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Abstract

The PAC-learning model is distribution-independent in the sense that the learner
must reach a learning goal with a limited number of labeled random examples with-
out any prior knowledge of the underlying domain distribution. In order to achieve
this, one needs generalization error bounds that are valid uniformly for every do-
main distribution. These bounds are (almost) tight in the sense that there is a
domain distribution which does not admit a generalization error being significantly
smaller than the general bound. Note however that this leaves open the possibility
to achieve the learning goal faster if the underlying distribution is “simple”. In-
formally speaking, we say a PAC-learner L is “smart” if, for a “vast majority” of
domain distributions D, L does not require significantly more examples to reach
the “learning goal” than the best learner whose strategy is specialized to D. In this
paper, focusing on sample complexity and ignoring computational issues, we show
that smart learners do exist. This implies (at least from an information-theoretical
perspective) that full prior knowledge of the domain distribution (or access to a
huge collection of unlabeled examples) does (for a vast majority of domain distribu-
tions) not significantly reduce the number of labeled examples required to achieve
the learning goal.

1 Introduction

We are concerned with sample-efficient strategies for properly PAC-learning
a finite class H of concepts over a finite domain X . In the general PAC-
learning framework, a learner is exposed to a worst-case analysis by asking the
following question: what is the smallest sample size m = mH(ε, δ) such that,
for every target concept h ∈ H and every distribution D on X , the probability
(taken over m randomly chosen and correctly labeled examples) for returning
an ε-accurate hypothesis from H is at least 1 − δ? It is well-known [8], [13]
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that (up to some logarithmic factors) there are matching upper and lower
bounds on mH(ε, δ). The proof for the lower bound makes use of a fiendish
distribution D∗

ε which makes the learning task quite hard. The lower bound
remains valid when D∗

ε is known to the learner. While this almost completely
determines the sample size that is required in the worst-case, it leaves open the
question whether the learning goal can be achieved faster when the underlying
domain distribution D is significantly simpler than D∗

ε . Furthermore, if it can
be achieved faster, it leaves open the question whether this can be exploited
only by a learner who is specialized to D or if it can be as well exploited by a
“smart” PAC-learner who has no prior knowledge about D. This is precisely
the question that we try to answer in this paper.

Our main result: In our paper, it will be convenient to think of the target
class H, the sample size m and the accuracy parameter ε as fixed, respectively,
and to figure out the smallest value for δ such that m examples suffice to
meet the (ε, δ)-criterion of PAC-learning. 1 Let δ∗D(ε,m) denote the smallest
value for δ that can be achieved by a learner who is specialized to D. A
general PAC-learner who must cope with arbitrary distributions can clearly
not be specialized to every distribution at the same time. Nevertheless we can
associate a quantity δLD(ε,m) with L that is defined as the smallest value of δ
that such that m examples are sufficient to meet the (ε, δ)-criterion provided
that L was exposed to the domain distribution D. Ideally, we would like to
prove that there is a PAC-learner L such that, for every domain distribution
D, δLD(ε,m) = δ∗D(ε,m). This would be a strong result as it is basically saying
that, for every D, the learning progress of L (without prior knowledge of D) is
made at the same speed as the learning progress of the learner whose strategy
is perfectly specialized to D. We will, however, provide some compensation
for having no prior knowledge of D and arrive at a slightly weaker result:

Limitation 1: We aim at an inequality of the form

δLD(2ε,m) ≤ c · δ∗D(ε,m) (1)

where c denotes a constant (not even depending on H). In other words, L
may be twice as inaccurate as the learner who is specialized to D, and its
probability to fail may be larger by a constant factor.

Limitation 2: The inequality (1) is not verified for all distributions D but
for a volume of approximately 1−2/c, say when measured with the uniform
distribution over the |X|-dimensional probability simplex (whose points rep-
resent distributions over X). Actually the final result is somewhat more gen-
eral: we can fix any measure µ on the |X|-dimensional probability simplex
(expressing which domain distributions we consider as particularly impor-
tant), and still achieve validity of (1) for a volume of approximately 1−2/c of

1 This is obviously equivalent to discussing the sample size as a function in ε and δ.
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all domain distributions. Clearly, the design of the smart learner L changes
when µ changes.

The formal statement is found in Theorem 10.

Relation of our Work to Semi-supervised Learning: Our work is related
to the question to which extent unlabeled data (which are cheap) help to save
labeled data (which are expensive). In the framework of active learning, where
the learner selects some data from an unlabeled random sample and may ask
for their labels, the saving of labels can be quite significant [10,11,1,3,12,14,4].
The picture is less clear in the framework of semi-supervised learning where the
learner gets randomly chosen unlabeled and randomly chosen labeled data but
has no influence on the selection of the latter. In this framework, it is usually
assumed that there is a kind of compatibility between the target concept
and the domain distribution. 2 There is a common intuition that, without
assumptions of this kind, the benefit of semi-supervised learning is marginal.
This intuition is supported by [5] whose authors consider the PAC-learning
model without any extra-assumptions and compare a learner with full prior
knowledge of the domain distribution D (representing the semi-supervised
learner) with a learner that has no prior knowledge about D (the classical
PAC-learner). They consider some basic concept classes over the real line and
show that for absolutely continuous distributions D knowledge of D does not
lower the label complexity by more than a constant factor. The main result
in this paper goes in a similar direction but is incomparable to the findings
in [5]: on one hand it is quite general by dealing with arbitrary finite concept
classes; on the other hand, the higher level of generality comes at the price of
introducing some limitations (with Limitation 2 being particularly annoying).

Relation of our Work to PAC-learning under a Fixed Distribution:

Our results are also weakly related to [6] where upper and lower bounds (in
terms of cover- and packing-numbers associated with H and D) on the sample
size are presented when H is PAC-learned under a fixed distribution D. One
line of attack for proving our results could have been to design a general PAC-
learner that, when exposed to D, achieves the learning goal with a sample size
that does not significantly exceed the lower bound on the sample size in the
fixed-distribution setting. However, since the best upper and lower bounds
known for PAC-learning under a fixed distribution leave a significant gap
(although being related by a polynomial of small degree), this approach does
not look very promising.

Structure of the paper: Section 2 clarifies the notation that is used through-
out the paper. Section 3 is devoted to learning under a fixed distribution D.

2 See the introduction of [9] for a discussion of the most popular assumptions,
and see [2] for a systematic study of a PAC-like learning model augmented by
compatibility-assumptions.
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This setting is cast as a zero-sum game between two players, the learner and
her opponent, such that the Minimax Theorem from game theory applies. This
leads to a nice characterization of δ∗D = δ∗D(ε,m). It is furthermore shown that,
when the opponent makes his draw first, there is a strategy for the learner that,
although it does not at all depend on D, does not perform much worse than
the best strategy that is specialized to D. Section 4 is devoted to the general
PAC-learning framework where the learner has no prior knowledge of the un-
derlying domain distribution. It is shown, again by game-theoretic methods,
that “Smart PAC-learners” do exist. Section 5 mentions some open problems.

2 Notations

We assume that the reader is familiar with the PAC-learning framework and
knows the Minimax Theorem from game-theory [15].

Throughout the paper, we use the following notation:

• For every n ≥ 1, let [n] := {1, . . . .n}.
• X denotes a finite domain.
• H = {h1, . . . , hN} denotes a finite concept class over domain X . Thus, every
h ∈ H is a function of the form h : X → {0, 1}. We shall assume henceforth
that the hypothesis class coincides with H.

• D denotes a domain distribution.
• m denotes the sample size.
• ε denotes the accuracy parameter.
• δ denotes the confidence parameter which bounds from above the “expected
failure rate” where “failure” means the delivery of an ε-inaccurate hypoth-
esis.

• (x, b) ∈ Xm × {0, 1}m denotes a labeled sample.
• For x = (ξ1, . . . , ξm) ∈ Xm and h ∈ H, we set

h(x) = (h(ξ1), . . . , h(ξm)) ∈ {0, 1}m .

• As usual, a learning function is a mapping of the form

L : Xm × {0, 1}m → H ,

i.e., it maps labeled samples to hypotheses. L1, . . . ,LM denotes the list of
all learning functions.

• For two hypotheses h, h′ ∈ H,

h⊕ h′ := {ξ ∈ X : h(ξ) 6= h′(ξ)}
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denotes their symmetric difference. Recall that h is called ε-accurate for h′

w.r.t. D if D(h⊕ h′) ≤ ε.

As usual, a hypothesis h is said to be consistent with sample (x, b) if h(x) = b.
The version space for sample (x, b) is the set of all hypotheses from H being
consistent with (x, b). A learning function L is said to be consistent if it maps
every sample to a hypothesis from the corresponding version space.

A deterministic learner can be identified with a learning function (if com-
putational issues are ignored). We consider, however, randomized learners.
Each-one of these can be identified with a probability distribution over the set
of all learning functions. A learner (or her strategy) is called consistent if she
puts probability mass 1 on consistent learning functions.

3 Learning Under a Fixed Distribution Revisited

In this section, the domain distribution D is fixed and known to the learner.
We shall describe PAC-learning under distribution D as a zero-sum game
between two players: the learner who makes the first draw and her opponent
who makes the second draw. This will offer the opportunity to apply the
Minimax Theorem and to arrive at the “dual game” with the opponent making
the first draw. Details follow.

For every ε > 0, i = 1, . . . ,M , j = 1, . . . , N , x ∈ Xm, and b ∈ {0, 1}m, let
Iε,x,bD [i, j] be the Bernoulli variable indicating whether the hypothesis Li(x, b)
is ε-inaccurate w.r.t. target concept hj and domain distribution D, i.e.,

Iε,x,bD [i, j] =







1 if D(Li(x, b)⊕ hj) > ε

0 otherwise
. (2)

Now, let

Aε,m
D [i, j] :=Ex∈Dm

[

I
ε,x,hj(x)
D [i, j]

]

=
∑

x

Dm(x)I
ε,x,hj(x)
D [i, j] (3)

= Pr
x∼Dm

[Li(x, hj(x)) is ε-inaccurate for hj w.r.t. D] . (4)

If D, ε,m are obvious from context, we omit these letters as subscripts or su-
perscripts in what follows. A randomized learner is given by a vector p ∈ [0, 1]M

that assigns a probability pi to every learning function Li (so that
∑M

i=1 pi = 1).
Thus, we may identify learners with mixed strategies for the “row-player” in
the zero-sum game associated with A. We may view the “column-player” in
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this game as an opponent of the learner. A mixed strategy for the opponent
is given by a vector q ∈ [0, 1]N that assigns an à-priori probability qj to every
possible target concept hj (so that

∑N
j=1 qj = 1). In the sequel, Aj denotes

the j-th column of A. If the learners plays strategy p and her opponent plays
strategy q (or the pure strategy j, resp.), the former has to pay an amount of
p⊤Aq (or an amount of p⊤Aj , resp.) to the latter.

This game models PAC-learning under distribution D in the sense that the
following holds for given parameters m, ε, δ: there is a probabilistic learning
strategy (= distribution over the learning functions that map a labeled sample
of size m to a hypothesis) that, regardless of the choice of the target concept,
leads to an ε-accurate hypothesis with a probability 1− δ (or more) of success
iff the row-player in the game with payoff-matrix A = Aε,m

D has a mixed
strategy p such that for every pure strategy j of the opponent (i.e., for every
choice of the target concept) p⊤Aj ≤ δ.

We now put the Minimax Theorem in position. It states that

min
p

max
q

p⊤Aq = max
q

min
p

p⊤Aq . (5)

In the sequel, we denote the optimal value in (5) by δ∗D(ε,m). In order to
establish a relation between δ∗D(ε,m) and strategies for learners without prior
knowledge of D (which will prepare the ground for the design of a smart
PAC-learner in Section 4), we proceed as follows:

• We switch to the dual game with the opponent making the first draw.
• We consider a slightly modified dual game where the opponent makes the
first draw, a labeled sample of size m is drawn at random afterwards, and
finally the learner picks a hypothesis (pure strategy) or a distribution over
hypotheses (mixed strategy).

• We describe a good strategy in the modified dual game that can be played
without prior knowledge of D.

Consider the dual game with the opponent drawing first. Since a mixed strat-
egy for the learner is a distribution over learning functions (mapping a labeled
sample to a hypothesis), we may equivalently think of the learner as waiting
for a random labeled sample (x, b) and then playing a mixed strategy over H
that depends on (x, b). In order to formalize this intuition, we consider the
new payoff-matrix Ã = Ãε

D given by

Ã[i, j] =







1 if hi is ε-inaccurate for hj w.r.t. D

0 otherwise
.

We associate the following game with Ã:
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(1) The opponent selects a vector q ∈ [0, 1]N specifying à-priori probabilities
for the target concept. Note that this implicitly determines
• the probability

Q(b|x) =
∑

j:hj(x)=b

qj

of labeling a given sample x by b,
• and the à-posteriori probabilities

Q(j|x, b) =







qj
Q(b|x)

if hj(x) = b

0 otherwise
(6)

for target concept hj given the labeled sample (x, b).
For sake of a compact notation, let q̃(x, b) denote the vector whose j’th
component is Q(j|x, b).

(2) A labeled sample (x, b) is produced at random with probability

Pr(x, b) = Dm(x)Q(b|x) . (7)

(3) The learner chooses a vector p̃(x, b) ∈ [0, 1]N (that may depend on D, q
and (x, b)) specifying her mixed strategy w.r.t. payoff-matrix Ã. We say
that the learner’s strategy p̃ is consistent if, for every (x, b), p̃(x, b) puts
probability mass 1 on the version space for (x, b).

(4) The learner suffers loss p̃(x, b)⊤Ãq̃(x, b) so that her expected loss, aver-
aged over all labeled samples, evaluates to

∑

x,bPr(x, b)p̃(x, b)
⊤Ãq̃(x, b).

In the sequel, the games associated with A and Ã, respectively, are simply
called A-game and Ã-game, respectively.

Lemma 1 Let q ∈ [0, 1]N be an arbitrary but fixed mixed strategy for the
learner’s opponent. Then the following holds:

(1) Every mixed strategy p ∈ [0, 1]M for the learner in the A-game can be
mapped to a mixed strategy p̃ for the learner in the Ã-game so that

p⊤Aq =
∑

x,b

Pr(x, b)p̃(x, b)⊤Ãq̃(x, b) . (8)

Moreover, p̃ is a consistent strategy for the Ã-game if p is a consistent
strategy for the A-game.

(2) The mapping p 7→ p̃ is surjective, i.e., every mixed strategy for the learner
in the Ã-game has a pre-image. Moreover, one can always find a consis-
tent strategy p as a pre-image of a consistent strategy p̃.

PROOF. Recall that M is the number of learning functions of the form L :
Xm×{0, 1}m → H. Thus, every probability vector p ∈ [0, 1]M is a probability
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measure on the discrete product space Ω = H × · · · × H with one factor H
for every labeled sample (x, b) ∈ Xm×{0, 1}m. Recall that H = {h1, . . . , hN}.
Thus, every probability vector p̃(x, b) ∈ [0, 1]N is a probability measure on the
discrete space H which can be identified with factor (x, b) of Ω. We define the
mapping p 7→ p̃ by setting p̃(x, b) equal to the marginal measure obtained by
restricting p to factor (x, b) of Ω, i.e.,

p̃i′(x, b) =
∑

i:Li(x,b)=hi′

pi (9)

The following computation verifies (8):

p⊤Aq
(3)
=
∑

x

Dm(x)
N∑

j=1

M∑

i=1

Ix,hj(x)[i, j]piqj

=
∑

x,b

Dm(x)
∑

j:hj(x)=b

M∑

i=1

Ix,b[i, j]piqj

=
∑

x,b

Dm(x)
∑

j:hj(x)=b

N∑

i′=1

∑

i:Li(x,b)=hi′

Ix,b[i, j]
︸ ︷︷ ︸

=Ã[i′,j]

piqj

=
∑

x,b

Dm(x)
∑

j:hj(x)=b

N∑

i′=1

Ã[i′, j]qj
∑

i:Li(x,b)=hi′

pi

(9)
=
∑

x,b

Dm(x)
N∑

i′=1

∑

j:hj(x)=b

Ã[i′, j]p̃i′(x, b)qj

(6)
=
∑

x,b

Dm(x)Q(b|x)
N∑

i′=1

N∑

j=1

Ã[i′, j]p̃i′(x, b)Q(j|x, b)

(7)
=
∑

x,b

Pr(x, b)p̃(x, b)⊤Ãq̃(x, b)

In order to show that p 7→ p̃ is surjective, assume that a measure p̃(x, y) on
H is given for every labeled sample (x, b) and choose p as the corresponding
product measure so that, for every i = 1, . . . , N ,

pi =
∏

x,b

p̃Li(x,b)(x, b) . (10)

Clearly, the marginal measure obtained by restricting p to factor (x, b) of Ω
coincides with the measure p̃(x, b) we started with. In other words, the prod-
uct measure is a pre-image of p̃.
As far as consistency is concerned, finally note the following. If p puts proba-
bility mass 1 on consistent learning functions, then p̃, defined according to (9),
puts probability mass 1 on the version space for (x, b). Conversely, if p̃ puts
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probability mass 1 on the version space for (x, b), then p, defined according
to (10), puts probability mass 1 on consistent learning functions. 2

In the sequel, we list some consequences of Lemma 1. For instance, the lemma
immediately implies that the optimal value in the A-game (where A = Aε,m

D )
coincides with the optimal value in the Ã-game (where Ã = Ãε

D), i.e.,

δ∗D(ε,m) = min
p

max
q

p⊤Aq = max
q




∑

x,b

(

Pr(x, b) · min
p̃(x,y)

[

p̃(x, y)⊤Ãq̃(x, b)
]
)

 .

(11)

Remark 2 Notice that (11) offers the opportunity to prove (non-constructively)
the existence of a good learning strategy for the A-game with the learner mak-
ing the first draw, by presenting a good (sample-dependent) learning strategy
for the Ã-game with the learner making the second draw.

The next two results concern “trivial domain distributions” whose prior knowl-
edge leads to zero-loss in the A-game.

Corollary 3 If δ∗D(ε,m) = 0, then the following holds: for every x ∈ Xm such
that Dm(x) > 0, and for every b ∈ {0, 1}m, there exists a hypothesis h∗ ∈ H
that is ε-accurate for every hypothesis in the version space for (x, b).

PROOF. Assume that there exists an x ∈ Xm such that Dm(x) > 0, and
there exists a b ∈ {0, 1}m such that

∀h∗ ∈ H, ∃h ∈ H : h(x) = b ∧ D(h∗ ⊕ h) > ε . (12)

We have to show that this assumption leads to the conclusion δ∗D(ε,m) > 0.
To this end, pick x and b such that Dm(x) > 0 and such that (12) is valid.
Let q be the uniform distribution on H. According to (7), we may conclude
that Pr(x, b) > 0. An inspection of (11) now reveals that δ∗D(ε,m) > 0, as
desired. 2

Corollary 4 If δ∗D(ε,m) = 0, then every consistent learner suffers loss 0 in
the A2ε,m

D -game.

PROOF. According to Lemma 1, it suffices to show that every strategy
p̃(x, b) for the Ã-game that puts probability mass 1 on the version space for
(x, b) suffers loss 0 in the Ã-game. According to Corollary 3, there exists a
hypothesis h∗ that is ε-accurate for every hypothesis in the version space V
for (x, b). This clearly implies, that every hypothesis in V is 2ε-accurate for
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every other function in V . Thus, putting probability mass 1 on V leads to
loss 0. 2

We close this section with a result that prepares the ground for our analysis
of general PAC-learners in Section 4:

Lemma 5 Let ε > 0 be a given accuracy, and let m ≥ 1 be a given sample
size. For every probability vector q ∈ [0, 1]N , and every domain distribution
D, the following holds:

∑

x,b

Pr(x, b)q̃(x, b)⊤Ã2ε
D q̃(x, b) ≤ 2δ∗D(ε,m) (13)

PROOF. The left hand-side in (13) represents the learners loss in the Ã2ε
D -

game when the opponent plays strategy q (the à-priori probabilities for the
target concepts) and the learner plays strategy q̃(x, b) on sample (x, b). Recall
that q̃(x, b) is the collection of à-posteriori probabilities for the target concepts.
Since the à-posteriori probabilities outside the version space

V := {h ∈ H : h(x) = b}

are zero, only target concepts in V can contribute to the learner’s loss. In the
remainder of the proof, we simply write Ãε instead of Ãε

D, and Ãε
i denotes the

i’th row of this matrix. Given q and (x, b), the term Ãε
i q̃(x, b) represents the

loss suffered by a learner with hypothesis hi in the Ãε
D-game. This loss equals

the total à-posteriori-probability of the hypotheses from the version space that
are not ε-close to hi w.r.t. domain distribution D. It is minimized by picking a
hypothesis h∗ = hi∗(x,b) ∈ H which maximizes the total à-posteriori probability
of hypotheses that are ε-close to h∗ w.r.t. D. With this notation, it follows
that

∑

x,b

Pr(x, b)Ãε
i∗(x,b)q̃(x, b) ≤ δ∗D(ε,m) (14)

with equality if the strategy q of the learner’s opponent is optimal. The sit-
uation is visualized in Figure 1. We are now prepared to verify (13). Assume
that, given q and (x, b), the learner applies strategy q̃(x, b) instead of choosing
the best hypothesis h∗. There are two “unlucky cases”:

• The learners random hypothesis falls into the hatched area in Figure 1.
• The opponent’s random target concept falls into this hatched area.

Each of the unlucky events happens with a probability that equals the total
à-posteriori probability of the hypotheses in the hatched area, i.e. it happens
with probability Ãε

i∗(x,b)q̃(x, b), respectively. If none of the unlucky events oc-
curs, then the learner’s hypothesis and the target concept fall into the circle
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Fig. 1. The polygon represents the version space for (x, b). The circle represents
the hypotheses that are ε-close to h∗ w.r.t. D. The hatched area represents the loss
induced by h∗ on sample (x, b).

in Figure 1 so that they are 2ε-close to each other w.r.t. D. Our discussion
shows that

q̃(x, b)⊤Ã2εq̃(x, b) ≤ 2Ãε
i∗(x,b)q̃(x, b) ,

which, in view of (14), yields (13). 2

It is important to note that no knowledge of D is required to play the strategy
p̃ = q̃ in the Ã-game (with the opponent making the first draw). Nevertheless,
as made precise in Lemma 5, this is a reasonably good strategy for any fixed
underlying domain distribution. Note furthermore that a learner with strat-
egy q̃(x, b) is consistent, since the à-posteriori probabilities assign probability
mass 1 to the version space for (x, b).

The puzzled reader might ask why we are not done with our design of a
smart PAC-learner: we ended-up with a good strategy for the learner that
can be played without prior knowledge of the domain distribution. So what?
The problem is, however, that so far we considered a game that models PAC-
learning under a fixed distribution. A game that models general PAC-learning
would correspond to a payoff-matrix that decomposes into blocks with one
block per domain distribution. 3 It turns out, unfortunately, that this con-
siderably increases the power of the opponent. In particular, he could play a
mixed strategy that fixes

• a probability measure µ on the |X|-dimensional probability simplex

∆ := {z ∈ [0, 1]|X| : z1 + · · ·+ z|X| = 1} , (15)

where every z ∈ ∆ represents a measure Dz putting probability mass zν on
the ν-th element from X for ν = 1, . . . , |X|,

3 Ignore for the moment the fact that there are infinitely many blocks. That
wouldn’t pose a problem because the Minimax Theorem applies even when the
pure strategies form an infinite but compact set.
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• conditional à-priori probabilities q(j|z) for choosing target concept hj pro-
vided that Dz is the underlying domain distribution.

In this general setting, the à-posteriori probabilities, associated with the hy-
potheses after having seen a labeled sample (x, b), previously denoted q̃(x, b),
are now conditioned on z as well and therefore denoted q̃(x, b|z). Consequently,
the loss suffered by a learner playing strategy p̃ formally looks as follows (com-
pare with (11)):

Ez∼µ




∑

x,b

Pr(x, b|z)p̃(x, b)⊤Ã2ε
Dz
q̃(x, b|z)



 (16)

According to Lemma 5, the learner can favorably play strategy p̃ = q̃ in the
fixed-distribution setting. As can be seen from (16), there is no uniform good
choice for p̃ anymore in the general setting since q̃ is conditioned to z. For this
reason, we are not done yet and move on to Section 4.

4 Smart PAC-Learners

Throughout this section we set d := |X| and X := {ξ1, . . . , ξd}. As specified
in (15), ∆ denotes the d-dimensional probability simplex so that, for every
z ∈ ∆ and for all ν = 1, . . . , d, Dz(ξν) = zν .

Ideally, we would like to design a smart PAC-learner who performs well in
comparison to a learner with full prior knowledge ofDz for all choices of z ∈ ∆.
This (somewhat overambitious) endeavor is briefly described (in terms of an
appropriately defined zero-sum game) in Section 4.1. After a short discussion
of some measurability issues in Section 4.2, we pursue a less ambitious goal in
Section 4.3 (modeled again as a zero-sum game between the learner and her
opponent) and show that there is a smart PAC-learner who performs well in
comparison to a learner with full prior knowledge of Dz for most choices of
z ∈ ∆. The total probability of the region containing the “bad choices” of z can
be made as small as we like (at the expense of a slightly degraded performance
on the “good choices”). Moreover, the underlying probability measure on ∆
can be specified by a “user” (who can try to put high probability mass on
realistic measures), and the strategy of the smart PAC-learner can be chosen
such as to adapt to this specification.

Before dipping into technical details, we would like to provide the reader with
a survey on the various zero-sum games (each-one given by a payoff-matrix)
which are relevant in the sequel:

(1) The basic building stone is the matrix A = Aε,m
D . The corresponding
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zero-sum game models PAC-learning under the fixed distribution D.
(2) When switching to classical PAC-learning with arbitrary distributions, it

looks natural to analyze a block-matrix that reserves one block Aε,m
Dz

for
every z ∈ ∆. It will however be more clever to insert a scaling factor 1/δ∗z
in block z where δ∗z = δ∗Dz

(ε,m) is the best possible expected failure-rate
of a learner with full prior knowledge of Dz: this will force the learner to
choose a strategy that achieves a small ratio between her own expected
failure-rate and δ∗z . The payoff-matrix obtained after scaling is denoted R.
A learner playing successfully the R-game would achieve a small “worst
performance ratio”.

(3) Since we were not able to find a good strategy for the learner in the
R-game, we switch to the R̄-game. The payoff-matrix R̄ results from R
basically by averaging over all z ∈ ∆. A learner playing successfully the
R̄-game achieves a small “average performance ratio”. We shall find a
good strategy for the learner in the R̄-game, and this will finally lead us
to our main result.

4.1 Towards a Small Worst Performance Ratio

In this section, we consider a game with a payoff-matrix R that is defined
blockwise so that, for every z ∈ ∆, R(z) denotes the block reserved for distri-
bution Dz. Every block has M rows (one row for every learning function) and
N columns (one column for every possible target concept). Before we present
the definition of R(z), we fix some notation.

Recall from the previous section that

A2ε,m
Dz

[i, j] = Pr
x∼Dm

z

[Li(x, hj(x)) is 2ε-inaccurate for hj w.r.t. Dz] .

When parameters ε,m are obvious from context, we shall simply write A(z)

instead of A2ε,m
Dz

. The j’th column of this matrix is then written as A
(z)
j . With

this notation, the following holds: if the learner chooses learning function Li

with probability pi, she will fail to deliver a 2ε-accurate hypothesis with prob-
ability

max
(z,j)∈∆×[N ]

p⊤A
(z)
j

in the worst-case. Recall that δ∗z = δ∗Dz
(ε,m) denotes the best possible ex-

pected failure-rate of a learner with full prior knowledge of Dz. Thus,

maxj∈[N ] p
⊤A

(z)
j

δ∗z

measures how well the PAC-learner with “strategy” p performs in relation to
the best learner with full prior knowledge of Dz. It is therefore reasonable to

13



choose the block-matrix R(z) as follows:

R(z)[i, j] :=







1
δ∗
Dz

(ε,m)
· A2ε,m

Dz
[i, j] if δ∗Dz

(ε,m) 6= 0

0 otherwise

With the convention 0/0 = 1, the quantity

ρp(ε,m) := max
(z,j)∈∆×[N ]

p⊤R
(z)
j = max

(z,j)∈∆×[N ]

p⊤A
(z)
j

δ∗z

is called the worst performance ratio of strategy p. 4 The value

ρ∗(ε,m) := min
p

ρp(ε,m)

is the best possible worst performance ratio. Note that it coincides with the
smallest loss suffered by the learner in the game with payoff-matrix R. A very
strong result would be ρ∗(ε,m) ≤ c for some small constant c. But, since this
is somewhat overambitious, we shall pursue a weaker goal in the following.

4.2 Some Measurability Issues

Before we turn our attention to smart PAC-learners, we have to clarify first
some measurability issues. Let (Ω,A, µ) be an arbitrary measure space, and
let f(ω) be a numerical function in variable ω ∈ Ω. The following facts are
well-known:

• f is measurable if and only if

∀α ∈ R : {ω ∈ Ω : f(ω) ≥ α} ∈ A . (17)

• The sum and the product of two measurable functions is measurable.
• The reciprocal of a strictly positive (or strictly negative, resp.) measurable
function is measurable.

• The infimum (or supremum, resp.) of a sequence of measurable functions is
measurable.

• If Ω is a Borel set equipped with the Borel-algebra and f(ω) is a continuous
function in ω ∈ Ω, then f is measurable.

These closure properties have the following implications:

4 Note that, according to Corollary 4, δ∗z = 0 implies that, for every consistent

strategy p, p⊤A
(z)
j /δ∗z = 0/0 = 1.
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Corollary 6 Let Ω be a Borel set equipped with the Borel-algebra. Let K be
a finite or countably infinite set and, for every k ∈ K, let Ωk be a Borel-set
such that Ω = ∪k∈KΩk. Let f(ω) be a numerical function in ω ∈ Ω that is
continuous on every Ωk. Then f is measurable.

PROOF. For every α ∈ R, consider the decomposition

{ω ∈ Ω| f(ω) ≥ α} =
⋃

k∈K

{ω ∈ Ωk| f(ω) ≥ α} .

Since f is continuous on every Ωk, the right hand-side is a countable union
of Borel-sets and therefore a Borel-set itself. Thus, f satisfies (17) and is a
measurable function. 2

Corollary 7 Let the d-dimensional probability simplex ∆ be equipped with the
Borel-algebra. Then, for every choice of ε,m, x, b, i, j, Iε,x,bDz

[i, j], Aε,m
Dz

[i, j], and
δ∗z are measurable functions in z ∈ ∆.

PROOF. Since

Aε,m
Dz

[i, j] =
∑

x

Dm
z (x)I

ε,x,hj(x)
Dz

[i, j] and δ∗z = min
p

max
q

p⊤Aε,m
Dz

q ,

it suffices to show that Iε,x,bDz
[i, j] is a measurable function in z ∈ ∆. For any

T ⊆ [d], consider the hyperplane

HT :=

{

z :
∑

ν∈T

zν = ε

}

and the halfspaces

H+
T :=

{

z ∈ ∆ :
∑

ν∈T

zν > ε

}

, H−
T :=

{

z ∈ ∆ :
∑

ν∈T

zν ≤ ε

}

.

These halfspaces decompose ∆ into finitely many cells where every single cell
can be written as an intersection of ∆ with finitely many halfspaces (which
clearly yields a Borel-set). An inspection of (2) shows that the discontinuities
of Iε,x,bDz

[i, j] occur on the hyperplane

HT such that T = {ν ∈ [d] : Li(x, b)(ξν) 6= hj(ξν)}

only and that Iε,x,bDz
[i, j] is continuous on every single cell of the mentioned

decomposition. According to Corollary 6, Iε,x,bDz
[i, j] is a measurable function

in z ∈ ∆. 2
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4.3 The Average Performance Ratio of Smart PAC-learners

Let µ denote an arbitrary but fixed probability measure on ∆ w.r.t. the al-
gebra of d-dimensional Borel-sets. For every ζ > 0, consider the following
decomposition of ∆:

∆0= {z ∈ ∆ : δ∗z = 0}

∆1(ζ)= {z ∈ ∆ : 0 < δ∗z < ζ}

∆2(ζ)= {z ∈ ∆ : δ∗z ≥ ζ}

Note that these sets are Borel-sets since δ∗z is a measurable function according
to Corollary 7. Since probability measures are continuous from above, we get

lim
ζ→0

µ(∆1(ζ)) = µ




⋂

ζ>0

∆1(ζ)



 = µ(∅) = 0 . (18)

In our discussion of smart PAC-learners, it is justified to focus on domain
distributions Dz such that z ∈ ∆2(ζ) for the following reasons:

• Distributions Dz such that z ∈ ∆0 do not pose any problem to a consistent
learner. Compare with Corollary 4.

• Distributions Dz such that z ∈ ∆1(ζ) might pose a problem to PAC-learners
but the probability mass assigned to them by µ can be made arbitrarily
small according to (18).

Let µ′ be the probability measure induced by µ on ∆2(ζ). Consider the fol-
lowing M ×N payoff-matrix:

R̄ζ [i, j] := Ez∼µ′

[

R(z)[i, j]
]

=
1

µ(∆2(ζ))
·
∫

∆2(ζ)
R(z)[i, j] dµ

Note that the integral exists because, for every z ∈ ∆2(ζ), δ
∗
Dz
(ε,m) ≥ ζ so

that

R(z)[i, j] =
1

δ∗Dz
(ε,m)

· A2ε,m
Dz

[i, j]

is bounded by 1/ζ and measurable according to Corollary 7. The quantity

ρ̄p(ε,m) := max
j∈[N ]

p⊤R̄ζ
j

is called the average performance ratio of strategy p (where the target concept
is still chosen in a worst-case-fashion but the domain distribution is chosen at
random according to µ′). According to the Minimax Theorem, the following
holds:

min
p

max
q

p⊤R̄ζq = max
q

min
p

p⊤R̄ζq (19)
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Clearly, the optimal value in (19) coincides with the best possible average per-
formance ratio. Equation (19) offers the opportunity to (non-constructively)
show the existence of a “good” learning strategy with the learner making the
first draw, by presenting a “good” learning strategy with the learner mak-
ing the second draw, where “good” here means “achieving a small average
performance ratio”. (Compare with Remark 2.)

Lemma 8 For every mixed strategy q of the opponent in the R̄ζ-game, there
exists a consistent mixed strategy p for the learner such that p⊤R̄ζq ≤ 2.

PROOF. From the decomposition (8), we get the following decomposition of
p⊤R̄ζq:

p⊤R̄ζq= p⊤
(

Ez∼µ′

[

R̄(z)
])

q

=Ez∼µ′

[

1

δ∗z
p⊤A(z)q

]

= Ez∼µ′




1

δ∗z

∑

x,b

Pr(x, b|z)p̃(x, b)Ã(z)q̃(x, b)





Here, δ∗z = δ∗Dz
(ε,m), Pr(x, b|z) = Dm

z (x)Q(b|x), Ã(z) = Ã2ε
Dz
, and the quanti-

tiesQ(b|x), q̃, p̃ are derived from q and p, respectively, as explained in Section 3.
According to Lemma 5 (applied to D = Dz),

∑

x,b

Pr(x, b|z)q̃(x, b)Ã(z)q̃(x, b) ≤ 2δ∗z . (20)

According to Lemma 1, there exists a mixed strategy p for the learner such
that p̃ = q̃. With this choice of p, we get

p⊤R̄ζq = Ez∼µ′




1

δ∗z

∑

x,b

Pr(x, b|z)p̃(x, b)Ã(z)q̃(x, b)




(20)

≤ 2 ,

as desired. 2

Corollary 9 For every probability measure µ on ∆, there exists a consistent
mixed strategy for the learner with an average performance ratio of at most 2.

PROOF. The Minimax Theorem (applied to the submatrix of R̄ζ with rows
corresponding to consistent learning functions) combined with Lemma 8 yields
the result. 2

Corollary 9 talks about the average performance ratio which, by definition,
is the performance ratio averaged over ∆2(ζ) only. Furthermore, it does not
explicitly bound the probability mass of domain distributions Dz for which
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the smart PAC-learner performs considerably worse than the learner with full
prior knowledge of Dz. The next result, the main result in this paper, fills
these gaps:

Theorem 10 For every probability measure µ on ∆ and for every c > 1, γ >
0, there exists a mixed strategy p for the learner such that, for j = 1, . . . , N ,

µ
({

z ∈ ∆ : p⊤R
(z)
j ≥ 2c

})

<
1

c
+ γ .

PROOF. For sake of brevity, let E := {z ∈ ∆ : p⊤R
(z)
j ≥ 2c}. With this

notation, µ(E) is bounded from above by

µ (E|∆0) · µ(∆0) + µ (E|∆1(ζ)) · µ(∆1(ζ)) + µ (E|∆2(ζ)) · µ(∆2(ζ)) .

The first term contributes 0 because of Corollary 4. The second-one contributes
at most µ(∆1(ζ)) which is smaller than γ for every sufficiently small ζ . The
third-one contributes at most 1/c according to Corollary 9 combined with
Markov’s inequality. Thus, Prz∼µ[E] < 1/c+ γ, as desired. 2

According to Theorem 10, there exists a mixed strategy p for a learner with-
out any prior knowledge of the domain distribution such that, in comparison
to the best learner with full prior knowledge of the domain distribution, a
performance ratio of 2c is achieved for the “vast majority” of distributions.
The total probability mass of distributions (measured according to µ) not be-
longing to the “vast majority” is bounded by 1/c+ γ (where γ may be chosen
as small as we like). So Theorem 10 is the result that we had announced in
the introduction.

5 Open Problems

• For every finite hypothesis class, we have shown the mere existence of a
smart PAC-learner whose average performance ratio is bounded by 2. Gain
more insight how this strategy actually works and check under which con-
ditions it can be implemented efficiently.

• Prove or disprove that there exists a smart PAC-learner whose worst per-
formance ratio is bounded by a small constant.

• In the present paper, we restricted ourselves to finite domains X for ease
of technical exposition (e.g., compactness of the |X|-dimensional probabil-
ity simplex). We conjecture however that this restriction can be weakened
considerably.
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• In the present paper, we restricted ourselves to the non-agnostic setting.
Explore whether there are smart PAC-learners in the agnostic setting.

• In the present paper, we restricted ourselves to the PAC-learning model
without adding any extra-assumptions concerning the compatibility be-
tween the target concept and the domain distribution (as they are typically
made in the framework of semi-supervised learning). Clarify which kind
of extra-assumptions gives significantly more advantage to semi-supervised
learners than to (smart) fully supervised-ones.

As for the last open question, we follow a suggestion of one of the referees
and add a little comment. It is well-known that in the Co-training Model of
Learning under the Conditional Independence Assumption [7], essentially one
labeled example is sufficient for a semi-supervised learner provided there are
sufficiently many unlabeled random examples (e.g., see Theorem 15 in [2]). For
the same model, we can prove rigorously that every fully supervised learner

asymptotically requires at least Ω
(√

d1·d2
ε

)

labeled examples (and there exist

classes for which this bound is tight up to logarithmic factors). Here, d1 and
d2 denote the VC-dimensions of the two concept classes to be learned in the
Co-training model. Thus, as correctly predicted by one of the referees, the last
open problem in our list is partially solved: the Co-training Model of Learning
under the Conditional Independence Assumption indeed gives significantly
more advantage to semi-supervised learners than to the best fully supervised-
one. 5 But the issue certainly needs further clarification.

Acknowledgments: We would like to thank two unknown referees for their
insightful and inspiring comments and suggestions.
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