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Abstract. We present the analysis for the local projection stabilisation applied to convection-
diffusion-reaction problems with mixed boundary conditions. We concentrate on the enrichment
approach of the local projection methods. Optimal a-priori error estimates will be proved. Numerical
tests confirm the theoretical convergence results. Moreover, the local projection stabilisation leads
to numerical schemes which work well for problems with several types of layers. Away from layers,
the solution is captured very well.
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1. Introduction. Convection-diffusion-reaction equations occur for instance if
physical processes in chemical engineering are modelled. Depending on the problem,
different types of boundary conditions are applied on different parts of the domain
boundary. A common feature of these problems is the small diffusion coefficient, i.e.,
the process is convection and/or reaction dominant. Since standard Galerkin discreti-
sations will produce unphysical oscillations for this type of problems, stabilisation
techniques have been developed. The streamline-upwind Petrov–Galerkin method
(SUPG) has been successfully applied to convection-diffusion-reaction problems. It
was proposed by Hughes and Brooks [15]. One fundamental drawback of SUPG is that
several terms which include second order derivatives have to be added to the stan-
dard Galerkin discretisation in order to ensure consistency. Alternatively, continuous
interior penalty methods [1, 6], residual free bubble method [9, 10, 11], or subgrid mod-
elling [8, 14] can be used for stabilising the discretised convection-diffusion-reaction
problems.

We will focus in this paper on the local projection stabilisation. This method has
been proposed for the Stokes problem in [3]. The extension to the transport problem
was given in [4]. The analysis of the local projection method applied to equal-order
interpolation discretisation of the Oseen problem can be found in [5, 19]. We will
apply the local projection method to convection-diffusion-reaction problems. The
stabilisation term of the local projection method is based on a projection πh : Vh → Dh

of the finite element space Vh which approximates the solution into a discontinuous
space Dh. The standard Galerkin discretisation is stabilised by adding a term which
gives L2 control over the fluctuation id − πh of the gradient of the solution.

Originally, the local projection technique was proposed as a two-level method
where the projection space Dh is defined on a coarser grid. The drawback of this
approach is an increased discretisation stencil. The general approach given in [12, 19]
allows to construct local projection methods such that the discretisation stencil is
not increased compared to the standard Galerkin or the SUPG approach since the
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approximation space Yh and the projection space Dh are defined on the same mesh. In
this case, the approximation space Yh is enriched compared to standard finite element
spaces. We will concentrate in this paper on the enrichment approach of the local
projection method.

One objective of this paper is to provide a convergence theory for the local projec-
tion method applied to convection-diffusion-reaction problems with mixed boundary
conditions. We will prove the same a-priori error estimates which are known for
SUPG. Furthermore, several test problems with different types of interior and bound-
ary layers will be presented. They show that the local projection stabilisation allows
to obtain numerical solutions which capture the solution away from layers.

The plan of this paper is as follows. Section 2 introduces the considered prob-
lem class, the weak formulation, and the local projection stabilisation. An a-priori
error estimate for the stabilised discrete problem will be given in Section 3. Numer-
ical results for problems with different type of layers will be presented in Section 4.
Conclusions will be given in Section 5.

Notation. The convection-diffusion-reaction problem is considered in a bounded
domain Ω ⊂ R

d, d = 2, 3, with polygonal or polyhedral boundary ∂Ω. For a set
D which is either a d-dimensional measurable subset of Ω or a (d − 1)-dimensional
measurable subset of ∂Ω, the Sobolev function spaces Wm,p(D) with norm ‖ · ‖m,p,D

and seminorm | · |m,p,D are used. As usual, we set Hm(D) = W 2,m(D) and skip the
index p = 2 in the norms and seminorms. The L2 inner product over G ⊂ Ω and
Γ ⊂ ∂Ω will be denoted by (·, ·)G and 〈·, ·〉Γ, respectively. In case G = Ω the index G
will be omitted. For k ≥ 0 and an d-dimensional subset G ⊂ Ω, let Pk(G) denote the
space of polynomials of degree less than or equal to k while Qk(G) is the space of all
polynomials of degree less than or equal to k in each variable separately.

Throughout this paper, C will denote a generic constant which is independent of
the mesh and the diffusion parameter ε. We will use the notation α ∼ β if there are
positive constants C1 and C2 such that C1β ≤ α ≤ C2β holds.

2. Model problem and local projection method.

2.1. Weak formulation. We consider the scalar convection-diffusion-reaction
problem with mixed boundary conditions

−ε∆u + b · ∇u + cu = f in Ω,

u = gD on ΓD,

ε
∂u

∂n
= gN on ΓN ,





(2.1)

where ε > 0 is a small constant. The boundary ∂Ω of Ω consists of two disjoint parts,
the Dirichlet part ΓD and the Neumann part ΓN . Let ΓN be a relatively open C1 part
of ∂Ω and ΓD = ∂Ω\ΓN . The unit outer normal vector with respect to ∂Ω is denoted
by n. We are looking for the distribution of concentration u in Ω. The reaction
coefficient c ∈ L∞(Ω) is assumed to be non-negative. Let f ∈ L2(Ω), gD ∈ H1/2(ΓD),
gN ∈ H−1/2(ΓN ) be given functions. Furthermore, we require that the convection

field b ∈
(
W 1,∞(Ω)

)d
and the reaction coefficient c fulfil for some c0 > 0 the following

condition

c(x) −
1

2
∇ · b(x) ≥ c0 > 0 ∀x ∈ Ω. (2.2)

We assume also that the inflow boundary is part of the Dirichlet boundary, i.e.,
{
x ∈ ∂Ω : (b · n)(x) < 0

}
⊂ ΓD. (2.3)
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We define the function spaces

V = H1(Ω) and V0 = {v ∈ V : v|ΓD
= 0}.

A weak formulation of (2.1) reads

Find u ∈ V with u|ΓD
= gD such that

a(u, v) = (f, v) + 〈gN , v〉ΓN
∀ v ∈ V0 (2.4)

where the bilinear form a : H1(Ω) × H1(Ω) → R is defined by

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (cu, v). (2.5)

The conditions (2.2) and (2.3) guarantee the V0-coercivity of the bilinear form a. The
existence and uniqueness of a weak solution of problem (2.4) can be concluded from
the Lax–Milgram lemma. For details, we refer to [13].

2.2. Local projection method. For the finite element discretisation of (2.4),
we are given a shape regular family {Th} of decomposition of Ω into d-simplices,
quadrilaterals, or hexahedra. The diameter of K will be denoted by hK and the mesh
size parameter h is defined by h := maxK∈Th

hK . For Th, let Eh,N denote the set of
all edges/faces of cells K ∈ Th which belong to ΓN .

Let Vh ⊂ V be a finite element space of continuous, elementwise polynomials of
degree r ≥ 1 over Th. We fix the polynomial order r and the dependence of constants
on r will not be elaborated in this paper. Let

V0,h = {v ∈ Vh : vh|ΓD
= 0}

be the discrete test space.
Since the standard Galerkin discretisation of (2.4) lacks generally stability in

the convection dominated regime ε ≪ 1, unphysical oscillations will appear in the
discrete solution. To circumvent this problem, we consider the stabilisation by the
local projection method. Let Dh(K), K ∈ Th, be finite dimensional spaces and
πK : L2(K) → Dh(K) the local L2 projections into Dh(K). The projection space Dh

is given by

Dh :=
⊕

K∈Th

Dh(K).

We define the global projection operator πh : L2(Ω) → Dh by (πhw)|K = πK(w|K).
The fluctuation operator κh : L2(Ω) → L2(Ω) is given by

κh := id − πh

where id : L2(Ω) → L2(Ω) is the identity mapping in L2(Ω). Note that all operators
will be applied componentwise to vector-valued functions.

If Pr−1(K) ⊂ Dh(K) holds true for some r ≥ 1 then we obtain

‖κhq‖0,K ≤ Chℓ
K |q|ℓ,K ∀q ∈ Hℓ(K), ∀ 0 ≤ ℓ ≤ r (2.6)

by applying the Bramble–Hilbert lemma.
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We define the stabilising term

Sh(uh, vh) :=
∑

K∈Th

τK

(
κh(∇uh), κh(∇vh)

)
K

(2.7)

where τK , K ∈ Th, denote user-defined parameters. Their choice will be discussed
later on. Note that the stabilisation term Sh gives control over the fluctuation of the
gradient. An alternative way is to control by

∑

K∈Th

τK

(
κh(b · ∇uh), κh(b · ∇vh)

)
K

only the fluctuation of the derivative in streamline direction.
We can now state the local projection stabilisation of the discretisation of (2.4)

as follows

Find uh ∈ Vh with uh|ΓD
= gD,h such that

a(uh, vh) + Sh(uh, vh) = (f, vh) + 〈gN , vh〉ΓN
∀ vh ∈ V0,h (2.8)

where gD,h denotes a suitable approximation of gD which will be discussed in the next
section.

The local projection norm

|‖vh|‖ :=

{
ε|vh|

2
1 + c0‖vh‖

2
0 +

1

2

∥∥|b · n|1/2vh

∥∥2

0,ΓN
+ Sh(vh, vh)

}1/2

(2.9)

will be used for our analysis.
The key point in the analysis of local projection method is the existence of an

interpolation operator jh : H2(Ω) → Vh which provides the usual approximation
property

‖w − jhw‖0,K + hK |w − jhw|1,K ≤ Chℓ ‖w‖ℓ,K ∀w ∈ Hℓ(K), 2 ≤ ℓ ≤ r + 1 (2.10)

and additionally the following orthogonality relation

(w − jhw, qh) = 0 ∀qh ∈ Dh ∀w ∈ H2(Ω). (2.11)

Let

Yh(K) :=
{
wh|K : wh ∈ V0,h , wh = 0 on Ω \ K

}

denote the local bubble part of the finite element space Vh on K.
A sufficient condition for the existence of an interpolation operator fulfilling (2.10)

and (2.11) provides the following lemma.
Lemma 2.1 (local inf-sup condition). Let ih : H2(Ω) → Vh be an interpolation

operator which provides for all K ∈ Th the estimate

‖w − ihw‖0,K + hK |w − ihw|1,K ≤ Chℓ
K‖w‖ℓ,K ∀w ∈ Hℓ(K), 2 ≤ ℓ ≤ r + 1.

Furthermore, let the local inf-sup condition

∃β1 > 0 ∀h > 0 ∀K ∈ Th : inf
qh∈Dh(K)

sup
vh∈Yh(K)

(vh, qh)K

‖vh‖0,K ‖qh‖0,K
≥ β1 > 0 (2.12)
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be satisfied. Then, there exists an interpolation operator jh : H2(Ω) → Vh possessing

the approximation property (2.10) and the orthogonality property (2.11).
Proof. For the construction of the interpolation operator jh, we refer to Theo-

rem 2.2 in [19].
In order to satisfy the local inf-sup condition (2.12), the local bubble space Yh(K)

has to be sufficiently large compared to the local projection space Dh(K). However,
the minimal dimension of Dh(K) is determined indirectly by (2.6).

Several families of pairs Vh/Dh of approximation spaces Vh and projection spaces
Dh which provide the properties (2.10) and (2.11) were given in [19]. We recall
here one family on quadrilaterals which was used for our calculation presented in
Section 5. Let FK : K̂ → K be the multilinear mapping from the reference hyper-
cube K̂ = (−1, 1)d onto the mesh cell K ∈ Th. The projection space Dh is chosen to
be the mapped space

P disc
r−1,h :=

{
v ∈ L2(Ω) : v|K ◦ FK ∈ Pr−1(K̂) ∀K ∈ Th

}
.

Let

b̂(x̂) =

d∏

i=1

(1 − x̂2
i ), x̂ = (x̂1, . . . , x̂d) ∈ K̂

be the Q2 bubble function defined on K̂. The usual local space Qr(K̂) is enriched to

Qbubble
r (K̂) := Qr(K̂) ⊕ span(b̂ x̂r−1

i , i = 1, . . . , d).

The approximation space Vh is set to

Qbubble
r,h :=

{
v ∈ H1(Ω) : v|K ◦ FK ∈ Qbubble

r (K̂) ∀K ∈ Th

}
.

For r ≥ 1, the finite element pair Vh/Dh = Qbubble
r,h /P disc

r−1,h satisfies the inf-sup
condition (2.12) of Lemma 2.1 and provides the interpolation error estimate from
Lemma 2.1. Hence, there exists an interpolation operator jh satisfying (2.10) and (2.11).
For details, see Lemma 4.2 in [19].

Note that we have Pr−1(K) 6⊂ P disc
r−1,h(K) for non-affine mappings FK : K̂ → K

but the approximation property (2.6) holds for successively refined meshes, see [2, 17,
18].

3. Error analysis. Let us first discuss the choice of the discrete Dirichlet bound-
ary condition gD,h ∈ {vh|ΓD

: vh ∈ Vh}. We use an interpolation of gD which fits
to the interpolation jh such that gD,h = (jhu)|ΓD

for the solution u of (2.4). This
is possible since the restriction of the standard nodal interpolation onto ΓD depends
only on nodal values at ΓD. For example, gD,h for the Qbubble

r,h discretisation is defined
as the Qr,h interpolation of gD on the boundary ΓD.

We continue with solvability of the stabilised discrete problem (2.8).
Lemma 3.1 (Solvability). The stabilised discrete problem (2.8) possesses a unique

solution.

Proof. Since gD ∈ H1/2(ΓD) and gD,h ∈ {vh|ΓD
: vh ∈ Vh}, we can find some

extension g̃D,h such that g̃D,h − uh ∈ V0,h. Indeed, g̃D,h = jhu is a possible choice.
The key argument for showing the solvability of (2.8) is the proof of the coercivity
of the stabilised bilinear form a + Sh with respect to the local projection norm |‖ · |‖.



6 G. Matthies, P. Skrzypacz, L. Tobiska

Using the conditions (2.2) and (2.3), we obtain for all test functions vh ∈ V0,h

a(vh, vh) + Sh(vh, vh)

= ε |vh|
2
1 +

1

2

∫

Ω

b · ∇v2
h dx +

∫

Ω

cv2
h dx + Sh(vh, vh)

= ε|vh|
2
1 +

1

2

∫

ΓN

(b · n) v2
h ds +

∫

Ω

(
c −

1

2
∇ · b

)
v2

h dx + Sh(vh, vh)

≥ |‖vh|‖
2 .

(3.1)

Hence, the existence and uniqueness of the discrete solution can be concluded from
the Lax–Milgram lemma.

We will investigate the consistency error which is caused by adding the stabilising
term Sh to the weak formulation.

Lemma 3.2 (Consistency error). Let u and uh be solutions of the problems (2.4)
and (2.8), respectively. Then, the approximated Galerkin orthogonality

(a + Sh)(u − uh, wh) = Sh(u, wh) ∀wh ∈ V0,h (3.2)

holds true. Let τK ∼ hK and u ∈ Hr+1(Ω). Then, the estimate

|Sh(u, vh)| ≤ C

(
∑

K∈T

h2r+1
K ‖u‖2

r+1,K

)1/2

|‖vh|‖ ∀vh ∈ Vh (3.3)

is satisfied.

Proof. The relation (3.2) follows by subtracting (2.4) from (2.8). The Cauchy–
Schwarz inequality implies

|Sh(u, vh)| ≤ Sh(u, u)1/2 Sh(vh, vh)1/2

where the definition (2.7) of Sh was used. It follows from (2.6) and τK ∼ hK that

Sh(u, u) =
∑

K∈Th

τK‖κh(∇u)‖2
0,K ≤ C

∑

K∈Th

h2r+1
K ‖u‖2

r+1,K .

Hence, we have

|Sh(u, vh)| ≤ C

(
∑

K∈Th

h2r+1
K ‖u‖2

r+1,K

)1/2

|‖vh|‖

and the second assertion is proved.
Using the previous results, we are now able to formulate and prove our main

convergence result.
Theorem 3.3 (A-priori error estimate). Assume τK ∼ hK . Let u ∈ Hr+1(Ω)

and uh ∈ Vh be the solutions of problems (2.4) and (2.8), respectively. Then, the

a-priori error estimate

|‖u − uh|‖ ≤ C

(
∑

K∈Th

(ε + hK)h2r
K ‖u‖2

r+1,K

)1/2

(3.4)
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holds true.

Proof. First, the triangle inequality implies

|‖u − uh|‖ ≤ |‖u − jhu|‖ + |‖jhu − uh|‖. (3.5)

In order to proceed with the estimate of the interpolation error in the local projec-
tion norm, we provide some auxiliary results concerning the interpolation error on
edges/faces and fluctuation operator. We note the following trace estimate on any
edge/face E ⊂ ∂K, K ∈ Th,

‖v‖0,E ≤ Ch
1/2
K |v|1,K + Ch

−1/2
K ‖v‖0,K ∀v ∈ H1(K) (3.6)

which gives immediately the local interpolation error estimate

‖jhu − u‖0,E ≤ Ch
r+1/2
K ‖u‖r+1,K (3.7)

on an edge/face E ⊂ ∂K. Furthermore, one can show for b ∈
(
W 1,∞(K)

)d
the

estimate

‖κh(b · ∇vh)‖0,K ≤ C|b|1,∞,K‖vh‖0,K + ‖b‖0,∞,K‖κh(∇vh)‖0,K

≤ C
(
‖vh‖0,K + ‖κh(∇vh)‖0,K

)
,

(3.8)

see the proof of Corollary 2.14 in [19].

Using the interpolation error estimates (2.10) and (3.7), the fact b ∈
(
W 1,∞(Ω)

)d
,

and the L2 stability of the fluctuation operator κh, we conclude

|‖u − jhu|‖ ≤ C

(
∑

K∈Th

(ε + h2
K + τK)h2r

K ‖u‖2
r+1,K

)1/2

. (3.9)

In order to estimate the second error term on the right hand side of (3.5), we use
uh|ΓD

=
(
jhu
)
|ΓD

and the V0,h coercivity proved in Lemma 3.1. We obtain by using
relation (3.2) from Lemma 3.2

|‖jhu − uh|‖
2 ≤ a(jhu − uh, wh) + Sh(jhu − uh, wh)

= a(jhu − u, wh) + Sh(u, wh) + Sh(jhu − u, wh)
(3.10)

where we set wh := jhu − uh for abbreviation.
We start by estimating the first term on the right hand side of (3.9). Using

the the Cauchy–Schwarz inequality, interpolation property (2.10) of jh and the fact
c ∈ L∞(Ω), it follows that

ε
(
∇(jhu − u),∇wh

)
+
(
c(jhu − u), wh

)

≤ C

(
∑

K∈Th

(ε + h2
K)h2r

K ‖u‖2
r+1,K

)1/2

|‖wh|‖. (3.11)

In order to estimate the convective term in the bilinear form a, we integrate by parts
and obtain

(
b · ∇(jhu − u), wh

)
= −

(
jhu − u, b · ∇wh

)
−
(
jhu − u, wh (∇ · b)

)

+
〈
(b · n) (jhu − u), wh

〉
ΓN

.
(3.12)
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The three terms will be estimated separately. Using the orthogonality property (2.11)
of the interpolation operator jh, we get

(
jhu − u, b · ∇wh

)
=
(
jhu − u, b · ∇wh

)
−
(
jhu − u, πh(b · ∇wh)

)

=
(
jhu − u, κh(b · ∇wh)

)
.

Using (3.8) and the approximation property (2.10), we estimate

∣∣∣
(
jhu − u, b · ∇wh

)∣∣∣ ≤
∑

K∈Th

‖jhu − u‖0,K ‖κh(b · ∇wh)‖0,K

≤ C
∑

K∈Th

hr+1
K ‖u‖r+1,K

(
‖wh‖0,K + ‖κh(∇wh)‖0,K

)

≤ C

(
∑

K∈Th

h2r+2
K ‖u‖2

r+1,K

)1/2

‖wh‖0

+ C

(
∑

K∈Th

h2r+2
K τ−1

K ‖u‖2
r+1,K

)1/2( ∑

K∈Th

τK‖κh(∇wh)‖2
0,K

)1/2

and obtain

∣∣∣
(
jhu − u, b · ∇wh

)∣∣∣ ≤ C

(
∑

K∈Th

h2r+1
K ‖u‖2

r+1,K

)1/2

|‖wh|‖ (3.13)

where c0 > 0 and the choice τK ∼ hK were exploited.
The second term in (3.12) can be estimated as follows

∣∣∣
(
jhu − u, wh (∇ · b)

)∣∣∣ ≤ C

(
∑

K∈Th

h2r+2
K ‖u‖2

r+1,K

)1/2

|‖wh|‖ (3.14)

where the interpolation error estimate (2.10), b ∈
(
W 1,∞(Ω)

)d
, and c0 > 0 were used.

Applying (3.7), the last term in (3.12) can be estimates as

〈
(b · n) (jhu − u), wh

〉
ΓN

=
∑

E∈Eh,N

∥∥ |b · n|1/2 (jhu − u)
∥∥

0,E

∥∥ |b · n|1/2 wh

∥∥
0,E

≤ C

(
∑

K∈Th

h2r+1
K ‖u‖2

r+1,K

)1/2

|‖wh|‖

(3.15)

where the shape regularity of Th and b ∈
(
W 1,∞(Ω)

)d
were exploited. Putting to-

gether the estimates (3.13), (3.14), and (3.15), we get the bound

∣∣∣
(
b · ∇(jhu − u), wh

)∣∣∣ ≤ C

(
∑

K∈Th

h2r+1
K ‖u‖2

r+1,K

)1/2

|‖wh|‖ (3.16)

for the convective terms in the bilinear form a. Using (3.11) and (3.16), we conclude
that

∣∣a(jhu − u, wh)
∣∣ ≤ C

(
∑

K∈Th

(ε + hK) h2r
K ‖u‖2

r+1,K

)1/2

|‖wh|‖ (3.17)
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holds true.
The second term on the right hand side of (3.10) can be handled by Lemma 3.2.

We get

∣∣Sh(u, wh)
∣∣ ≤ C

(
∑

K∈T

h2r+1
K ‖u‖2

r+1,K

)1/2

|‖wh|‖. (3.18)

To estimate the third term of (3.10), we use the Cauchy–Schwarz inequality, the
L2 stability of the fluctuation operator κh, the parameter choice τK ∼ hK , and the
approximation property (2.10) of the interpolation operator jh. We obtain

Sh(jhu − u, wh) ≤ Sh(jhu − u, jhu − u)1/2 Sh(wh, wh)1/2

≤

{
∑

K∈Th

τK‖κh(∇(jhu − u))‖2
0,K

}1/2

|‖wh|‖

≤ C

(
∑

K∈Th

h2r+1
K ‖u‖2

r+1,K

)1/2

|‖wh|‖.

(3.19)

Using (3.10) and the estimates (3.17), (3.18), (3.19), we obtain

|‖jhu − uh|‖ ≤ C

(
∑

K∈Th

(ε + hK) h2r
K ‖u‖2

r+1,K

)1/2

.

Combining this with (3.5) and (3.9) yields the assertion (3.4).

4. Numerical examples. The section will present some numerical result for
the local projection stabilisation applied to convection-diffusion-reaction problem. All
numerical calculations were performed with finite element package MooNMD [16].

We consider problems on the unit square Ω = (0, 1)2. Our calculations were car-
ried out on quadrilateral meshes which were obtained by successive regular refinement
of an initial coarse grid (level 0) consisting of 4×4 congruent squares. The number of

Table 4.1
Total number of degrees of freedom.

level dofs
Qbubble

1,h
Qbubble

2,h
Qbubble

3,h

0 41 113 201
1 145 417 753
2 545 1,601 2,913
3 2,113 6,273 11,457
4 8,321 24,833 45,441
5 33,025 98,817 180,993

degrees of freedom for different enriched finite element spaces are given in Tab. 4.1.
It is clearly to see that the number of dofs increases by a factor of about 4 from one
mesh level to the next finer one.

Since τK ∼ hK , compare Theorem 3.3, the stabilisation parameters are chosen as
follows

τK := τ0 hK ∀K ∈ Th



10 G. Matthies, P. Skrzypacz, L. Tobiska

where τ0 > 0 denotes a constant which will be fixed for each of the test problems
presented in this section.

We will investigate in this section the behaviour of the local projection stabilisa-
tion applied to problems with different kinds of solutions. The presented examples,
except the first one, can be found in [7, 21].

4.1. Smooth solution. We start with a problem which has a smooth solution
and check the convergence orders which were predicted by Theorem 3.3. Let

ε = 10−7, b = (2, 3)T , c = 1

and

ΓN :=
{
(x, y) ∈ ∂Ω : x = 1, 0 < y < 1

}
, ΓD := ∂Ω \ ΓN .

The right hand side f , the Dirichlet boundary condition gD on ΓD, and the Neumann
boundary condition gN on ΓN are chosen such that

u(x, y) = sin(πx) sin(πy)

is the solution of (2.1). Tab. 4.2 shows for the enriched quadrilateral elements of first,

Table 4.2
Errors |‖u − uh|‖ and rates of convergence, τK = 0.1 hK .

level error and rate
Qbubble

1,h
/Pdisc

0,h
Qbubble

2,h
/Pdisc

1,h
Qbubble

3,h
/Pdisc

2,h

0 8.634e-2 1.515e-2 1.871e-3
1 3.206e-2 1.429 2.241e-3 2.757 1.696e-4 3.464
2 1.166e-2 1.459 3.423e-4 2.711 1.506e-5 3.494
3 4.166e-3 1.485 5.632e-5 2.603 1.330e-6 3.501
4 1.477e-3 1.496 9.683e-6 2.540 1.174e-7 3.502
5 5.229e-4 1.499 1.694e-6 2.515 1.037e-8 3.501

second, and third order the error in the local projection norm |‖ · |‖ on different levels
where τ0 = 0.1 was used. We see that the predicted convergence order of r + 1/2 is
achieved in all cases. Moreover, we see that higher order finite elements give much
more accurate results with less unknowns.

4.2. Solution with exponential layer. We will study now the behaviour of
the local projection stabilisation for a problem with an exponential boundary layer.
Let

ε = 10−7, b = (0, 2)T , c = 0

and

ΓD := ∂Ω, ΓN := ∅.

The right hand side f and the Dirichlet boundary condition gD are chosen such that

u(x, y) = (2x − 1)
1 − exp

(
2(1−y)

ε

)

1 − exp
(
−2

ε

)

is the solution of (2.1). Note that the solution u exhibits an exponential boundary
layer at y = 1. Fig. 4.1 shows for the choice τ0 = 0.1 the numerical solution which was
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Fig. 4.1. Example 4.2 with Vh/Dh = Qbubble

1,h
/P disc

0,h
and τ0 = 0.1: solution (left) and its isolines

(right).

obtained by using the approximation space Qbubble
1,h and the projection space P disc

0,h .
Note that here and in all subsequent figures only the nodal values at the cell vertices
are shown, i.e., the additional bubble part of the solution will not be shown. We see
that the numerical solution shows no oscillations in the whole domain. Away from the
exponential boundary layer, the numerical solution approximates the function 2x− 1
which is the solution of the reduced problem.

4.3. Solution with interior and exponential layers. Our next problem is a
benchmark for problems with an interior layer and an exponential layer. Let

ε = 10−7, b =
(
8xy(1 − x),−4(2x − 1)(1 − y2)

)T
, c = 0

and

ΓN :=
{
(x, y) ∈ ∂Ω : 1/2 < x < 1, y = 0

}
, ΓD := ∂Ω \ ΓN .

We prescribe on Dirichlet boundary ΓD the piecewise constant function

gD(x, y) =






1 for 1/4 ≤ x ≤ 1/2 , y = 0,

1 for 0 ≤ y ≤ 1 , x = 1,

0 otherwise,

while the homogeneous Neumann condition gN = 0 will be used on ΓN . The right
hand side in (2.1) is given by f = 0. The numerical solution for τ0 = 0.01 is pre-
sented in Fig. 4.2. It shows overshoots and undershoots near the interior layer and
exponential boundary layer. This seems to be a common feature of many stabilisation
techniques, see [20]. However, the solution obtained by the local projection stabilisa-
tion has no oscillations away from the layer. Furthermore, the position of the layers
is captured very well.

4.4. Solution with parabolic layer. The solution of our last example exhibits
two parabolic boundary layers. Let

ε = 10−7, b = (0, 1 + x2)T , c = 0

and

ΓN :=
{
(x, y) ∈ ∂Ω : 0 < x < 1, y = 1

}
, ΓD := ∂Ω \ ΩN .
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Fig. 4.2. Example 4.3 with Vh/Dh = Qbubble

1,h
/P disc

0,h
and τ0 = 0.01: solution (left) and its

isolines (right).

We use homogeneous Neumann condition gN = 0 on ΓN while the Dirichlet boundary
condition gD on ΓD is given by

gD =

{
1 for 0 ≤ x ≤ 1, y = 0,

1 − y otherwise.

Furthermore, the right hand side of (2.1) is f = 0. Note that the solution of (2.1)
exhibits parabolic layers at the vertical walls x = 0 and x = 1. The pictures in Fig. 4.3
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Fig. 4.3. Example 4.4 with Vh/Dh = Qbubble

1,h
/P disc

0,h
and τ0 = 0.01: solution (left) and its

isolines (right).

show the obtained result for τ0 = 0.01. We see that the parabolic boundary layers
are well captured. Overshoots and undershoots occur only near the layers while the
solution has no oscillations away from the layer.

We are finally interested in the influence of the size of the stabilisation parameter
τK on the solution. To this end, we will have a look at the solution on the outflow
boundary which coincides with ΓN for this problem. We will vary the constant τ0

in τK = τ0 hK . We start with calculation for the pair Qbubble
1,h /P disc

0,h . The graphs in
Fig. 4.4 show that too small values for τ0 result in oscillations while too large values for
τ0 cause a smearing of the layer. If the constant τ0 is chosen suitably then the solution
is captured very well on almost the whole edge. This means that the remaining small
oscillations concentrate near the boundary and only a little smearing takes place.



Local projection method for convection-diffusion problems 13

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

u

τ
0
=1e−4

τ
0
=1e−2

τ
0
=1e+1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

u

τ
0
=1e+1

τ
0
=1e+2

τ
0
=1e+3

0.85 0.9 0.95 1
0

0.5

1

1.5

x

u

τ
0
=1e−4

τ
0
=1e−2

τ
0
=1e+1

0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

x

u
τ
0
=1e+1

τ
0
=1e+2

τ
0
=1e+3

Fig. 4.4. Example 4.4 with Vh/Dh = Qbubble

1,h
/P disc

0,h
: Influence of parameter τ0 on the behaviour

of outflow profile.

Using the pair Qbubble
2,h /P disc

1,h , the situation changes. Even for the quite small
stabilisation parameter τ0 = 0.01, the solution shows no oscillations in the nodal
values at the vertices. One reason for this behaviour might be the additional stability
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Fig. 4.5. Example 4.4 with Vh/Dh = Qbubble

2,h
/P disc

1,h
: Influence of parameter τ0 on the behaviour

of outflow profile.

which is already introduced by the presence of bubble functions in Qbubble
2,h .

5. Conclusions. We have presented and analysed a stabilised finite element
method for solving convection-diffusion-reaction problems. The stabilisation was
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achieved by applying the local projection technique which gives additional control
over the fluctuation of the gradient. Our analysis handles mixed boundary condi-
tions. The given a-priori error estimate gives qualitatively the same result as other
stabilisation techniques like the streamline diffusion method. The numerical results
presented in Section 4 show that the stabilisation method by local projection is well
suited for problems with layers of different kind. The last example gives the indi-
cation that the size of the stabilisation parameter has for first order elements an
important influence on the quality of the numerical solution while the dependence is
much smaller for second order elements.
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