Übungen zur Vorlesung

Komplexitätstheorie

SS 2009

Blatt 2

Aufgabe 2.1

Betrachte $P||C_{\text{max}}$ (d.h. Multiprocessor Scheduling)

- a) Wie groß ist der Lösungsraum?
- b) Wie groß ist die move-Nachbarschaft einer Lösung?
- c) Ist die move-Nachbarschaftsfunktion exakt? Mit Beweis.

Aufgabe 2.2

Betrachte den node-insertion-Nachbarschaftgraphen für TSP mit $n \ge 4$ Städten. Zeige, dass jeder Knoten Grad $n \cdot (n-3)$ hat.

Aufgabe 2.3

Ein Graph heißt regulär, wenn jeder Knoten gleichen Grad hat. Zeige, dass ein isotroper Graph immer regulär ist und das die Umkehrung i.A. nicht gilt.

Aufgabe 2.4

Zeige, dass der *iterative-improvement*-Algorithmus zur Graphenfärbung (mit modifizierter Kostenfunktion) aus der Vorlesung beliebig schlechte Lösungen liefert. D.h. finde eine Folge von Graphen G_n , bei der der Algorithmus Färbungen mit in n wachsender Farbanzahl produziert.

Hinweis: Es genügt bipartite Graphen zu betrachten.