

Vorlesung Datenstrukturen

Einleitung und Grundlagen

Maike Buchin 18.4.2017

Verantwortliche

Dozentin

- Maike Buchin
- Maike.Buchin@rub.de
- Raum NA 1/70
- Sprechzeiten: Termin per Mail vereinbaren

Organisation • Stef Sijben der Übungen

- Stef.Sijben@rub.de
 - Raum NA 1/71
 - Sprechzeiten: Donnerstag 13 bis 14 Uhr

Ubungsleiter

Lars Schlieper, Stef Sijben

Korrekteure

Lars Schlieper, Lea Thiel

Informationen

Webseite www.rub.de\Imi\lehre\ds_ss17\

Vorlesungen • Di 14:15-15:45 Uhr, HNC 30

Do 14:15-15:45 Uhr, HNC 30

Vorlesung 1 Jun.-Prof. Dr. Maike Buchin

Ubungen

- Termine Di 10-12 Uhr, NB 02/99, Stef Sijben
 - Di 12-14 Uhr, NB 3/99, Stef Sijben
 - Di 16-18 Uhr, NA 2/99, Lars Schlieper Anmeldung via Blackboard erforderlich!

Zettel

- Freitag online
- Dienstag Präsenzübung
- Dienstag Abgabe bis 10:00 Uhr
- Dienstag Rückgabe

Inhalt

- Lösung vorheriger Zettel
- Präsenzübung aktueller Zettel

Abgabe vu dritt

- Kästen auf NA 02 gegenüber von Raum 257
- 1. Zettel am Freitag 21.4. online
- 1. Ubung am Dienstag 25.4.

Vorlesung 1 Jun.-Prof. Dr. Maike Buchin

Bewertung

Klausur: am Di 25.7. von 14 bis 16 Uhr

Nachklausur am Ende des WiSe 17/18

mündliche Prüfung für Hauptfach Mathe BSc.: am Di 25.7. oder zu Beginn des WiSe 17/18

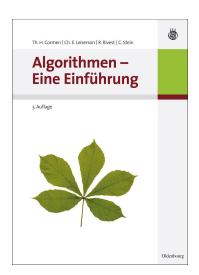
Bonuspunkte:

10~% Punkte auf den Übungszetteln =1 Punkt auf der Klausurbzw. 60%=-0.3 in der mündlichen Prüfung

Bonuspunkte zählen nur in der ersten Klausur!

Literatur

Dietzfelbinger, Mehlhorn, Sanders: Algorithmen und Datenstrukturen - Die Grundwerkzeuge über den OPAC der RUB innerhalb des Campusnetzes als pdf erhältlich



Cormen, Leiserson, Rivest, Stein: Algorithmen - Eine Einführung

.. und viele weitere gute Bücher zu Algorithmen und Datenstrukturen

Inhalt des Kurses

Algorithmen

wohldefinierte Vorschrift, die eine Eingabe in eine Ausgabe überführt

- Laufzeit
- Speicherbedarf

Datenstrukturen

Speicherung von Daten, welche Zugriff und Modifikation erlaubt

- Aufbau
- Speicherbedarf
- Operationen

Wir interessieren uns v.a. für die theoretische Analyse dieser!

Effizienz

Die praktische Implementierbarkeit kennen Sie ggfs. aus anderen Veranstaltungen (Informatik 2, Einführung in die Programmierung).

Inhalt des Kurses

Algorithmen

wohldefinierte Vorschrift, die eine Eingabe in eine Ausgabe überführt

Speicherung von Daten, welche Zugriff und Modifikation erlaubt

Wir werden sehen:

- grundlegende Datenstrukturen
- grundlegende Algorithmenparadigmen

Themen:

- Einleitung
- Suchen & Sortieren
- Graphen

2. Einleitung [Grundlagen]

2.1 Asymptotische Notation

Laufzeitanalyse von Algorithmen:

- Anzahl von elementaren Rechenschritten
- Laufzeit in Abhängigkeit der Größe der Eingabe time(I) = # Rechenschritte eines Algorithmus auf einer Eingabe I Analyse im schlechtesten Fall:

$$T(n) = \max\{\mathsf{time}(I) \mid \mathsf{size}(I) = n\}$$

Alternativ:

Analyse im besten Fall:

$$T(n) = \min\{\mathsf{time}(I) \mid \mathsf{size}(I) = n\}$$

Analyse im mittleren Fall:

$$T(n) = \frac{1}{|\{I| \mathsf{size}(I) = n\}|} \sum_{\{I| \mathsf{size}(I) = n\}} \mathsf{time}(I)$$

Rechenschritte asymptotisch zählen mit der Oh-Notation

Oh-Notation

$$O(f(n)) = \{g(n) \mid \exists c > 0 \ \exists n_0 \ge 1 \ \forall n > n_0 : g(n) \le c \cdot f(n)\}$$

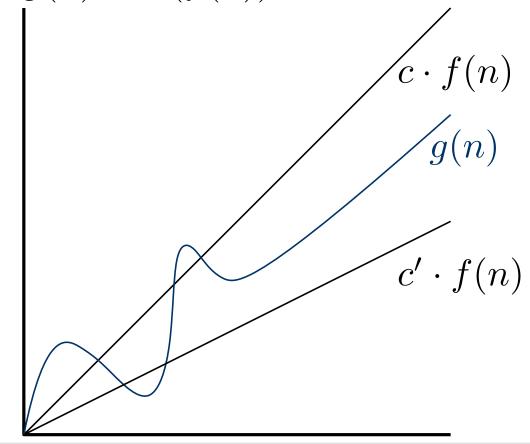
$$\Omega(f(n)) = \{g(n) \mid \exists c > 0 \ \exists n_0 \ge 1 \ \forall n > n_0 : g(n) \ge c \cdot f(n)\}$$

$$\Theta(f(n)) = \Omega(f(n)) \cap O(f(n))$$

Notation: g(n) = O(f(n)) statt $g(n) \in O(f(n))$

Lemma:

Sei $p(n) = \sum_{i=0}^{k} a_i n^i$ ein Polynom mit reellen Koeffizienten a_i und $a_k > 0$. Dann ist $p(n) = \Theta(n^k)$.



Oh-Notation

$$O(f(n)) = \{g(n) \mid \exists c > 0 \ \exists n_0 \ge 1 \ \forall n > n_0 : g(n) \le c \cdot f(n)\}$$

 $\Omega(f(n)) = \{g(n) \mid \exists c > 0 \ \exists n_0 \ge 1 \ \forall n > n_0 : g(n) \ge c \cdot f(n)\}$
 $\Theta(f(n)) = \Omega(f(n)) \cap O(f(n))$

Notation: g(n) = O(f(n)) statt $g(n) \in O(f(n))$

Lemma:

- $cf(n) = \Theta(f(n)) \ \forall c > 0$
- $f(n) + g(n) = \Omega(f(n))$
- f(n) + g(n) = O(f(n)) falls g(n) = O(f(n))
- $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$

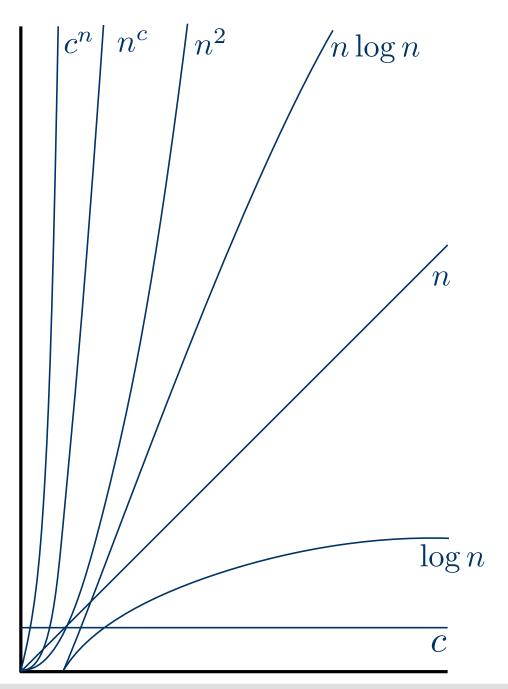
Beispiele:

- $-7n^2 + 10^6n = O(n^2)$
- $3n \log n + 5n = \Omega(n)$
- $99n + 3\log n = O(n)$

Oh-Notation

Wichtige Klassen:

- $lackbox{0}(c)$ konstant
- $O(\log n)$ logarithmisch
- $lackbox{0}(n)$ linear
- $O(n \log n)$ loglinear
- $O(n^2)$ quadratisch
- $O(n^c)$ polynomiell
- $lackbox{0}(c^n)$ exponentiell



2.2 Maschinenmodell

RAM = random access machine (dt. Registermaschine) Einfaches Maschinenmodell eines sequentiellen Rechners

- CPU Recheneinheit
- Register endlich viele Register R_1, \ldots, R_k
- Speicher unendlich viele Speicherzellen $S[0], S[1], \ldots$

Speicherzellen und Register enthalten 'kleine' ganze Zahlen, d.h. die Größe einer Zahl ist beschränkt durch ein Polynom in der Größe der Eingabe

- die Anzahl der bits zur Darstellung einer Zahl ist also logarithmisch in der Größe der Eingabe
- Zeit und Speicherbedarf wachsen also maximal um einen log-Faktor

2.2 Maschinenmodell

RAM = random access machine (dt. Registermaschine) Einfaches Maschinenmodell eines sequentiellen Rechners

- CPU Recheneinheit
- Register endlich viele Register R_1, \ldots, R_k
- Speicher unendlich viele Speicherzellen $S[0], S[1], \ldots$

Speicherzellen und Register enthalten 'kleine' ganze Zahlen, d.h. die Größe einer Zahl ist beschränkt durch ein Polynom in der Größe der Eingabe

Ohne diese Annahme wäre es z.B. möglich, durch n Quadrierungen die Zahl 2^{2^n} zu berechnen.

Alternativ verwendet man das *logarithmische Kostenmaß* statt dem *uniformen Kostenmaß*.

RAM-Programm

besteht aus durchnummerierter Liste von Befehlen

- Laden/Schreiben von Registern aus/in den Speicher
- Operationen auf Registern
 - arithmetisch $(+, -, \times, div, mod)$
 - Vergleiche $(\leq, <, >, \geq)$
 - logisch (\land, \lor, \lnot)
- Sprung-Anweisungen
 - bedingt if $R_i = 0$ jump to k
 - unbedingt jump to k

Ein **Programm**

- startet in Zeile 1
- falls kein Sprung, gehe zur nächsten Zeile
- endet falls Zeile ausserhalb Programm
- Ein- und Ausgabe stehen in festgelegten Speicherzellen

RAM-Programm

Beispiel: finde das Minimum von zwei Zahlen

Eingabe: x, y in S[0], S[1]

Ausgabe: min(x, y) in S[0]

- 1. $R_1 = S[0]$
- 2. $R_2 = S[1]$
- 3. $R_3 = R_1 \le R_2$
- 4. if $R_3 = 0$ jump to 6
- 5. $S[0] = R_2$

Maschinenmodell

Zeitkomplexität:

ein Rechenschritt entspricht einem Maschinenbefehl

RAM vs. realer Rechner:

- endlicher Speicher
- feste Anzahl bits
- nicht jeder Befehl verursacht gleiche Kosten

Bezug zur Berechenbarkeitstheorie:

- RAM führt im Prinzip GOTO-Programm aus
- Turingmaschinen besser geeignet für untere Schranken

RAM besser geeignet für obere Schranken

2.3 Pseudocode

- besser geeignet zur Beschreibung von Algorithmen als RAM-Programme
- Abstraktion und Vereinfachung imperativer Programmiersprachen

Enthält

- Variablen verschiedener Typen (Zahlen, Folgen, Mengen, ...)
- Zuweisungen und Schleifen
 - if .. then .. else ..
 - while .. do ..
- Prozeduren und Funktionen als Unterprogramme

Zeitkomplexität:

Elementare Pseudocode-Befehle benötigen konstante Zeit; Prozedur- und Funktionsaufrufe benötigen konstante Zeit plus die Zeit für die Ausführung ihres Rumpfes.

Pseudocode

Beispiel: Sieb des Eratosthenes

```
a = \langle 1, \dots, 1 \rangle: Array [2..n] of \{0, 1\}

// Referenzparameter; am Ende: a[i] = 1 \Leftrightarrow i ist Primzahl

for i := 2 to \lfloor \sqrt{n} \rfloor do

if a[i] then for j := 2i to n step i do a[j] := 0

// Wenn a[i] = 1, ist i prim, Vielfache von i dagegen nicht

for i := 2 to n do if a[i] then output("[i] ist Primzahl")
```

Eigenschaften:

- kompakt und genau
- Abstraktion erlaubt auch Details zu "vertuschen"

2.4 Korrektheit von Algorithmen

Korrektheit lässt sich häufig zeigen mit Hilfe von:

- Zusicherungen: Vor- und Nachbedingungen die während der Ausführung eines Programmes gelten
- Schleifeninvarianten: Eigenschaften, die vor und nach jedem Schleifendurchlauf gelten
- Datenstrukturinvarianten: Eigenschaften, die unmittelbar nach Konstruktion gelten, sowie Vor- und Nachbedingung für alle Operationen darauf sind

2.4 Korrektheit von Algorithmen

Korrektheit lässt sich häufig zeigen mit Hilfe von:

- Zusicherungen: Vor- und Nachbedingungen die während der Ausführung eines Programmes gelten
- Schleifeninvarianten: Eigenschaften, die vor und nach jedem Schleifendurchlauf gelten
- Datenstrukturinvarianten: Eigenschaften, die unmittelbar nach Konstruktion gelten, sowie Vor- und Nachbedingung für alle Operationen darauf sind
- Zertifikate zur Überprüfung von Zusicherungen.
 Z.B. ist ein Teiler einer Zahl ein Zeuge dafür, dass diese nicht prim ist.

2.5 Binäre Suche

effiziente Art, um in einer geordneten Menge zu suchen

Gegeben: ein geordnetes Array $a[1\dots n]$ mit paarweise verschiedenen Einträgen, d.h. $a[1]<\dots< a[n]$, sowie ein Element x. Gefragt: Ist x in A und der Index k mit $a[k-1]< x \leq a[k]$. Dabei fassen wir $a[0]=-\infty$ und $a[n+1]=\infty$ auf.

Teile-und-Herrsche Prinzip:

Vergleiche x und a[m]

- falls $x = a[m] \rightarrow \text{gebe } m \text{ zurück}$
- falls $x < a[m] \rightarrow$ suche weiter in $a[1 \dots m-1]$
- falls $x > a[m] \to \text{suche weiter in } a[m+1 \dots n]$

2.5 Binäre Suche

Realisierung dieser Idee mit zwei Zeigern ℓ und r für die gilt $0 \le \ell < r \le n+1 \text{ und } a[\ell] < x < a[r] \qquad (I)$ Invariante: $(\ell, r) := (0, n+1)$ while true do invariant (I) // d. h. Invariante (I) gilt hier if $\ell + 1 = r$ then return (" $(a[\ell]) < x < a[\ell + 1]$ ") $m := |(r + \ell)/2|$ $II \ell < m < r$ s := compare(x, a[m])// -1 falls x < a[m], 0 falls x = a[m], +1 falls x > a[m]if s = 0 then return ("x steht in $a[\underline{m}]$ ") if s < 0 $|I| \ a[\ell] < x < a[m] = a[r]$ then r := m $|I| \ a[\ell] = a[m] < x < a[r]$

Korrektheit: folgt aus der Invariante

Laufzeit: ist $O(\log n)$, denn

- in jedem Durchlauf (ausser dem letzten) halbiert sich die Größe des zu durchsuchenden Arrays
- ein Durchlauf benötigt konstante Zeit

Jun.-Prof. Dr. Maike Buchin

else $\ell := m$