightly the positive results of the previous section. We shall baseour hardness reductions on two known results.Theorem 4.1 [H�astad, [4]] Assuming P6=NP, for any � < 1=22, there is nopolynomial time �-approximation algorithm for MAX-E2-SAT.Theorem 4.2 [Ben-David, Eiron and Long, [1]] Assuming P6=NP, for any� < 3=418, there is no polynomial time �-approximation algorithm for BSH.Applying Claim 3.4 we readily get:Corollary 4.3 Assuming P6=NP, for any � < 3=418, there is no polynomial time�-approximation algorithm for BSHH;BSHem, or DHem.So far we discussed �-relaxations only for a value of � that was �xed regardlessof the input dimension. All the above discussion extends naturally to the case ofdimension-dependent margin parameter. Let �� denote a sequence (�1; : : : ; �n; : : : ).For a problem �, its ��-relaxation refers to the problem obtained by considering themargin value �n for inputs of dimension n. A main tool for proving hardness is



the notion of ��-legal input instances. An n-dimensional input sample S is called��-legal if the maximal pro�t on S can be achieved by a hypothesis h� that satis�espro�t(h�jS) = pro�t(h�jS; �n). Note that the ��-relaxation of a problem is NP-hard, if the problem restricted to ��-legal input instances is NP-hard.Using a special type of reduction, that due to space constrains we cannot elaboratehere, we can show that Theorem 4.1 implies the following:Theorem 4.4 1. Assuming P6=NP, there is no polynomial time 1=198-approximation for BSH even when only 1=p36n-legal input instances areallowed.2. Assuming P6=NP, there is no polynomial time 1=198-approximation forBSHH even when only 1=p45(n+ 1)-legal input instances are allowed.Using the standard cost preserving reduction chain from BSHH via BSHem toDHem, and noting that these reductions are obviously margin-preserving, we getthe following:Corollary 4.5 Let S be one of the problems BSHH, BSHem, or DHem, and let ��be given by �n = 1=p45(n+ 1). Unless P=NP, there exists no polynomial time1=198-approximation for S[��]. In particular, the ��-relaxations of these problems areNP-hard.Since the 1=p45(n+ 1)-relaxation of the Densest Hemisphere Problem isNP-hard,applying Lemma 3.8 we get immediatelyCorollary 4.6 The 145(n+1) -relaxation of the Densest Ball Problem is NP-hard.Finally note that Corollaries 4.4, 4.5 and 4.6 rule out the existence of \strongschemes" (A�) with running time of A� being also polynomial in 1=�.References[1] Shai Ben-David, Nadav Eiron, and Philip Long. On the di�culty of approxi-mately maximizing agreements. Proceedings of the Thirteenth Annual Confer-ence on Computational Learning Theory (COLT 2000), 266-274.[2] Shai Ben-David, Nadav Eiron, and Hans Ulrich Simon. The computationalcomplexity of densest region detection. Proceedings of the Thirteenth AnnualConference on Computational Learning Theory (COLT 2000), 255-265.[3] Shai Ben-David, Nadav Eiron, and Hans Ulrich Simon. Non-embedability inEuclidean Half-Spaces. Technion TR, 2000.[4] Johan H�astad. Some optimal inapproximability results. In Proceedings of the29th Annual Symposium on Theory of Computing, pages 1{10, 1997.


