Übungen zur Vorlesung

Komplexitätstheorie

SS 2008

Blatt 10

Betrachte folgendes Optimierungsproblem:

MINIMUMKNAPSACK

Eingabe: Eine endliche Objektmenge $\{1, \ldots, n\}$, Gewichte w_i und Profite p_i (für alle $i \in \{1, \ldots, n\}$) und eine positive Zahl b

Lösung: Eine Teilmenge $I \subseteq \{1, \ldots, n\}$ mit $\sum_{i \in I} p_i \ge b$

Maß: Das Gewicht der Auswahl I, d.h. $\sum_{i \in I} w_i$

Aufgabe 10.1

Konstruiere einen pseudo-polynomiellen Algorithmus für MINIMUMKNAPSACK.

Aufgabe 10.2

Konstruiere ein volles polynomielles Approximationsschema (FTPAS) für MINIMUMKNAP-SACK.

[Hinweis: Benutze Aufgabe 1 und verwende die "Rounding and Scaling"-Technik, diesmal aber mit variabler Skalierung]

Aufgabe 10.3

Sei

$$RP := \left\{ L \subseteq \Sigma^* \mid \exists PTM \ \mathcal{M} : \forall x \in \sigma^* : \left\{ \begin{matrix} \mathcal{M} \ \text{akz.} \ x \ \text{mit Wahrscheinlichkeit} \ \geq \frac{1}{2}, \quad x \in L \\ \mathcal{M} \ \text{verw.} \ x \ \text{mit Wahrscheinlichkeit} \ 1, \qquad x \notin L \end{matrix} \right\}$$

$$\text{co-RP} := \left\{ L \subseteq \Sigma^* \mid \exists PTM \ \mathcal{M} : \forall x \in \sigma^* : \begin{cases} \mathcal{M} \text{ akz. } x \text{ mit Wahrscheinlichkeit } 1, & x \in L \\ \mathcal{M} \text{ verw. } x \text{ mit Wahrscheinlichkeit } \geq \frac{1}{2}, & x \notin L \end{cases} \right\}.$$

Zeige, dass $P \subseteq RP \subseteq NP$ und $P \subseteq co-RP \subseteq co-NP$.

Aufgabe 10.4

Ein LASVEGAS-Algorithmus ist ein randomisierter Algorithmus, dessen JA/NEIN-Ausgabe (für akzeptierende bzw. verwerfende Rechnungen) absolut verlässlich ist, aber noch über eine dritte Aufgabemöglichkeit WEISS-NICHT verfügt und diese mit höchstens Wahrscheinlichkeit $\frac{1}{2}$ produziert.

Zeige, dass $RP \cap co-RP = LasVegas$.