Übungen zur Vorlesung

Theoretische Informatik

WS 08/09

Blatt 3

Aufgabe 3.1

Zu einem Alphabet $\Sigma = \{0, 1\}$ sei folgender NFA gegeben.

$$\begin{array}{c|cccc} \delta & z_0 & z_1 & z_2 \\ \hline 0 & \{z_1, z_2\} & \{z_1, z_2\} & \varnothing \\ 1 & \varnothing & \{z_0, z_1\} & \varnothing \end{array}$$

$$S = \{z_0, z_2\}$$
$$E = \{z_2\}$$

- a) Bestimme einen DFA, der die selbe Sprache akzeptiert.
- b) Zeichne den Zustandsgraphen zu dem NFA und zu dem DFA.
- c) Welche Sprache erzeugt der NFA? Begrunde Deine Behauptung.

Aufgabe 3.2

Gegeben sei der reguläre Ausdruck $\alpha = (c^*|b)^*(ab|a)$ über dem Alphabet $\Sigma = \{a, b, c\}$.

Erstelle mit Hilfe der Synthesen für die einzelnen Operationen (S.32-38 Vorlesung) den Zustandsgraphen eines NFA, der die selbe Sprache erzeugt wie der reguläre Ausdruck.

Aufgabe 3.3

Gegeben sei folgende Grammatik.

$$V = \{S, Y\}, \, \Sigma = \{0, 1\}$$

$$S \to 0Y|0|\epsilon$$

$$Y \rightarrow 1Y|0Y|0$$

S = Startvariable

Bbestimme einen NFA, der die selbe Sprache erzeugt wie die Grammatik.

Aufgabe 3.4

Palindrome sind Wörter die von links und von rechts gelesen gleich sind. Zeige mit Hilfe des Pumping Lemmas, dass die Sprache

$$L = \{x \in \Sigma^* | \quad x = x_0...x_n \text{ mit } x_i \in \Sigma \text{ und } x_i = x_{n-i} \quad \forall 0 \le i \le n \}$$

der Palindrome über dem Alphabet $\Sigma = \{a,b\}$ nicht regulär ist.