
Local projection stabilisation for higher
order discretisations of

convection-diffusion problems on Shishkin
meshes

Gunar Matthies

Ruhr-Universität Bochum, Fakultät für Mathematik,
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order to stabilise the discretisation, two techniques are combined: Shishkin meshes
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which contains the Pr+1. In the local projection norm, the difference between the
solution of the stabilised discrete problem and an interpolant of the exact solution
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1 Introduction

Let Ω = (0, 1)2 be the unit square. We consider the singularly perturbed boundary value
problem

−ε4u + b · ∇u + cu = f in Ω,

u = 0 on ∂Ω,
(1)
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where ε is a small positive parameter while b : Ω → R2, c : Ω → R, and f : Ω → R are
sufficiently smooth functions satisfying

b1(x, y) ≥ β1 > 0, b2(x, y) ≥ β2 > 0, c(x, y) ≥ 0 ∀(x, y) ∈ Ω (2)

and

c(x, y)− 1

2
div b(x, y) ≥ c0 > 0 ∀(x, y) ∈ Ω. (3)

These assumptions on the data ensure that (1) has a unique solution u ∈ H1
0 (Ω) ∩ H2(Ω).

Provided the assumptions in (2) are satisfied, condition (3) can be always fulfilled for sufficiently
small ε by a change of variables v(x, y) = eσxu(x, y) with a suitable constant σ.

Due to the positivity of β1 and β2, the solution u of problem (1) exhibits exponential bound-
ary layers near the sides x = 1 and y = 1. For simplicity of our analysis, we assume that
neither interior layers nor parabolic layers are present. The smallness of the parameter ε causes
unphysical oscillations if standard schemes on general meshes are applied to discretise prob-
lem (1). Hence, stabilised methods and/or a-priori adapted meshes are widely used in order
to get discrete solution with satisfactory accuracy. An overview on these methods together
with consideration of the analytic behaviour of solutions of convection-diffusion problems can
be found in the survey [19].

Provided some information on the structure of the layers are available, piecewise uniform
Shishkin meshes can be chosen a priori, see [15, 18, 7]. Shishkin meshes were originally intro-
duced for finite difference schemes. The first paper which considered Shishkin meshes for finite
element methods seems to be [20] where the standard Galerkin method with piecewise bilinear
elements was used.

The standard Galerkin discretisation lacks stability even on a-priori adapted meshes, see the
numerical results in [13]. Furthermore, the linear systems of equations which arise from the
standard Galerkin method on Shishkin meshes are hardly to solve by iterative methods [11, 13].

A powerful method for stabilising convection-diffusion problems is the streamline-diffusion
finite element method (SDFEM) which was proposed by Hughes and Brooks [8]. This method
is known to provide good stability properties and high accuracy outside interior and boundary
layers. The SDFEM was investigated by many authors, see for example [16, 6, 9, 10]. The
disadvantage of the SDFEM, in particular for higher order discretisations, is that additional
terms have to be included into the weak formulation in order to ensure the strong consistency
of the resulting method. However, the SDFEM on Shishkin meshes is much less sensitive to
the choice of the transition points as standard Galerkin discretisations, see [17].

The SDFEM with higher order finite elements applied to convection-diffusion equations on
Shishkin meshes was studied by Stynes and Tobiska in [22]. They have shown for Qr-elements,
r ≥ 2, that in the streamline-diffusion norm the difference between the SDFEM solution and
a special finite element interpolant of the solution of (1) is of order O(N−(r+1/2)). The proofs
in [22] are based on Lin identities and anisotropic error estimates for the special finite ele-
ment interpolation. Postprocessing operators are suggested in [21, 22] which allows to achieve
estimates for the error between the weak solution and the discrete solution.

A different approach for stabilising the standard Galerkin discretisation is the local projection
stabilisation technique. The stabilising term is based on a projection π into a discontinuous
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finite element space. Stabilisation of the standard Galerkin method is achieved by adding terms
which give a weighted L2-control on the fluctuations (id−π) of the derivatives of the quantity of
interest. The local projection stabilisation method has been introduced for the Stokes problem
in [3] and was extended to the transport problem in [4]. An analysis of the local projection
stabilisation for the Oseen problem can be found in [5, 14]. Although the local projection
stabilisation leads to discrete systems which are consistent only in a weak sense, the appearing
consistency error can be bounded such that the optimal convergence order is maintained.

Originally, the local projection stabilisation technique was introduced as a two level method
where the projection maps into a discontinuous finite element space which lives on patches of
elements [3, 4, 5]. It is possible to use standard finite element spaces for both the approxi-
mation space and the projection space, see [5, 14]. A fundamental drawback of this approach
is the increased discretisation stencil. Moreover, the necessary data structures might not be
available in an existing computer code. As pointed out in [14], the key for the analysis of
the local projection method is the existence of a special interpolation operator which provides
the standard interpolation error estimates and an additional orthogonality property. Applying
the abstract setting from [14], the enrichment approach of the local projection method can be
constructed where the approximation space and the projection space live on the same mesh.
The approximation space is enriched compared to standard finite element spaces. In [14], it
was shown that it suffices to enrich the standard quadrilateral Qr-element, r ≥ 2, by just two
additional functions, independent of r. Hence, the discretisation stencil remains small.

Unfortunately, the enriched finite element spaces proposed in [14] are not suited for Shishkin
meshes since they fail to satisfy optimal anisotropic error estimates, see Remark 8 in Sect. 3.
For any r ≥ 2, we will enrich the standard Qr-element by just 6 additional functions. This leads
to an finite element which contains the Pr+1. The newly constructed finite elements provide
optimal anisotropic interpolation error estimates. The general line of our convergence proof is
based on ideas given in [22]. However, different arguments have to be used since Lin identities
seem to be not available for the used finite element spaces.

There are two main results in this paper. First, the error between the solution of the stabilised
discrete problem and an interpolation of the solution of the continuous problem is shown to be
bounded in the local projection norm by O

(
(N−1 ln N)r+1

)
, uniformly in ε. Second, we prove

that the error between the solution of the stabilised discrete problem and the solution of the
continuous problem itself can be estimated in the global energy norm by O

(
(N−1 ln N)r+1

)
,

also uniformly in ε.
This paper is organised as follows. Section 2 describes the used Shishkin meshes and intro-

duces the local projection stabilisation. For our enrichment approach of the local projection
method, we propose and analyse in Section 3 new quadrilateral finite elements which are de-
rived from the standard Qr element but contain the Pr+1. The convergence of the enrichment
approach is shown in Section 4. We will prove that in the local projection norm the differ-
ence between the local projection solution and an interpolant of the exact solution is of order
O
(
(N−1 ln N)r+1

)
, uniformly in ε. Furthermore, it is shown that the enrichment approach of

the local projection method converges uniformly in ε of order O
(
(N−1 ln N)r+1

)
in the global

energy norm. Finally, conclusions are given in Section 5.
Notation. Throughout this paper, C denotes a generic constant which is independent of the

diffusion parameter ε and mesh parameter N . Although we consider finite element of arbitrary
order, the dependence of any constant on the order r will not be elaborated.
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Let G be an arbitrary measurable two-dimensional subset G ⊂ Ω. The measure of G is
denoted by |G|. On G, the usual Sobolev spaces Wm,p(G) with norm ‖ · ‖m,p,G and semi-norm
| · |m,p,G are used. In the case p = 2, we write Hm(G) instead of Wm,2(G) and skip the index p
in the norm and the semi-norm. The L2-inner product on G is denoted by (·, ·)G. Note that the
index G in norms, semi-norms, and inner products is omitted in the case G = Ω. All notation
are also used for the vector-valued case.

Let Ps(K) denote the space of all polynomials of total degree less than or equal to s while
Qs(K) is the space of all polynomials of degree less than or equal to s in each variable separately.

2 Local projection stabilisation on Shishkin meshes

2.1 Shishkin meshes

Shishkin meshes are piecewise uniform meshes which are constructed a priori such that they
are refined inside the layers, see [15, 17, 18]. Let N be an even positive integer. We denote
by λx and λy the transition parameters which indicate where the mesh changes from coarse to
fine. These parameters are defined by

λx := min

(
1

2
, (r + 2)

ε

β1

ln N

)
, λy := min

(
1

2
, (r + 2)

ε

β2

ln N

)
.

We assume in our analysis that λx and λy take the second value inside the corresponding
minimum, otherwise N−1 is much smaller than ε and the analysis can be simplified dramatically.

Note that the multiplier in front of (ε ln N)/β1 and (ε ln N)/β2 (which is here r + 2) has to
be chosen large enough to ensure the optimal order of convergence. We refer to [17] for details
on the lowest order case.

The domain Ω is divided into four parts as shown in Figure 1, left. Let Ω = Ω11∪Ω12∪Ω21∪Ω22

Ω11

Ω12

Ω21

Ω22

0
0

1− λx

1− λy

1

1

Figure 1: Division of Ω (left) and a corresponding Shishkin mesh (right).

where the subdomains are given by

Ω11 := (0, 1− λx)× (0, 1− λy), Ω12 := (0, 1− λx)× (1− λy, 1),
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Ω21 := (1− λx, 1)× (0, 1− λy), Ω22 := (1− λx, 1)× (1− λy, 1).

Let T N
x :=

{
(xi−1, xi) : i = 1, . . . , N

}
and T N

y :=
{
(yj−1, yj) : j = 1, . . . , N

}
be two partitions

of the interval (0, 1) where

xi :=

{
2i(1− λx)/N, i = 0, . . . , N/2,

1− 2(N − i)λx/N, i = N/2 + 1, . . . , N,

and

yj :=

{
2j(1− λy)/N, j = 0, . . . , N/2,

1− 2(N − j)λy/N, j = N/2 + 1, . . . , N.

Let T N denote the tensor-product of T N
x and T N

y . All cells in T N are rectangles which are
aligned with the coordinate axes, see Figure 1, right. Each subdomain contains N2/4 cells.
The cells in each subdomain are congruent to each other. Each rectangle in Ω11 is of size
O(N−1)×O(N−1). The rectangles in Ω22 are of size O(εN−1 ln N)×O(εN−1 ln N). In Ω12 and
Ω21, the size the longer edge of each rectangle is of order O(N−1) while the shorter edge size
is of order O(εN−1 ln N). Hence, the mesh is coarse in Ω11, fine in Ω22, and highly anisotropic
in Ω12 and Ω21. The midpoint of K ∈ T N is denoted by (xK , yK) while hK,x and hK,y are the
edge sizes of K in x-direction and y-direction, respectively. Furthermore, let hK := diam K.

2.2 Decomposition of solution

Our subsequent analysis will rely on the precise knowledge of the behaviour of the solution u
of the convection-diffusion problem (1). The typical behaviour of u is given in the following
assumption.

Assumption 1. The solution u can be decomposed as

u = S + E12 + E21 + E22 (4)

with S, E12, E21, E22 ∈ Cr+2(Ω). The smooth part S of the solution u fulfils∣∣∣∣ ∂i+jS

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C, 0 ≤ i + j ≤ r + 2, (5)

while the layer functions satisfy∣∣∣∣∂i+jE12

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C ε−j e−β2(1−y)/ε, 0 ≤ i + j ≤ r + 2, (6)∣∣∣∣∂i+jE21

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C ε−i e−β1(1−x)/ε, 0 ≤ i + j ≤ r + 2, (7)∣∣∣∣∂i+jE22

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C ε−(i+j) e−[β1(1−x)/ε+β2(1−y)/ε], 0 ≤ i + j ≤ r + 2, (8)

for all (x, y) ∈ Ω. Here, E21 and E12 are exponential boundary layers along x = 1 and y = 1,
respectively, while E22 is an exponential corner layer at the point (1, 1).
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Note that the bound
‖S‖r+2 ≤ C (9)

follows immediately from (5).
In [12], conditions on the right-hand side f of problem (1) were given which guarantee a

decomposition of the solution into a smooth part and boundary layer parts such that lower
order derivatives can be estimates by exponential bounds. The extension of these results to the
case of higher order derivatives as needed in our case seems to be possible but tedious. The
number of these sufficient conditions will increase rapidly with increasing differentiation order.
We refer to [19, Sect. 7] for more details on these compatibility conditions.

Now we provide some estimates for integrals which involve exponential functions.

Lemma 2. Let α, β be positive constants and λ := (r + 2)(ε ln N)/β. Then, the estimates

1−λ∫
0

exp
(
− αβ(1− z)/ε

)
dz ≤ CεN−α(r+2) and

1∫
1−λ

exp
(
− αβ(1− z)/ε

)
dz ≤ Cε

hold true.

Proof. For proving the first estimate, we get

1−λ∫
0

exp
(
− αβ(1− z)/ε

)
dz =

ε

αβ
exp

(
− αβ(1− z)/ε

)∣∣∣1−λ

z=0

≤ ε

αβ
exp

(
− αβ

(
1− (1− λ)

)
/ε
)
≤ CεN−α(r+2)

due to the positivity of the exponential function and the definition of λ. For the second estimate,
we have

1∫
1−λ

exp
(
− αβ(1− z)/ε

)
dz =

ε

αβ
exp

(
− αβ(1− z)/ε

)∣∣∣1
z=1−λ

≤ ε

αβ
exp

(
− αβ(1− 1)/ε

)
≤ Cε

where again the positivity of the exponential function was exploited.

2.3 Galerkin discretisation

Let V := H1
0 (Ω). We define the bilinear form

a(v, w) := ε(∇v,∇w) + (b · ∇v + cv, w).

A weak formulation of the convection-diffusion problem (1) reads

Find u ∈ V such that
a(u, v) = (f, v) ∀v ∈ V. (10)
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Note that the variational formulation (10) has a unique solution due to (3).

Let V̂ be a finite dimensional function space on the reference square K̂ := (−1, 1)2. The

space V̂ will be introduced in Sect. 3.1. Furthermore, let FK : K̂ → K with

FK(x̂, ŷ) =

(
xK +

hK,x

2
x̂, yK +

hK,y

2
ŷ

)T

(11)

be the reference transformation which is a simple affine mapping. Our finite element space V N

is defined as

V N :=
{
v ∈ C(Ω) : v|K ∈ V (K) ∀K ∈ T N , v = 0 on ∂Ω

}
(12)

where

V (K) :=
{
v : v ◦ FK ∈ V̂

}
is a finite dimensional function space on K. The space V N will be a non-standard one, see
Sect. 3.2.

Using the finite element space V N , we can state the standard Galerkin discretisation of (10)
which reads

Find ũN ∈ V N such that

a(ũN , vN) = (f, vN) ∀vV ∈ V N . (13)

Note that the discrete problem (13) is uniquely solvable due to (3).

2.4 Local projection stabilisation

We proceed by introducing some more notation which will be used for defining the local pro-
jection method.

Let πK denote the L2(K)-projection into Pr−1(K). The fluctuation operator κK : L2(K) →
L2(K) is given as κK := idK − πK where idK is the identity mapping on L2(K).

The fundamental approximation property of the fluctuation operator κK is stated in the
following lemma.

Lemma 3. For 0 ≤ s ≤ r, the fluctuation operator κK fulfils

‖κKw‖0,K ≤ C hs
K |w|s,K ∀w ∈ Hs(K)

for all K ∈ T N .

Proof. The assertion is a consequence of the Bramble–Hilbert lemma.

Since we are interested in an additional control on the streamline derivative, we introduce
the following stabilisation term

sN(v, w) :=
∑

K∈T N

τK

(
κK(b · ∇v), κK(b · ∇w)

)
K

7
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with the cell-dependent parameters τK , K ∈ T N . Note that∣∣sN(v, w)
∣∣ ≤ (sN(v, v)

)1/2(
sN(w, w)

)1/2 ∀v, w ∈ H1(Ω) (14)

holds.
The stabilisation parameters τK , K ∈ T N , are chosen as

τK :=

{
C1 N−2, K ⊂ Ω11,

0, otherwise,
(15)

with a suitable constant C1 which is independent of ε and N . As for the SDFEM on Shishkin
meshes considered in [21, 22], the stabilisation acts only on the coarse subdomain Ω11. However,
the stabilisation parameters δK , K ⊂ Ω11, used in [21, 22] were chosen to be C1 N−1 for the
case ε ≤ N−1.

The stabilised bilinear form aN is defined via

aN(u, v) := a(u, v) + sN(u, v).

The stabilised discrete problem reads

Find uN ∈ V N such that

aN(uN , vN) = (f, vN) ∀vN ∈ V N . (16)

We will use the norms

‖v‖LP :=
(
ε |v|21 + c0 ‖v‖2

0 + sN(v, v)
)1/2

, ‖v‖1,ε :=
(
ε |v|21 + c0 ‖v‖2

0

)1/2

in our analysis.

3 Enriched finite elements and anisotropic error estimates

3.1 Family of enriched finite elements

Now we will introduce for each r ≥ 2 a new finite element which will be used later on for our
local projection method. To this end, we start with defining the finite element (K̂, V̂r, N̂r) on

the reference cell K̂ = (−1, 1)2.
Let Li, i ≥ 0, denote the one-dimensional Legendre polynomials normalised such that

Li(+1) = 1. The Legendre polynomials are orthogonal with respect to the L2-inner prod-
uct on the interval (−1, +1), i.e.,

1∫
−1

Li(ŝ) Lj(ŝ) dŝ = ηi δij, i, j ≥ 0,

where δij denotes the Kronecker Delta and ηi := 2/(2i + 1).
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Let r ≥ 2 be an integer. We define

V̂r := Qr(K̂)⊕ span
(
(1− x̂2)(1− ŷ2) x̂r−1, (1− x̂2)(1− ŷ2) ŷr−1

)
⊕ span

(
(1 + ŷ)(1− x̂2) Lr−1(x̂), (1− ŷ)(1− x̂2) Lr−1(x̂),

(1 + x̂)(1− ŷ2) Lr−1(ŷ), (1− x̂)(1− ŷ2) Lr−1(ŷ)
)
.

(17)

A careful inspection shows that

dim V̂r = r2 + 2r + 7

and

Pr+1(K̂) ⊂ V̂r ⊂ Qr+1(K̂).

Note that V̂r contains exactly 6 additional functionals compared to the standard Qr-element,
independent of r ≥ 2. We define the nodal functionals

N1 : ϕ̂ 7→ ϕ̂(−1,−1), N2 : ϕ̂ 7→ ϕ̂(+1,−1), N3 : ϕ̂ 7→ ϕ̂(+1, +1), N4 : ϕ̂ 7→ ϕ̂(−1, +1),

which correspond to the values at the vertices of K̂. For i ≥ 0, the moments along the edges
of K̂ are given by

N−,i : ϕ̂ 7→
+1∫
−1

ŷi ϕ̂(−1, ŷ) dŷ, N+,i : ϕ̂ 7→
+1∫
−1

ŷi ϕ̂(+1, ŷ) dŷ,

Ni,− : ϕ̂ 7→
+1∫
−1

x̂i ϕ̂(x̂,−1) dx̂, Ni,+ : ϕ̂ 7→
+1∫
−1

x̂i ϕ̂(x̂, +1) dx̂.

We define for i, j ≥ 0 the cell moments by

Ni,j : ϕ̂ 7→
∫
bK

x̂i ŷj ϕ̂(x̂, ŷ) dŷ dx̂.

The set N̂r of nodal functionals is defined as

N̂r :=
{
N1, N2, N3, N4

}
∪
{
N−,i, N+,i, Ni,−, Ni,+ : i = 0, . . . , r − 1

}
∪
{
Ni,j : 0 ≤ i, j ≤ r − 2

}
∪
{
Nr−1,0, N0,r−1

}
.

A simple counting shows that N̂r contains exactly r2 + 2r + 7 nodal functionals. Hence, the
number of nodal functionals in N̂r equals the dimension of V̂r.

We prove now that the set N̂r of nodal functionals is unisolvent on the function space V̂r.

Lemma 4. The set N̂r of nodal functionals is unisolvent with respect to the function space V̂r.

Proof. Since the number of nodal functionals in N̂r and the dimension of V̂r coincide, it suffices
to show that v̂ ∈ V̂r with vanishing nodal functionals will result in v̂ ≡ 0.
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The definition (17) of V̂r shows that we have for each edge Ê of K̂ that v̂| bE ∈ Pr+1(Ê). Using

that the moments up to order r− 1 vanish along the edge Ê, we get from the orthogonality of
the Legendre polynomials that

v̂| bE = α Lr(ŝ) + β Lr+1(ŝ), α, β ∈ R,

where ŝ ∈ (−1, 1) is the variable along the edge Ê. Since v̂ is zero at vertices (which correspond

to ŝ = ±1) and Li(±1) = (±1)i, i ≥ 0, we conclude that v̂| bE = 0 for all edges Ê of K̂. Hence,
v̂|∂ bK = 0 and v̂ can be written as

v̂ = (1− x̂2)(1− ŷ2) q̂, q̂ ∈ Qr−2(K̂)⊕ span(x̂r−1, ŷr−1),

due to (17). The vanishing cell moments result in

0 = (q̂, v̂) bK =
(
q̂, (1− x̂2)(1− ŷ2) q̂

) bK .

Since the factor (1 − x̂2)(1 − ŷ2) is positive inside K̂, we obtain q̂ = 0. Hence, v̂ ≡ 0 and the
lemma is proved.

3.2 Properties of the interpolation operator

The unisolvence given in Lemma 4 allows us to define the interpolation operator Î : C(K̂) → V̂
by

N̂(Î v̂) = N̂(v̂) ∀N̂ ∈ N̂r.

Using Î, the interpolation operator IK : C(K) → V (K) is defined as

(IKv) :=
(
Î(v ◦ FK)

)
◦ F−1

K .

Due to the definition of Î, the restriction of IKv onto an edge E ⊂ ∂K depends only on the
restriction of v onto E. Hence, the local interpolation operators IK , K ∈ T N , can be put
together to form the global interpolation operator IN : C(Ω) → V N which is given by

(INv)|K := IK(v|K) ∀K ∈ T N , v ∈ C(Ω). (18)

Due to the definition of V N given in (12), the standard Qr-space is a subspace of V N .
We proceed with giving some fundamental properties of the interpolation operator IN .

Lemma 5. For the interpolation operator IN : C(Ω) → V N defined in (18), the orthogonality
property

(w − INw, q)K = 0 ∀K ∈ T N , ∀q ∈ Pr−1(K), ∀w ∈ C(K).

is fulfilled.

Proof. We transform the integral to the reference cell K̂ and obtain

(w − INw, q)K = hK,x hK,y

(
w ◦ FK − (INw) ◦ FK , q ◦ FK

) bK .

Since FK defined in (11) is an affine mapping, we have q ◦FK ∈ Pr−1(K̂). The definition of IN

yields (INw) ◦FK = Î(w ◦FK). Due to the definition of Î, the above integral vanishes since all

Pr−1(K̂)-moments are included in the set of nodal functionals.
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We will have now a look at L∞-estimates of the interpolation.

Lemma 6. Let K ∈ T N . Then, the estimate

‖INv‖0,∞,K ≤ C‖v‖0,∞,K ∀v ∈ C(K)

holds true where C is independent of K and N .

Proof. We start the proof by showing

‖Î v̂‖0,∞, bK ≤ C‖v̂‖0,∞, bK
where v̂ := v ◦ FK ∈ C(K̂). The desired estimate follows by transforming this estimate from

K̂ to K.
We set t := dim V̂r. Let {ϕ̂i : i = 1, . . . , t} be the basis of V̂r which is dual with respect to

the set N̂r = {Ni : i = 1, . . . , t} of nodal functionals, i.e., Ni(ϕ̂j) = δij, i, j = 1, . . . , t. Then,
we have

‖Î v̂‖0,∞, bK =

∥∥∥∥∥
t∑

i=1

Ni(v̂)ϕ̂i

∥∥∥∥∥
0,∞, bK

≤
t∑

i=1

|Ni(v̂)| ‖ϕ̂i‖0,∞, bK
by the triangle inequality. Due to the definition of the nodal functionals via point values and
integrals, we have that

|Ni(v̂)| ≤ C‖v̂‖0,∞, bK , i = 1, . . . , t.

Since ‖ϕ̂i‖0,∞, bK ≤ C, i = 1, . . . , t, we conclude

‖Î v̂‖0,∞, bK ≤ C‖v̂‖0,∞, bK
and the assertion of the lemma follows by transforming this estimate from K̂ to K.

3.3 Anisotropic error estimates

The first derivatives of the interpolation error can be estimated by the following lemma.

Lemma 7. Let s be an integer satisfying 1 ≤ s ≤ r + 1. Then, the estimates

∥∥(v − INv)x

∥∥
0,K

≤ C
∑

i+j=s

hi
K,x hj

K,y

∥∥∥∥ ∂s+1v

∂xi+1 ∂yj

∥∥∥∥
0,K

∀v ∈ C(K) with ∂xv ∈ Hs(K) (19)

and

∥∥(v − INv)y

∥∥
0,K

≤ C
∑

i+j=s

hi
K,x hj

K,y

∥∥∥∥ ∂s+1v

∂xi ∂yj+1

∥∥∥∥
0,K

∀v ∈ C(K) with ∂yv ∈ Hs(K) (20)

hold true where the constant C is independent of N and K ∈ T N .

11



G. Matthies

Proof. We restrict ourselves to the proof of estimate (19) since the proof of (20) follows the
same lines. Provided∥∥(v̂ − Î v̂)x̂‖0,K ≤ C

∣∣v̂x̂

∣∣
s,K

∀v̂ ∈ C(K̂) with ∂x̂ ∈ Hs(K̂) (21)

holds true, the estimate (19) follows immediately by transforming the estimate (21) from K̂ to

K and using the relation between Î and IN . Hence, it remains to show (21).
To this end, we will use the techniques by Apel and Dobrowolski [2], see also [1, Chapter 2].

Let Ŵ denote the space which is obtained by the differentiation of V̂r with respect to x̂, i.e.,
Ŵ := ∂x̂V̂r. We set t := dim Ŵ . From the definition of V̂r, we conclude that t = r2 + r + 5. To
apply [2, Lemma 3], we have to find a set F̂r of t linear functionals which have the following
properties:

(i) F ∈
(
Hs(K̂)

)′ ∀F ∈ F̂r,

(ii) F
(
∂x̂(v̂ − Î v̂)

)
= 0 ∀F ∈ F̂r, ∀v̂ ∈ C(K̂) such that ∂x̂v̂ ∈ Hs(K̂),

(iii) the set F̂r is unisolvent on Ŵ .

We define for non-negative integers i, j, k the linear functionals

Fi : v̂ 7→
∫
bK

x̂i v̂(x̂, ŷ) dŷ dx̂, Fj,k : v̂ 7→
∫
bK

x̂j ŷk ∂v̂

∂ŷ
dŷ dx̂.

The set F̂r is given as

F̂r := {Fi : i = 0, . . . , r} ∪ {Fj,k : 0 ≤ j, k ≤ r − 1} ∪ {Fr,0, Fr,1, F0,r, F1,r}.

Note that F̂r contains exactly r2 + r + 5 linear functionals. Due to the definition, we have for
F ∈ F̂r that F ∈

(
Hs(K̂)

)′
for all s ≥ 1. Hence, condition (i) is fulfilled. To show condition (ii),

let v̂ ∈ C(K̂) such that ∂x̂v̂ ∈ Hs(K̂). We start with the nodal functionals Fi, 0 ≤ i ≤ r, which
contain no derivatives. An integration by parts gives

Fi

(
∂x̂(v̂ − Î v̂)

)
=

∫
bK

x̂i ∂x̂(v̂ − Î v̂) dŷ dx̂ = −i

∫
bK

x̂i−1 (v̂ − Î v̂) dŷ dx̂ +

∫
∂ bK

x̂i n̂1 (v̂ − Î v̂) dγ

where n̂ = (n̂1, n̂2)
T denotes for unit normal vector on ∂K̂. The first integral vanishes since

i − 1 ≤ r − 1. The boundary integral is a sum of the integrals on those edges where n̂1 is
non-zero. These are just the edges where x̂ is constant. Hence, the boundary integral equals
to zero since the edge moments with a constant test function vanish.

We proceed with the nodal functionals which involve a derivative. We have for the indices
j, k either 0 ≤ j, k ≤ r − 1 or one index is equal to r and the other index is 0 or 1. We obtain
by an integration by parts

Fj,k

(
∂x̂(v̂ − Î v̂)

)
=

∫
bK

x̂j ŷk ∂2

∂x̂∂ŷ
(v̂ − Î v̂) dŷ dx̂

12
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= −k

∫
bK

x̂j ŷk−1 ∂x̂(v̂ − Î v̂) dŷ dx̂ +

∫
∂ bK

x̂j ŷk n̂2 ∂x̂(v̂ − Î v̂) dγ. (22)

The boundary integral reduces to a sum of integrals over the edges where n̂2 is non-zero. These
are the edges with ŷ = ±1, i.e., ŷ is constant there. Ignoring the sign, the integrals along these
edges have the form

1∫
−1

x̂j∂x̂(v̂− Î v̂)(x̂,±1) dx̂ = −j

1∫
−1

x̂j−1 (v̂− Î v̂)(x̂,±1) dx̂ +
[
x̂j
(
v̂(x̂,±1)− (Î v̂)(x̂,±1)

)]∣∣∣+1

x̂=−1
.

The integral gives zero since the edge moments vanish due to j − 1 ≤ r − 1. The occurring
difference term is identically zero due to the used point values. Hence, the boundary integral
in (22) is zero. The remaining integral in (22) is again integrated by parts to obtain∫

bK
x̂j ŷk−1 ∂x̂(v̂ − Î v̂) dŷ dx̂ = −j

∫
bK

x̂j−1 ŷk−1 (v̂ − Î v̂) dŷ dx̂ +

∫
∂ bK

x̂j ŷk−1 n̂1 (v̂ − Î v̂) dγ.

The boundary integral reduces to a sum of integrals over those edges where n̂1 is non-zero. These
are the edges with x̂ = ±1. Hence, ŷ is the variable along these edges and the corresponding
integrals vanish since edge moments with k − 1 ≤ r − 1 occur. The integral over K̂ vanishes
due to the ranges of j and k. Hence, the expression in (22) gives zero. Summarising, the
condition (ii) is fulfilled.

It remains to show condition (iii), the unisolvence of F̂r on Ŵ . To this end, let {ŵk :

k = 1, . . . , t} be a basis of Ŵ . We define the matrix A = (ajk) ∈ Rt×t by ajk = Fj(ŵk),

j, k = 1, . . . , t. The unisolvence of F̂r on Ŵ is equivalent to the unique solvability of the linear
system with matrix A. This is given provided the system Aβ = α has for each right-hand
side α ∈ Rt exactly one solution β ∈ Rt. Since the linear system is finite dimensional, the
unisolvence is also equivalent to the property that for each right-hand side α ∈ Rt there exists
at least one function ŵ =

∑t
k=1 βkŵk ∈ Ŵ with Fj(ŵ) = αj, j = 1, . . . , t. Let α be an arbitrary

vector of Rt. Since all nodal functionals in F̂r are linearly independent, there exists a function

ϕ̂ ∈ C∞(K̂) such that Fj(∂x̂ϕ̂) = αj, j = 1, . . . , t. Let ŵ := ∂x̂Îϕ̂ ∈ Ŵ . Then, condition (ii)
gives that Fj(ŵ) = αj, j = 1, . . . , t. Hence, condition (iii) is fulfilled.

Since the conditions (i), (ii), and (iii) are satisfied, Lemma 3 in [2] ensures that estimate (21)

holds true. The transformation of (21) from K̂ to K shows that the interpolation operator IN

satisfies the anisotropic interpolation error estimate (19). As already said, (20) can be shown
in a similar way.

Remark 8. The enriched finite element spaces Qbubble,1
r introduced in [14] fails to satisfy

anisotropic error estimates as given in Lemma 7. Due to [2, Lemma 4], a necessary condi-
tion for the existence of an anisotropic error estimate is that a function ϕ̂ on the reference
element K̂ which depends only on x̂ has an interpolant Îϕ̂ which depends also only on x̂. If
we consider Qbubble,1

2 from [14] with the vertex-edge-cell interpolation then the interpolant of
ϕ̂ := L3(x̂) − L1(x̂) = 5/2(x̂3 − x̂) has the interpolant −15/4(1 − x̂2)(1 − ŷ2)x̂ which clearly
depends also on ŷ. Hence, the necessary condition fails and the desired anisotropic interpolation
error estimates are not available.
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Now we have a look at the interpolation error.

Lemma 9. Let q ∈ [1,∞] and 2 ≤ s ≤ r + 2. Then, there exists a constant C independent of
N and K ∈ T N such that

‖v − INv‖0,q,K ≤ C
∑

i+j=s

hi
K,x hj

K,y

∥∥∥∥ ∂sv

∂xi ∂yj

∥∥∥∥
0,q,K

holds true for all v ∈ W s,q(K).

Proof. To prove this lemma, we use again the technique provided in [2]. Since this time no
derivatives are involved, the conditions (i)–(iii) in the proof of Lemma 7 are automatically

fulfilled if one sets F̂r := N̂r. The bound s ≥ 2 is caused by the fact that the nodal functionals
from N̂r are defined for continuous functions. Note that the assumptions on s and q ensure

that W s,q(K̂) ⊂ C(K̂). Again, the estimate obtained on the reference cell K̂ is transformed to
K ∈ T N to get the assertion of this lemma.

4 Analysis of enrichment approach

In this section, we will analyse the stabilised discrete problem (16) and prove in the local
projection norm ‖ · ‖LP an estimate between the discrete solution uN and the interpolant INu
of the solution u of the weak formulation (10). Furthermore, an estimate for ‖u−uN‖1,ε will be
shown. Note that the constants in both estimates will be independent of N and the diffusion
parameter ε.

4.1 Interpolation error estimates for solution

We will start with estimates for the solution u of (10) where decomposition due to Assumption 1
will be used.

Lemma 10. Let (6), (7), and (8) be fulfilled. Then, the estimates

‖INE12‖0,∞,Ω11∪Ω21 ≤ C‖E12‖0,∞,Ω11∪Ω21 ≤ C N−(r+2),

‖INE21‖0,∞,Ω11∪Ω12 ≤ C‖E21‖0,∞,Ω11∪Ω12 ≤ C N−(r+2),

‖INE22‖0,∞,Ω\Ω22 ≤ C‖E22‖0,∞,Ω\Ω22 ≤ C N−(r+2)

hold true.

Proof. Using Lemma 6, we have

‖INE12‖0,∞,Ω11∪Ω21 ≤ C‖E12‖0,∞,Ω11∪Ω21 ≤ C N−(r+2)

where (6) and the choice of the transition point λy were used. The remaining two estimate
follow in the same way by using Lemma 6, the bounds by the exponential functions, and the
choice of the transition points λx and λy.

14
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Lemma 11. Let u denote the solution of (10) and let Assumption 1 be fulfilled. Then, the
estimate ∣∣(INu− u)(x, y)

∣∣ ≤ {C N−(r+2), (x, y) ∈ Ω11,

C (N−1 ln N)r+2, otherwise,

is fulfilled. Furthermore, we have that

‖INu− u‖0 ≤ C(N−1 ln N)r+2, ‖INu− u‖0,Ω11 ≤ CN−(r+2)

hold true.

Proof. To prove this lemma, the decomposition (4) will be used. We have

INu− u = (INS − S) + (INE12 − E12) + (INE21 − E21) + (INE22 − E22).

The S-term is estimated by using Lemma 9 with q = ∞ and s = r + 2. We obtain for all
(x, y) ∈ Ω by exploiting (5) that

|(INS − S)(x, y)| ≤ CN−(r+2)‖S‖r+2,∞ ≤ CN−(r+2).

For E12 and (x, y) ∈ Ω12 ∪ Ω22, we get by similar arguments that

|(INE12 − E12)(x, y)| ≤ C
∑

i+j=r+2

N−i(εN−1 ln N)jε−j ≤ C(N−1 ln N)r+2

where (6) was exploited. To estimate E12 on Ω11 ∪ Ω21, we obtain

‖(INE12 − E12)‖0,∞,Ω11∪Ω21 ≤ C‖E12‖0,∞,Ω11∪Ω21 ≤ CN−(r+2)

by applying Lemma 6 and Lemma 10. The estimate for E21 is obtained by similar arguments
on the subdomains Ω21 ∪ Ω22 and Ω11 ∪ Ω12, respectively. For estimating the E22, we apply
Lemma 9 with s = r+2 and q = ∞ on Ω22 and use (8). The estimates on the other subdomains
follow from Lemma 6 and Lemma 10.

The logarithmic factor in the estimate on Ω\Ω11 is caused by the bounds for the layer terms.
All four terms have no logarithmic factor on Ω11.

The estimates of the L2-norm are a simple consequence of the just proven pointwise bounds.

We proceed with estimating the gradient of the interpolation error.

Lemma 12. Let u be the solution of (10) and Assumption 1 be fulfilled. Then, the estimate

ε1/2‖∇(INu− u)‖0 ≤ C (N−1 ln N)r+1

holds where C is independent of ε and N .
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Proof. In the following, we present only the estimates for the term which involves the x-
derivative since the term with the y-derivative can be estimated by using the same ideas.

Applying the decomposition (4) of the solution u of (10), we obtain with the triangle in-
equality that

‖(INu− u)x‖0 ≤‖(INS − S)x‖0 + ‖(INE12 − E12)x‖0

+ ‖(INE21 − E21)x‖0 + ‖(INE22 − E22)x‖0.

Now, each term will be estimated separately.
We start with the S-term. Using Lemma 7 with s = r + 1, we obtain

‖(INS − S)x‖0 ≤ C
∑

i+j=r+1

hi
K,x hj

K,y

∥∥∥∥ ∂r+2S

∂xr+1 ∂yj

∥∥∥∥
0,K

≤ CN−(r+1)‖S‖r+2 ≤ CN−(r+1)

where hK,x, hk,y ≤ CN−1 and (9) were used.
For estimating the E21-term on Ω21 ∪ Ω22, we consider an arbitrary K ⊂ Ω21 ∪ Ω22 and use

Lemma 7 with s = r + 1. We obtain by using the bound (7)∥∥(INE21 − E21)x

∥∥
0,K

≤ C
∑

i+j=r+1

hi
K,x hj

K,y

∥∥∥∥ ∂r+2E21

∂xi+1∂yj

∥∥∥∥
0,K

≤ C
∑

i+j=r+1

(εN−1 ln N)i N−j ε−(i+1)‖ exp(−β1(1− x)/ε)‖0,K

≤ Cε−1 (N−1 ln N)r+1‖ exp(−β1(1− x)/ε)‖0,K .

Putting together the estimates for all K ⊂ Ω21 ∪ Ω22, one gets∥∥(INE21 − E21)x

∥∥2

0,Ω21∪Ω22
=

∑
K⊂Ω21∪Ω22

∥∥(INE21 − E21)x

∥∥2

0,K

≤ Cε−2 (N−1 ln N)2(r+1)‖ exp(−β1(1− x)/ε)‖2
0,Ω21∪Ω22

.

Applying Lemma 2, we obtain

‖ exp(−β1(1− x)/ε)‖2
0,Ω21∪Ω22

=

1∫
y=0

1∫
x=1−λx

exp(−2β1(1− x)/ε) dx dy ≤ C ε.

Hence, the estimate

ε1/2
∥∥(INE21 − E21)x

∥∥
0,Ω21∪Ω22

≤ C(N−1 ln N)r+1

holds true. To estimate the E21-term on Ω11 ∪ Ω12, we apply the triangle inequality to split∥∥(INE21 − E21)x

∥∥
0,Ω11∪Ω12

≤
∥∥(INE21)x

∥∥
0,Ω11∪Ω12

+
∥∥(E21)x

∥∥
0,Ω11∪Ω12

.

Using the bound (7), we end up with

∥∥(E21)x

∥∥2

0,Ω11∪Ω12
≤ C ε−2

1∫
y=0

1−λx∫
x=0

exp(−2β1(1− x)/ε) dx dy ≤ Cε−1 N−2(r+2)
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where Lemma 2 was used. By an inverse inequality, we obtain∥∥(INE21)x

∥∥
0,Ω11∪Ω12

≤ CN‖INE21‖0,Ω11∪Ω12 .

Using Lemma 6 and the behaviour of E21 due to (7), we have

‖INE21‖2
0,Ω11∪Ω12

=

N/2∑
i=1

xi∫
xi−1

1∫
0

|INE21(x, y)|2 dy dx

≤ C

N/2∑
i=1

xi∫
xi−1

e−2β1(1−xi)/ε dx

≤ C

N/2−1∑
i=1

xi+1∫
xi

e−2β1(1−xi)/ε dx + C

xN/2∫
xN/2−1

e−2β1(1−xi)/ε dx

≤ C(ε + N−1)N−(2r+4)

where Lemma 2 and xN/2 = 1− λx were exploited. Hence, we obtain

ε1/2
∥∥(INE21 − E21)x

∥∥
0
≤ C(N−1 ln N)r+1

by collecting the above bounds.
For estimating the E12-term on Ω12 ∪ Ω22, we start with the application of Lemma 7 with

s = r + 1 on K ⊂ Ω12 ∪ Ω22. We get by using the bound (6) that∥∥(INE12 − E12)x

∥∥
0,K

≤ C
∑

i+j=r+1

hi
K,x hj

K,y

∥∥∥∥ ∂r+2E12

∂xi+1∂yj

∥∥∥∥
0,K

≤ C
∑

i+j=r+1

N−i (εN−1 ln N)j ε−j‖ exp(−β2(1− y)/ε)‖0,K

≤ C(N−1 ln N)r+1‖ exp(−β2(1− y)/ε)‖0,K .

Combining the estimates for all K ⊂ Ω12 ∪ Ω22 results in

ε
∥∥(INE12 − E12)x

∥∥2

0,Ω12∪Ω22
=

∑
K⊂Ω12∪Ω22

ε
∥∥(INE12 − E12)x

∥∥2

0,K

≤ Cε (N−1 ln N)2(r+1)‖ exp(−β2(1− y)/ε)‖2
0,Ω12∪Ω22

≤ C(N−1 ln N)2(r+1)

where the last inequality was obtained by applying Lemma 2. To estimate the E12-term on
Ω11 ∪ Ω21, we apply Lemma 7 with s = 1. One obtains on each K ⊂ Ω11 ∪ Ω21 that∥∥(INE12 − E12)x

∥∥
0,K

≤ CN−1
(∥∥(E12)xx

∥∥
0,K

+
∥∥(E12)xy

∥∥
0,K

)
.

Hence, we have on Ω11 ∪ Ω21 the estimate∥∥(INE12 − E12)x

∥∥2

0,Ω11∪Ω21
≤ CN−2

(∥∥(E12)xx

∥∥2

0,Ω11∪Ω21
+
∥∥(E12)xy

∥∥2

0,Ω11∪Ω21

)
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≤ CN−2

1∫
0

1−λy∫
0

ε−2 exp(−2β2(1− y)/ε) dy dx

≤ ε−1N−2r+6

due to (6) where again Lemma 2 was applied. Hence, we obtain

ε1/2
∥∥(INE12 − E12)x

∥∥
0
≤ C (N−1 ln N)r+1

by collecting the above bounds.
The first step to estimate the E22-term on Ω22 is the use of Lemma 7 with s = r + 1. We get

on each K ⊂ Ω22 that

∥∥(INE22 − E22)x

∥∥
0,K

≤ C
∑

i+j=r+1

hi
K,x hj

K,y

∥∥∥∥ ∂r+2E22

∂xi+1∂yj

∥∥∥∥
0,K

≤ C
∑

i+j=r+1

(εN−1 ln N)i (εN−1 ln N)j ε−(i+j+1) ∗

∗ ‖ exp
(
− (β1(1− x) + β2(1− y))/ε

)
‖0,K

≤ Cε−1 (N−1 ln N)r+1‖ exp
(
− (β1(1− x) + β2(1− y))/ε

)
‖0,K

holds where the bound (8) was exploited. Hence, the estimate∥∥(INE22 − E22)x

∥∥2

0,Ω22
=
∑

K⊂Ω22

∥∥(INE22 − E22)x

∥∥2

0,K

≤ Cε−2 (N−1 ln N)2(r+1)‖ exp
(
− (β1(1− x) + β2(1− y))/ε

)
‖2

0,Ω22

≤ C(N−1 ln N)2(r+1)

is obtained by using Lemma 2 for handling the exponential term in the following form

‖ exp
(
− (β1(1− x) + β2(1− y))/ε

)
‖2

0,Ω22
=

1∫
1−λx

1∫
1−λy

e−2(β1(1−x)+β2(1−y))/ε dy dx

=

 1∫
1−λx

e−2(β1(1−x))/ε dx


 1∫

1−λy

e−2(β2(1−y))/ε dy


≤ Cε2.

It remains to estimate the interpolation error of E22 on Ω \Ω22. On Ω11 ∪Ω12, one can use the
same techniques as for estimating the E21-term on these subdomains. Compared to E21, there
is an additional y-dependent factor in the upper bound for E22 which can be bounded by one.
The estimation of the E22-term on Ω21 follows the lines of the estimate of the E21-term on this
subdomain. The additional factor is again bounded by one.

Putting together all above estimates, the assertion of the lemma follows.
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4.2 Error analysis

We start the error analysis with showing the unique solvability of the stabilised discrete prob-
lem (16) which is a consequence of the following coercivity of the bilinear form aN .

Lemma 13. The stabilised bilinear form aN fulfils

aN(v, v) ≥ ‖v‖2
LP ∀v ∈ V,

i.e., aN is coercive on V .

Proof. Using the definition of aN , we obtain after an integration by parts that

aN(v, v) = ε(∇v,∇v) + (b · ∇v + c v, v) + sN(v, v)

= ε |v|21 +

(
c− 1

2
div b, v2

)
+ sN(v, v) ≥ ‖v‖2

LP

due to assumption (3) and the definition of ‖ · ‖LP .

Since the local projection methods is only weakly consistent, the appearing consistency error
has to be considered.

Lemma 14. Let u and uN denote the solution of the weak formulation (10) and the stabilised
discrete problem (16), respectively. Then, we have

aN(u− uN , wN) = sN(u, wN)

for all wN ∈ V N .

Proof. Subtracting the stabilised discrete problem (16) from the weak formulation (10) yields

aN(u− uN , wN) = a(u, wN) + sN(u, wN)− aN(uN , wN)

= (f, wN) + sN(u, wN)− (f, wN) = sN(u, wN) ∀wN ∈ V N

and the lemma is proved.

We will now estimate the stabilisation term sN in the case of some special arguments.

Lemma 15. Let u be the solution of the variational problem (10). Furthermore, let Assump-
tion 1 be fulfilled. Then, the estimate∣∣sN(INu, wN)

∣∣ ≤ CN−(r+1) ‖wN‖LP

holds for all wN ∈ V N where IN is the interpolation operator defined in (18). The constant C
is independent of N and ε.
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Proof. Using the decomposition (4) of the solution u, we obtain

sN(INu, wN) = sN(INS, wN) +
∑
ij

sN(INEij, w
N)

= sN(INS − S, wN) + sN(S, wN) +
∑
ij

sN(INEij, w
N)

where the ij-sum runs through {12, 21, 22}. Each term will be estimated separately.
We start with the term which involves only S and get after applying inequality (14) that

∣∣sN(S, wN)
∣∣ ≤ (sN(S, S)

)1/2(
sN(wN , wN)

)1/2 ≤

( ∑
K⊂Ω11

τK‖κK(b · ∇S)‖2
0,K

)1/2

‖wN‖LP

≤ C

( ∑
K⊂Ω11

τK N−2r|b · ∇S|2r,K

)1/2

‖wN‖LP

≤ C

( ∑
K⊂Ω11

τK N−2r‖S‖2
r+1,K

)1/2

‖wN‖LP ≤ CN−(r+1)‖wN‖LP

where the smoothness of b, Lemma 3 with s = r, the choice (15) for τK , and the bound (9)
were exploited.

We proceed with the term which contains the difference INS − S and obtain by applying
inequality (14) that

∣∣sN(INS − S, wN)
∣∣ ≤ ( ∑

K⊂Ω11

τK‖κK(b · ∇(INS − S))‖2
0,K

)1/2 (
sN(wN , wN)

)1/2

≤ C

( ∑
K⊂Ω11

τK‖∇(INS − S)‖2
0,K

)1/2

‖wN‖LP

≤ C

( ∑
K⊂Ω11

τKN−2(r+1)‖S‖2
r+1,K

)1/2

‖wN‖LP ≤ CN−(r+2)‖wN‖LP

where the Lemma 3 with s = 0, the smoothness of b, Lemma 7 with s = r + 1 for ‖∇(INS −
S)‖0,Ω11 as in the proof of Lemma 12, the bound (9), and the choice (15) for τK were used.

Finally, we investigate the exponential terms Eij. Let E denote one the three layer functions.
Using Lemma 3 with s = 0, the smoothness of b, and an inverse inequality, we get on K ⊂ Ω11

that

‖κK(b · ∇INE)‖0,K ≤ C‖b · ∇INE‖0,K ≤ C|INE|1,K ≤ C N ‖INE‖0,K

≤ C N |K|1/2‖INE‖0,∞,K .

Hence, we obtain

∣∣sN(INE, wN)
∣∣ ≤ ( ∑

K⊂Ω11

τK‖κK(b · ∇INE)‖2
0,K

)1/2

‖wN‖LP
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≤ C

( ∑
K⊂Ω11

τK N2 |K| ‖INE‖2
0,∞,K

)1/2

‖wN‖LP

≤ C

( ∑
K⊂Ω11

τK N2 |K|

)1/2

‖INE‖0,∞,Ω11 ‖wN‖LP

≤ CN−(r+2) ‖wN‖LP

where the choice (15) for τK and Lemma 10 for bounding ‖INE‖0,∞,Ω11 were applied. Putting
together all above estimates, the assertion of the lemma follows.

We proceed with the consideration of the convective and reactive terms.

Lemma 16. Let u be the solution of (10) and Assumption 1 be fulfilled. Then, the estimate∣∣(b · ∇(INu− u) + c(INu− u), wN)
∣∣ ≤ C N−(r+1) ‖wN‖LP

holds for all wN ∈ V N where C is independent of ε and N .

Proof. An integration by parts of the convective term yields

(b · ∇(INu− u) + c(INu− u), wN) =(wN(c− div b), INu− u)

− (INu− u, b · ∇wN)Ω11 − (INu− u, b · ∇wN)Ω\Ω11 .

Each term will be considered individually.
The first term is estimated as∣∣(wN(c− div b), INu− u)

∣∣ ≤ C‖wN‖0‖INu− u‖0 ≤ C(N−1 ln N)r+2 ‖wN‖LP .

which follows from the Cauchy–Schwarz inequality and Lemma 11.
The orthogonality property of IN given in Lemma 5 yields(

INu− u, b · ∇wN)Ω11 =
∑

K⊂Ω11

(INu− u, b · ∇wN − πK(b · ∇wN)
)

K

=
∑

K⊂Ω11

(
INu− u, κK(b · ∇wN)

)
K

.

Using additionally the choice (15) for τK and again Lemma 11, we get

∣∣(INu− u, b · ∇wN)Ω11

∣∣ ≤ ( ∑
K⊂Ω11

τ−1
K ‖INu− u‖2

0,K

)1/2( ∑
K⊂Ω11

τK‖κK(b · ∇wN)‖2
0,K

)1/2

≤ CN r+1‖wN‖LP .

Applying a Hölder inequality, we obtain∣∣(INu− u, b · ∇wN)Ω\Ω11

∣∣ ≤ ‖INu− u‖0,∞,Ω\Ω11‖b · ∇wN‖0,1,Ω\Ω11
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The first factor is estimated by Lemma 11 while the second factor is bounded as follows

‖b · ∇wN‖0,1,Ω\Ω11 ≤ |Ω \ Ω11|1/2‖b · ∇wN‖0,Ω\Ω11 ≤ C(ln N)1/2ε1/2|wN |1,Ω\Ω11

where |Ω \ Ω11| ≤ Cε ln N and the smoothness of b were used. Hence, we obtain∣∣(INu− u, b · ∇wN)Ω\Ω11

∣∣ ≤ CN−(r+2)(ln N)r+5/2‖wN‖LP

by combing the various bounds.
Putting together all above estimate, the lemma is proved.

Now we can state our main result.

Theorem 17. Let u denote the solution of (10) and uN solution of the stabilised discrete
problem (16). Furthermore, let Assumption 1 be fulfilled. Then, the estimates

‖INu− uN‖LP ≤ C (N−1 ln N)r+1

and

‖u− uN‖1,ε ≤ C (N−1 ln N)r+1

hold true where the constants are independent of ε and N .

Proof. Using Lemma 13 which gives the coercivity of aN , we obtain

‖INu− uN‖2
LP ≤ aN(INu− uN , INu− uN)

= aN(INu− u, INu− uN) + aN(u− uN , INu− uN)

= a(INu− u, INu− uN) + sN(INu, INu− uN) (23)

where Lemma 14 and the definition of bilinear form aN were exploited. The second term in (23)
can be estimated by using Lemma 15. We obtain

|sN(INu, INu− uN)| ≤ CN−(r+1) ‖INu− uN‖LP .

For estimating the first term in (23), we use the definition of the bilinear form a and get

|a(INu− u, INu− uN)| ≤ |ε(∇(INu− u),∇(INu− uN))|
+ |(b · ∇(INu− u) + c(INu− u), INu− uN)|

≤ ε1/2‖∇(INu− u)‖0 ε1/2‖∇(INu− uN)‖0 + C N−(r+1) ‖INu− uN‖LP

≤ C (N−1 ln N)r+1 ‖∇(INu− uN)‖LP

where Lemma 16 and Lemma 12 were applied. Putting these estimate into (23), the first
statement of this theorem follows.

Using the triangle inequality, we obtain

‖u− uN‖1,ε ≤ ‖u− INu‖1,ε + ‖INu− uN‖1,ε.

The first term can be estimated by using the definition of ‖·‖1,ε and the bounds from Lemma 12
and Lemma 11. The second term is bounded by ‖INu − uN‖LP . Hence, the desired assertion
is proven.
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5 Conclusions

We have considered in this paper the local projection stabilisation applied to higher order dis-
cretisation of convection-diffusion problems on Shishkin meshes. We proposed and analysed
new finite elements which are enrichments of the standard Qr-elements by 6 functions and
which contain the polynomial space Pr+1. For the difference between the solution u of the weak
formulation (10) and solution uh of the stabilised discrete problem (16), an ε-uniform conver-
gence rate O

(
(N−1 ln N)r+1

)
in ε-weighted H1-norm was proven, see Theorem 17. Moreover,

the difference between uh and and the interpolant INu of the solution u convergences in the
local projection norm ‖ · ‖LP ε-uniformly with order O

(
(N−1 ln N)r+1

)
, see Theorem 17.
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