Präsenzaufgaben zur Vorlesung

Theoretische Informatik

WS 15/16

Blatt 8

Präsenzaufgabe 8.2

Gib die Turingtafel eines DLBAs an, der die folgende Sprache über dem Alphabet $\Sigma = \{a, b, c\}$ erkennt:

$$L = \{a^i b^j c^{ij} \mid i, j \ge 1\}$$

Lösung:

2000						
δ	a	b	c	\hat{a}	\hat{b}	\hat{c}
s_a	(z_b, \hat{a}, R)					
z_b	\rightarrow	(z_c, \hat{b}, R)	(s_b, c, L)			
z_c		\rightarrow	\rightarrow			(s_c, \hat{c}, L)
s_c			(r_b, \hat{c}, L)		(e_a, \hat{b}, L)	
r_b	(s_b, a, R)	\leftarrow	\leftarrow		(z_b, \hat{b}, R)	
s_b	(r_a, a, L)				(s_b, b, L)	
r_a	\leftarrow	\leftarrow		(s_a, \hat{a}, R)		
e_a				(z_e, \hat{a}, N)	\leftarrow	

Startzustand ist s_a , Endzustand ist z_e .

Die machine markiert jeweils ein a (Zustand s_a) und dann für jedes b ein c (Zustände z_b , z_c , s_c , und r_b). Dann werden die Markierungen von den bs entfernt (s_b) und wird wieder ein a markiert (r_a, s_a) und für jedes b ein c. Am Ende wird das letzte b markiert; alle cs sind dann bereits markiert, da am Anfang schon eins markiert war. Die Konfigurationsfolge ab dann ist

$$\hat{a} \dots \hat{a}\hat{b} \dots \hat{b}z_{c}\hat{c} \dots \hat{c}$$

$$\vdash \hat{a} \dots \hat{a}\hat{b} \dots \hat{b}s_{c}\hat{b}\hat{c} \dots \hat{c}$$

$$\vdash \hat{a} \dots \hat{a}\hat{b} \dots e_{a}\hat{b}\hat{b}\hat{c} \dots \hat{c}$$

$$\vdash \hat{a} \dots \hat{a}e_{a}\hat{a}\hat{b} \dots \hat{b}\hat{c} \dots \hat{c}$$

$$\vdash \hat{a} \dots \hat{a}z_{e}\hat{a}\hat{b} \dots \hat{b}\hat{c} \dots \hat{c}$$

und der Automat akzeptiert in Zustand z_e . Wenn es nicht $i \cdot j$ viele cs gibt stoppt der Automat in einer nicht-akzeptierenden Konfiguration.