Hand ze Hel aus: Garey & Johnson Computers and Intractability A guide to the Theory of NP-(ompleteness (Freeman and Company) ## I. Der ungebildete Angestellte "I can't find an efficient algorithm, I guess I'm just too dumb." ## II. Der Angestellte mit P + NP Beweis "I can't find an efficient algorithm, because no such algorithm is possible!" Der Angestellk mit NF-Vollstandigheitsbeweis "I can't find an efficient algorithm, but neither can all these famous people." | P | NP-complete | |--|--| | SHORTEST PATH
BETWEEN TWO VERTICES | LONGEST PATH BETWEEN TWO VERTICES | | INSTANCE: Graph $G = (V, E)$, length $I(e) \in Z^+$ for each $e \in E$, specified vertices $a, b \in V$, positive integer B . QUESTION: Is there a simple path from a to b in G having total length B or less? | INSTANCE: Graph $G = (V, E)$, length $I(e) \in Z^+$ for each $e \in E$, specified vertices $a, b \in V$, positive integer B . QUESTION: Is there a simple path from a to b in G having total length B or more? | | EDGE COVER | VERTEX COVER | | INSTANCE: Graph $G = (V, E)$, positive integer K . QUESTION: Is there an $E' \subseteq E$ with $ E' \leq K$ such that for each $v \in V$ there is some $e \in E'$ for which $v \in e$? | INSTANCE: Graph $G = (V, E)$, positive integer K . QUESTION: Is there a $V' \subseteq V$ with $ V' \leq K$ such that for each $e \in E$ there is some $v \in V'$ for which $v \in e$? | | TRANSITIVE REDUCTION | MINIMUM EQUIVALENT DIGRAPH | | INSTANCE: Directed graph $G = (V, A)$, positive integer K . QUESTION: Is there an $A' \subseteq V \times V$ with $ A' \leq K$ such that for all $u, v \in V$ $G' = (V, A')$ contains a path from u to v if and only if G does? | INSTANCE: Directed graph $G = (V, A)$, positive integer K . QUESTION: Is there an $A' \subseteq A$ with $ A' \le K$ such that for all $u, v \in V$ $G' = (V, A')$ contains a path from u to v if and only if G does? | | INTREE SCHEDULING | OUTTREE SCHEDULING | | INSTANCE: Set T of unit length tasks, deadline $d(t) \in Z^+$ for each $t \in T$, partial order \leq on T such that each task has at most one immediate successor, positive integer m . QUESTION: Can T be scheduled on m processors to obey the partial order and | INSTANCE: Set T of unit length tasks, deadline $d(t) \in Z^+$ for each $t \in T$, partial order \leq on T such that each task has at most one immediate predecessor, positive integer m . QUESTION: Can T be scheduled on m processors to obey the partial order and | | meet all the deadlines? | meet all the deadlines? | Figure 4.1 Pairs of similar problems, one belonging to P and the other NP-complete. Figure 4.2 One possible state of knowledge about subproblems of an NP-complete problem Π . Problems are represented by circles, filled-in if known to be NP-complete, empty if known to be in P, and dotted if "open." An arrow from Π_1 to Π_2 signifies that Π_1 is a subproblem of Π_2 . Figure 4.3 Current state of knowledge for a collection of subproblems of PRE-CEDENCE CONSTRAINED SCHEDULING, using the key given in Figure 4.2. Figure 4.6 Crossover H used in the NP-completeness proof for PLANAR GRAPH 3-COLORABILITY. Figure 4.7 The construction of a planar graph G' from a given graph G, using the crossover H of Figure 4.6, so that 3-colorability is preserved. Figure 4.5 The graph H_3 and vertex substitute H_5 (formed from three copies of H_3) used for proving the NP-completeness of degree-restricted GRAPH 3-COLORABILITY.