Übungen zur Vorlesung

Komplexitätstheorie

SS 2009

Blatt 5

Aufgabe 5.1

Sei I eine Probleminstanz von EuclideanTSP und sei I' die Instanz, die durch Quadrieren aller Einträge der Distanzmatrix von I entsteht. Beweise oder widerlege: Ist τ eine optimale Tour für I, dann ist τ auch eine optimale Tour für I'.

Aufgabe 5.2

Betrachte MaximumClauseWeightedSatisfiability:

Gegeben sind eine Menge U mit booleschen Variablen, eine Menge C von Klauseln (Disjunktion von Literalen) über U und Gewichte w(c) für jede Klausel $c \in C$. Finde eine Belegung der Variablen, die die Summe der Gewichte der erfüllten Klauseln maximiert.

und folgende Nachbarschaftsfunktion:

Zwei Variablenbelegungen t und t' sind flip-Nachbarn, wenn t' aus t genau durch Umkehrung des Werts einer Variablen entsteht.

Zeige, dass die flip-Nachbarschaftsfunktion eine performance bound von 2 hat.

Aufgabe 5.3

Zeige, dass für $R2||C_{\text{max}}$ mit n Jobs die swap-Nachbarschaftsfunktion eine $performance\ ratio$ von mindestens n-1 hat.

Aufgabe 5.4

Betrachte $Rm||C_{\max}$ mit n Jobs. Es sei $p_{\max} = \max_{i,j} p_{i,j}$ und es bezeichne C^*_{\max} die optimale Produktionsspanne. Zeige, dass die move-Nachbarschaftsfunktion eine $performance\ ratio$ von mindestens $\frac{p_{\max}}{C^*_{\max}}$ hat.