Übungen zur Vorlesung

Komplexitätstheorie

SS 2009

Blatt 6

Aufgabe 6.1

Betrachte $Rm||C_{\max}$ mit n Jobs. Es sei $p_{\max} = \max_{i,j} p_{i,j}$ und es bezeichne C^*_{\max} die optimale Produktionsspanne. Zeige, dass die swap-Nachbarschaftsfunktion eine $performance\ ratio$ von mindestens $\frac{p_{\max}}{C^*_{\max}}$ hat.

Aufgabe 6.2

Betrachte die Problemliste im Anhang. Zeige, dass folgenden Probleme in \mathcal{NP} sind

- a) CLIQUE
- b) TSP
- c) KNAPSACK
- d) k-COLORABILITY

Aufgabe 6.3

Gegeben sei $k \in \mathbb{N}$, ein Graph G = (V, E) und eine Prozedur C, die k-Colorability löst (also zu gegebenen Graphen entscheiden kann, ob dieser mit $\leq k$ Farben gefärbt werden kann).

Zeige, dass man in Polynomialzeit eine Knotenfärbung mit k oder weniger Farben (wenn sie existiert) konstruieren kann, wenn ein Aufruf von C nur konstant viel Zeit benötigt.

Problemliste

SAT: Satisfiability (Erfüllbarkeitsproblem der Aussagenlogik)

Eingabe: Kollektion C_1, \ldots, C_m von Booleschen Klauseln in n Booleschen Variablen x_1, \ldots, x_n . (Eine Boolesche Klausel ist eine Disjunktion von Booleschen Literalen. Ein Boolesches Literal ist eine negierte oder unnegierte Boolesche Variable.)

Frage: Existiert eine Belegung von x_1, \ldots, x_n mit 0 oder 1, die alle Klauseln erfüllt, d.h., die dazu führt, dass C_1, \ldots, C_m zu 1 ausgewertet werden ?

3-SAT: Einschränkung von SAT auf Eingaben, deren Boolesche Klauseln aus jeweils 3 Booleschen Literalen bestehen.

CLIQUE: Cliquenproblem.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Anzahl k.

Frage: Existiert in G eine Clique der Größe k, d.h., eine Menge $C \subseteq V$ der Mächtigkeit k, deren Knoten paarweise in G benachbart sind ?

INDEPENDENT SET: Unabhängige Mengen.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Anzahl k.

Frage: Existiert in G eine unabhängige Menge der Größe k, d.h., eine Menge $U \subseteq V$ der Mächtigkeit k, deren Knoten paarweise in G nicht benachbart sind ?

VERTEX COVER: Überdeckung mit Knoten.

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Anzahl k.

Frage: Existiert in G ein "Vertex Cover (Knotenüberdeckungsmenge)" der Größe k, d.h., eine Menge $C \subseteq V$ der Mächtigkeit k, die von jeder Kante aus E mindestens einen Randknoten enthält?

HITTING SET: Auffinden eines Repräsentantensystems.

Eingabe: eine Kollektion M_1, M_2, \ldots, M_m endlicher Mengen und eine Zahl $k \in \mathbb{N}$.

Frage: Gibt es für diese Mengen ein Repräsentantensystem der Größe k, d.h., eine Menge R der Mächtigkeit k, die von jeder der Mengen M_1, M_2, \ldots, M_m mindestens ein Element enthält?

SET COVER: Mengenüberdeckung.

Eingabe: eine Kollektion M_1, M_2, \ldots, M_m endlicher Mengen und eine Zahl $k \in \mathbb{N}$.

Frage: Gibt es eine Auswahl von k dieser Mengen, deren Vereinigung mit der Vereinigung aller Mengen übereinstimmt, d.h., existiert eine k-elementige Indexmenge $I \subseteq \{1, \ldots, m\}$ mit

$$\bigcup_{i \in I} M_i = \bigcup_{i=1}^m M_i ?$$

SUBSET SUM: Erzielung einer vorgeschriebenen Teilsumme.

Eingabe: n Zahlen $a_1, \ldots, a_n \in \mathbb{N}$ und eine "Teilsummenzahl" $S \in \mathbb{N}$.

Frage: Gibt es eine Menge $I \subseteq \{1, ..., n\}$, so dass $\sum_{i \in I} a_i = S$?

PARTITION: Zerlegung in zwei gleichgroße Teilsummen.

Eingabe: n Zahlen $a_1, \ldots, a_n \in \mathbb{N}$.

Frage: Kann man diese Zahlen in zwei gleichgroße Teilsummen zerlegen, d.h., existiert eine Teilmenge $I \subseteq \{1, \ldots, n\}$, so dass $\sum_{i \in I} a_i = \sum_{j \notin I} a_j$?

KNAPSACK: Rucksackproblem.

Eingabe: n Objekte mit Gewichten $w_1, \ldots, w_n \in \mathbb{N}$ und Nutzen $p_1, \ldots, p_n \in \mathbb{N}$, eine Gewichtsschranke W und eine Nutzenschranke P.

Frage: Kann man einen Rucksack R so packen, dass die Objekte in R einen Gesamtnutzen von mindestens P und ein Gesamtgewicht von höchstens W besitzen, d.h., existiert eine Teilmenge $I \subseteq \{1, \ldots, n\}$, so dass $\sum_{i \in I} p_i \ge P$ und $\sum_{i \in I} w_i \le W$?

BP: Bin Packing (Behälterpackungsproblem).

Eingabe: n Objekte der Größen $a_1, \ldots, a_n \in \mathbb{N}$, m Behälter (=bins) der "Bingröße" b.

Frage: Kann man die n Objekte so in die m Behälter verpacken, dass in jedem Behälter die Größen der in ihm enthaltenen Objekte sich zu höchstens b addieren, d.h., existiert eine Zerlegung von $\{1,\ldots,n\}$ in m disjunkte Teilmengen I_1,\ldots,I_m , so dass $\sum_{i\in I_i}a_i\leq b$ für alle $1\leq j\leq m$ erfüllt ist?

HC: Hamiltonian Circuit (Hamiltonscher Kreis).

Eingabe: Ein ungerichter Graph G = (V, E).

Frage: Gibt es in G einen Hamiltonschen Kreis, d.h., können wir mit Kanten aus E einen Kreis formen, der jeden Knoten aus V genau einmal durchläuft?

DHC: Directed Hamiltonian Circuit (Gerichteter Hamiltonscher Kreis)

Dies ist das entsprechende Problem für gerichtete Graphen.

TSP: Travelling Salesman Problem (Problem des Handelsreisenden)

Eingabe: Eine Kostenschranke C, n Städte C_1, \ldots, C_n und eine Distanzmatrix $D = (d_{i,j})_{1 \leq i,j \leq n}$, wobei $d_{i,j} \in \mathbb{N}$ die Distanz zwischen C_i und C_j angibt.

Frage: Existiert eine Rundreise durch C_1, \ldots, C_n , deren Gesamtlänge C nicht überschreitet, d.h., existiert eine Permutation σ von $1, \ldots, n$, so dass

$$\sum_{i=1}^{n-1} d_{\sigma(i)\sigma(i+1)} + d_{\sigma(n)\sigma(1)} \le C ?$$

COLORABILITY: Graph Colorability (Graphenfärbungsproblem)

Eingabe: Ein ungerichteter Graph G = (V, E) und eine Zahl $k \in \mathbb{N}$.

Frage: Kann man die Knoten von G mit k Farben legal färben, d.h. existiert eine Abbildung $f:V\to\{1,\ldots,k\}$ s.d. für alle Kanten $\{u,v\}\in E$ die Bedingung $f(u)\neq f(v)$ erfüllt ist (d.h. benachbarte Knoten haben verschiedene Farben)?

k-COLORABILITY: Graph k-Colorability (Graphenfärbungsproblem mit k Farben)

Einschränkung von COLORABILITY auf eine konstante Anzahl von k Farben.