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1. Introduction

Advection-diffusion equations arise in a number of important applications. Their robust and
accurate numerical solution is – in case of advection dominated flows – still a challenge. Often
it is neglected that the physical processes are governed by a velocity field u which itself is the
solution of a hydrodynamical model like the incompressible Navier-Stokes equations. In this
paper we address the issue of mass conservation when the underlying velocity field u in the
transport equation is replaced by an approximation uh.

We consider the simplest case of a coupled flow-transport problem in a bounded domain
Ω ⊂ Rd, d = 2, 3. The system is described by the instationary, incompressible Navier–Stokes
equations

ut − ν4u+ (u · ∇)u+∇p = f in Ω× (0, T ],
div u = 0 in Ω× (0, T ],

u = ub on ∂Ω× (0, T ],

u(0) = u0 in Ω,

(1)

and the time-dependent transport equation

ct − ε4c+ u · ∇c = g in Ω× (0, T ],
(cu− ε∇c) · n = cI u · n on Γ− × (0, T ],

ε∇c · n = 0 on Γ+ × (0, T ],

c(0) = c0 in Ω.

(2)

Here, u and p denote the velocity and the pressure of the fluid, respectively, ν and ε are small
positive numbers, T > 0 defines the final time. The boundary ∂Ω is splitted into the inflow
boundary Γ− := {x ∈ ∂Ω : u · n < 0} and the outflow boundary Γ+ := ∂Ω \ Γ− where n is the
unit outer normal. Furthermore, c is the concentration and cI the concentration at the inflow
boundary Γ−. We assume that the given velocity field ub on the boundary ∂Ω is the restriction
of a divergence free function which we denote again by ub. The initial velocity u0 satisfies the
incompressibility constraint ∇ · u0 = 0.

Different discretization methods for both the instationary, incompressible Navier–Stokes
equations and the transport equation have been developed also in the practically important
case of ν � 1 and ε � 1, for an overview see [12]. We study the mass conservation of the
discretized transport equation when using stabilized schemes. For simplicity of notation we
restrict ourselves to the semidiscretization in time of the problems (1) and (2). The results can
be extended to the fully discretized problems using the discontinuous Galerkin method in time.
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2. Algorithms for the transport equation

2.1. Weak formulation and mass conservation

Let W := H1(Ω), (·, ·) and 〈·, ·〉Γ denote the L2-inner products on Ω and Γ, respectively. A weak
formulation of the transport problem (2) is given by

Find c(t) ∈W such that for all ϕ ∈W : (c(0)− c0, ϕ) = 0 and

d

dt
(c, ϕ) + ε(∇c,∇ϕ) + (u · ∇c, ϕ)− 〈c u · n, ϕ〉Γ− = (g, ϕ)− 〈cI u · n, ϕ〉Γ− . (3)

Setting ϕ = 1 and using the incompressibility constraint ∇ · u = 0, we get from (3) the global
mass conservation property

d

dt

∫
Ω
c dx+

∫
Γ−

cI u · ndγ +
∫

Γ+

c u · ndγ =
∫

Ω
g dx. (4)

Let the domain Ω be polyhedral. We are given a family
{
Th

}
h>0

of shape-regular triangulations
of Ω into simplicial elements K. The diameter of K is denoted by hK while h := max

{
hK :

K ∈ Th

}
. Let Wh ⊂ W be a finite element space for approximating the concentration. Then,

the standard Galerkin discretization of (3) reads

Find ch(t) ∈Wh such that for all ϕh ∈Wh : (ch(0)− c0, ϕh) = 0 and

d

dt
(ch, ϕh) + ε(∇ch,∇ϕh) + (uh · ∇ch, ϕh)− 〈ch uh · n, ϕh〉Γ− = (g, ϕh)− 〈cI uh · n, ϕh〉Γ− (5)

where the solenoidal vector field u has been replaced by some – in general – discontinuous
approximation uh. Now setting ϕh = 1 and using elementwise integration by parts, we end up
with

d

dt

∫
Ω
ch dx+

∫
Γ−

cIuh · ndγ +
∫

Γ+

chuh · ndγ =
∫

Ω
g dx+mh(ch, uh) (6)

where compared to the global mass conservation on the continuous level, see (4), the additional
term

mh(ch, uh) :=
∑

K∈Th

(ch,∇ · uh)K +
∑

E∈Eh

〈ch, [uh · nE ]E〉E (7)

is present. Here, Eh denotes the set of inner faces E, (·, ·)K and 〈·, ·〉E denote the L2-inner
products on K and E, respectively. With each E ∈ Eh we associate an arbitrary but fixed unit
normal nE and define the jump of ψ across the common face E of the two adjacent elements K
and K̃ by

[ψ]E := uh| eK
∣∣∣
E
− uh|K

∣∣∣
E

where nE is an outer normal to K. Conditions which guarantee that mh = 0 will be discussed
in the following Sections.

2.2. Stabilized schemes for the transport equation

In the case that 0 < ε � 1, the standard Galerkin discretization exhibits spurious oscillations
which can be suppressed by using some sort of stabilized schemes. We consider stabilized schemes
of the following type:

Find ch(t) ∈Wh such that for all ϕh ∈Wh : (ch(0)− c0, ϕh) = 0 and

d

dt
(ch, ϕh) + ε(∇ch,∇ϕh) + (uh · ∇ch, ϕh)− 〈ch uh · n, ϕh〉Γ− (8)

+ Sh(ch, ϕh) = (g, ϕh)− 〈cI uh · n, ϕh〉Γ− .
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In the Streamline Diffusion (SD) method [2] we add weighted residuals of the strong form of the
differential equation. Thus, we have

Ssd(ch, ϕh) :=
∑

K∈Th

τK(ch,t − ε4ch + uh · ∇ch − g, uh · ∇ϕh)K (9)

with a user-chosen parameter τK .
In the subgrid scale method [6, 10], the space Wh contains a subspace of resolvable scales

WH ⊂ Wh which is given by a projector PH : Wh → WH . Then, the non-resolvable scales are
stabilized by adding

Ssubg(ch, ϕh) :=
∑

K∈Th

τK(∇(id− PH)ch,∇(id− PH)ϕh)K (10)

to the standard Galerkin approach (5).
Finally, we mention the stabilization by local projection [1] which relies on a local projection

operator P̃ : Wh → Dh into a proper space of discontinuous finite elements. Here, the added
stabilizing term becomes

Slocp(ch, ϕh) :=
∑

K∈Th

τK
(
(id− P̃ )∇ch, (id− P̃ )∇ϕh

)
K
. (11)

Note that in the subgrid scale method the unresolvable scales are stabilized by an artificial
viscosity term whereas in the local projection method the fluctuations of the gradients, i.e.,
(id− P̃ )∇ch, are controlled in the L2-norm.

With respect to our purpose we see that in all considered cases the stabilizing terms vanish
for ϕh = 1. Thus, the global mass conservation will be guaranteed provided that the additional
term mh(ch, uh) in (6) vanishes.

3. Algorithms for the incompressible Navier–Stokes equations

3.1. Weak formulation and Galerkin approach

Let V := H1
0 (Ω)d, M := L2(Ω), and Q :=

{
q ∈ M : (q, 1) = 0

}
. A weak formulation of the

Navier–Stokes problem (1) which is obtained in a standard way reads

Find
(
u(t), p(t)

)
∈ (ub + V )×Q such that for all v ∈ V : (u(0)− u0, v) = 0 and

d

dt
(u, v) + ν(∇u,∇v) +

(
(u · ∇)u, v

)
− (∇ · v, p) = (f, v) ∀v ∈ V, (12)

(∇ · u, q) = 0 ∀q ∈ Q. (13)

Our assumption that ub is the restriction of a divergence free function yields

(∇ · u, 1) = 〈u · n, 1〉∂Ω = 〈ub · n, 1〉∂Ω = (∇ · ub, 1) = 0. (14)

This combined with (13) implies that (∇ · u, q) = 0 for all q ∈ L2(Ω).
We consider inf-sup stable discretizations of the problem (12), (13). Let Vh ⊂ V , Mh ⊂ M ,

and Qh = Mh ∩Q be finite element spaces such that the inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)
|vh|1 ‖qh‖0

≥ β (15)

is satisfied with a positive constant β which is independent of the mesh size parameter h. Using
the discrete spaces Vh and Mh, the standard Galerkin approach of (12), (13) reads
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Find
(
uh(t), ph(t)

)
∈ (ub,h + Vh)×Mh such that for all vh ∈ Vh : (uh(0)− u0, vh) = 0 and

d

dt
(uh, vh) + ν(∇uh,∇vh) +

(
(uh · ∇)uh, vh

)
− (∇ · vh, ph) = (f, vh) ∀vh ∈ Vh, (16)

(∇ · uh, qh) = 0 ∀qh ∈ Qh, (17)

where ub,h is a suitable approximation of ub which satisfies the condition 〈ub,h · n, 1〉∂Ω = 0. As
a consequence

(∇ · uh, 1) =
∑

K∈Th

(∇ · uh, 1)K = 〈ub,h · n, 1〉∂Ω −
∑

E∈Eh

〈[uh]E · nE , 1〉E = −
∑

E∈Eh

〈[uh]E · nE , 1〉E .

Thus, if the normal components of uh are continuous over the faces we get the discrete analogon
of (14), i.e., (∇ · uh, qh) = 0 for all qh ∈M .

While discretizing the Navier–Stokes problem by inf-sup stable finite elements, one has to
make the fundamental decision of choosing either a continuous or discontinuous pressure approx-
imation. Due to (17), the incompressibility constraint ∇ · u = 0 from (1) is fulfilled only in an
approximate sense. If discontinuous pressure approximations are used, the mass conservation
is satisfied more locally since functions with support within one element can be used as test
functions.

3.2. Stabilized schemes for the Navier-Stokes equations

In recent years, a huge number of schemes have been developed to stabilize both the effect of
dominating advection and the instabilities caused by using finite element pair Vh and Qh which
do not satisfy (15), see e.g. [1, 11, 14]. In particular, the use of equal order interpolation of
velocity and pressure with the streamline diffusion method or the stabilization by local projection
seems to be quite popular. However, a common feature of these types of stabilization methods
is an additional ’stabilizing’ term in the mass balance (13) of the Navier-Stokes equation which
produces an additional error for the mass conservation of the transport equation (6). For
avoiding this additional discretization error, one should try to separate the stabilization of the
two instability phenomena: dominating advection and use of unstable finite element pairs for
approximating velocity and pressure. Such a separation technique has been considered e.g. in
[3, 7, 8].

In the following we want to restrict ourselves to the solution of the Navier-Stokes equations
by inf-sup stable conforming finite element pairs. In this case, the computed velocity field
uh(t) ∈ ub,h + Vh belongs to H1(Ω)d and is discretely divergence free in the sense that

(∇ · uh, qh) = 0 ∀qh ∈Mh.

Note that (17) implies that this relation holds first for all qh ∈ Qh ⊂ Mh but the choice of the
approximation ub,h of the boundary data ub indeed guarantees its fulfillness for all qh ∈Mh.

4. Mass conservative methods

We have seen in Section 2. that the mass conservation on the discrete level is guaranteed when
the term mh(ch, uh) vanishes. On the continuous level the term mh(ch, u) vanishes due to
incompressibility condition ∇ · u = 0 and [u · nE ]E = 0 for all inner faces. In the following
subsections, we will discuss several possibilities which ensure mh(ch, uh) = 0.

4.1. Higher-order approximation of the flow problem

Let us assume that the transport equation will be solved by a method of order r ≥ 1, i.e., the
approximation error in space will satisfy

inf
ϕ∈Wh

|c− ϕh|m ≤ C hr+1−m|c|r+1, c ∈ Hr+1(Ω), 0 ≤ m ≤ r + 1.
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One could think for example to use continuous, piecewise polynomials of degree less than or
equal to r. In the following, we will shortly note this space by Pr. We observe that mh(ch, uh)
vanishes if ch ∈ Mh, in particular if Wh ⊂ Mh. Thus, in the considered case we could choose
the space Pr to be a subspace of pressure space Mh. This means that the pressure will be
approximated in the L2-norm of order r + 1. In order to ensure the inf-sup condition the
velocity has to be approximated by suitable elements of order r + 1 like Pr+1. We end up
with the following discretization for (uh, ph, ch) ∈ Pr+1 × Pr × Pr. Hence, the Navier–Stokes
problem has to be discretized by a method which is one order better than the method used for
the transport equation. Note that this technique works for both, continuous and discontinuous
pressure approximations.

A similar statement is also true for nonconforming finite element discretizations of the Navier-
Stokes equations since a nonconforming discretization for the velocities of order r+1 is assumed
to satisfy

〈[uh]E , rh〉E = 0 ∀rh ∈ Pr(E), ∀E ∈ Eh.

If the discretization is completed by elements of order r for the approximation of pressure and
concentration, then we conclude from (7) that mh(ch, uh) = 0. Thus, again a one order higher
discretization of the flow problem results in a mass conservation of the transport problem.

However, from the practical point of view, this technique seems to be non-attractive since
the discretization of the Navier–Stokes problem by a higher order method is too costly.

4.2. Post-processing of the discrete velocity

Another idea for ensuring the exact mass balance on the discrete level consists in replacing
the discrete velocity solution uh by a different discrete function wh which is close to uh. This
technique was proposed in [4] for the local discontinuous Galerkin method applied to flow prob-
lems. To be precise, instead of solving the standard weak formulation of the transport equation,
see (5), the following problems will be solved

Find ch(t) ∈Wh such that for all ϕh ∈Wh : (ch(0)− c0, ϕh) = 0 and

d

dt
(ch, ϕh) + ε(∇ch,∇ϕh) + (wh · ∇ch, ϕh)− 〈chwh · n, ϕh〉Γ− = (g, ϕh)− 〈cI wh · n, ϕh〉Γ− (18)

Let the Navier–Stokes equations be discretized by the inf-sup stable finite element pair
P bubble

r /P disc
r−1 consisting of the velocity space of continuous, piecewise polynomials of degree r

enriched with certain bubble function and the pressure space of discontinuous, piecewise poly-
nomials of degree r − 1, [9]. We will construct the function wh which acts as the velocity field
in the transport equation by a post-processing. To this end, we define on each element K ∈ Th

the vector-valued local interpolation operator PK : H1(K)d → Pr(K)d by〈
(PKv) · nK , ϕ

〉
E

= 〈v · nK , ϕ〉E ∀E ⊂ ∂K, ϕ ∈ Pr(E), (19)

(PKv,∇ϕ) = (v,∇ϕ) ∀ϕ ∈ Pr−1(K), (20)
(PKv, ψ) = (v, ψ) ∀ψ ∈ Ψr(K), (21)

where
Ψr(K) :=

{
ψ ∈ L2(K)d : (DF T

Kψ) ◦ FK ∈ Ψ̂r

}
with

Ψ̂r :=
{
ψ̂ ∈ Pr(K̂)d : ∇ · ψ̂ = 0 in K̂, ψ̂ · n bK = 0 on ∂K̂

}
.

In the above formulas we have used the reference transformation FK : K̂ → K which is a
bijective mapping from the reference cell K̂ onto the original cell K. Further, ψ̂ = ψ ◦ FK . The
definition of PK by (19)-(21) is the customization of the interpolation operator P which was
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introduced in [4] in the frame of local discontinuous Galerkin methods. The local interpolation
operators PK can be put together to a global interpolation operator Ph in the following way

(Phv)|K := PK(vh|K).

Note that, in general, the function Phv will not belong to H1(Ω)d.
Next we will show that the post-processed solution Phuh is piecewise divergence free. We

start with the incompressibility constraint (17) and use the conditions (19) and (20) of the
definition of PK to obtain

0 = (∇ · uh, qh)K = −(uh,∇qh)K + 〈uh · nK , qh〉∂K

= −(PKuh,∇qh)K + 〈(PKuh) · nK , qh〉∂K = (∇ · PKuh, qh)K .

Here, we have used ∇qh ∈ Pr−1(K)d and qh|E ∈ Pr(E) for all faces E ⊂ ∂K.
Furthermore, we notice that the function α which is piecewise defined by

α|K := ∇ · PKuh

belongs to Qh. Since αK ∈ Pr−1(K) holds true, we have to show only that α has zero integral
mean over Ω. Indeed, we get∫
Ω

αdx =
∑

K∈Th

∫
K

∇ · PKuh dx =
∑

K∈Th

∫
∂K

(PKuh) · nK dγ =
∑

K∈Th

uh · nK dγ =
∫
∂Ω

uh · ndγ = 0,

where we have used the condition (19).
Hence, α can be used as a pressure test function in (17). Using this, we obtain

0 = (∇ · Phuh, α) =
∑

K∈Th

(∇ · Phuh,∇ · Phuh)K

which gives ∇·Phuh|K ≡ 0, i.e., the post-processed velocity solution is piecewise divergence free.
The modified convection field in (18) is chosen to be wh := Puuh. This ensures that the first

term of mh(ch, wh) vanishes. Moreover, the normal component of wh has no jumps across inner
faces due to condition (19) in the definition of PK . Indeed, we have for all ϕ ∈ Pr(E) that〈

[Phuh]E · nE , ϕ
〉
E

= 〈P eKuh · nE , ϕ〉E − 〈PKuh · nE , ϕ〉E = 〈uh · nE , ϕ〉E − 〈uh · nE , ϕ〉E = 0

where K and K̃ are the two elements which are adjacent to E. Since [Phuh]E ∈ Pr(E) holds
true, we conclude [Phuh]E = 0. Hence, also the second term of mh(ch, wh) vanishes.

Compared to the method of Section 4.1., we solve both the transport and the Navier-Stokes
equation with a method of order r. Nevertheless, the mass conservation on the discrete level is
guaranteed.

4.3. Scott-Vogelius elements

Now, we will concentrate on finite element discretizations which guarantee that the discrete
velocity solution uh is piecewise divergence free. To this end, let us consider discretizations with
Pr/P

disc
r−1 -elements. It is well-known that in the two-dimensional case for r ≥ 4, this finite element

pair is inf-sup stable when special meshes which exhibit so called singular vertices, are excluded,
see [13]. Furthermore, it has been shown recently that there are macroelement meshes in two
and three dimensions on which this pair of finite elements is inf-sup stable [15] provided that the
polynomial degree r is greater than or equal to the space dimension d. Although a restriction on
the mesh is needed this pair is attractive since a discretely divergence free function is piecewise
divergence free. Indeed, due to the participating discrete spaces, the divergence of each discrete
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velocity field belongs to the pressure space. Hence, the weak compressibility condition (17)
yields

0 = (∇ · uh,∇ · uh),

i.e., the discrete velocity solution uh is divergence free in the L2-sense. Of course, this results in
mh(ch, uh) = 0 since the continuous velocity approximation uh has no jumps.
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