Ruhr-Universität Bochum zum Inhalt Startseite der RUB pix
Startseite UniStartseite
Überblick UniÜberblick
A-Z UniA-Z
Suche UniSuche
Kontakt UniKontakt

Das Siegel
Naturwissenschaften Ingenieurwissenschaften Geisteswissenschaften Medizinische Einrichtungen Zentrale Einrichtungen
pix Lehrstuhl Mathematik & Informatik
On Methods to Keep Learning Away from Intractability
Unser Angebot: Mitarbeiter | Forschung | Lehre   
Startseite » Mitarbeiter » M. Schmitt » On Methods to Keep Learning Away from Intractability

pix pix On Methods to Keep Learning Away from Intractability
We investigate the complexity of learning from restricted sets of training examples. With the intention to make learning easier we introduce two types of restrictions that describe the permitted training examples. The strength of the restrictions can be tuned by choosing specific parameters. We ask how strictly their values must be limited to turn NP-complete learning problems into polynomial-time solvable ones. Results are presented for Perceptrons with binary and arbitrary weights. We show that there exist bounds for the parameters that sharply separate efficiently solvable from intractable learning problems.

Zum Seitenanfang  Seitenanfang | Diese Seite drucken
Letzte Änderung: 03.02.2003 | Ansprechpartner: Webmaster