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1 Introduction

The Oseen problem occurs as an important subproblem during the iterative solution of the
stationary and instationary Navier–Stokes equations. When solving the Oseen equations by
the standard Galerkin finite element method, one is faced with two problems: the problem
is generally convection dominated and a compatibility between the approximation spaces for
velocity and pressure is necessary.

The streamline-upwind Petrov–Galerkin method (SUPG), introduced in [10], and the pressure-
stabilisation Petrov–Galerkin method (PSPG), introduced in [19, 21], allow to treat both prob-
lems within a single framework. Moreover, an additional elementwise stabilisation of the di-
vergence constraint, further denoted as grad-div stabilisation, is important for the robustness,
see [13, 18, 34]. A fundamental drawback of residual based stabilisation methods is that various
terms need to be added to the weak formulation to guarantee the consistency of the method in
a strong way. Using inf-sup stable pairs of finite element spaces for approximating velocity and
pressure, we can skip the PSPG term to obtain a so-called reduced stabilised scheme [15, 25].
Nevertheless, an additional coupling term between velocity and pressure makes their analy-
sis difficult and the grad-div stabilisation seems to be even more important [11, 15, 25, 30].
In recent years, several approaches have been developed to relax the strong coupling in the
SUPG/PSPG type stabilisation and to introduce symmetric stabilising terms, for an overview
see [7, 22, 23].

The local projection method has been designed for equal order interpolation and allows
a separate stabilisation of velocity, pressure, and incompressibility constraint. It has been
introduced for the Stokes equations in [3], extended to the transport problem in [4], and analysed
for the Oseen problem with equal order interpolation in [6, 27]. Originally, the local projection
technique was proposed as a two-level method where the quantities of interest (e.g. derivatives
in streamline direction) are locally projected onto a discontinuos finite element space living
on a coarser mesh. Unfortunately, this approach leads to a discretisation stencil being less
compact than for the SUPG/PSPG type stabilisation. The general approach given in [14, 27]
allows to construct local projection methods with non-increasing discretisation stencil by an
appropriate enrichment of standard finite element spaces. In this paper, we will concentrate on
the enrichment variant of the local projection method.

The idea of using inf-sup stable finite element pairs is driven by the observation that the flow
problem is often part of a coupled flow-transport problem and the mass conservation of the
transport equation depends on the properties of the discrete velocity, see [29]. Unfortunately,
the property of the velocity field to be discretely divergence-free is disturbed by stabilising the
pressure. For inf-sup stable finite element pairs, this pressure stabilisation is not needed and
we are only faced with the instability caused by dominated convection.

The main objective of the paper is to analyse convergence properties of the enrichment
approach of the local projection stabilisation applied to inf-sup stable discretisations of the
Oseen problem. We will consider two different stabilisation terms: one is controlling fluctuations
of the derivative in streamline direction and the fluctuation of the divergence separately while
the other gives control over fluctuations of the whole gradient. An interesting point is that
for inf-sup stable finite element pairs we do not need an H1 stable interpolation operator with
additional orthogonality properties for proving the stability of the discrete problem. This is
different for equal order interpolation, see [27, Lemma 2.6]. As a consequence, there is much
more flexibility for choosing the approximation and projection spaces. Most of the known inf-
sup stable finite element pairs approximate the velocity components by elements of order r and
the pressure by elements of order r − 1 which results in error estimates of order r. Moreover,
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we propose new inf-sup stable finite element pairs approximating both velocity and pressure
by elements of order r. In contrast to the ‘classical’ equal order interpolation, the velocity
components and the pressure are discretised by different elements. We show the discrete inf-sup
condition for these finite element spaces und prove an error estimate of order r +1/2 uniformly
in the viscosity and the reaction coefficient. In case of discontinuous pressure approximations,
we add an additional term controlling the jumps of the pressure over inner cell faces. To our
knowlegde, estimates of order r + 1/2 have been known up to now only for discretisations with
‘classical’ equal order interpolation, see [6, 27].

The plan of this paper is as follows. Sect. 2 states the Oseen problem and its weak formulation.
The local projection stabilisation with two different stabilisation terms will be introduced.
Sect. 3 considers the solvability and the stability of the stabilised discrete problem. Moreover,
the consistency error is analysed. The convergence of the local projection method is investigated
in Sect. 4. After considering known inf-sup stable finite element pairs of order r and r − 1, we
study enriched velocity spaces and show error bounds of order r which are uniform in the
viscosity also for vanishing reaction coefficient. Moreover, new pairs of inf-sup stable finite
element spaces are proposed approximating velocity and pressure by different elements which
are both of order r. For these pairs, we will prove a convergence order r + 1/2. Sect. 5 gives
finally some numerical tests which confirm the theoretical results.

Notation. Throughout this paper, C will denote a generic positive constant which is inde-
pendent of the viscosity parameter and the mesh. Subscripted constants such as C1 are also
independent of the viscosity and the mesh but have a fixed value. We will write shortly α . β
if there exists a positive constant C such that α ≤ Cβ holds. If α . β and β . α, we will write
α ∼ β. The Oseen problem will be considered in the domain Ω ⊂ R

d, d = 2, 3, which is assumed
to be a polygonal or polyhedral domain with boundary ∂Ω. For a measurable d-dimensional
subset G of Ω, the usual Sobolev spaces W m,p(G) with norm ‖ · ‖m,p,G and semi-norm | · |m,p,G

are used. In the case p = 2, we have Hm(G) = W m,2(G) and the index p will be omitted. The
L2 inner product on G is denoted by (·, ·)G. Note that the index G will be omitted for G = Ω.
This notation of norms, semi-norms, and inner products is also used for the vector-valued and
tensor-valued case. For a sufficiently smooth (d − 1)-dimensional manifold E ⊂ ∂G, the L2

inner product will be denoted by 〈·, ·〉E.

2 Oseen problem and its discretisation

2.1 Weak formulation

We consider the Oseen problem

−ν△u + (b · ∇
)
u + σu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,





(1)

where ν > 0 and σ ≥ 0 are constants and b ∈
(
W 1,∞(Ω)

)d
with div b = 0 is a given velocity field.

The Oseen problem can be considered as a linearisation of the steady (σ = 0) and non-steady
(σ > 0) time-discretised Navier–Stokes equations, respectively.

Let V :=
(
H1

0 (Ω)
)d

and Q := L2
0(Ω). Then, a weak formulation of (1) reads
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Find (u, p) ∈ V × Q such that

ν(∇u,∇v) +
(
(b · ∇)u, v

)
+ σ(u, v) − (p, div v) = (f, v) ∀v ∈ V,

(q, div u) = 0 ∀q ∈ Q.

}
(2)

Note that div b = 0 implies

(
(b · ∇)u, v

)
= −

(
(b · ∇)v, u

)
∀u, v ∈ V, (3)

in particular, (
(b · ∇)v, v

)
= 0 ∀v ∈ V. (4)

Thus, applying the Lax–Milgram Lemma in the subspace of divergence-free functions we estab-
lish the unique velocity field u. The unique pressure p ∈ Q such that (u, p) solves (2) follows
from the Babuška–Brezzi condition for the pair V/Q, see [16].

2.2 Discrete problem and stabilised formulation

We are given a family {Th} of shape-regular decompositions of Ω into d-simplices, quadrilaterals,
or hexahedra. The diameter of a cell T is denoted by hT . The mesh parameter h describes
the maximum diameter of the cells T ∈ Th. The set of all inner element faces E 6⊂ ∂Ω will be
denoted by Eh. The diameter of a face E ∈ Eh is given by hE . Each face E ∈ Eh is associated
with an arbitrary but fixed unit normal vector nE . Furthermore, let TE be a fixed element from
Th such that E ⊂ ∂TE . Let T1, T2 ∈ Th denote two different cells from Th which share a common
face E = ∂T1 ∩ ∂T2. We define for a piecewise smooth function rh its jump over the face E as

[rh]E = (rh|T1
)
∣∣
E
− (rh|T2

)
∣∣
E

where nE is directed from T1 into T2.
Let Yh ⊂ H1

0(Ω) be a scalar finite element space of continuous, piecewise mapped polynomial
functions over Th. The finite element space Vh for approximating the velocity field is given
by Vh := Y d

h . The pressure is discretised using a finite element space Qh ⊂ Q of continuous
or discontinuous functions with respect to Th. We will consider inf-sup stable pairs Vh/Qh

throughout this paper.

Assumption 1. The pair Vh/Qh fulfils the discrete inf-sup condition, i.e., there exists a positive
constant β0 such that

inf
qh∈Qh

sup
vh∈Vh

(qh, div vh)

|vh|1 ‖qh‖0

≥ β0 > 0 (5)

uniformly in h.

The standard Galerkin discretisation of (2) in Vh × Qh reads

Find (uh, ph) ∈ Vh × Qh such that

ν(∇uh,∇vh) +
(
(b · ∇)uh, vh

)
+ σ(uh, vh) − (ph, div vh) = (f, vh) ∀vh ∈ Vh,

(qh, div uh) = 0 ∀qh ∈ Qh.

}
(6)

In general, problem (6) lacks stability for ν ≪ 1 due to dominating convection. To overcome
this problem, we consider the stabilisation by local projection and introduce some additional
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notations. Let Di
h(T ), i = 1, 2, 3, be finite dimensional spaces on the cell T ∈ Th and πi

T :
L2(T ) → Di

h(T ) the associated local L2 projections into Di
h(T ). The global projection spaces

Di
h are defined by

Di
h :=

⊕

T∈Th

Di
h(T ), i = 1, 2, 3.

Note that these spaces are discontinuous with respect to Th. For each i = 1, 2, 3, the mapping
πi

h : L2(Ω) → Di
h defined by (πi

hv)|T := πi
T (v|T ) for all T ∈ Th is the L2 projection into the

projection space Di
h. Associated with πi

h, i = 1, 2, 3, are the fluctuation operators κi
h := id−πi

h

where id : L2(Ω) → L2(Ω) denotes the identity mapping on L2(Ω). Note that we allow also
Di

h = {0} which means that κi
h is the identity. Furthermore, the operators πi

h and κi
h are applied

componentwise to vector-valued and tensor-values arguments.

Now we are able to introduce the stabilising terms

Sa
h(u, v) :=

∑

T∈Th

(
τT

(
κ1

h(b · ∇)u, κ1
h(b · ∇)v

)
T

+ γT

(
κ2

h div u, κ2
h div v

)
T

)
, (7)

Sb
h(u, v) :=

∑

T∈Th

µT

(
κ3

h∇u, κ3
h∇v

)
T
. (8)

The term Sa
h introduces control over the fluctuations of the derivatives in streamline direction

and over the fluctuations of the divergence separately whereas Sb
h controls the fluctuations of

the gradients. We define on the product space V × Q the bilinear forms

Ai
h

(
(u, p); (v, q)

)
:= ν(∇u,∇v) +

(
(b · ∇)u, v

)
+ σ(u, v)

+ Si
h(u, v) − (p, div v) + (q, div u),

i ∈ {a, b} (9)

and the mesh-dependent norms
∣∣∣∣∣∣(v, q)

∣∣∣∣∣∣
i
:=
(
ν|v|21 + σ‖v‖2

0 + (ν + σ)‖q‖2
0 + Si

h(v, v)
)1/2

, i ∈ {a, b}. (10)

We will omit the index i in the notations Si
h, Ai

h, and
∣∣∣∣∣∣(·, ·)

∣∣∣∣∣∣
i
, respectively, if the corresponding

statement hold for i = a and i = b.

Now, our stabilised discrete problems read

Find (uh, ph) ∈ Vh × Qh such that

Ai
h

(
(uh, ph), (vh, qh)

)
= (f, vh) ∀(vh, qh) ∈ Vh × Qh. (11)

Existence, uniqueness, and convergence properties of solutions (uh, ph) ∈ Vh×Qh will be studied
in the next sections.

3 Stability

We start with the solvability of the discrete problem (11).

Lemma 1. Let max(ν, σ, τT , γT , µT ) ≤ C. Then, there exists a positive constant β independent
of ν, σ, and h such that

inf
(vh,qh)∈Vh×Qh

sup
(wh,rh)∈Vh×Qh

Ah

(
(vh, qh); (wh, rh)

)
∣∣∣∣∣∣(vh, qh)

∣∣∣∣∣∣ ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣ ≥ β > 0 (12)

holds true.
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Proof. Let (vh, qh) be an arbitrary element of Vh × Qh. We obtain

Ah

(
(vh, qh); (vh, qh)

)
= ν|vh|

2
1 + σ‖vh‖

2
0 + Sh(vh, vh)

where property (4) was used.
The discrete inf-sup condition (5) ensures that there exists for all qh ∈ Qh a zh = zh(qh) ∈ Vh

such that
(div zh, qh) = −‖qh‖

2
0, ‖zh‖1 ≤ C1‖qh‖0 (13)

holds where C1 depends only on the inf-sup constant β0 and the Friedrichs constant for the
domain Ω. We get

Ah

(
(vh, qh); (zh, 0)

)
= ν(∇vh,∇zh) +

(
(b · ∇)vh, zh

)
+ σ(vh, zh) + Sh(vh, zh) + ‖qh‖

2
0 (14)

by using the first property from (13). We will estimate the first four terms of (14). The first
and the third term can be estimated in a standard way. Using the assumption ν, σ ≤ C, we get

∣∣ν(∇vh,∇zh) + σ(vh, zh)
∣∣ ≤ ν|vh|1 |zh|1 + σ‖vh‖0 ‖zh‖0

≤ C
(
ν|vh|

2
1 + σ‖vh‖

2
0

)1/2
‖qh‖0

≤
‖qh‖

2
0

6
+ C

(
ν|vh|

2
1 + σ‖vh‖

2
0

)

by using the second property from (13). After an integration by parts, the second term of (14)
can be estimates as

∣∣((b · ∇)vh, zh

)∣∣ =
∣∣((b · ∇)zh, vh

)∣∣ ≤ C|zh|1‖vh‖0 ≤
‖qh‖

2
0

6
+ C‖vh‖

2
0

where the boundedness of b and (13) were applied. It remains to consider the stabilising term Sh.
Since πh is the L2 projection onto the discontinuous finite element space Dh, the corresponding
fluctuation operator κh is locally L2 stable. Thus, we get with the boundedness of the user
chosen parameters τT , γT , µT , and the boundedness of b in case of considering Sa

h that

∣∣Sh(vh, zh)
∣∣ ≤

(
Sh(vh, vh)

)1/2(
Sh(zh, zh)

)1/2
≤ C

(
Sh(vh, vh)

)1/2
|zh|1 ≤

‖qh‖
2
0

6
+ CSh(vh, vh).

Putting together the above estimates, we obtain

Ah

(
(vh, qh); (zh, 0)

)
≥

‖qh‖
2
0

2
− C

(
ν|vh|

2
1 + σ‖vh‖

2
0 + Sh(vh, vh)

)
− C‖vh‖

2
0. (15)

After multiplying this inequality by 2(ν + σ) and using the Friedrichs inequality for estimating

2(ν + σ)‖vh‖
2
0 ≤ C

(
ν|vh|

2
1 + σ‖vh‖

2
0

)
,

we end up with

Ah

(
(vh, qh); 2(ν + σ)(zh, 0)

)
≥ (ν + σ)‖qh‖

2
0 − C2

(
ν|vh|

2
1 + σ‖vh‖

2
0 + Sh(vh, vh)

)
(16)

with a suitable constant C2. We define for (vh, qh) ∈ Vh × Qh the pair (wh, rh) ∈ Vh × Qh by

(wh, rh) := (vh, qh) +
2(ν + σ)

1 + C2
(zh, 0).
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Then, we obtain

Ah

(
(vh, qh); (wh, rh)

)
≥

ν + σ

1 + C2
‖qh‖

2
0 +

(
1 −

C2

1 + C2

)(
ν|vh|

2
1 + σ‖vh‖

2
0 + Sh(vh, vh)

)

≥
1

1 + C2

∣∣∣∣∣∣(vh, qh)
∣∣∣∣∣∣2. (17)

It remains to show that
∣∣∣∣∣∣(wh, rh)

∣∣∣∣∣∣ ≤ C
∣∣∣∣∣∣(vh, qh)

∣∣∣∣∣∣. To this end, we estimate

∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣(vh, qh)
∣∣∣∣∣∣+ 2(ν + σ)

1 + C2

∣∣∣∣∣∣(zh, 0)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣(vh, qh)
∣∣∣∣∣∣+ 2(ν + σ)

1 + C2
C‖zh‖1

≤
∣∣∣∣∣∣(vh, qh)

∣∣∣∣∣∣+ C(ν + σ)‖qh‖0 ≤ C3

∣∣∣∣∣∣(vh, qh)
∣∣∣∣∣∣.

Hence, the stated inf-sup condition holds with the constant β = 1/
(
C2(1 + C2)

)
.

Remark 2. Lemma 1 gives stability and unique solvability of the discrete problem (11). Note
that the mapping w 7→ ‖κT w‖0,T vanishes on the local projection space Dh(T ). Thus, the stability
of the discrete problem increases when the dimension of the projection space decreases since the
triple norm becomes stronger. In other words, we can control the stability of the discrete problem
by choosing appropriate projection spaces.

Next we will study the consistency error caused by adding the stabilising terms to the standard
Galerkin discretisation.

Assumption 2. The fluctuation operators κ1
h and κ3

h provide the local approximation properties
of order s1 and s3, i.e.,

‖κi
hw‖0,T ≤ Chsi

T |w|si,T ∀w ∈ Hsi(T ), ∀T ∈ Th, i ∈ {1, 3}.

Note that assumption A2 is always satisfied for si = 0 since (κi
hw)|T = w|T − πi

T (w|T ) and
πi

T is the L2 projection on Di
h(T ). The assumption A2 is fulfilled for si > 0, for example, if

Di
h(T ) ⊂ Psi−1(T ). This follows from the Bramble–Hilbert lemma.

Lemma 3. Let (u, p) ∈ V ×Q and (uh, ph) ∈ Vh ×Qh be the solutions of (2) and (11), respec-
tively. Furthermore, assume that u ∈ Hs+1(Ω)d for some integer s ∈ [0, r]. Suppose the fluctua-
tion operator κ1

h fulfils assumption A2 with s1 = s and b|T ∈ W s1,∞(T ) with maxT ‖b‖s1,∞,T ≤ C.
Then, we have

∣∣Aa
h

(
(u − uh, p − ph); (vh, qh)

)∣∣ ≤ C

(
∑

T∈Th

τT h2s1

T ‖u‖2
s1+1,T

)1/2 ∣∣∣∣∣∣(vh, qh)
∣∣∣∣∣∣

a
(18)

for all (vh, qh) ∈ Vh × Qh. Similarly, if the fluctuation operator κ3
h fulfils assumption A2 with

s3 = s, the estimate

∣∣Ab
h

(
(u − uh, p − ph); (vh, qh)

)∣∣ ≤ C

(
∑

T∈Th

µT h2s3

T ‖u‖2
s3+1,T

)1/2 ∣∣∣∣∣∣(vh, qh)
∣∣∣∣∣∣

b
(19)

holds for all (vh, qh) ∈ Vh × Qh.
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Proof. Using (11) and

Ah

(
(u, p); (vh, qh)

)
= Sh(u, vh) + (f, vh) ∀vh ∈ Vh,

we see that only Sh(u, vh) has to be estimated. The definition (7) of the stabilising term gives

∣∣Sa
h(u, vh)

∣∣ ≤
(
Sa

h(u, u)
)1/2(

Sa
h(vh, vh)

)1/2
≤
(
Sa

h(u, u)
)1/2∣∣∣∣∣∣(vh, qh)

∣∣∣∣∣∣
a
.

Employing the properties of the fluctuation operator κ1
h and the boundedness of maxT ‖b‖s1,∞,T ,

we obtain with div u = 0

Sa
h(u, u) ≤ C

∑

T∈Th

h2s1

K τT

∣∣(b · ∇)u
∣∣2
s1,T

≤ C
∑

T∈Th

τT h2s1

T ‖u‖2
s1+1,T .

In a similar way, we can estimate Sb
h where no assumption on b is required.

4 Convergence

In order to study the convergence order, we characterise the approximation properties of the
spaces Vh and Qh by the existence of corresponding interpolation operators. First, we study
the case of usual inf-sup stable pairs Vh/Qh which approximate the velocity components and
the pressure by elements of order r and r − 1, respectively. In general, the constant in the
error estimate is independent of ν and the mesh size h, but depends on σ. Then, we show
that under additional assumptions interpolation operators can be constructed which satisfy
certain orthogonality properties. These interpolation operators allow us to establish estimates
with error constants independent of the data ν, σ, and h. Finally, we turn over to the case of
inf-sup stable pairs Vh/Qh approximating both the velocity components and the pressure by
elements of order r. An example for the lowest order case (r = 1) with continuous pressure
approximation will be the Mini-Element [2, 9]. We give for all considered cases several examples
of approximation spaces Vh, Qh and projection spaces Di

h, i = 1, 2, 3, such that all assumptions
needed in our convergence theory are satisfied.

4.1 Methods of convergence order r in the case σ > 0

We start considering inf-sup stable pairs Vh/Qh of finite element spaces of order r and r − 1,
respectively. We assume for this subsection that the polynomial order satisfies r ≥ 2.

Assumption 3. There are interpolation operators jh : V ∩H2(Ω)d → Vh and ih : Q∩H2(Ω) →
Qh with

‖w − jhw‖0,T + hT |w − jhw|1,T ≤ Chℓ
T‖w‖ℓ,T ∀w ∈ Hℓ(T )d, 2 ≤ ℓ ≤ r + 1, ∀T ∈ Th, (20)

‖q − ihq‖0,T + hT |q − ihq|1,T ≤ Chℓ
T‖q‖ℓ,T ∀q ∈ Hℓ(T ), 2 ≤ ℓ ≤ r, ∀T ∈ Th. (21)

Furthermore, let the pressure interpolation ih satisfy the orthogonality assumption

(q − ihq, rh) = 0 ∀rh ∈ Di
h, ∀q ∈ Q ∩ H2(Ω), i ∈ {2, 3}. (22)

We consider first the discrete problem with the stabilising term Sa
h defined in (7).
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Theorem 4. Suppose that the spaces Vh, Qh satisfy A1, A3. The function b satisfies the
regularity assumption of Lemma 3. The projection space D1

h is chosen such that the associated
fluctuation operator κ1

h fulfils assumption A2 with some integer s1 ∈ [0, r]. Let the user chosen

parameters satisfy γT ∼ 1, τT . h
2(r−s1)
T . Let (u, p) ∈

(
V ∩ Hr+1(Ω)d

)
×
(
Q ∩ Hr(Ω)

)
be the

solution of (2) and (uh, ph) ∈ Vh × Qh the solution of (11) where the stabilising term Sa
h has

been used. Then, there exists for each σ > 0 a positive constant Cσ independent of ν and h such
that the error estimate

∣∣∣∣∣∣(u − uh, p − ph)
∣∣∣∣∣∣

a
≤ Cσ

(
∑

T∈Th

h2r
T

(
‖u‖2

r+1,T + ‖p‖2
r,T

)
)1/2

(23)

holds true.

Proof. Using Lemma 1, we can estimate

∣∣∣∣∣∣(jhu − uh, ihp − ph)
∣∣∣∣∣∣

a
≤

1

β
sup

(wh,rh)∈Vh×Qh

Aa
h

(
(jhu − uh, ihp − ph); (wh, rh)

)
∣∣∣∣∣∣(wh, rh)

∣∣∣∣∣∣
a

≤
1

β
sup

(wh,rh)∈Vh×Qh

Aa
h

(
(u − uh, p − ph); (wh, rh)

)
∣∣∣∣∣∣(wh, rh)

∣∣∣∣∣∣
a

+
1

β
sup

(wh,rh)∈Vh×Qh

Aa
h

(
(jhu − u, ihp − p); (wh, rh)

)
∣∣∣∣∣∣(wh, rh)

∣∣∣∣∣∣
a

.

Applying Lemma 3, we can estimate the consistency error

sup
(wh,rh)∈Vh×Qh

Aa
h

(
(u − uh, p − ph); (wh, rh)

)
∣∣∣∣∣∣(wh, rh)

∣∣∣∣∣∣
a

≤ C

(
∑

T∈Th

τT h2s1

T ‖u‖2
s1+1,T

)1/2

.

The terms in Aa
h

(
(jhu − u, ihp − p); (wh, rh)

)
will be estimated individually. For the stabilising

term Sa
h, we obtain

Sa
h(jhu − u, wh) ≤

(
Sa

h(jhu − u, jhu − u)
)1/2(

Sa
h(wh, wh)

)1/2

≤ C

(
∑

T∈Th

(τT + γT )h2r
T ‖u‖2

r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

a

where the L2 stability of the fluctuation operators κi
h, i ∈ {1, 2}, the boundedness of b, and the

interpolation properties of jh were used. Furthermore, we get

∣∣ν
(
∇(jhu − u),∇wh

)
+ σ(jhu − u, wh)

∣∣

≤
(
ν|jhu − u|21 + σ‖jhu − u‖2

0

)1/2 (
ν|wh|

2
1 + σ‖wh‖

2
0

)1/2

≤ C

(
∑

T∈Th

(ν + σh2
T )h2r

T ‖u‖2
r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

a

by employing the Cauchy–Schwarz inequality and the interpolation properties of jh.
We consider next the terms which involve the pressure. We have

(
rh, div(jhu − u)

)
≤ ‖rh‖0 ‖ div(jhu − u)‖0

9



≤ C

(
∑

T∈Th

h2r
T

ν + σ
‖u‖2

r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

a
(24)

and, furthermore, by (22)

(p − ihp, div wh) = (p − ihp, κ
2
h div wh) ≤ C

(
∑

T∈Th

γ−1
T h2r

T ‖p‖2
r,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

a
. (25)

A standard estimate of the convective term is

∣∣((b · ∇)(jhu − u), wh

)∣∣ ≤ C

(
∑

T∈Th

h2r
T ‖u‖2

r+1,T

)1/2

‖wh‖0

≤ C

(
∑

T∈Th

h2r
T

ν + σ
‖u‖2

r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

a
(26)

where the boundedness of b and in the last step the Friedrichs inequality have been used.
Putting all estimates together and using τT . h

2(r−s1)
T , γT ∼ 1, max(ν, σ) ≤ C, we obtain

∣∣∣∣∣∣(jhu − uh, ihp − ph)
∣∣∣∣∣∣

a
≤ C

[
∑

T∈Th

h2r
T

(
‖u‖2

r+1,T + ‖p‖2
r,T

)
]1/2

. (27)

The interpolation properties of jh, ih and the asymptotic behaviour of τT , γT yield

∣∣∣∣∣∣(u − jhu, p − ihp)
∣∣∣∣∣∣

a
≤ C

(
∑

T∈Th

h2r
T

(
‖u‖2

r+1,T + ‖p‖2
r,T

)
)1/2

(28)

The triangle inequality

∣∣∣∣∣∣(u − uh, p − ph)
∣∣∣∣∣∣

a
≤
∣∣∣∣∣∣(u − jhu, p − ihp)

∣∣∣∣∣∣
a
+
∣∣∣∣∣∣(jhu − uh, ihp − ph)

∣∣∣∣∣∣
a

gives the statement of the theorem.

Next we give — without trying to be complete — examples for approximation spaces Vh, Qh

and projection spaces D1
h, D2

h which satisfy all assumptions of Theorem 4. For a simplex T ∈ Th,

let T̂ denote the reference unit simplex in R
d. For a quadrilateral/hexahedron T , let T̂ be the

unit cube (−1, 1)d. The reference mapping FT : T̂ → T is affine for simplices and generally

non-affine for quadrilaterals and hexahedra. Let Pk(T̂ ), k ≥ 0, denote the space of polynomials

with degree less than or equal to k while Qk(T̂ ), k ≥ 0, is the space of polynomials of degree less

than or equal to k is each variable separately. For convenience, we set P−k(T̂ ) = Q−k(T̂ ) = {0}

for all positive integers k. Furthermore, we define for the reference simplex T̂ the spaces

P+
k (T̂ ) := Pk(T̂ ) + b̂ · Pk−2(T̂ ), P++

k (T̂ ) := Pk(T̂ ) + b̂ · Pk−1(T̂ ),

where b̂ ∈ Pd+1(T̂ ) denotes a bubble function vanishing on the boundary ∂T̂ . We set

Q+
k (T̂ ) := Qk(T̂ ) + b̂ · span{xk−1

i , , i = 1, . . . , d}

10



on the reference cube T̂ where b̂ ∈ Q2(T̂ ) is a bubble function vanishing on ∂T̂ . Using these
spaces on the reference cells, we will define mapped finite element spaces. Let

P disc
r :=

{
v ∈ L2(Ω) : v|T ◦ FT ∈ Pr(T̂ ), ∀T ∈ Th

}
, Pr := P disc

r ∩ H1(Ω),

Qdisc
r :=

{
v ∈ L2(Ω) : v|T ◦ FT ∈ Qr(T̂ ), ∀T ∈ Th

}
, Qr := Qdisc

r ∩ H1(Ω).

and

P+
r :=

{
v ∈ H1(Ω) : v|T ◦ FT ∈ P+

r (T̂ ), ∀T ∈ Th

}
,

P++
r :=

{
v ∈ H1(Ω) : v|T ◦ FT ∈ P++

r (T̂ ), ∀T ∈ Th

}
,

Q+
r :=

{
v ∈ H1(Ω) : v|T ◦ FT ∈ Q+

r (T̂ ), ∀T ∈ Th

}
.

As usual, we will write shortly Vh = Qk and Qh = Pk instead of Vh =
(
Qk ∩ H1

0 (Ω)
)d

and
Qh = Pk ∩L2

0(Ω). The mapped spaces P disc
r are used later also on quadrilaterals and hexahedra

for pressure spaces and for projection spaces. Note that these spaces do not admit the usual
approximation properties on arbitrary families of meshes. However, the usual approximation
properties known for unmapped finite elements still hold on families of successively refined
meshes which are often used in practise. For details, we refer to [1, 24, 26].

Concerning the construction of pressure interpolations satisfying (22), the following lemmata
will be useful. We start with continuous pressure approximations and introduce the notations

Qh(T ) :=
{
qh|T : qh ∈ Qh + span(1)

}
, Q̃h(T ) :=

{
qh : bT · qh ∈ Qh(T )

}

where bT denotes the mapped bubble function of lowest polynomial degree, i.e. bT ∈ Pd+1(T )
for simplices in R

d and bT ∈ Q2(T ) for quadrilaterals/hexahedra, respectively.

Lemma 5. Suppose there exists an interpolation operator i∗h : Q ∩ H2(Ω) → Qh ⊂ H1(Ω)
satisfying the approximation property (21). Moreover, let the projection spaces Di

h, i ∈ {2, 3},

satisfy Di
h(T ) ⊂ Q̃h(T ) for all T ∈ Th. Then, there exists an interpolation operator ih : Q ∩

H2(Ω) → Qh satisfying the approximation property (21) and the orthogonality condition (22).

Proof. We modify i∗h by setting ihq := i∗hq + dh(q) with dh(q)|T := bT · d̃T where d̃T ∈ Q̃h(T ) is
locally defined by

(dh(q), rh)T = (bT · d̃T , rh)T = (q − i∗hq, rh)T ∀rh ∈ Q̃h(T ), ∀T ∈ Th. (29)

The unique solution d̃T ∈ Q̃h(T ) follows from the observation that (d, r) 7→ (bT · d, r)T is a

weighted L2 inner product on Q̃h(T ). Since the bubble function bT vanishes on the boundary
∂T of each cell, the interpolant ihq := i∗hq + dh(q) belongs to Qh ⊂ Q ∩ H1(Ω) and preserves
locally polynomials of degree less than or equal to r. The Bramble–Hilbert lemma gives (21)
for simplicial finite elements. In case of quadrilateral and hexahedral finite elements, we restrict
to sucessively refined meshes and use the results of [1, 24, 26]. Furthermore, we conclude
from (29) that the error q− ihq is perpendicular to the projection spaces Di

h, i ∈ {2, 3}. Hence,
the orthogonality property (22) holds.

The version related to discontinuous pressure approximations reads as follows.

Lemma 6. Let Qh = P disc
r−1 or Qh = Qdisc

r−1. Suppose D2
h ⊂ Qh +span(1) and D3

h ⊂ Qh +span(1),
respectively. Then, the L2 projection ih : L2(Ω) → Qh satisfies the approximation property (21)
and the orthogonality condition (22). Further, div Vh ⊂ Qh +span(1) yields (q− ihq, div wh) = 0
for all wh ∈ Vh independent of the choice of D2

h and D3
h, respectively.

11



Proof. The discontinuity of the pressure space Qh implies that the L2 projection can be localised.
Hence, the approximation property (21) follows from the Bramble–Hilbert lemma for simplicial
finite elements in the usual way. In case of quadrilateral and hexahedral finite elements, we
restrict to sucessively refined meshes and use the results of [1, 24, 26]. Furthermore, we have

(q − ihq, rh) = 0 ∀rh ∈ Qh + span(1).

Thus, for D2
h ⊂ Qh + span(1) and D3

h ⊂ Qh + span(1), respectively, we conclude (22). In case
of div Vh ⊂ Qh + span(1), we can set rh = div wh and get (q − ihq, div wh) = 0 for all wh ∈ Vh

independent of the choice of D2
h and D3

h, respectively.

We turn now over to concrete examples and start with continuous pressure approximations,
see Table 1. The assumptions A1 and A3 for the Taylor-Hood families on simplices and quadri-

Table 1: Taylor-Hood families with stabilisation term Sa
h.

Vh Qh D1
h D2

h τT γT r s t
∣∣∣∣∣∣ ·
∣∣∣∣∣∣

a

Pr Pr−1 P disc
s−1 P disc

t−1 . h
2(r−s)
T ∼ 1 r ≥ 2 s ≤ r t ≤ r − d − 1 O(hr)

Qr Qr−1 Qdisc
s−1 Qdisc

t−1 . h
2(r−s)
T ∼ 1 r ≥ 2 s ≤ r t ≤ r − 2 O(hr)

laterals/hexahedra are clearly satisfied. Indeed, the additional orthogonality assumption (22)
for the pressure interpolation can be fulfilled by using a projection space D2

h being small enough.
The choices P disc

−1 = Qdisc
−1 = {0} always satisfy (22). According to Lemma 5, the largest possible

projection space D2
h such that (22) still holds is given by the bubble part Q̃h(T ) of Pr−1 and

Qr−1, respectively. The bubble parts correspond to P disc
r−d−2 for simplicial elements and to Qdisc

r−3

for quadrilateral/hexahedral elements. Finally, we mention that the fluctuation operator κ1
h

satisfies assumption A2 with s1 = s for all choices of D1
h given in Table 1.

Remark 7. A careful inspection of the proof of Theorem 4 shows that we cannot replace the sta-
bilisation term Sa

h by Sb
h for continuous pressure approximations. Indeed, an estimate like (25)

for simplicial elements would require D3
h ⊂ P disc

r−d−2 and the lower bound µT ≥ C > 0. Then,
for getting a consistency error O(hr) in Lemma 3, the fluctuation operator κ3

h should satisfy
assumption A2 with s3 = r which means that D3

h ⊃ P disc
r−1 in contrast to D3

h ⊂ P disc
r−d−2. A similar

argument is true for quadrilateral/hexahedral elements.

Let us now discuss examples of inf-sup stable finite element pairs Vh/Qh with discontinuous
pressure approximations. The inf-sup stability and the approximation properties of the elements

Table 2: Families with discontinuous pressure approximations and Sa
h.

Vh Qh D1
h D2

h τT γT r s t
∣∣∣∣∣∣ ·
∣∣∣∣∣∣

a

P+
r P disc

r−1 P disc
s−1 P disc

t−1 . h
2(r−s)
T ∼ 1 r ≥ 2 s ≤ r t ≤ r O(hr)

Qr P disc
r−1 P disc

s−1 P disc
t−1 . h

2(r−s)
T ∼ 1 r ≥ 2 s ≤ r t ≤ r O(hr)

given in Table 2 follows from [12, 16, 28]. The additional orthogonality assumption in A3 is

12



satisfied for D2
h ⊂ Qh + span(1) when using the local L2 projection as pressure interpolation

(see Lemma 6).

Remark 8. If D2
h ⊂ Qh +span(1) then the L2 projection of a discretely divergence-free function

wh is zero due to
(π2

h div wh, rh) = (div wh, rh) = 0 ∀rh ∈ D2
h.

This happens for all families listed in Table 2. As a consequence, the discrete solution uh does
not depend on the choice of the projection space. However, the algebraic properties do depend
on the choice of D2

h.

Compared to continuous pressure approximations, the orthogonality property (22) of the
pressure interpolation ih hold for discontinuous pressure approximation with respect to a larger
space. This allows us to replace the stabilisation term Sa

h by Sb
h and similar results can be

formulated. In this way, we can relax the smoothness conditions on b but lose the flexibility for
choosing the projection spaces D1

h and D2
h.

Theorem 9. Suppose that the spaces Vh, Qh satisfy A1, A3. The projection space D3
h is chosen

such that the associated fluctuation operator κ3
h fulfils assumption A2 with s3 = r. Let the user

chosen parameter satisfy µT ∼ 1. Let (u, p) ∈
(
V ∩ Hr+1(Ω)d

)
×
(
Q ∩ Hr(Ω)

)
be the solution

of (2) and (uh, ph) ∈ Vh × Qh the solution of (11) where the stabilising term Sb
h has been used.

Then, there exists for each σ > 0 a positive constant Cσ independent of ν and h such that the
error estimate

∣∣∣∣∣∣(u − uh, p − ph)
∣∣∣∣∣∣

b
≤ Cσ

(
∑

T∈Th

h2r
T

(
‖u‖2

r+1,T + ‖p‖2
r,T

)
)1/2

(30)

holds true.

Proof. Most of the terms can be estimated as in the proof of Theorem 4. We discuss only the
term which needs a different handling. Since ‖κ3

h div wh‖0,T ≤ C‖κ3
h∇wh‖0,T , we have

(p − ihp, div wh) = (p − ihp, κ
3
h div wh) ≤ C

(
∑

T∈Th

µ−1
T h2r+2

T ‖p‖2
r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

b
.

Now follow the lines of proof of Theorem 4. Note the the stabilisation term Sb
h can be estimated

by using the Cauchy–Schwarz inequality.

Possible classes of methods satisfying all assumptions of Theorem 9 are listed in Table 3.
As above, the spaces Vh, Qh satisfy A1 and A3 since D3

h ⊂ Qh + span(1). In order to satisfy
A2 the projection space has to be large enough, in particular, D3

h ⊃ P disc
r−1 . Therefore, we set

D3
h := P disc

r−1 .

Remark 10. The enrichment of Pr in the first rows of Tables 2 and 3 is needed only to guarantee
the inf-sup condition on arbitrary shape regular meshes. If we restrict to families of meshes
generated by dividing a d-simplex into (d + 1) simplices by connecting the barycentre with the
vertices, the inf-sup condition holds for r ≥ d, see [31, 32, 35]. Thus, we can replace in this
case P+

r by Pr. The pair Pr/Pr−1 is known as Scott–Vogelius element, see [32].
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Table 3: Families with discontinuous pressure approximations and Sb
h.

Vh Qh D3
h µT r

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

b

P+
r P disc

r−1 P disc
r−1 ∼ 1 r ≥ 2 O(hr)

Qr P disc
r−1 P disc

r−1 ∼ 1 r ≥ 2 O(hr)

4.2 Methods of convergence order r in the case σ ≥ 0.

A careful inspection of the proof of Theorem 4 shows that the error constant in (23) is for σ = 0
no longer uniformly bounded for ν → 0 due to the estimates (24) and (26). We will see in
the following that we can get error estimates which hold uniformly for all σ ≥ 0 by choosing
a special interpolant jh : V ∩ H2(Ω)d → Vh. The polynomial degree r in this subsection is
assumed to fulfil r ≥ 2.

In order to handle both continuous and discontinuous pressure approximations, we modify
our discrete problem by introducing an additional stabilising term Jh which is given by

Jh(p, q) :=
∑

E∈Eh

αE

〈
[p]E , [q]E

〉
E

(31)

where αE are user-chosen parameters. We extend the definition of the bilinear form Ai
h and of

the mesh-dependent norm
∣∣∣∣∣∣ ·
∣∣∣∣∣∣

i
to i = c by

Ac
h

(
(u, p); (v, q)

)
:= Aa

h

(
(u, p); (v, q)

)
+ Jh(p, q), (32)

∣∣∣∣∣∣(v, q)
∣∣∣∣∣∣

c
:=
(∣∣∣∣∣∣(v, q)

∣∣∣∣∣∣2
a
+ Jh(q, q)

)1/2

. (33)

Note that this modification does not cause an additional consistency error since we have for
smooth solutions p ∈ H1(Ω) that [p]E = 0 on all E ∈ Eh where Eh is the set of all inner faces.

We start with a quasi-local interpolation operator preserving the discrete divergence [17] and
modify it such that the interpolation error becomes orthogonal to the projection space [27].

Assumption 4. There exists an operator j∗h : V → Vh satisfying

(qh, div(w − j∗hw)) = 0 ∀w ∈ V, ∀qh ∈ Qh, (34)

|v − j∗hv|m,T ≤ C hℓ−m
T |v|ℓ,ω(T ) ∀v ∈ V ∩ Hℓ(Ω)d, ∀T ∈ Th, (35)

for 0 ≤ m ≤ 1, 1 ≤ ℓ ≤ r + 1, where ω(T ) denotes a local neighbourhood of T . Moreover, let
the local inf-sup condition

∃β1 > 0 ∀h > 0 ∀T ∈ Th : inf
qh∈D1

h
(T )

sup
vh∈Yh(T )

(vh, qh)T

‖vh‖0,T ‖qh‖0,T

≥ β1 > 0 (36)

be satisfied where Yh(T ) := {vh|T : vh ∈ Yh, vh = 0 on Ω\T} is the local bubble part of the
scalar finite element space Yh.

Remark 11. The existence of quasi-local interpolation operators j∗h satisfying (34) and (35)
has been established for a wide family of pairs Vh/Qh in [17]. Concerning (36), we mention that
Yh(T ) — compared to D1

h(T ) — has to be rich enough. In particular, a necessary requirement is
dim Yh(T ) ≥ dim D1

h(T ). Examples of spaces Yh, D1
h satisfying (36) have been given in [14, 27].
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Lemma 12. Let A4 be satisfied. Then, there exists an interpolation operator jh : V → Vh

satisfying the following orthogonality and approximation properties:

(w − jhw, qh) = 0 ∀qh ∈ (D1
h)

d, ∀w ∈ V, (37)

|v − jhv|m,T ≤ C hℓ−m
T |v|ℓ,ω(T ) ∀v ∈ V ∩ Hℓ(Ω)d, ∀T ∈ Th (38)

for 0 ≤ m ≤ 1, 1 ≤ ℓ ≤ r + 1. If additionally ∇Qh ⊂ (D1
h)

d then the estimate

|(rh, div(w − jhw))| ≤ C

(
∑

E∈Eh

α−1
E h2r+1

TE
|w|2r+1,ω(TE)

)1/2 (
Jh(rh, rh)

)1/2

(39)

holds true for all rh ∈ Qh and for all w ∈ V ∩ Hr+1(Ω)d.

Proof. It has been shown in [27, Theorem 2.2] that there exists under the assumptions (35)
and (36) an interpolation operator jh satisfying (37) and (38). The operator has been con-
structed by setting jhw := j∗hw + zh(w) where zh(w)|T ∈ Vh(T ) := Yh(T )d is locally defined
by

(zh(w), qh)T = (w − j∗hw, qh)T ∀qh ∈
(
D1

h(T )
)d

which guarantees (37). Further, the local bound

‖zh(w)‖0,T ≤
1

β1
‖w − j∗hw‖0,T

has been proven from which (38) follows by using (35) and an inverse inequality. It remains to
show (39). From the representation jhw = j∗hw+zh(w), we get for rh ∈ Qh and w ∈ V ∩Hr+1(Ω)d

(rh, div(w − jhw)) = −(rh, div zh(w)) =
∑

T∈Th

(∇rh, zh(w))T =
∑

T∈Th

(∇rh, w − j∗hw)T

= −
∑

T∈Th

(rh, div(w − j∗hw))T +
∑

E∈Eh

〈
[rh]E , (w − j∗hw) · nE

〉
E
.

Here, we have used (34), zh(w) = 0 on ∂T for all T ∈ Th, ∇(rh|T ) ∈
(
D1

h(T )
)d

and w− j∗hw = 0
on ∂Ω. The first term on the right hand side vanishes due to (34). The estimate for the
interpolation error on cell boundaries E ∈ Eh follows from the scaled trace inequality

‖v‖0,E ≤ C
(
h
−1/2
TE

‖v‖0,TE
+ h

1/2
TE

|v|1,TE

)
∀v ∈ H1(TE)

which yields

‖w − j∗hw‖0,E ≤ C
(
h
−1/2
TE

hr+1
TE

|w|r+1,ω(TE) + h
1/2
TE

hr
TE
|w|r+1,ω(TE)

)
≤ Ch

r+1/2
TE

|w|r+1,ω(TE)

by applying (35). The estimate (39) follows now by using Cauchy–Schwarz inequality.

Remark 13. Estimate (39) implies that the special interpolant jh preserves the discrete di-
vergence for continuous pressure approximations since Jh(rh, rh) = 0 for rh ∈ H1(Ω). A sim-
ple example for spaces satisfying A4 is the “extended Mini element family” which is given by
Vh = P++

r , Qh = Pr, and D1
h = P disc

r .
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Theorem 14. Suppose that the spaces Vh, Qh satisfy A1, A3, A4. The function b satisfies the
regularity assumption of Lemma 3. The projection space D1

h is chosen such that the associated
fluctuation operator κ1

h fulfils assumption A2 with s1 ∈ {r−1, r}. Let the user chosen parameters
satisfy γT ∼ 1, αE ∼ hE. We assume τT ∼ h2

T for s1 = r − 1 and h2
T . τT . 1 for s1 = r.

Let (u, p) ∈
(
V ∩ Hr+1(Ω)d

)
×
(
Q ∩ Hr(Ω)

)
be the solution of (2) and (uh, ph) ∈ Vh × Qh the

solution of (11) with i = c where the stabilising terms (7) and (31) have been used. Then, there
exists a positive constant C independent of ν, σ, and h such that the error estimate

∣∣∣∣∣∣(u − uh, p − ph)
∣∣∣∣∣∣

c
≤ C

(
∑

T∈Th

h2r
T

(
‖u‖2

r+1,T + ‖p‖2
r,T

)
)1/2

(40)

holds true.

Proof. First, a look into the proof of Lemma 1 shows that it still holds for Ac
h since

Ac
h

(
(vh, qh); (zh, 0)

)
= Aa

h

(
(vh, qh); (zh, 0)

)
.

Now we follow the lines in the proof of Theorem 4 and discuss only the necessary modifica-
tions. The estimation of the additional term which appears only for discontinuous pressure
approximations is standard:

|Jh(ihp − p, rh)| ≤ (Jh(ihp − p, ihp − p)1/2 (Jh(rh, rh))
1/2

≤ C

(
∑

T∈Th

h2r
T ‖p‖2

r,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

c

where we used hE ∼ hT for E ⊂ ∂T and the same ideas as in the proof of Lemma 12 to estimate
the interpolation error on cell boundaries. It remains to replace the estimates (24) and (26).
Using (39) and αE ∼ hE, we get

|(rh, div(u − jhu))| ≤ C

(
∑

T∈Th

h2r
T ‖u‖2

r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

c

for all σ ≥ 0. Since the velocity interpolant satisfies the additional orthogonality (37) with
respect to D1

h, we can alternatively estimate the convection term after an integration by parts
as follows

∣∣((b · ∇)(jhu − u), wh

)∣∣ =
∣∣(jhu − u, (b · ∇)wh

)∣∣ =
∣∣(jhu − u, κ1

h(b · ∇)wh

)∣∣

≤ C

(
∑

T∈Th

h
2(r+1)
T τ−1

T ‖u‖2
r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

c
. (41)

The statement follows with τ−1
T . h−2

T .

Examples satisfying all assumptions of Theorem 14 are given in Tables 4 and 5. Since the pairs
Pr/Pr−1 and Qr/P

disc
r−1 satisfy the inf-sup condition A1, the enriched versions of the pairs given in

Tables 4 and 5 satisfy A1 too. The enrichments have been chosen large enough to satisfy (36) of
A4 which guarantees the orthogonality property of the velocity interpolation (37) for the given
projection space D1

h. See [14, 27] for a proof of (36). Finally, the largest possible projection
space D2

h for continuous pressure approximations results from the bubble part of the pressure
space Qh.
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Table 4: Families with continuous pressure approximations and Ja
h .

Vh Qh D1
h D2

h τT γT r t
∣∣∣∣∣∣ ·
∣∣∣∣∣∣

a

P+
r Pr−1 P disc

r−2 P disc
t−1 ∼ h2

T ∼ 1 r ≥ 2 t ≤ r − 1 − d O(hr)
P++

r Pr−1 P disc
r−1 P disc

t−1 h2
T . τT . 1 ∼ 1 r ≥ 2 t ≤ r − 1 − d O(hr)

Qr Qr−1 Qdisc
r−2 Qdisc

t−1 ∼ h2
T ∼ 1 r ≥ 2 t ≤ r − 2 O(hr)

Table 5: Families with discontinuous pressure approximations and Jc
h.

Vh Qh D1
h D2

h τT γT αE r t
∣∣∣∣∣∣ ·
∣∣∣∣∣∣

c

Qr P disc
r−1 Qdisc

r−2 P disc
t−1 ∼ h2

T ∼ 1 ∼ hE r ≥ 2 t ≤ r O(hr)
Q+

r P disc
r−1 P disc

r−1 P disc
t−1 h2

T . τT . 1 ∼ 1 ∼ hE r ≥ 2 t ≤ r O(hr)

Remark 15. One could also think to replace Sa
h by Sb

h but the improved estimate of the convec-
tion term is more tricky, since — in general — we do not have ‖κh(b·∇)wh‖0,T ≤ C‖κ∇wh‖0,T .
Let b denote the piecewise constant approximation of b. Then, we have

‖κh(b · ∇)wh‖0,T ≤ ‖κh((b − b) · ∇)wh‖0,T + ‖κh(b · ∇)wh‖0,T

≤ ChT |b|1,∞,T‖∇wh‖0,T + ‖b‖0,∞,T‖κh∇wh‖0,T

≤ C(‖wh‖0,T + ‖κh(∇wh)‖0,T )

from which

|(jhu − u, κh(b · ∇)wh)| ≤ C

(
∑

T∈Th

(
(ν + σ)−1h2

T + µ−1
T h2

T

)
h2r

T ‖u‖2
r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

b

follows. Since this estimate is for σ = 0 not uniformly in ν > 0, we skip this option here.

4.3 Methods of convergence order r + 1/2

For equal order interpolations where Vh = (Yh ∩ H1
0 (Ω))d and Qh = Yh ∩ Q, error estimates

of order O((ν1/2 + h1/2)hr) have been established in [6, 27]. Unfortunately, these pairs of
finite elements are not inf-sup stable and an additional pressure stabilisation, called pressure
stabilised Petrov–Galerkin (PSPG) [33], becomes necessary. However, a careful investigation
of the proof of Theorem 4 shows that the critical term limiting the convergence order to r is
(p − ihp, div wh) estimated in (25). Thus, an improved approximation of the pressure seems to
be needed for getting an improved error estimate. Here, we consider inf-sup stable pairs Vh/Qh

of finite element space approximating velocity and pressure by elements of order r.
In order to get error bounds uniformly with respect to ν > 0 for all σ ≥ 0, we restrict

ourselves to the case of the stabilising term Sc
h (cf. Remark 15). We consider the two families

of spaces given in Table 6.
We show first that the pairs Vh/Qh given in Table 6 are inf-sup stable, i.e., assumption A1 is

satisfied.
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Table 6: Families of order r + 1/2 and Jc
h.

Vh Qh D1
h D2

h τT γT αE r t
∣∣∣∣∣∣ ·
∣∣∣∣∣∣

c

P++
r Pr P disc

r−1 P disc
t−1 ∼ hT ∼ hT = 0 r ≥ 1 t ≤ r − d O(hr+1/2)

Q+
r P disc

r P disc
r−1 P disc

t−1 ∼ hT ∼ hT ∼ 1 r ≥ 2 t ≤ r + 1 O(hr+1/2)

Lemma 16. The discrete inf-sup condition (5) is satisfied for the pairs Vh/Qh = P++
r /Pr and

Vh/Qh = Q+
r /P disc

r .

Proof. The proof for the extended Mini element family Vh/Qh = P++
r /Pr is based on the

construction of a Fortin operator Πh : V → Vh satisfying

(
rh, div(Πhv − v)

)
= 0 ∀rh ∈ Qh, v ∈ V, (42)

‖Πhv‖1 ≤ C‖v‖1 ∀v ∈ V. (43)

This is equivalent to establish assumption A1, see [16, Chapter II, Lemma 1.1]. Since the bubble

part of (Πhv)|T belongs to
(
bT · Pr−1(T )

)d
, we can fix the bubble part of (Πhv)|T by

(
(Πhv − v), qh

)
T

= 0 ∀qh ∈
(
Pr−1(T )

)d
.

An integration by parts shows that (42) is fulfilled due to (∇rh)|T ∈
(
Pr−1(T )

)d
. The remaining

degrees of freedom for Πh are regularised nodal functionals living at the boundary of each cell.
They guarantee the continuity across the cell interfaces and ensure that the domain of definition
of Πh becomes V . The detailed proof for r = 1 can be found in [16].

We observe for the pair Q+
r /P disc

r , r ≥ 2, that Q2 ⊂ Q+
r . Since the pair Q2/Q0 is inf-sup

stable, we can apply the technique by Boland/Nicolaides [5, 16]. Hence, we have to show on each
cell T ∈ Th only a local inf-sup condition between the bubble part of Q+

r (T ) and Pr(T )∩L2
0(T ).

The essential point of the proof is the inclusion bT · Pr−1(T ) ⊂ Q+
r (T ) which is satisfied by

construction of the enriched space Q+
r . Then, we get the inf-sup condition for the pair Q+

r /P disc
r

by following the lines of the proof of [28, Theorem 8].

Theorem 17. Suppose that the spaces Vh, Qh, D1
h, D2

h and the parameters τT , γT , αE are chosen
as in Table 6. Assume further that the function b satisfies the regularity assumption of Lemma 3.
Let (u, p) ∈

(
V ∩Hr+1(Ω)d

)
×
(
Q∩Hr+1(Ω)

)
be the solution of (2) and (uh, ph) ∈ Vh ×Qh the

solution of (11) with i = c where the stabilising terms Sa
h and Jh have been used. Then, there

exists a positive constant C independent of ν, σ, and h such that the error estimate

∣∣∣∣∣∣(u − uh, p − ph)
∣∣∣∣∣∣

c
≤ C

(
∑

T∈Th

h2r+1
T

(
‖u‖2

r+1,T + ‖p‖2
r+1,T

)
)1/2

(44)

holds true.

Proof. Assumption A1 follows from Lemma 16. Furthermore, the choice D1
h = P disc

r−1 guarantees
assumption A2 with s1 = r and the consistency error becomes of order r + 1/2 for τT . hT .

Assumption A4 is satisfied for the pairs P++
r /P disc

r−1 and Q+
r /P disc

r−1 , as shown in [27]. Therefore,
we can use the improved estimate (41) of the convection term. Moreover, we note that the upper
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bounds for the sizes of the projection spaces D2
h result from the size of the bubble parts of the

pressure spaces Pr on simplices and P disc
r on quadrilaterals and hexahedra, respectively. The

choice D2
h = P disc

t−1 allows us to apply Lemmata 5 and 6 such that assumption A3 is satisfied.
Due to the choice of the pressure space to be either Pr or P disc

r , we have the following better
estimate for interpolation error in the pressure space

‖q − ihq‖0,T + hT |q − ihq|1,T ≤ Chℓ
T‖q‖ℓ,T ∀q ∈ Hℓ(T ), 2 ≤ ℓ ≤ r + 1, ∀T ∈ Th.

As a consequence, the estimate (25) can be improved. We obtain

(p − ihp, div wh) = (p − ihp, κ
2
h div wh) ≤ C

(
∑

T∈Th

γ−1
T h2r+2

T ‖p‖2
r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

c

≤ C

(
∑

T∈Th

h2r+1
T ‖p‖2

r+1,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

c

where γT ∼ hT was used. Hence, the convergence order r + 1/2 is proven.

5 Numerical results

This section presents numerical results for solving the Oseen problem with inf-sup stable pairs
of finite element spaces where the discretisation is stabilised by the local projection method.
All calculations were performed with the code MooNMD [20].

Let Ω = (0, 1)2. We consider the Oseen problem

−ν△u + (b · ∇)u + σu + ∇p = f, div u = 0 in Ω, u = g on Γ,

where the right hand side f and the inhomogeneous Dirichlet boundary condition g have been
chosen such that

u =
(
sin(x) sin(y), cos(x) cos(y)

)T
, p = 2 cos(x) sin(y) − 2 sin(1)

(
1 − cos(1)

)

is the solution for the case ν = 10−8, b = u, and σ = 1. This special solution was taken from [8].
We have performed calculations on triangular and quadrilateral meshes which were obtained

by successive regular refinement of initial coarse grids. The coarsest mesh (level 0) consists of
either two triangle or a single quadrilateral. The meshes on level 1 are shown in Fig. 1.

Figure 1: Meshes on level 1 for triangles (left) and quadrilaterals (right).
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Our first example is the third-order Taylor–Hood element on triangles, i.e., Vh/Qh = P3/P2.
Since d = 2 and r = 3 in this case, Tab. 1 gives that the projection space D1

h can be chosen
as {0}, P disc

0 , P disc
1 , or P disc

2 while the projection space D2
h has to be {0} which means that

no projection of the divergence takes place. Table 7 shows for different choices of projection

Table 7: Error and convergence order in the local projection norm
∣∣∣∣∣∣ ·
∣∣∣∣∣∣

a
for Vh/Qh = P3/P2.

D1
h D2

h τT γT error order

P disc
2 {0} 1 1 7.911-08 2.98

P disc
1 {0} h2

T 1 7.694-08 2.99

P disc
0 {0} h4

T 1 7.690-08 3.00

{0} {0} h6
T 1 7.673-08 2.98

P disc
2 P disc

0 1 1 3.890-07 2.08

spaces D1
h, D2

h and the stabilisation parameters τT , γT the error on level 6 (37,249 unknowns
for each velocity component, 16,641 pressure unknowns) and the convergence order in the local
projection norm

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

a
which was obtained from the results on levels 5 and 6. The setting for

the first four data sets is in agreement with Tab. 1. The results are almost identical. Moreover,
the obtained convergence orders of 3 confirm the theoretical result given in Thm. 4. The last
setting in Tab. 7 violates the condition for the choice of D2

h. We clearly see that convergence
reduces to second order. This is caused by the fact that the term (p − ihp, div wh) can’t be
handled as in (25), cf. proof of Thm. 4. In order to get a ν-uniform estimate of this term, we
obtain by (21) and an inverse inequality

(p − ihp, div wh) =
∑

T∈Th

(p − ihp, div wh)T ≤
∑

T∈Th

‖p − ihp‖0,T ‖div wh‖0,T

≤ C
∑

T∈Th

hr
T‖p‖r,T |wh|1,T ≤ C

∑

T∈Th

hr−1
T ‖p‖r,T ‖wh‖0,T

≤ Cσ

(
∑

T∈Th

h
2(r−1)
T ‖p‖2

r,T

)1/2 ∣∣∣∣∣∣(wh, rh)
∣∣∣∣∣∣

a
.

Hence, the convergence order reduces from r to r − 1.
Our second example considers the pair Vh/Qh = Q3/P

disc
2 on quadrilaterals. We can use for

this situation both stabilising terms Sa
h and Sb

h. According to Tab. 2, the projection spaces
D1

h and D2
h can be independently chosen to be {0}, P disc

0 , P disc
1 , or P disc

2 . Furthermore, Tab. 3
gives for the stabilising term Sb

h the only choice D3
h = P disc

2 with µT ∼ 1. The errors presented
in Tab. 8 were obtained on level 6 (37,249 unknowns for each velocity component, 24,576
pressure unknowns) while the convergence order was calculated from the results on levels 5
and 6. Tab. 8 shows that the results for all parameter choices differ only slightly. Moreover,
the optimal convergence order of 3 is achieved. Note that we have chosen in our test D1

h = D2
h

since the choice of D2
h has no influence on the discrete solution, cf. Remark 8.

Our final test example is the Mini-element P++
1 /P1 on triangles. According to Tab. 6, we

have D1
h = P disc

0 and D2
h = {0}. Tab. 9 shows the results of our numerical calculations on
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Table 8: Error and convergence order in the local projection norm
∣∣∣∣∣∣ ·
∣∣∣∣∣∣ for Vh/Qh = Q3/P

disc
2 .

D1
h D2

h τT γT error order

{0} {0} h6
T 1 9.202-08 3.00

P disc
0 P disc

0 h4
T 1 9.202-08 3.00

P disc
1 P disc

1 h2
T 1 9.252-08 3.00

P disc
2 P disc

2 1 1 8.696-08 3.00

D3
h = P disc

2 γT = 1 1.028-07 3.00

Table 9: Error and convergence order in the local projection norm
∣∣∣∣∣∣ ·
∣∣∣∣∣∣

a
for Vh/Qh = P++

1 /P1.

D1
h D2

h τT γT error order

P disc
0 {0} hT hT 2.929-04 1.51

P disc
0 P disc

0 hT hT 1.610-04 1.51

level 7 (49,409 unknowns for each velocity component, 16,641 pressure unknowns) where the
convergence order was obtained from the results on levels 6 and 7. Note that also the choice
D1

h = D2
h = P disc

0 is considered. Although this choice is not covered by our theory, the optimal
convergence order 3/2 is achieved in both cases. Furthermore, the results of both choices differ
only be a factor of 1.8.
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