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Abstract. The decomposition method is currently one of the major
methods for solving the convex quadratic optimization problems being
associated with support vector machines. For a special case of such prob-
lems the convergence of the decomposition method to an optimal solution
has been proven based on a working set selection via the gradient of the
objective function. In this paper we will show that a generalized version
of the gradient selection approach and its associated decomposition al-
gorithm can be used to solve a much broader class of convex quadratic
optimization problems.

1 Introduction

In the framework of Support–Vector–Machines (SVM) introduced by Vapnik
et al. [1] special cases of convex quadratic optimization problems have to be
solved. A popular variant of SVM is the C–Support–Vector–Classification (C–
SVC) where we try to classify m given data points with binary labels y ∈ {±1}m.
This setting induces the following convex optimization problem:

min
x

fC(x) :=
1
2
x>Qx− e>x s.t. 0 ≤ xi ≤ C, ∀i = 1, . . . ,m, y>x = 0 , (1)

where x ∈ Rm, C is a real constant and e is the m–dimensional vector of ones.
Q ∈ Rm×m is a positive semi–definite matrix whose entries depend on the data
points and the used kernel1.

In general, the matrix Q is dense and therefore a huge amount of memory is
necessary to store it if traditional optimization algorithms are directly applied to
it. A solution to this problem, as proposed by Osuna et al. [4], is to decompose
the large problem in smaller ones which are solved iteratively. The key idea is to
select a working set Bk in each iteration based on the currently ,,best” feasible
xk. Then the subproblem based on the variables xi, i ∈ Bk is solved and the new
solution xk+1 is updated on the selected indices while it remains unchanged on
? This work was supported in part by the IST Programm of the European Community,
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the complement of Bk. This strategy has been used and refined by many other
authors [5–7].

A key problem in this approach is the selection of the working set Bk. One
widely used technique is based on the gradient of the objective function at xk

[5]2. The convergence of such an approach to an optimal solution has been proven
by Lin [8]3. A shortcoming of the proposed selection and the convergence proof
of the associated decomposition method in [8] is that they have only been for-
mulated for the special case of (1) or related problems with only one equality
constraint. Unfortunately ν-SVM introduced by Schölkopf et al. [10] leads to op-
timization problems with two such equality constraints (see e. g. [11]). Although
there is an extension of the gradient algorithm to the case of ν-SVM [12] no
convergence proof for this case has been published.

1.1 Aim of this paper

There exist multiple formulations of SVM which are used in different classifi-
cation and regression problems as well as quantile estimation and novelty de-
tection4 which all lead to slightly different optimization problems. Nonetheless
all of them can be viewed as special cases of a general convex quadratic opti-
mization problem (2, see below). As the discussion concerning the decomposition
method has mainly focused on the single case of C–SVC, it may be worth study-
ing under which circumstances the decomposition method is applicable to solve
such general problems and when such a strategy converges to an optimal solu-
tion. Recently Simon and List have investigated this topic. They prove a very
general convergence theorem for the decomposition method, but for the sake of
generality no practical selection algorithm is given [13].

The aim of this paper is to show that the well known method of gradient
selection as implemented e. g. in SVMlight [5] can be extended to solve a far more
general class of quadratic optimization problems. In addition, the achieved the-
oretical foundation, concerning the convergence and efficiency of this selection
method, is preserved by adapting Lin’s convergence theorem [8] to the decom-
position algorithm associated with the proposed general gradient selection.

We want to point out that not necessarily all cases covered by the given
generalization arise in SVM but the class of discussed optimization problems
subsumes all the above mentioned versions of SVM. The proposed selection
algorithm is therefore useful for the decomposition of all such problems and
gives a unified approach to the convergence proof of the decomposition method
associated with this selection.

2 Platts’ SMO [6] with the extension of Keerthi et al. [7] can be viewed as a special
case of that selection.

3 For the special case of SMO Keerthi and Gilbert have proven the convergence [9].
4 [2, 3] both give an overview.
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2 Definitions and Notations

2.1 Notations

The following naming conventions will be helpful: If A ∈ Rn×m is a matrix,
Ai, i ∈ {1, . . . ,m} will denote the ith column. Vectors x ∈ Rm will be considered
column vectors so that their transpose x> is a row vector. We will often deal
with a partitioning of {1, . . . ,m} in two disjunct sets B and N and in this case
the notion AB will mean the matrix consisting only of columns Ai with i ∈ B.
Ignoring permutation of columns we therefore write A = [ AB AN ]. The same
shall hold for vectors x ∈ Rm where xB denotes the vector consisting only of
entries xi with i ∈ B. We can therefore expand Ax = d to [ AB AN ] ( xB

xN
) = d. A

matrix Q ∈ Rm×m can then be decomposed to four block matrices QBB , QBN ,
QNB and QNN accordingly.

Inequalities l ≤ r of two vectors l, r ∈ Rm will be short for li ≤ ri,∀i ∈
{1, . . . ,m}. In addition we will adopt the convention that the maximum over an
empty set will be −∞ and the minimum ∞ accordingly.

Throughout the paper, we will be concerned with the following convex quadratic
optimization problem P:

min
x

f(x) :=
1
2
x>Qx + c>x s.t. l ≤ x ≤ u, Ax = d (2)

where Q is a positive semi-definite matrix and A ∈ Rn×m, l, u, x, c ∈ Rm and
d ∈ Rn. The feasibility region of P will be denoted by R(P).

2.2 Selections, Subproblems and Decomposition

Let us now define the notions used throughout this paper.

Definition 1 (Selection). Let q < m. A map B : Rm −→ P({1, . . . ,m})
such that |B(x)| ≤ q for any x and x̂ is optimal wrt. P iff B(x̂) = ∅ is called
(q–)significant selection wrt. P.5

Definition 2 (Subproblem). For a given set B ⊂ {1, . . . ,m} such that |B| ≤
q, N := {1, . . . ,m}\B and a given x ∈ R(P) we define fB,xN

(x′) := 1
2x′>QBBx′+

(cB +QBNxN )>x′ for every x′ ∈ Rq. The following optimization problem PB,xN

min
x′

fB,xN
(x′) s.t. lB ≤ x′ ≤ uB, ABx′ = d−ANxN (3)

will be called the subproblem induced by B.6

We are now in the position to define the decomposition method formally:

Algorithm 1 (Decomposition Method). The following algorithm can be as-
sociated with every significant selection wrt. P
5 If x is evident from the context we often write B instead of B(x).
6 Note, that PB,xN is a special case of P.
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1: Initialize: k ← 0 and x0 ∈ R(P)
2: B ← B(xk)
3: while B 6= ∅ do
4: N ← {1, . . . ,m} \B
5: Find x′ as an optimal solution of PB,xk

N

6: Set xk+1 ←
(

x′

xk
N

)
7: k ← k + 1, B ← B(xk)
8: end while

This algorithm shall be called the decomposition method of P induced by B.

3 Gradient Selection

The idea of selecting the indices via an ordering according to the gradients of
the objective function has been motivated by the idea to select indices which
contribute most to the steepest descent in the gradient field (see [5]). We would
like to adopt another point of view in which indices violating the KKT–conditions
of the problem P are selected. This idea has been used e. g. in [7] and [11].

To motivate this we will first focus on the well–known problem of C–SVC
(Sec. 3.1) and later enhance this strategy to a more general setting (Sec. 3.2).

3.1 C-SVC and KKT–violating pairs

In the case of C–SVC a simple reformulation of the KKT–conditions leads to
the following optimality criterion: x̂ is optimal wrt. (1) iff there exists a b ∈ R
such that for any i ∈ {1, . . . ,m}(

x̂i > 0⇒ ∇f(x̂)i − byi ≤ 0
)

and
(
x̂i < C ⇒ ∇f(x̂)i − byi ≥ 0

)
. (4)

Following [8] (4) can be rewritten as(
i ∈ Ibot(x̂)⇒ yi∇f(x̂)i ≥ b

)
and

(
i ∈ Itop(x̂)⇒ yi∇f(x̂)i ≤ b

)
,

where

Itop(x) := {i | (xi < C, yi = −1) ∧ (xi > 0, yi = 1)}
Ibot(x) := {i | (xi > 0, yi = −1) ∧ (xi < C, yi = 1)} .

The KKT–conditions can therefore be collapsed to a simple inequality7: x̂ is
optimal iff

max
i∈Itop(x)

yi∇f(x)i ≤ min
i∈Ibot(x)

yi∇f(x)i (5)

7 Note, that if one of the sets is empty, it’s easy to fulfill the KKT–conditions by
choosing an arbitrarily large or small b.
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Given a non–optimal feasible x, we can now identify indices (i, j) ∈ Itop(x)×
Ibot(x) that satisfy the following inequality:

yi∇f(x)i > yj∇f(x)j

Such pairs do not admit the selection of a b ∈ R according to (4). Following [9],
such indices are therefore called KKT–violating pairs .

From this point of view the selection algorithm proposed by Joachims chooses
pairs of indices which violate this inequality the most. As this strategy, imple-
mented for example in SVMlight [5], selects the candidates in Itop(x) from the
top of the list sorted according to the value of yi∇f(x)i, Lin calls indices in
Itop(x) ,,top–candidates” (see [8]). Elements from Ibot(x) are selected from the
bottom of this list and are called ,,bottom–candidates”. We will adopt this nam-
ing convention here.

3.2 General KKT–Pairing

We will now show that a pairing strategy, based on a generalized version of
the KKT–conditions in (5), can be extended to a more general class of convex
quadratic optimization problems. The exact condition is given in the following
definition:

Definition 3. Let P be a general convex quadratic optimization problem as
given in (2). If any selection of pairwise linearly independent columns Ai ∈ Rn

of the equality constraint matrix A is linearly independent, we call the problem
P decomposable by pairing.

Note, that most variants of SVM, including ν–SVM, fulfill this restriction.
We may then define an equivalence relation on the set of indices i ∈ {1, . . . ,m}

as follows:
i ∼ j ⇔ ∃λi,j ∈ R \ {0} : λi,jAi = Aj (6)

Let {ir | r = 1, . . . , s} be a set of representatives of this relation. The subset of
corresponding columns

{ar := Air
| r = 1, . . . , s} ⊂ {Ai | i = 1, . . . ,m}

therefore represents the columns of A up to scalar multiplication. Additionally,
we define λi := λi,ir

for any i ∈ [ir]. Thus λiAi = ar if i ∈ [ir].
From Definition 3 we draw two simple conclusions for such a set of representa-

tives: As all {ar | r = 1, . . . , s} are pairwise linearly independent by construction,
they are linearly independent and it follows that s = dim〈ar | r = 1, . . . , s〉 ≤
rank A ≤ n.

To formulate the central theorem of this section we define our generalized
notion of ,,top” and ,,bottom” candidates first:
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Definition 4. Let {i1, . . . , is} be a set of representatives for the equivalence re-
lation (6). For any r ∈ {1, . . . , s} we define:

Itop,r(x) := [ir] ∩ {j | (xj > lj ∧ λj > 0) ∨ (xj < uj ∧ λj < 0)}
Ibot,r(x) := [ir] ∩ {j | (xj > lj ∧ λj < 0) ∨ (xj < uj ∧ λj > 0)}

Indices in Itop,r(x) (Ibot,r(x)) are called top candidates (bottom candidates).
Top candidates for which xi = li or xi = ui are called top–only candidates.
The notion bottom–only candidate is defined accordingly. We use the following
notation:

Itop,r(x) := {i ∈ Itop,r(x) | xi ∈ {li, ui}} ,

Ibot,r(x) := {i ∈ Ibot,r(x) | xi ∈ {li, ui}}

The following naming convention will be helpful:

Itop(x) :=
⋃

r∈{i1,...,is}

Itop,r(x) .

Ibot(x), Itop(x) and Ibot(x) are defined accordingly.

We will now generalize (5) to problems P decomposable by pairing. The KKT–
conditions of such a problem P say that x̂ is optimal wrt. P iff there exists an
h ∈ Rn such that for any i ∈ {1, . . . ,m}(

x̂i > li ⇒ ∇f(x̂)i −A>i h ≤ 0
)

and
(
x̂i < ui ⇒ ∇f(x̂)i −A>i h ≥ 0

)
.

Given a set of representatives {ir | r = 1, . . . , s} and Ai = 1
λi

ar for i ∈ [ir] this
condition can be written as follows: x̂ is optimal wrt. P iff there exists an h ∈ Rn

such that for any i ∈ {1, . . . ,m}(
i ∈ Itop,r(x̂)⇒ λi∇f(x̂)i ≤ a>r h

)
and

(
i ∈ Ibot,r(x̂)⇒ λi∇f(x̂)i ≥ a>r h

)
(7)

The following theorem will show that the KKT–conditions of such problems can
be collapsed to a simple inequality analogous to (5):

Theorem 1. If problem P is decomposable by pairing and a set of representa-
tives {i1, . . . , ir} for the equivalence relation (6) is given, the KKT–conditions
can be stated as follows:
x̂ is optimal wrt. P iff for all r ∈ {1, . . . , s}

max
i∈Itop,r(x̂)

λi∇f(x̂)i ≤ min
i∈Ibot,r(x̂)

λi∇f(x̂)i (8)

Proof. For an optimal x̂ equation (8) follows immediately from (7).
To prove the opposite direction we define hr

top := maxi∈Itop,r(x) λi∇f(x)i and
hr

bot := mini∈Ibot,r(x) λi∇f(x)i for any r ∈ {1, . . . , s}. By assumption hr
top ≤ hr

bot

and we can choose h̄r ∈ [hr
top, h

r
bot]. As P is decomposable by pairing, it follows
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that
(
a1, . . . , as

)> ∈ Rs×n represents a surjective linear mapping from R
n to

R
s. Thus there exists an h ∈ Rn such that for all r ∈ {1, . . . , s} : a>r h = h̄r. We

conclude that

λi∇f(x)i ≤ hr
top ≤ h̄r = a>r h if i ∈ Itop,r(x)

λi∇f(x)i ≥ hr
bot ≥ h̄r = a>r h if i ∈ Ibot,r(x)

holds for all i ∈ {1, . . . ,m}. Therefore the KKT–conditions (7) are satisfied and
x̂ is an optimal solution. ut

3.3 Selection Algorithm

Given a set of representatives {i1, . . . , is} and the corresponding λi for all i ∈
{1, . . . ,m} we are now able to formalize a generalized gradient selection algo-
rithm. For any x ∈ R(P) we call the set

C(x) := {(i, j) ∈ Itop,r(x)× Ibot,r(x) | λi∇f(x)i − λj∇f(x)j > 0, r = 1, . . . , s}

selection candidates wrt. x.

Algorithm 2. Given a feasible x, we can calculate a B(x) ⊂ {1, . . . ,m} for an
even q as follows:
1: Initialize: C ← C(x), B ← ∅, l← q.
2: while (l > 0) and (C 6= ∅) do
3: Choose (i, j) = argmax(i,j)∈C λi∇f(x)i − λj∇f(x)j

4: B ← B ∪ {i, j}.
5: C ← C \ {i, j}2, l← l − 2.
6: end while
7: return B

We note that the selection algorithms given in [5, 8, 11, 12, 7] can be viewed as
special cases of this algorithm. This holds as well for the extensions to ν–SVM.

4 Convergence of the decomposition method

Theorem 1 implies that the mapping B returned by Algorithm 2 is a significant
selection in the sense of Definition 1 and therefore induces a decomposition
method. Such a decomposition method converges to an optimal solution of P as
stated in the following theorem:

Theorem 2. Let P be a convex quadratic optimization problem decomposable
by pairing. Then any limit point x̄ of a sequence (xn)n∈N of iterative solutions
of a decomposition method induced by a general gradient selection according to
Algorithm 2 is an optimal solution of P.

The proof is given in the following sections and differs only in some technical
details from the one given in [8].

7



4.1 Technical Lemmata

Let us first note that R(P) is compact and therefore, for any sequence (xn)n∈N
of feasible solutions such a limit point x̄ exists. Let, in the following, (xk)k∈K be
a converging subsequence such that x̄ = limk∈K,k→∞ xk.

If we assume that the matrix Q satisfies the equation minI λmin(QII) > 0
where I ranges over all subsets of {1, . . . ,m} such that |I| ≤ q we can prove the
following Lemma8:

Lemma 1. Let (xk)k∈K be a converging subsequence. There exists an σ > 0
such that

f(xk)− f(xk+1) ≥ σ‖xk+1 − xk‖2

Proof. Let Bk denote B(xk), Nk = {1, . . . ,m} \ Bk and d := xk − xk+1. Since
f is a quadratic function Taylor-expansion around xk+1 yields

f(xk) = f(xk+1) +∇f(xk+1)>d +
1
2
d>Qd . (9)

As xk+1 is an optimal solution of the convex optimization problem PBk,xk

Nk
we

can conclude that the line segment L between xk and xk+1 lies in the feasibility
region R(PBk,xk

Nk
) of the subproblem induced by Bk and therefore f(xk+1) =

minx∈L f(x). Thus, the gradient at xk+1 in direction to xk is ascending, i.e.

∇f(xk+1)>d ≥ 0 . (10)

If σ := 1
2 minI λmin(QII) > 0, the Courant-Fischer Minimax Theorem [15] im-

plies

d>Qd ≥ 2σ‖d‖2 . (11)

From (9), (10) and (11), the lemma follows. ut

Lemma 2. For any l ∈ N the sequence (xk+l)k∈K converges with limit point
x̄ and, as λi∇f(x) is continuous in x, (λi∇f(xk+l)i)k∈K converges accordingly
with limit point λi∇f(x̄)i for all i ∈ {1, . . . ,m}

Proof. According to Lemma 1,
(
f(xk)

)
k∈K is a monotonically decreasing se-

quence on a compact set and therefore converges and we are thus able to bound
‖xk+1 − x̄‖ for k ∈ K as follows:

‖xk+1 − x̄‖ ≤ ‖xk+1 − xk‖+ ‖xk − x̄‖

≤
√

1
σ

(f(xk)− f(xk+1)) + ‖xk − x̄‖

As f(xk) is a cauchy sequence and xk k∈K,k→∞−−−−−−−→ x̄, this term converges to zero
for k ∈ K and k →∞. Therefore (xk+1)k∈K converges with limit x̄. By induction
the claim follows for any l ∈ N. ut
8 This holds if Q is positive definite. With respect to problems induced by SVM this

tends to hold for small q or special kernels like for example RBF-kernels. For the
special case of SMO (q = 2) Lemma 1 has been proven without this assumption [14].
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Lemma 3. For any i, j ∈ {1, . . . ,m} such that i ∼ j and λi∇f(x̄)i > λj∇f(x̄)j

and all l ∈ N there exists a k ∈ K such that for the next l iterations k′ ∈
{k, . . . , k + l} the following holds:
If i, j are both selected in iteration k′, either i becomes bottom–only or j becomes
top–only for the next iteration k′ + 1.

Proof. According to Lemma 2 we can find for any given l ∈ N a k ∈ K such that
for any k′ ∈ {k, . . . , k + l} the following inequality holds:

λi∇f(xk′+1)i > λj∇f(xk′+1)j . (12)

Assume that i, j ∈ B(xk′
) for any k′ ∈ {k, . . . , k + l}. As both indices are in the

working set, xk′+1 is an optimal solution of PB(xk′ ),xk′
N(k′)

. For sake of contradic-

tion we assume that i is top candidate and j bottom candidate in iteration k′+1 at
the same time, i.e. i ∈ Itop,r(xk′+1) and j ∈ Ibot,r(xk′+1) for an r ∈ {1, . . . , s}9.
In this case, as PB(xk′ ),xk′

N(k′)
is decomposable by pairing, Theorem 1 implies

λi∇f(xk′+1)i ≤ λj∇f(xk′+1)j .

This contradicts to (12) and the choice of k′. ut

4.2 Convergence Proof

We are now in the position to state the main proof of the convergence theorem.
For sake of contradiction, we assume there exists a limit point x̄ which is not
optimal wrt. P.

In the following, we will concentrate on the set C> := {r | [ir]2∩C(x̄) 6= ∅} ⊂
{1, . . . , s} of equivalence classes which contribute to the selection candidates
C(x̄) on the limit point x̄. As x̄ is not optimal C> 6= ∅. For any such equivalence
class we select the most violating pair (ιr, κr) as follows:

(ιr, κr) = argmax(i,j)∈C(x̄)∩[ir]2 λi∇f(x̄)i − λj∇f(x̄)j

Based on these pairs, we define the following two sets for any r ∈ C>:

Ir :={i ∈ [ir] | λi∇f(x̄)i ≥ λιr
∇f(x̄)ιr

}
Kr :={i ∈ [ir] | λi∇f(x̄)i ≤ λκr

∇f(x̄)κr
}

For any iteration k ∈ N an index i ∈ Ir \ {ιr} will then be called dominating ιr
in iteration k iff i ∈ Itop,r(xk). An index j ∈ Kr \ {κr} will be called dominating
κr iff j ∈ Ibot,r(xk) accordingly. dk will denote the number of all dominating
indices in iteration k. Note that, as no i ∈ [ir] can dominate ιr as well as κr in
one iteration, dk is bounded by m − 2|C>|. We now claim, that there exists a
k ∈ K such that, for the next mC := m−2|C>|+1 iterations k′ ∈ {k, . . . , k+mC},
9 As i ∼ j such an r must exist
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the following two conditions hold: 1) dk′
> 0 and 2) dk′+1 < dk′

which leads to
the aspired contradiction.

The k ∈ K we are looking for can be chosen, according to Lemma 2, such
that for the next mC +1 iterations all inequalities on x̄ will be preserved, i.e. for
k′ ∈ {k, . . . , k + mC + 1} the following holds:

∀(i, j) ∈ {1, . . . ,m}2 : λi∇f(x̄)i < λj∇f(x̄)j ⇒ λi∇f(xk′
)i < λj∇f(xk)j ,

x̄i > li ⇒ xk′
> li and x̄i < ui ⇒ xk′

< ui .

Note that (ιr, κr) ∈ Itop,r(xk′
) × Ibot,r(xk′

) for any such k′ and thus, due to
Lemma 3, they cannot be select at the same time. Let us now prove the two
conditions introduced earlier for the selected k:
1) As dk′

= 0 would imply, that for any r ∈ C>

(ιr, κr) = argmax(i,j)∈C(xk′ ) λi∇f(xk′
)i − λj∇f(xk′

)j

at least one pair (ιr, κr) would be selected in the next iteration k′ + 1 which is,
by choice of k, not possible for any k′ ∈ {k, . . . , k+mC}. Therefore dk′

> 0 holds
for all such k′ as claimed.
2) To prove that dk′

will decrease in every iteration k′ ∈ {k, . . . , k + mC} by
at least one, we have to consider two aspects: First, there have to be vanishing
dominating indices, i.e. a top candidate from Ir has to become bottom–only or
a bottom candidate from Kr has to become top–only. Second, we have to take
care that the number of non-dominating indices, which become dominating in
the next iteration, is strictly bounded by the number of vanishing dominating
indices.
Note, that the state of an index i, concerning domination, only changes if i is
selected, i.e. i ∈ B(xk′

). As we will only be concerned with such selected indices,
let us define the following four sets:

I+
r := Ir ∩ Itop,r(xk′

) ∩B(xk′
) , I−r := Ir \ {ιr} ∩ Ibot,r(xk′

) ∩B(xk′
) ,

K+
r := Kr ∩ Ibot,r(xk′

) ∩B(xk′
) , K−r := Kr \ {ιr} ∩ Itop,r(xk′

) ∩B(xk′
)

I+
r contains the selected indices dominating ιr in the current iteration while
I−r contains the selected indices from Ir \ {ιr} currently not dominating ιr. K+

r

and K−r are defined accordingly. Let us first state a simple lemma concerning
vanishing dominating indices:

Lemma 4. In the next iteration all indices from I+
r will become bottom–only or

all indices from K+
r will become top–only.

In particular, if I+
r 6= ∅ and K+

r = ∅ κr is selected and all indices from I+
r will

become bottom–only. The same holds for Kr
r 6= ∅ and I+

r = ∅ accordingly.

Proof. If both sets are empty there’s nothing to show. Without loss of generality
we assume I+

r 6= ∅. In this case there have to be selected bottom candidates from
[ir] as the indices are selected pairwise.
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If K+
r = ∅, by choice of k, the first selected bottom candidate has to be κr. As κr

is a bottom candidate in the next iteration as well, the claim follows according
to Lemma 3.
If K+

r 6= ∅, the assumption that a pair (i, j) ∈ I+
r ×K+

r exists, such that i will be
top and j will be bottom candidate in the next iteration, contradicts to Lemma 3.

ut

The next lemma will deal with indices currently non–dominating but, in the
next iteration, eventually becoming dominating:

Lemma 5. If I−r 6= ∅ the following two conditions hold10: |I−r | < |I+
r | and

K−r = ∅. The same holds for K−r respectively.

Proof. If I−r 6= ∅ all selected top candidates dominate ιr and K−r is therefore
empty. As the indices are selected pairwise in every class, it holds that 2|I+

r | =
|B(xk′

)∩ [ir]| > 0. In addition, κr ∈ B(xk′
)∩ [ir] and it therefore follows that at

least one selected bottom candidate is not in Ir and thus |I−r |+ 1 ≤ |I+
r | . ut

To finalize the proof, we note that for at least one r ∈ C> there have to be
dominating indices, i.e. I+

r 6= ∅ or K+
r 6= ∅. Otherwise, by choice of k, (ιr, κr)

would be selected for some r.
Thus, according to Lemma 4, the number of vanishing dominating indices is
strictly positive and, according to Lemma 5, the number of non–dominating in-
dices, eventually becoming dominating, is strictly smaller. This proves condition
2) and, with condition 1), leads to a contradiction as mentioned above.

Thus the assumption that a limit point x̄ is not optimal has to be wrong and
the decomposition method, based on the generalized gradient selection, converges
for problems decomposable by pairing. ut

5 Final remarks and open problems

We have shown that the well–known method of selecting the working set accord-
ing to the gradient of the objective function can be generalized to a larger class of
convex quadratic optimization problems. The complexity of the given extension
is equal to Joachims’ selection algorithm except for an initialization overhead for
the calculation of the classes of indices and the λi. Thus implementations like
SVMlight [5] can easily be extended to solve such problems with little extra cost.

We would like to point out that the given selection algorithm and the ex-
tended convergence proof hold for most variants of SVM including the ν-SVM
for which the proof of convergence of a decomposition method with a gradient
selection strategy (e.g. [12]) has not been published yet.

It would be interesting to eliminate the restriction on the matrix Q (see
footnote 8) and to extend the proof in [14] to working sets with more than two
indices. A more interesting topic for future research would be the extension of
known results concerning speed of convergences (e.g. [16], [17]) to the extended
gradient selection approach proposed in this paper.
10 We briefly note, that such candidates might only exist if ιr is top–only.
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