
Hierarchical Design of
Fast Minimum Disagreement Algorithms

Malte Darnstädt, Christoph Ries and Hans Ulrich Simon

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum
{malte.darnstaedt,christoph.ries,hans.simon}@rub.de

Abstract. We compose a toolbox for the design of Minimum Disagree-
ment algorithms. This box contains general procedures which transform
(without much loss of efficiency) algorithms that are successful for some
d-dimensional (geometric) concept class C into algorithms which are suc-
cessful for a (d+ 1)-dimensional extension of C. An iterative application
of these transformations has the potential of starting with a base algo-
rithm for a trivial problem and ending up at a smart algorithm for a
non-trivial problem. In order to make this working, it is essential that
the algorithms are not proper, i.e., they return a hypothesis that is not
necessarily a member of C. However, the “price” for using a super-class
H of C is so low that the resulting time bound for achieving accuracy ε
in the model of agnostic learning is significantly smaller than the time
bounds achieved by the up to date best (proper) algorithms.
We evaluate the transformation technique for d = 2 on both artificial
and real-life data sets and demonstrate that it provides a fast algorithm,
which can successfully solve practical problems on large data sets.

1 Introduction

In this paper, we are concerned with the Minimum Disagreement problem (some-
times also called Maximum Weight problem) associated with a family C of sets
over some domain X : given a sequence S = [(x1, w1), . . . , (xn, wn)] ∈ (X × R)n
of points in X along with their weights, find a set C ∈ C whose total weight
WS(C) :=

∑
i:xi∈C wi is as large as possible. Note that WS(C) is maximized iff

ES(C) :=
∑

i:wi>0,xi /∈C

wi −
∑

i:wi<0,xi∈C
wi

is minimized. In learning theory, ES(C) is called the empirical error of C on S,
and this term plays a central role in statistical learning theory, especially in the
model of agnostic learning [10].

Although the Minimum Disagreement problem is intractable for a wide va-
riety of classes [12, 10], it has been noticed by several researchers in an early
stage of learning theory already that relatively simple and low-dimensional clas-
sification rules (e.g. axis-parallel rectangles [17, 18, 16], unions of intervals [9], or
2-level decision trees [1]) can be quite successful on benchmark data provided

2 Malte Darnstädt, Christoph Ries and Hans Ulrich Simon

that these rules are given in terms of the (few) most relevant attributes. For
this reason a couple of algorithms have been developed which solve the Mini-
mum Disagreement problem w.r.t. some simple classes and run in polynomial
time [11, 1, 5, 2].

It seems that efficient algorithms for the Minimum Disagreement problem
have been found in the past mainly for geometric classes of a relatively low di-
mension d. The run-time of these algorithms usually exhibits an exponential de-
pendence on d. Moreover, improving on the currently best time bounds does not
appear to be an easy job. For instance, the algorithm from [11] solves the Min-
imum Disagreement problem for axis-parallel rectangles in time1 O(n2 log(n)).
It was not until recently [2] that a faster algorithm has been found (time O(n2)
in case of axis-parallel rectangles or, more generally, time O(nd) in case of d-
dimensional axis-parallel hyper-rectangles). Thus, one may easily get the im-
pression that the early attempts of designing efficient Minimum Disagreement
algorithms got stuck, and even modest improvements on the existing time bounds
are not easy to obtain.

One means of escape from the marshy grounds of intractability is opened up
by the usage of convex surrogate loss functions at the place of the discrete loss
function underlying the Minimum Disagreement problem. This option is taken,
for instance, by the Support Vector Machine [14, 13]. In this paper, we investigate
another relaxation of the original problem: instead of searching for a set C ∈ C
with the smallest possible value of ES(C), we bring suitably chosen classes H
into play and search for a set H ∈ H such that ES(H) ≤ minC∈C ES(C). While
this approach is well known in the context of Boolean classes [12] and standard
in the theory of agnostic learning [10], it is apparently not exploited to full extent
in the context of geometric classes. Here is a short summary of our approach:

– We make use of the clever data structures that have been invented in the past
in order to solve the Minimum Disagreement problem for low-dimensional
geometric classes. We observe that these data structures naturally lead to
the concept of “flexible” algorithms. Here, “flexibility” means that the under-
lying data structure can easily be updated in reaction to a modified weight
parameter.

– We show that a flexible algorithm which solves the Minimum Disagreement
problem for two d-dimensional classes, say C and H, can be transformed
(without much loss of efficiency) into a new flexible algorithm which solves
the Minimum Disagreement problem for two (more expressive) (d + 1)-
dimensional classes. An iterative application of these transformations has
the potential of starting with a base algorithm for a trivial problem and
ending up at a smart algorithm for a non-trivial problem.

– By a suitable choice of the class H, we obtain algorithms which achieve an
accuracy of ε in the model of agnostic learning considerably faster than the
best currently known algorithms do. For instance, we obtain a (non-proper)
algorithm that agnostically learns axis-parallel rectangles in time Õ(1/ε2)

1 The machine model used throughout the paper is a random-access machine with
unit costs (even on real arithmetic).

Hierarchical Design of Fast Minimum Disagreement Algorithms 3

while the learning procedure based on the up to date fastest proper algorithm
from [2] needs time Õ(1/ε4). In this paper, Õ is defined as Landau’s O but
additionally hides factors logarithmic in its argument and the dependency
on confidence parameter δ.

It should be mentioned that fragments of our approach heavily builds on existing
work [11, 5]; in particular, the employed data structures are a variant of Segment
Trees2 [3]. But it seems to be the combination of three factors—data structures
that provide flexibility, iteratively applicable transformations, clever choice of
the class H—which generates a surprising amount of additional horse power.

2 Definitions, Notations and Facts

Let X be a set. In the parlance of learning theory, any subset of X is called
a concept over the domain X or, alternatively, a hypothesis over X . A family
of concepts (resp. hypotheses) over X is called a concept class (resp. hypothesis
class) over X . A sequence of the form S = [(x1, w1), . . . , (xn, wn)] ∈ (X × R)n
is called a weighted sample over X . We will assume throughout the paper that
the domain X is equipped with a linear ordering and that S is ordered so that
x1 ≤ . . . ≤ xn.

Intuitively, a concept C “performs well” on a weighted sample S if it includes
the points of S with a positive weight and excludes the points in S with a negative
weight. The empirical error of C on S, denoted ES(C) and already defined in
Section 1, measures to which extent the concept C does not perform well.

Let C and H be two classes over the same domain X . The Minimum Dis-
agreement problem for C and H is denoted by MinDis(C,H) in the sequel. Recall
from Section 1 that it is the following problem: given a sorted weighted sample
S, find a hypothesis H ∈ H such that H does not perform worse on S than the
best concept in C does, i.e., ES(H) ≤ minC∈C ES(C).

Let P(k) denote the family of all ordered partitions of the reals into k
non-empty intervals, i.e., P(k) consists of all k-tuples (I1, . . . , Ik) such that
I1, . . . , Ik ⊆ R are pairwise disjoint non-empty intervals whose union equals
R, and the right endpoint of Ij coincides with the left endpoint of Ij+1 for
j = 1, . . . , k − 1. For instance ((−∞, 0), [0, 10), [10,∞)) is a member of the fam-
ily P(3).

Analogously, let P ′(k) denote the family of all ordered partitions of some
bounded non-empty interval of the reals into k consecutive non-empty sub-
intervals. For instance, ([−10, 0), [0, 10), [10, 20)) is a member of the family P ′(3).

A sub-interval [c, d] of [a, b] is said to be left-aligned (resp. right-aligned)
in [a, b] if c = a (resp. d = b). It is called a proper sub-interval of [a, b] if it does

2 A Segment Tree is a binary tree storing a set of intervals with endpoints from a finite
set of (sorted) real valued points. Each leaf of the tree corresponds to an elementary
interval (either a point itself or an open interval between two points) and each
internal node corresponds to the union of the intervals given by the children. Any
interval over the points can easily be represented by an antichain of vertices.

4 Malte Darnstädt, Christoph Ries and Hans Ulrich Simon

not coincide with [a, b]. If [c, d] ⊆ (a, b) it is said to be located in the interior
of [a, b]. Clearly, a proper sub-interval of [a, b] is either left-aligned, right-aligned,
or located in the interior of [a, b]. In the first (resp. second or third) case, we say
that it is of type “L” (resp. of type “R” or of type “I”). For a, b ∈ R, we define
[a : b] := [a, b] ∩ Z.

Let B be a complete binary tree with root rB and with n leaves that are
numbered 1, . . . , n from left to right. For a node u ∈ B, let B(u) be the sub-tree
of B rooted at u, and let l(u) (resp. r(u)) be the smallest (resp. largest) number
of a leaf in B(u). Then [l(u) : r(u)] is called the interval represented by u. Every
maximal antichain V of nodes in B represents a partition of {1, . . . , n} in the
obvious manner. For instance V = {rB} represents the trivial partition with the
single equivalence class {1, . . . , n}. The set of leaves in B represents the partition
of {1, . . . , n} into n singletons {1}, . . . , {n}. The other maximal antichains induce
partitions which are in between these two extremes. The following result is not
hard to show:

Lemma 1. 1. For all 1 ≤ a ≤ b ≤ n, there exists an antichain V of size at
most 2blog nc in B such that [a : b] = ∪v∈V [l(v) : r(v)]. Moreover, given
B and a, b, the smallest antichain with this property can be found in time
O(log(n)).

2. Let k ≥ 2, `2(n) = dlog ne + 1 and `k(n) = (k − 1) log(n) for k ≥ 3. Then,
for every partition (I1, . . . , Ik) ∈ P(k), there exists a maximal antichain V
of size at most `k(n) in B such that the partition represented by V is a
refinement of the partition induced by (I1, . . . , Ik) on {1, . . . , n}.

3 From Simple to More Complex Concept Classes

With each concept class C over domain X and with each k ≥ 1, we associate the
following concept classes over R×X :

C[k] =
{ k′⋃

j=1

(Ij × Cj) : 0 ≤ k′ ≤ k ∧ (I1, . . . , Ik′) ∈ P(k′) ∧ C1, . . . , Ck′ ∈ C
}

Analogously, let C′[k] be defined as C[k] with P replaced by P ′. Note that the
empty set is a member of C[k] and C′[k].

In the sequel, I denotes the class of bounded intervals over the domain R,
R denotes the class of bounded axis-parallel rectangles over the domain R2, Ik
denotes the class of unions of at most k bounded intervals, and Rk denotes the
class of unions of at most k bounded axis-parallel rectangles.

Example 1. Let X = {x} and C1 = {X} and C2 = {∅,X}. We identify the
domain R × {x} with R in the obvious manner. Then, for each k ≥ 1, C′1[k]
coincides with I and C′2[2k − 1] coincides with Ik. Moreover, Ik is a subclass of
C2[2k + 1].

Hierarchical Design of Fast Minimum Disagreement Algorithms 5

I′
4[7]: I1 I2 I3 I4 I5 I6 I7

I4[9]: I1 I2 I3 I4 I5 I6 I7 I8 I9

Fig. 1. An example showing that a union of 4 rectangles can be viewed as a concept
from I′

4[7] or as a concept from I4[9], respectively.

Example 2. Obviously, I ′[1] = R. The class I ′[k] with k ≥ 2 contains horizon-
tally connected sequences of at most k bounded axis-parallel rectangles, i.e., it
contains concepts of the form ∪k′

l=1(Il × Jl) with k′ ≤ k, (I1, . . . , Ik′) ∈ P ′(k′)
and J1, . . . , Jk′ ∈ I.

Example 3. Obviously, I ′s[k] is the class over R2 whose concepts are of the form
∪k′

l=1(Il × Ul) with k′ ≤ k, (I1, . . . , Ik′) ∈ P ′(k′) and U1, . . . , Uk′ ∈ Is. It is easy
to see that Rk is a subclass of I ′k[2k− 1] and Ik[2k+1], respectively. See Fig. 1
for an illustration.

The VC-dimension of class H over domain X , denoted VCdim(H), is defined
as the cardinality of the largest subset M ⊆ X such that every subset of M can
be written in the form M ∩H for some H ∈ H. If there is no bound on the size
of such sets M , then VCdim(H) =∞. Let d = VCdim(H). It is well known that
the number of random examples, required for achieving ε-accuracy in the model
of agnostic learning, is of order Õ(d/ε2) [15], and a suitable hypothesis is found
by running a Minimum Disagreement algorithm A with hypothesis class H on a
random sample of this size. Thus, a time bound T (n) for A reads as Õ(T (d/ε2))
when written in terms of d and ε. We now analyze how much we have to pay in
terms of the VC-dimension for moving to more complex concept classes.

Theorem 1. Let C be a concept class of VC-dimension d over domain X such
that ∅ ∈ C. Then, for all k ≥ 1, we have that:

– VCdim(C[k]) ≤ VCdim(C′[k]) ≤ VCdim(C[k]) + 2
– dk ≤ VCdim(C[k]) ≤ (d+ 1)k − 1
– dk ≤ VCdim(C′[k]) ≤ (d+ 1)k + 1

(All these bounds can be shown to be tight.)

Proof. The inequalities dk ≤ VCdim(C[k]) ≤ VCdim(C′[k]) are rather obvi-
ous. Let S = [(z1, x1), . . . , (zs, xs)] be a sequence of instances from R × X or-
dered according to non-decreasing z-coordinates. Suppose that S is shattered
by C′[k]. Thus each label combination (b1, . . . , bs) ∈ {0, 1}s can be realized by

6 Malte Darnstädt, Christoph Ries and Hans Ulrich Simon

some concept in C′[k]. Let ∪k′

j=1(I
′
j × Cj) ∈ C′[k] be a concept realizing the

bit pattern (1, b2, . . . , bs−1, 1) on S. Then the same bit pattern can be realized
by ∪k′

j=1(Ij × Cj) ∈ C[k] where I1 is the interval from −∞ to the right end-
point of I ′1, Is is the interval from the left endpoint of I ′s to ∞, and Ij = I ′j
for j /∈ {1, s}. It follows that VCdim(C′[k]) ≤ VCdim(C[k]) + 2. We still have
to show that the above sequence S of length s cannot be shattered by C[k] if
s = (d + 1)k. This can be seen as follows. Split S into k segments of length
d + 1. For each segment, choose a label combination that cannot be realized
by any concept from C. It is then easy to see that the resulting label combi-
nation for the full sequence S cannot be realized by any concept from C[k].3
From this discussion, it follows that VCdim(C[k]) ≤ (d + 1)k − 1 and therefore
VCdim(C′[k]) ≤ VCdim(C[k]) + 2 ≤ (d+ 1)k + 1. ut

4 From Trivial to Smart Algorithms

An algorithm that solves MinDis(C, C) is called a proper Minimum Disagreement
algorithm for C. An algorithm A that solves MinDis(C,H) is called a flexible
Minimum Disagreement algorithm with time bounds T1, T2, T3 if the following
holds:

1. Given a sorted weighted sample S = [(x1, w1), . . . , (xn, wn)] ∈ (X × R)n, A
builds a data structure DS(S) in time T1(n).

2. After a modification of one of the weights in S, the data structure DS(S)
can be updated accordingly in time T2(n).

3. DS(S) implicitly represents a hypothesis H(S) ∈ H which satisfies

ES(H(S)) ≤ min
C∈C

ES(C) . (1)

Given DS(S) and x ∈ X , it can be decided in time T3(n) whether x ∈ H(S).
4. Given DS(S), the quantity ES(H(S)) can be computed in constant time.

Moreover we say that the data structure DS can be merged efficiently if, for every
pair S1, S2 of samples, the data structure for the composition of S1 and S2 can
be built in constant time from DS(S1) and DS(S2).

Here is a trivial example for a proper and flexible Minimum Disagreement
algorithm, that we will use as a building block for the design of clever and highly
non-trivial algorithms:

Example 4. Let C1 = {X} for X = {x} be the trivial class that we had considered
in Example 1 already. We claim that the (trivial) problem MinDis(C1, C1) can
be solved by a flexible algorithm with time bounds T1(n) = O(n), T2(n) = O(1)
and T3(n) = O(1):

– For S = [(x,w1), . . . , (x,wn)], set DS(S) :=W−S :=
∑

i:wi<0 wi. Thus, DS(S)
is simply a real number that can be determined in time O(n).

3 The same argument was used in [10] in connection with a class of piecewise defined
functions over the real domain.

Hierarchical Design of Fast Minimum Disagreement Algorithms 7

– If a weight wk is replaced by a new weight w′k, then DS(S) is updated in
constant time by setting W−S :=W−S +min{w′k, 0} −min{wk, 0}.

– DS(S) represents H(S) := {x}, the only hypothesis in H. The evaluation
problem for H(S) is trivial.

– Note that ES({x}) = |W−S |. Thus, given DS(S) = W−S , ES(H(S)) is com-
puted in constant time.

If the sample S is the composition of the samples S1 and S2, then W−S =W−S1
+

W−S2
. Thus, the data structure DS can be merged efficiently.

Let C2 be the other trivial class that we had considered in Example 1. We
briefly note that there is a flexible algorithm for MinDis(C2, C2) which has the
same time bounds as the algorithm for MinDis(C1, C1).

In the sequel, we assume that Ti(n) = o(n) for i = 2, 3 and T1(n) is of the
form nh(n) for some monotonically non-decreasing function h(n) ≥ 1. From the
latter assumption, it follows that

s∑
i=1

ni = n =⇒

(
s∑

i=1

T1(ni) ≤
s∑

i=1

(nih(n)) = nh(n) = T1(n)

)
. (2)

Here comes the first main result of this section:

Theorem 2. A flexible algorithm A solving MinDis(C,H) with time bounds
T1, T2, T3 can be transformed into a flexible algorithm A′ that solves MinDis(C′[1],
H′[2blog nc]) with time bounds T ′i (n) = O(log(n)Ti(n)) for i = 1, 2 and T ′3(n) =
O(log(n) + T3(n)). Moreover, if the data structure used by A can be merged ef-
ficiently, then the first two time bounds for A′ are even better, namely T ′1(n) =
O(T1(n)) and T ′2(n) = O(log(n) + T2(n)).

Proof. We write vectors from R × X in the form x′ = (z, x) with z ∈ R and
x ∈ X , and we equip R×X with the lexicographic ordering. Let

S′ = [(x′1, w1), . . . , (x
′
n, wn)] ∈ (R×X × R)n

be a lexicographically sorted weighted sample. Let S = [(x1, w1), . . . , (xn, wn)] ∈
(X×R)n be the sequence obtained by stripping off the z-coordinates of the items
in S′. Note that segments of S with the same z-coordinate are sorted according
to the linear ordering of X . Let z′1 < . . . < z′n′ with n′ ≤ n be the sorted sequence
of distinct z-coordinates of the items in S′. For each interval [l : r] ⊆ [1 : n′], we
define S′[l : r] as the coherent sub-sequence of S′ consisting of all items in S′

whose z-coordinate lies in the interval [z′l : z
′
r], i.e.,

S′[l : r] = {(x′k, wk) : z
′
l ≤ zk ≤ z′r} .

Let S[l : r] be the corresponding list with z-coordinates omitted. Let B be a
complete binary tree with n′ leaves which are numbered 1, . . . , n′ from left to
right. With each node u in B, we associate the following pieces of information:

8 Malte Darnstädt, Christoph Ries and Hans Ulrich Simon

1. l(u) ∈ [1 : n′] (resp. r(u) ∈ [1 : n′]) is the number of the leftmost (resp. right-
most) leaf in the sub-tree of B induced by u.

2. S(u) is defined as the “sorted version” of S[l(u) : r(u)], i.e., it contains the
same items as S[l(u) : r(u)] but in S(u) they are ordered according to non-
decreasing x-values.

3. DS(u) = DS(S(u)), i.e., DS(u) is the data structure returned by the algo-
rithm A on input S(u).

4. d0(u) = ES(u)(∅). Note that d0(u) equals the sum of all positive weights that
are found in S(u).

5. Let H(u) = H(S(u)), i.e., H(u) is the hypothesis which is represented by the
data structure DS(u). Let d1(u) = ES(u)(H(u)). We may conclude from (1)
that, for all nodes u in B,

d1(u) = ES(u)(H(u)) ≤ min
C∈C

ES(u)(C) . (3)

6. Let J be a sub-interval of [l(u) : r(u)]. Let V [J] be the smallest antichain V
in B that satisfies J = ∪v∈V [l(v) : r(v)]. We say that

Hu
J =

⋃
v∈V [J]

[z′l(v), z
′
r(v)]×H(v) (4)

is the hypothesis induced by J at node u. Note that |V [J]| ≤ 2blog nc accord-
ing to Lemma 1 so that Hu

J ∈ H′[2blog nc]. Given the convention min ∅ =∞,
we set

dI(u) = min
(a,b):l(u)<a≤b<r(u)

ES(u)(H
u
[a:b]) ,

dL(u) = min
b:l(u)≤b<r(u)

ES(u)(H
u
[l(u):b]) ,

dR(u) = min
a:l(u)<a≤r(u)

ES(u)(H
u
[a:r(u)]) ,

i.e., dI(u) is the error on S(u) of the best hypothesis among the ones which
are induced by some sub-interval of [l(u) : r(u)] of type “I”. The analogous
remark applies to dL(u) and dR(u), respectively. The sub-interval J of [l(u) :
r(u)] of type “I” that satisfies dI(u) = ES(u)(H

u
J) is denoted JI(u) in what

follows. The notations JL(u) and JR(u) are understood analogously.

The tree B augmented by K = (K(u))u∈B for

K(u) = [l(u), r(u), DS(u),

d0(u), d1(u), dL(u), dR(u), dI(u),

JL(u), JR(u), JI(u)]

constitutes the data structureDS(S′). The remaining part of the proof is sketched
only. Leaving out of account the computation of K, B can be built in time O(n).
The additional pieces of information, K, can be computed as follows:

Hierarchical Design of Fast Minimum Disagreement Algorithms 9

1. The quantities (l(u), r(u), d0(u))u∈B are easy to compute within O(n) steps
in a bottom-up fashion. The sorted sequences (S(u))u∈B can be computed
bottom-up in time O(n log(n)) (in the same way as it is done by “Mergesort”).

2. Making use of (2), it is easy to show that, within T1(n) steps, we can compute
DS(u) for all nodes at a fixed level. Thus, it takes time O(T1(n) log(n)) to
compute (DS(u))u∈B . Moreover, if DS can be merged efficiently, then it is
easy to see that the sequences (S(u))u∈B are not needed because (DS(u))u∈B
can be computed directly in time O(T1(n) + n) = O(T1(n)).

3. Given (DS(u))u∈B , it is easy to compute (d1(u))u∈B in time O(n).
4. Given (d1(u))u∈B , we can compute the quantities (dL(u), dR(u), dI(u), JL(u),
JR(u), JI(u))u∈B in a bottom-up fashion in time O(n). For instance, if u is
a node with left child u0 and right child u1, then dR(u) is computed ac-
cording to dR(u) = min{d0(u0) + d1(u1), dR(u0) + d1(u1), d0(u0) + dR(u1)}.
Similar equations can be set up for dL(u) and dI(u). Moreover, for each
X ∈ {L,R, I}, the computation of JX(u) is just as easy as the computation
of dX(u).

It follows from the previous discussion that (K(u))u∈B can be computed in time
O(log(n)T1(n)). Moreover, if DS can be merged efficiently, then time O(T1(n))
is sufficient.

Suppose that for one item in S′, say the item (zk, xk, wk), the weight param-
eter is modified. Let j be the unique index with z′j = zk and let v be the leaf
in B numbered j. Since K(u) need not be changed for all nodes in B but only
for those which are located on the path P from v to the root rB of B, it easily
follows that (K(u))u∈B can be updated in time O(log(n)T2(n)), or even in time
O(log(n) + T2(n)) if DS can be merged efficiently.

Let dmin = min{d0(rB), d1(rB), dL(rB), dR(rB), dI(rB)}. We now claim that
DS(S′) represents an easy-to-evaluate hypothesis H(S′) ∈ H[2blog nc] that sat-
isfies dmin = ES′(H(S′)). This can be seen as follows. If dmin = d0(rB), we set
H(S′) = ∅. If dmin = d1(rB), we set H(S′) = HrB

[1:n′]. Finally, if dmin = dX(rB)

for X ∈ {I, L,R}, then we set H(S′) = HrB
JX(rB). The evaluation problem for

H(S′) = ∅ is trivial. As for the remaining cases, note first that (z, x) ∈ HrB
[1:n′] iff

z ∈ [z′1, z
′
n′] and x ∈ H(rB). Suppose now that dmin = dX(rB). Let JX = [a : b].

If z /∈ [z′a, z
′
b], then clearly (z, x) /∈ HrB

a,b. Otherwise, we use B as a search tree
and follow the search path for z until we reach a node v satisfying d1(v) =
min{d0(v), d1(v), dL(v), dR(v), dI(v)}. This must be a node from the antichain
V [a : b]. An inspection of (4) shows that (z, x) ∈ HrB

a,b iff x ∈ H(v). It follows
from this discussion that, in any case, the evaluation problem for H(S′) can be
solved in time O(log(n) + T3(n)).

Clearly, dmin is retrieved from DS(S′) in constant time. Making use of (3), it
is not hard to show that dmin ≤ minC∈C′[1]ES′(C), which concludes the proof.

ut

Note that the proof of Theorem 2 is completely constructive. The minimum dis-
agreement and learning algorithms given in the following arise from an iterative
application of Theorem 2 and the trivial Example 4.

10 Malte Darnstädt, Christoph Ries and Hans Ulrich Simon

Recall that I denotes the class of bounded real intervals. As discussed in
Example 1, I = C′1[1] = C′1[2blog nc]. We immediately obtain the following result:

Theorem 3. The transformation from Theorem 2 applied to the flexible algo-
rithm for MinDis(C1, C1) from Example 4 yields a flexible algorithm that solves
MinDis(I, I) with time bounds T1(n) = O(n) and Ti(n) = O(log(n)) for i = 2, 3.

The flexible algorithm for MinDis(I, I) resulting from Theorem 3 basically
coincides with the algorithm forMinDis(I, I) from [11]. However, since our trans-
formation is general and can be iterated, we can now go one step further and
obtain the following result:

Theorem 4. The problem MinDis(R, I ′[2blog nc]) can be solved by a flexible
algorithm with time bounds T1(n) = O(n log(n)), and T2(n) = O(log2(n)) and
T3(n) = O(log(n)).

Proof. Recall from Example 2 that R = I ′[1]. The theorem now follows imme-
diately from Theorems 2 and 3. ut

By following the construction in the paragraph before Theorem 1 and apply-
ing the bounds on the VC-dimension from Theorem 1 and on the running time T1
from Theorem 4, one immediately obtains the fast (non-proper) agnostic learner
for the class of axis-parallel rectangles promised in the introduction:

Theorem 5. Our algorithm for the problem MinDis(R, I ′[2blog nc]) agnosti-
cally learns concepts from class R with accuracy ε in time Õ(1/ε2) if a random
sample of size n = Õ(1/ε2) is provided.

The proof of the following result (omitted here because of space constraints)
bears some similarity to the proof of Theorem 2:

Theorem 6. Let the function `k(n) be defined as in Lemma 1. Suppose that
there is a flexible algorithm A for MinDis(C,H) with time bounds T1, T2, T3. Then
the problem MinDis(C[k],H[`k(n)]) can be solved by a flexible algorithm with
time bounds T ′1(n) = O(log(n)T1(n) + k2n log2(n)), T ′2(n) = O(log(n)T2(n) +
k2 log3(n)) and T ′3(n) = O(k + log(n) + T3(n)). Moreover, if the data structure
used by A can be merged efficiently, then the first two time bounds are even better,
namely T ′1(n) = O(T1(n) + k2n log2(n)) and T ′2(n) = O(T2(n) + k2 log3(n)).

Recall that Ik denotes the class of unions of at most k bounded intervals.
As mentioned in Example 1, Ik is a subclass of C2[2k + 1]. A flexible algo-
rithm that successfully competes with the best concept from Ik is obtained
when we apply the transformation from Theorem 6 to the (trivial) flexible algo-
rithm for MinDis(C2, C2). The resulting time bounds are T1(n) = O(k2n log2(n)),
T2(n) = O(k2 log3(n)) and T3(n) = O(k + log(n)). However, the algorithm re-
sulting from this general transformation is inferior to the algorithm from [11]
(which is specialized to the class Ik):4

4 In [11], flexibility of algorithms is not an issue. An inspection of the algorithm for
MinDis(Ik, Ik) reveals, however, that the underlying data structure provides flexi-
bility.

Hierarchical Design of Fast Minimum Disagreement Algorithms 11

Theorem 7 ([11]). The problem MinDis(Ik, Ik) can be solved by a flexible al-
gorithm with T1(n, k) = O(k2n), T2(n, k) = O(k2 log(n)) and T3(n, k) = O(k).

As a final application, we consider unions of axis-parallel rectangles:

Theorem 8. Let the function `k(n) be defined as in Lemma 1. Then the problem
MinDis(Rk, Ik[`2k+1(n)]) can be solved by a flexible algorithm with T1(n, k) =
O(k2n log2(n)), T2(n, k) = O(k2 log3(n)) and T3(n, k) = O(k + log(n)).

Proof. Recall from Example 3 that Rk is a subclass of Ik[2k + 1]. Combin-
ing Theorems 7 and 6, we may conclude that the problem MinDis(Ik[2k +
1], Ik[`2k+1(n)]) can be solved by a flexible algorithm with time bounds as given
in the assertion of the theorem. ut

The transformations described in Theorems 2 and 6 preserve flexibility but
destroy properness. As for the transformation described in the following theorem,
we have the reverse situation:

Theorem 9. A flexible algorithm A for MinDis(C,H) with time bounds T1, T2,
T3 can be transformed into an algorithm A′ that solves the problem MinDis(C[2],
H[2]) in time O(n log(n) + T1(n) + nT2(n)).

Proof. Let S′ = [(x′1, w1), . . . , (x
′
n, wn)] = [(z1, x1, w1), . . . , (zn, xn, wn)] ∈ (R ×

X × R)n be a given instance of MinDis(C[2],H[2]). Let n′ be the number of
distinct z-coordinates in S′, and let z′1 < z′2 < . . . < z′n′ be the corresponding
sorted sequence. For sake of convenience, let z′n′+1 = z′n′+1. For k = 1, . . . , n′+1,
let S′1(k) = {(x′i, wi) : zi < z′k} and S′2(k) = {(x′i, wi) : zi ≥ z′k}. Similarly, let
S1(k) = {(xi, wi) : zi < z′k} and S2(k) = {(xi, wi) : zi ≥ z′k}.

Without loss of generality let C∗ = ((−∞, z′k′)× C1) ∪ ([z′k′ ,+∞)× C2) ∈
C[2] be the concept with the smallest empirical error on S′ among all concepts
from C[2]. For each k ∈ {1, . . . , n′ + 1}, let Hk

1 (resp. Hk
2) be the hypothesis

represented by DS(S1(k)) (resp. by DS(S2(k)). Let

Hk = ((−∞, z′k)×Hk
1) ∪ ([z′k,∞)×Hk

2) . (5)

Furthermore, let k′′ be a minimizer of

W (k) := ES1(k)(H
k
1) + ES2(k)(H

k
2) (6)

and let H∗ = Hk′′
. With these notations, we get

ES′(H∗) = ES1(k′′)(H
k′′

1) + ES2(k′′)(H
k′′

2) ≤ ES1(k′)(H
k′

1) + ES2(k′)(H
k′

2)

≤ ES1(k′)(C1) + ES2(k′)(C2) = ES′(C∗) .

Thus the empirical error of H∗ ∈ H[2] on S′ is not larger than the empirical error
of C∗ ∈ C[2] on S′. Suppose that we know the valuesW (k) for all k = 1, . . . , n′+1.
Then we can determine (a representation of) H∗ as follows:

1. Set k′′ := argmin{W (k) : k ∈ {1, . . . , n′ + 1}}. This takes O(n) steps.

12 Malte Darnstädt, Christoph Ries and Hans Ulrich Simon

2. Extract S1(k
′′) and S2(k

′′) from S′ and sort each of these two sequences
according to the x-coordinates of its items. This takes O(n log(n)) steps.

3. Feed S1(k
′′) (resp. S2(k

′′)) into A and obtain the data structure DS(S1(k
′′))

(resp. DS(S2(k
′′))). This takes O(T1(n)) steps.

4. Recall that DS(Si(k
′′)) represents Hk′′

i for i = 1, 2. These data structures
augmented by z′k′′ form a suitable and easy-to-evaluate representation of H∗.

It remains to answer the question how the values W (k) for k = 1, . . . , n′+1 can
be computed efficiently. We observe first that the operation of deleting an item
(xk, wk) from a set S of (at most n) items can be simulated by setting wk = 0.
According to (6),W (k) is easy to compute from ES1(k)(H

k
1) and ES2(k)(H

k
2). For

reasons of symmetry, it suffices to describe how the values ES1(k)(H
k
1) for k =

1, . . . , n′ + 1 can be computed efficiently. This is done (similarly to a procedure
used in [1] for learning 2-level decision trees) as follows:

1. Given S′, let k := n′ + 1, S := S1(k) and sort this sequence according to
non-decreasing x-coordinates. This takes O(n log(n)) steps.

2. Feed S into A and obtain DS(S). This takes O(T1(n)) steps.
3. Given DS(S), compute ES(H

k
1) and store it in W (k). This takes O(1) steps.

4. If k = 1, then stop. Otherwise, set wk := 0, update the data structure DS(S)
accordingly, set k := k − 1 and go back to Step 3. This takes T2(n) steps.

The time complexity of the whole procedure for computing H∗ is dominated by
the amount of time needed for computing the quantitiesW (k) for k = 1, . . . , n′+
1, and this takes O(n log(n) + T1(n) + nT2(n)) steps. ut

5 Experimental Results

We chose to investigate Minimum Disagreement algorithms for the class of axis-
aligned rectanglesR in the following experiments, because we expect to observe a
considerable improvement in light of Theorem 4: the algorithm from Theorem 4
has an asymptotic worst-case time bound of only O(n log(n)), where n is the
number of examples, compared to the proper algorithms from [11, 2] with a
running time of O(n2 log(n)) and O(n2), respectively. While O(n2) is clearly
better than O(n2 log(n)), we noticed that in the range of sample sizes used in
the following experiments (and for our implementation) the learner from [11] is
actually slightly faster than the one from [2]. Therefore, we compare our method
from Theorem 4, which we denote by TRANS, with the algorithm from [11], which
we denote by RECT. Note that—as in the theoretical analysis—we measured all
running times without taking the time for pre-sorting the training data into
account. This is justified as all considered algorithms rely on pre-sorted data.
The experiments were performed on a AMD Opteron 6234 processor, running
at 2400 MHz, with Oracle Java 1.8.0_31 under CentOS 6.6.

Data sets. We are solving binary classification problems where the weight of
any instance is either −1 or +1. We use three different data sets: one artifi-
cially generated data set, which is given by a mixture of two two-dimensional

Hierarchical Design of Fast Minimum Disagreement Algorithms 13

0 1,000 2,000 3,000

0.05

0.1

0.15
ε ≈ 0.024

sample size

er
ro
r
ra
te

100 101 102 103 104

0.05

0.1

0.15
ε ≈ 0.024

ε ≈ 0.008

running time in ms

Fig. 2. Error rates of RECT (in red) and TRANS (in blue) as a function of the sample size
(left-hand side) and of the running time (right-hand side) on the artificial Gaussian
distribution. The x-axis on the right-hand side is logarithmic to accommodate the vast
range of running times. The solid lines depict the error rates on the test set, while the
dashed lines show the error rate on the training set. Note that the accuracy ε from
Theorem 5 is proportional to the difference between these two error rates. All values
were measured on an independent test set of size 1000 and averaged over 50 runs.

Gaussian distributions—one distribution for each weight—with identical covari-
ance matrices. The “Glass” data set from [7], which consists of nine-dimensional
instances from forensic examinations of glass samples. While the original data
set contains seven classes and 214 instances, we obtained a binary classifica-
tion problem with 163 instances by following [9] (merging classes one and three
and removing all instances from class four to seven). The “MAGIC” data set
from [4, 6], which consists of 19020 ten-dimensional instances of (simulated) ob-
servations of a “Cherenkov gamma telescope”. The task is to discern gamma ray
events from background noise. The latter two data sets are available on the UC
Irvine Machine Learning Repository.

Experimental results and discussion. The results for the Gaussian mixture are
given in Fig. 2. The error rates as a function of the sample size, shown in the
left-hand side of Fig. 2, behave as expected: RECT, whose hypothesis class has the
smaller VC-dimension, achieves a smaller error on the test set for small sample
sizes and its error rates converge faster (as a function of the sample size). Note
that TRANS’ error rate outperforms RECT already at n ≈ 500 because its higher
estimation error is getting more than compensated by its lower approximation
error. When computation time is the resource of consideration, as depicted in
the right-hand side of Fig. 2, the differences become more drastic: TRANS consis-
tently outperforms the much slower RECT-algorithm. Furthermore, as predicted
by Theorem 5, TRANS’ error rates indeed converge much faster. We would like to
add that the measured running times nicely match the theoretical analysis.

The dimensions of the instances in both the Glass and MAGIC data sets are
larger than two, so we cannot directly apply RECT and TRANS. We followed [9]

14 Malte Darnstädt, Christoph Ries and Hans Ulrich Simon

Table 1. Experimental results for the best instance pair using TRANS and RECT on the
Glass and MAGIC data sets (upper table), and for AdaBoost using TRANS as the base
learner on the MAGIC data set with different numbers of iterations T (lower table).
Data sets were randomly split 2:1 into a training and test set. All values are averages
over 50 runs, except for RECT on the MAGIC data set, which was run only 10 times.

error rate error rate
data set algorithm on training set on test set time

Glass TRANS 0.081 0.233 14 ms
RECT 0.160 0.252 393 ms

MAGIC TRANS 0.178 0.189 6 s
RECT 0.214 0.219 17256 s

error rate error rate
data set algorithm T on training set on test set time

MAGIC AdaBoost 1 0.178 0.189 6 s
(on TRANS) 5 0.153 0.167 29 s

10 0.138 0.156 59 s
20 0.124 0.151 117 s
40 0.107 0.149 235 s

and trained one hypothesis on every pair of coordinates choosing the hypothesis
with the smallest error on the training set. (Another approach would be to iter-
atively transform the MinDis algorithm until we arrive at the desired dimension.
However, this method introduces too much overhead using our implementation
for 9 resp. 10 dimensions.) The results are given in the upper part of Table 1
and show that—for both the smaller Glass data set with 108 training instances
and the larger MAGIC data set with 12680 training instances—TRANS’ error
rates are smaller than the ones from RECT. As expected, TRANS is considerably
faster than RECT: notice the giant gap between six seconds and almost six hours
on the MAGIC data set. The mean error rate of 0.233 on the Glass data set
is in fact smaller than the rates reported in [9], which were 0.271 for a simple
one-dimensional hypothesis and 0.257 for a (more complex) decision tree. Our
mean error rate of 0.189 on the MAGIC data set is considerably larger than the
ones reported in [6], which were in the range of 0.16 to 0.138 (on the test set)
for different variants of decision trees. We try to close this gap in the following
by using the well-known AdaBoost [8] scheme with TRANS as the base learner.
The results for AdaBoost on the MAGIC data set are given in the lower part of
Table 1. Obviously, one round of boosting is equivalent to the previous approach
of choosing the hypothesis with the smallest empirical error. Note that already
twenty iterations provide an error rate on the test set that is comparable with
the rates from [6], and that TRANS is obviously fast enough for boosting to be
practical on 12680 instances. Furthermore, our boosted classifier surpasses all
methods considered in [4] in all but one measure of merit (we omit details due
to space constrains). Admittedly, we suspect that this is mostly due to boosting

Hierarchical Design of Fast Minimum Disagreement Algorithms 15

and independent from the choice of base learners, as experiments using decision
stumps yield similar error rates with a larger number of iterations but a smaller
over-all running time.

References

1. Auer, P., Holte, R.C., Maass, W.: Theory and applications of agnostic PAC-
learning with small decision trees. In: ICML ’95. pp. 21–29 (1995)

2. Barbay, J., Chan, T.M., Navarro, G., Pérez-Lantero, P.: Maximum-weight planar
boxes in O(n2) time (and better). Information Processing Letters 114(8), 437–445
(2014)

3. Berg, M.d., Cheong, O., Kreveld, M.v., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer-Verlag, Santa Clara, CA, USA (2008)

4. Bock, R., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jiřina, M.,
Klaschka, J., Kotrč, E., Savický, P., Towers, S., Vaiciulis, A., Wittek, W.: Meth-
ods for multidimensional event classification: a case study using images from a
cherenkov gamma-ray telescope. Nuclear Instruments and Methods in Physics Re-
search A 516(2–3), 511 – 528 (2004)

5. Cortés, C., Díaz-Báñez, J.M., Pérez-Lantero, P., Seara, C., Urrutia, J., Ventura,
I.: Bichromatic separability with two boxes: A general approach. Journal of Algo-
rithms 64(2-3), 79–88 (2009)

6. Dvorák, J., Savický, P.: Softening splits in decision trees using simulated annealing.
In: ICANNGA ’07, Part I. pp. 721–729 (2007)

7. Evett, I.W., Spiehler, E.J.: Rule induction in forensic science. Tech. rep., Central
Research Establishment, Home Office Forensic Science Service (1987)

8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119 – 139 (1997)

9. Holte, R.C.: Very simple classification rules perform well on most commonly used
datasets. Machine Learning 11(1), 63–91 (1993)

10. Kearns, M.J., Schapire, R.E., Sellie, L.M.: Toward efficient agnostic learning. Ma-
chine Learning 17(2), 115–141 (1994)

11. Maass, W.: Efficient agnostic PAC-learning with simple hypothesis. In: COLT ’94.
pp. 67–75 (1994)

12. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Jour-
nal of the Association on Computing Machinery 35(4), 965–984 (1988)

13. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press (2014)

14. Vapnik, V.: Statistical learning theory. Wiley & Sons (1998)
15. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-

cies of events to their probabilities. Theory of Probability and its Applications
XVI(2), 264–280 (1971)

16. Weiss, S.M., Galen, R.S., Tadepalli, P.: Maximizing the predictive value of produc-
tion rules. Artificial Intelligence 45(1-2), 47–71 (1990)

17. Weiss, S.M., Kapouleas, I.: An empirical comparison of pattern recognition, neu-
ral nets, and machine learning classification methods. In: IJCAI ’89. pp. 781–787
(1989)

18. Weiss, S.M., Kulikowski, C.A.: Computer Systems That Learn: Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert
Systems. Morgan Kaufmann (1990)

