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LENNART MEIER AND VIKTORIYA OZORNOVA

Abstract. We provide a splitting of TMF0(7) at the prime 3 as TMF-module
into two shifted copies of TMF and two shifted copies of TMF1(2).
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1. Introduction

The study of modules over the real K-theory spectrum KO has been central in
Bousfield’s work on the classification of K-local spectra [5]. If we localize further at
a prime p, localization at K-theory becomes equivalent to localization at the first
Johnson–Wilson theory E(1). If we want to study E(2)-local spectra, topological
modular forms are a natural substitute for KO.

Topological modular forms come in many variants. First, there is the periodic
version TMF that is based on the moduli stack of elliptic curvesMell. It has the

1



2 LENNART MEIER AND VIKTORIYA OZORNOVA

disadvantage that its homotopy groups are infinitely generated in most degrees,
which is different in the refinement Tmf that is based on the compactified moduli
stackMell. Its connective cover is called tmf. We refer to [15] as a basic reference
for these spectra.

It has a long tradition in arithmetic geometry not only to consider the moduli
stack of elliptic curves itself, but also to consider moduli of elliptic curves with level
structures. A Γ0(n)-level structure on an elliptic curve E/S is a sub-group scheme
that is étale locally on S isomorphic to (Z/n)S . A Γ1(n)-level structure on E is a
sub-group scheme of E with a chosen isomorphism to (Z/n)S . This leads to moduli
stacksM0(n) andM1(n) and to spectra TMF0(n) and TMF1(n). Hill and Lawson
[21] were able to define spectra Tmf0(n) and Tmf1(n) based on the compactified
moduliM0(n) andM1(n) as well. Note that n is here always inverted.

When studying Tmf-modules, Tmf0(n) and Tmf1(n) are among the first exam-
ples to consider. In [35], the first-named author has proven splittings for Tmf1(n)
and Tmf0(n) in many cases if we localize at a prime p. If p > 3, there is an explicit
criterion when these modules are free over Tmf. If p = 3, the splittings are into
shifted copies of Tmf1(2)(3). As π∗ Tmf1(2)(3) is torsionfree, splittings into shifted
copies of Tmf1(2)(3) can only exist if π∗ Tmf0(n)(3) is also torsionfree, which is not
expected if 3 divides |(Z/n)×|. The first case where this occurs is Tmf0(7), where
we can prove the following modified splitting result.

Theorem 1.1. The Tmf(3)-module Tmf0(7)(3) decomposes as

Tmf(3)⊕Σ4 Tmf1(2)(3) ⊕ Σ8 Tmf1(2)(3) ⊕ L,
where L ∈ Pic(Tmf(3)), i.e. L is an invertible Tmf(3)-module.

The TMF(3)-module TMF0(7)(3) decomposes as

TMF(3)⊕Σ4 TMF1(2)(3) ⊕ TMF1(2)(3) ⊕ Σ36 TMF(3) .

Using unpublished work of M. Olbermann, one can deduce that L is actually
an exotic Picard element, i.e. is not of the form Σk Tmf(3) for any k. The group
Pic(Tmf(3)) was determined in [34] and one can explictly identify L. This shows
that exotic Picard group elements of Tmf actually occur quite naturally.

Our main theorem is based on the following algebraic theorem.

Theorem 1.2. Let h : M0(7)(3) → Mell,(3) and f : M1(2)(3) → Mell,(3) be the
maps induced by forgetting the level structure on an elliptic curve and let O be the
structure sheaf of Mell,(3). Then the quasi-coherent sheaf h∗OM0(7)

∼= h∗h
∗O on

Mell,(3) is a vector bundle of rank 8, which can be decomposed as a sum

O ⊕ ω−6 ⊕ f∗f∗O ⊗ ω−2 ⊕ f∗f∗O ⊗ ω−4.

Here, ω is the generator of Pic(Mell) that can be constructed as the pushforward
of the sheaf of differentials on the universal generalized elliptic curve.

Let us simultaneously describe the proof strategy and give an overview of the
different sections. We will always work (implicitly) 3-locally.

Let mf1(7) = mf(Γ1(7),Z(3)) be the subring of the ring of holomorphic Γ1(7)-
modular forms mf(Γ1(7),C) with coefficients in Z(3). This can be identified with
the sections of ω⊗∗ on M1(7). While abstractly this ring is easily identified, we
will compute it together with its (Z/7)×-action and explicit q-expansion of its gen-
erators. More precisely we exhibit an isomorphism mf1(7) ∼= Z(3)[z1, z2, z3]/(z1z2 +
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z2z3 + z3z1) and identify the (Z/7)× ∼= Z/2 × Z/3-action to be given by the sign
action of Z/2 and a cyclic permutation action of Z/3 on the zi.

In the next step, we shows in Section 3 that the universal elliptic curve over
M1(n) always has a Weierstraß equation of the form

y2 + a1xy + a3y = x3 + a2,

where the ai are holomorphic modular forms. Moreover, we provide an explicit
method how to compute the q-expansions of the ai. This allows us to identify them
as concrete polynomials in the zi.

Our strategy to show Theorem 1.2 is to show a statement about comodules.
The precise relationship between quasi-coherent sheaves and graded comodules will
be recalled in Section 4. It is both easier and yields stronger results to use this
relationship not for Mell but for Mcub instead (as in [32]). The latter stack has
a presentation by the Hopf algebroid (A,Γ) with B = Z[a1, a2, a3, a4, a6]. To for-
mulate a version of Theorem 1.2 on Mcub we define and explore cubical versions
of M1(n) and M0(n) by a normalization procedure in Section 5. In particular,
we provide a flatness criterion for the map M1(n)cub → Mcub. We stress that
M0(n)cub is not the stack quotient ofM1(7)cub by the (Z/7)×-action as this stack
quotient is not representable overMcub.

The next step is to make the Hopf algebroids corresponding to M1(7)cub and
M0(7)cub explicit. In Section 6, we produce explicit B-bases of B-algebras RB and
SB , which are defined by

SpecRB ∼=M1(7)cub ×Mcub
SpecB and SpecSB ∼=M0(7)cub ×Mcub

SpecB.

This allows us to prove in Section 7 a splitting of SB as a comodule over (B,Γ),
which implies Theorem 1.2. In Section 8 we apply standard techniques (the transfer
and the descent spectral sequence) to deduce our topological main theorem.

We end with an appendix that gives an exposition of the theory of modular forms
with level over general rings and their q-expansion. The reason for the length of
this appendix is the subtle difference between so-called arithmetic and naive level
structures, which only agree in the presence of an n-th root of unity. To achieve
a q-expansion principle in the form we need, care is needed how to identify the
sections of ω⊗∗ onM1(n)C with holomorphic Γ1(n)-modular forms in the classical
sense.

After giving this overview, let us add two directions of further research. First,
we can also ask for a splitting of the connective spectrum tmf0(7) = τ≥0 Tmf0(7).
Indeed, our algebraic theorem suggests this as it works over not only overMell but
over Mcub. We will come to this refined splitting and will show indeed that the
stack associated with the ring spectrum tmf0(7) is equivalent to M0(7)cub. This
opens the possibility that our definition of M1(n)cub and M0(n)cub is indeed the
key to understand the stacks associated with tmf1(n) and tmf0(n) in general.

Secondly, our main topological theorem suggests the following conjecture.

Conjecture 1.3. The spectrum TMF0(n)(3) decomposes for every n ≥ 2 into
shifted copies of TMF(3) and of TMF1(2)(3).

This is related to a question asked in [37], namely whether all vector bundles on
Mell,(3) decompose (up to tensoring with powers of ω) into the structure sheaf O,
the 3-dimensional indecomposable f∗f∗O and a certain vector bundle Eα of rank 2.
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Furthermore, it is shown in [35] that TMF1(n)(3) always decomposes into shifted
copies of TMF1(2)(3) after 3-completion.

1.1. Acknowledgements. We thank Martin Olbermann for helpful discussions
and sharing his unpublished work with us. The first-named author thanks SPP
1786 for its support. The authors would like to thank the Isaac Newton Institute for
Mathematical Sciences for support and hospitality during the programme “Homo-
topy harnessing higher structures” when work on this paper was undertaken. This
work was supported by EPSRC grant numbers EP/K032208/1 and EP/R014604/1.

1.2. Conventions. All quotients of schemes by group schemes (like Gm) are un-
derstood to be stack quotients. Unless clearly otherwise, all rings and algebras are
assumed to be commutative and unital. Tensor products of quasi-coherent sheaves
are always over the structure sheaf.

2. Modular forms of level 7

Our goal in this section is to understand the ring of modular forms mf(Γ1(7);Z)
with respect to the congruence group Γ1(7) ⊂ SL2(Z) together with the action of
(Z/7)

× ∼= Z/6. We refer for the background about modular forms and in particular
the q-expansion principle to the appendix.

We begin with some recollections about algebraic geometry. We denote byMell

the moduli stack of elliptic curves and byMell its compactification in the sense of
M1 of [12, Chapter III], i.e. the stack classifying generalized elliptic curves whose
geometric fibers are elliptic curves or Néron 1-gons. By M1(n) we denote the
moduli stack of elliptic curves E with chosen point P : S → E of exact order n over
schemes S with n invertible and byM0(n) the moduli stack of elliptic curves with
chosen cyclic subgroup of order n over such schemes. More precisely, we demand
for M1(n) that for every geometric point s : SpecK → S the pullback s∗P spans
a cyclic subgroup of order n in E(K) or, equivalently, that P defines a closed
immersion (Z/n)S → E. Moreover, we call a group scheme over S cyclic if it is
étale locally isomorphic to (Z/n)S .

We can define compactifications M1(n) and M0(n) as the normalizations of
Mell in M1(n) and M0(n), respectively (for the definition of normalization see
Section 5). The relevance for our purposes is that we have isomorphisms

mfk(Γ1(n);Z[ 1
n ]) ∼= H0(M1(n);ω⊗ k) and mfk(Γ0(n);Z[

1

n
]) ∼= H0(M0(n);ω⊗ k).

The relevant case for us is the first one and is explained in Appendix A.

Lemma 2.1. The stack M1(n) is equivalent to P1
Z[ 1
n ]

for 5 ≤ n ≤ 10 and n = 12.
For n = 7, the line bundle ω corresponds to O(2).

Proof. The first statement is proven in Section 2 of [38]. The Picard group of P1
Z[ 1
n ]

is isomorphic to Z. Indeed, by [19, Prop 6.5c], we have a short exact sequence

0→ Z→ PicP1
Z[ 1
n ] → PicA1

Z[ 1
n ] → 0,

where the first map is split by degree and PicA1
Z[ 1
n ]
∼= PicZ[ 1

n ] = 0 by [19, Prop
6.6].
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Thus, we have only to compute the degree of ω onM1(7). In general, the degree
of ω onM1(n) is 1

24n
2
∏
p|n

(1− 1
p2 ) [38, Lemma 4.3]. So we conclude that for n = 7,

the degree is 2. �

This directly implies that mf(Γ1(7);Z[ 1
7 ]) is isomorphic to the subalgebra of

Z[ 1
7 ][x, y] of polynomials of even degree. Next, we want to determine the action of

(Z/7)
× ∼= Z/6 on mf(Γ1(7);Z[ 1

7 ]). Observe that the action of Γ0(7)/Γ1(7) ∼= (Z/7)
×

by precomposition is the same as the action induced by the inverse of the (Z/7)
× ∼=

Z/6-action on the torsion points of precise order 7 in the modular interpretation as
discussed in Remark A.9.

We will use Eisenstein series to identify mf1(Γ1(7);C) explicitly together with the
(Z/7)×-action on it. As explained in [14, Section 3.9], the genus of X1(7) ∼=M1(7)C
is 0 (cf. Appendix A for discussion), and using [14, Theorem 3.6.1], we conclude
that there are no cusp forms of weight 1 in mf(Γ1(7);C). Thus there is a basis of
Eisenstein series of weight 1 for mf1(Γ1(7);C), which we will describe.

Fix the generator t = [3] in (Z/7)×, inducing an isomorphism (Z/7)× ∼= Z/6.
Then the three odd characters ϕ1, ϕ2, ϕ3 : (Z/7)× → C× are described by

ϕ1(t) = ζ6,

ϕ2(t) = −1,

ϕ3(t) = −ζ6 + 1,

where ζ6 = exp( 2πi
6 ) is a sixth primitive root of unity.

By [14, Theorem 4.8.1], there are (modified) Eisenstein series E(ϕ1), E(ϕ2),
E(ϕ3) which form the basis of mf1(Γ1(7);C) and on which the Z/6-action is de-
scribed exactly by the multiplication with the respective character. From [14, Sec-
tion 4.8 and Formula (4.33)] (or [7]) we obtain

E(ϕj)(τ) = − 1

14

6∑
n=1

nϕj(n) +

∞∑
k=1

 ∑
l|k,l>0

ϕj(l)

 qk, with q = exp(2πiτ).

MAGMA-calculations suggest to consider the following modular forms
in mf1(Γ1(7);C):

z1 =
1

3
(3ζ6 − 1)E(ϕ1) +

2

3
E(ϕ2) +

1

3
(−3ζ6 + 2)E(ϕ3),

z2 =
1

3
(−ζ6 − 2)E(ϕ1) +

2

3
E(ϕ2) +

1

3
(ζ6 − 3)E(ϕ3),

z3 =
1

3
(−2ζ6 + 3)E(ϕ1) +

2

3
E(ϕ2) +

1

3
(2ζ6 + 1)E(ϕ3).

Note that the base change matrix

1

3

 3ζ6 − 1 −ζ6 − 2 −2ζ6 + 3
2 2 2

−3ζ6 + 2 ζ6 − 3 2ζ6 + 1


has determinant 2

27 (84ζ6 − 42), which is invertible in C. Thus, z1, z2, z3 form a new
C-basis of mf1(Γ1(7);C).

Lemma 2.2. The zj have only Z-coefficients in their q-expansion.
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Proof. Denote the coefficient of qn in zj by cn(zj).
First, we compute c0(zj). This calculation is somewhat different from the ones

for higher coefficients:

c0(z1) =
1

3
(3ζ6 − 1) ·

(
− 1

14

6∑
n=1

nϕ1(n)

)
+

2

3
·

(
− 1

14

6∑
n=1

nϕ2(n)

)

+
1

3
(−3ζ6 + 2) ·

(
− 1

14

6∑
n=1

nϕ3(n)

)

Evaluating the sum for ϕ1, we obtain

6∑
n=1

nϕ1(n) = 1 + 2ζ2
6 + 3ζ6 + 4ζ4

6 + 5ζ5
6 + 6ζ3

6 .

Using ζ2
6 = ζ6 − 1 and ζ3

6 = −1, we obtain

6∑
n=1

nϕ1(n) = 1 + 2(ζ6 − 1) + 3ζ6 − 4ζ6 − 5(ζ6 − 1)− 6

= − 4ζ6 − 2.

For ϕ2, we obtain

6∑
n=1

nϕ2(n) = 1 + 2− 3 + 4− 5− 6 = −7.

For ϕ3, recall that 1− ζ6 = ζ5
6 , so we obtain

6∑
n=1

nϕ3(n) = 1 + 2ζ4
6 + 3ζ5

6 + 4ζ2
6 + 5ζ6 + 6ζ3

6 .

Using the properties of ζ6 again, we obtain

6∑
n=1

nϕ3(n) = 1− 2ζ6 + 3(1− ζ6) + 4(ζ6 − 1) + 5ζ6 − 6

= 4ζ6 − 6.

Inserting this values into the formula for c0(z1), we obtain

c0(z1) =
1

3
(3ζ6 − 1) ·

(
− 1

14
(−4ζ6 − 2)

)
+

1

3

+
1

3
(−3ζ6 + 2) ·

(
− 1

14
(4ζ6 − 6)

)
= 0.
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Next, we use the values computed above to compute c0(z2):

c0(z2) =
1

3
(−ζ6 − 2) ·

(
− 1

14

6∑
n=1

nϕ1(n)

)
+

2

3
·

(
− 1

14

6∑
n=1

nϕ2(n)

)

+
1

3
(ζ6 − 3) ·

(
− 1

14

6∑
n=1

nϕ3(n)

)

=
1

3
(−ζ6 − 2) ·

(
− 1

14
(−4ζ6 − 2)

)
+

1

3

+
1

3
(ζ6 − 3) ·

(
− 1

14
(4ζ6 − 6)

)
= 0.

Finally, we compute c0(z3):

c0(z3) =
1

3
(−2ζ6 + 3) ·

(
− 1

14

6∑
n=1

nϕ1(n)

)
+

2

3

(
− 1

14

6∑
n=1

nϕ2(n)

)

+
1

3
(2ζ6 + 1) ·

(
− 1

14

6∑
n=1

nϕ3(n)

)

=
1

3
(−2ζ6 + 3) ·

(
− 1

14
(−4ζ6 − 2)

)
+

1

3

+
1

3
(2ζ6 + 1) ·

(
− 1

14
(4ζ6 − 6)

)
= 1.

Now we will show that ck(zj) for k > 0 and j ∈ {1, 2, 3} is always an integer.
This is somewhat different from the previous argument. For z1, we obtain

ck(z1) =
1

3
(3ζ6 − 1) ·

 ∑
l|k,l>0

ϕ1(l)

+
2

3
·

 ∑
l|k,l>0

ϕ2(l)


+

1

3
(−3ζ6 + 2) ·

 ∑
l|k,l>0

ϕ3(l)


=

∑
l|k,l>0

1

3
((3ζ6 − 1)ϕ1(l) + 2ϕ2(l) + (−3ζ6 + 2)ϕ3(l)) .

where l denotes also its congruence class in Z/7.
We give the values of the summands depending on l: (Note we would only need

to compute the values for one half because of the symmetry)

l mod 7 0 1 2 3 4 5 6
Summand 0 1 −1 −2 2 1 −1

In particular, the sum we obtain has only integer summands, thus is itself an integer.
We now look at z2:
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ck(z2) =
1

3
(−ζ6 − 2) ·

 ∑
l|k,l>0

ϕ1(l)

+
2

3
·

 ∑
l|k,l>0

ϕ2(l)


+

1

3
(ζ6 − 3) ·

 ∑
l|k,l>0

ϕ3(l)


=

∑
l|k,l>0

1

3
· ((−ζ6 − 2)ϕ1(l) + 2ϕ2(l) + (ζ6 − 3)ϕ3(l))

We give again the values of the summands depending on l:

l mod 7 0 1 2 3 4 5 6
Summand 0 −1 2 −1 1 −2 1

Finally, for z3 we obtain:

ck(z3) =
1

3
(−2ζ6 + 3) ·

 ∑
l|k,l>0

ϕ1(l)

+
2

3

 ∑
l|k,l>0

ϕ2(l)


+

1

3
(2ζ6 + 1) ·

 ∑
l|k,l>0

ϕ3(l)


=

∑
l|k,l>0

1

3
· ((−2ζ6 + 3)ϕ1(l) + 2ϕ2(l) + (2ζ6 + 1)ϕ3(l)) .

Again, we put the values of the summands depending on l into a table:

l mod 7 0 1 2 3 4 5 6
Summand 0 2 1 1 −1 −1 −2

Thus, we have seen that all coefficients of z1, z2, z3 in the q-expansion are integers,
so we have z1, z2, z3 ∈ mf1(Γ1(7);Z). �

We want to show that z1, z2, z3 ∈ mf1(Γ1(7);Z) is a basis. For this, we consider
the q-expansions of z1, z2, z3 modulo q3:

z1 ≡ q mod q3

z2 ≡ −q + q2 mod q3

z3 ≡ 1 +2q + 3q2 mod q3

The right hand sides form obviously a Z-basis of ZJqK/(q3). Thus, mf1(Γ1(7);Z)→
ZJqK/(q3) is surjective. Since the composite

mf1(Γ1(7);Z)⊗C→ mf1(Γ1(7);C)→ CJqK/(q3)

is as a composition of an injection and a surjection between 3-dimensional C-vector
spaces an injection as well, we conclude that mf1(Γ1(7);Z)→ ZJqK/(q3) is actually
an isomorphism. This implies that z1, z2, z3 ∈ mf1(Γ1(7);Z) is indeed a basis. The
same is thus true in mf1(Γ1(7);Z[ 1

7 ]).
Our next goal is to understand all of mf1(7) in terms of zi’s. We will prove the

following proposition:
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Proposition 2.3. There is an isomorphism of rings

Z
[

1
7

]
[z1, z2, z3]/(z1z2 + z2z3 + z3z1)→ mf(Γ1(7);Z

[
1
7

]
).

Proof. We will first show that the relation z1z2 + z2z3 + z3z1 = 0 is satisfied in
mf2(Γ1(7);Z). For this, we will use an analogous argument as for z1, z2, z3 being a
basis of weight 1 modular forms. More precisely, we will consider the q-expansion
of the modular forms zizj for 1 ≤ i ≤ j ≤ 3 modulo q5. This will be enough as we
will see below.

First, the zi themselves are given

z1 ≡ q −q3 + 2q4 mod q5

z2 ≡ −q + q2 −2q3 + 2q4 mod q5

z3 ≡ 1 +2q + 3q2 +3q3 + 2q4 mod q5

One computes the following products of those:

z2
1 ≡ q2 −2q4 mod q5

z1z2 ≡ −q2 + q3 −q4 mod q5

z1z3 ≡ q +2q2 + 2q3 +3q4 mod q5

z2
2 ≡ q2 − 2q3 +5q4 mod q5

z2
3 ≡ 1 + 4q +10q2 + 18q3 +25q4 mod q5

z2z3 ≡ − q −q2 − 3q3 −2q4 mod q5

First, observe that we immediately obtain that the q-expansion of z1z2 +z2z3 +z3z1

is 0 mod q5. Next, we observe that the matrix mapping the basis 1, q, q2, q3, q4 to
the truncated power series for z2

1 , z1z2, z1z3, z
2
2 , z

2
3 is

0 0 0 0 1
0 0 1 0 4
1 −1 2 1 10
0 1 2 −2 18
−2 −1 3 5 25


The determinant of this matrix is 1; thus it is invertible over Z and the first 5
truncated power series above are a basis of ZJqK/(q5). This implies that a Γ1(7)-
modular form of weight 2 is zero iff its q-expansion is zero modulo q5 since using
the formulae of [14, Section 3.9], the vector space mf2(Γ1(7);C) is 5-dimensional.
This in turn implies the relation.

We have noted before that

mf(Γ1(7);Z[ 1
7 ]) ∼= H0(M1(7);ω⊗∗) ∼= H0(P1

Z[
1
7 ]

;O(2∗)).

Thus, this ring is abstractly isomorphic to polynomials of even degree in variables of
degree 1 (and the degree of the modular form is half the degree of the polynomial).
The ring of such polynomials is generated by the three monomials of degree 2 with
one quadratic relation between those. Thus, the ring mf(Γ1(7);Z

[
1
7

]
) is generated

in degree 1 and so by the z1, z2, z3. Thus, we get a surjective map

Z[ 1
7 ][z1, z2, z3]/(z1z2 + z2z3 + z3z1)→ mf(Γ1(7);Z[ 1

7 ]),

which has to be an isomorphism by counting the ranks. �
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Next, we want to identify the (Z/7)× action on the left-hand side in terms of the
generator t = [3] ∈ (Z/7)×, where we use the conventions from Remark A.9.

Lemma 2.4. The action of (Z/7)× on mf(Γ1(7);Z[ 1
7 ]) is given by t.z1 = −z3 and

t.z2 = −z1 and t.z3 = −z2.

Proof. Recall that we already know the action on the Eisenstein series by definition,
so we can conclude as follows:

t.z1 =
1

3
(3ζ6 − 1)ϕ1(t)E(ϕ1) +

2

3
ϕ2(t)E(ϕ2) +

1

3
(−3ζ6 + 2)ϕ3(t)E(ϕ3)

=
1

3
(3ζ6 − 1)ζ6E(ϕ1)− 2

3
E(ϕ2) +

1

3
(−3ζ6 + 2)(−ζ6 + 1)E(ϕ3)

=
1

3
(2ζ6 − 3)E(ϕ1)− 2

3
E(ϕ2)− 1

3
(2ζ6 + 1)E(ϕ3)

= −z3.

Similarly, one obtains t.z2 = −z1 and t.z3 = −z2. �

Note that the resulting action on Z[z1, z2, z3] makes it isomorphic as a Z/6 ∼=
Z/2 × Z/3-representation to Zsign ⊗ Z[z1, z2, z3], where Zsign is the permutation
representation of Z/2 and Z/3 acts on Z[z1, z2, z3] now permuting the variables as
indicated above. We record without proof the following consequence.

Proposition 2.5. If we denote by σ1, σ2, σ3 ∈ Z[z1, z2, z3] the elemen-
tary symmetric polynomials, we obtain that the invariants mf(Γ0(7);Z[ 1

7 ]) ∼=
H0(Z/6,Z[z1, z2, z3]/σ2) are the even degrees of the free Z[σ1, σ3]-module on 1 and
z2

1z2 + z2
2z3 + z2

3z1.

3. q-expansion of αi as Γ1(7)-modular forms using Tate curve

The aim of this section is to obtain q-expansions for the coefficients of the Weier-
straß equations of elliptic curve with a Γ1(7)-level structure. It is known that for
such curves, the coefficients of the Weierstraß equations yield at least meromorphic
Γ1(7)-modular forms. Our computations show that they are indeed holomorphic,
and thus we can identify them under the isomorphism of Proposition 2.3 with poly-
nomials in z1, z2, z3.

3.1. Coordinates for generalized elliptic curves. In this section, we will need
some results about Weierstraß equations for generalized elliptic curves in the sense
of [12, Definition II.1.12]. In the following theorem we will summarize the necessary
input from [11, §1].

Theorem 3.1. Let S be a scheme and let p : E → S be a generalized elliptic curve
whose geometric fibers are either smooth or Néron 1-gons. Let furthermore (e) be
the relative Cartier divisor defined by the unit section e : S → E.

(a) The sheaves p∗OE(ke) are locally free of rank k for k > 0 and are related
by short exact sequences

0→ p∗OE((k − 1)e)→ p∗OE(ke)→ ω
⊗(−k)
E → 0(3.2)

for k > 1. The morphisms OS → p∗OE → p∗OE(e) are isomorphisms.
Moreover, R1p∗O(ke) = 0 for k > 0.
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(b) Zariski locally one can choose a trivialization of ωE and splittings of (3.2)
for k = 2 and 3 and these choices define a trivialization

(1, x, y) : O3
S

∼=−→ p∗O(3e).

This gives rise to a closed embedding E → P2
S with image cut out by a cubic

equation
y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6

with a1, a2, a3, a4, a6 ∈ Γ(OS) and the ai are completely determined by the
previous choices.

Remark 3.3. We want to discuss the role of gradings in the preceding theorem. Let
p : E → S be a generalized elliptic curve as in the theorem with chosen splittings of
(3.2) for k = 2 and k = 3. This yields an isomorphism

p∗OE ∼= OS ⊕ ω⊗(−2)
E ⊕ ω⊗(−3)

E .

Let q : T → S be a morphism with a trivialization OT
ω−→ ωET , where pT : ET → T

is the pullback of p along q. By [50, Proposition 4.37], the natural map q∗p∗OE →
pT∗OET is an isomorphism. The resulting isomorphism O3

T → pT∗OET sends the
basis (1, 1, 1) to (1, x, y) and we get associated quantities ai ∈ Γ(OT ). Changing
the trivialization to λω for some λ ∈ Gm(T ) produces new coordinates (1, x′, y′) =
(1, λ−2x, λ−3y) with associated quantities a′i = λ−iai.

In particular, we can consider the Gm-torsor q : T → S given by T =
Spec

(⊕
i∈Z ω

⊗ i
E
)
. This comes with a canonical trivialization of q∗ωE ∼= ωET from

(A.4), and this produces elements ai ∈ Γ(OT ). The computation above shows that
the degree of ai is i, where the grading on Γ(OT ) comes from the Gm-action on T
or equivalently from the identification with

(⊕
i∈Z ω

⊗ i
E
)

(S).

The following standard fact will be needed for the proof of Proposition 3.5.

Lemma 3.4. Let R be a nonnegatively graded ring, Z the vanishing locus of the
ideal generated by the positive degree homogeneous elements and U its complement
in SpecR. Then U/Gm is separated.

Proof. By the valuative criterion it suffices to show that for every valuation ring
V with field of fractions K, the map pV : (U/Gm)(V )→ (U/Gm)(K) of groupoids
is fully faithful [29, Proposition 7.8]. As every Gm-torsor over V is trivial, the
groupoid (U/Gm)(V ) is equivalent to one with objects ring morphisms f : R → V
such that f(r) is invertible for some r homogeneous of positive degree. A morphism
g → f is given by an element λ ∈ Gm(V ) such that g(r) = λif(r) for all homo-
geneous r of degree i. The description of (U/Gm)(K) is analogous. As Gm(V )
includes into Gm(K), we see that pV is faithful. Now suppose that f, g : R → V
are two objects in (U/Gm)(V ) and λ ∈ Gm(K) satisfies g(r) = λif(r) for all ho-
mogeneous r of degree i. We can choose an r ∈ R such that f(r) is invertible in
V and thus λi ∈ V and hence λ ∈ V as V is normal. Repeating this argument for
an r′ ∈ R such that g(r′) is invertible yields that λ−1 ∈ V and hence λ ∈ Gm(V ).
Thus pV is full. �

Proposition 3.5. Let

π : M1

1(n) = Spec

(⊕
i∈Z

ω⊗ i

)
→M1(n)
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be the Gm-torsor trivializing ω. Let p : E →M1(n) be the generalized elliptic curve
classified by the natural mapM1(n)→Mell.

Then there are

a1, . . . , a6 ∈ mf1(n) = H0(M1

1(n),OM1
1(n)

)

with |ai| = i such that the generalized elliptic curve π∗E is defined by the cubic
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Consider moreover the canonical morphism M1

1(n) → Spec mf1(n). It is an open
immersion onto the complement of the common vanishing locus of c4 and ∆ for the
usual quantities c4 and ∆ associated with a1, . . . , a6. Moreover, c4 and ∆ coincide
with the images of the classes with the same name along mf1(1)→ mf1(n).

Proof. To apply Theorem 3.1 and Remark 3.3, it suffices to show that the inclusions

p∗OE((k − 1)e)→ p∗OE(ke)
split for k > 1. By induction, we can assume p∗OE((k − 1)e) to be isomorphic to
OM1(n) ⊕ ω⊗(−2) ⊕ · · · ⊕ ω⊗(−k+1). The vector bundle p∗OE(ke) is an extension of
p∗OE((k − 1)e) and ω⊗(−k) and thus we have to show the vanishing of a class χ in

ExtOM1(n)
(ω⊗(−k), p∗OE((k − 1)e)) ∼= H1(M1(n);ω⊗ k ⊕ ω⊗(k−2) ⊕ · · · ⊕ ω)

The vanishing result [38, Proposition 2.14] implies that the projection to

ExtOM1(n)
(ω⊗(−k), p∗OE((k − 1)e)/p∗OE((k − 2)e)) ∼= H1(M1(n);ω)

is an isomorphism and thus it suffices to show the vanishing of the projection χ′

of χ. As E is the pullback of the universal generalized elliptic curve Euni →Mell

alongM1(n)→Mell, the class χ′ actually lies in the image from

ExtOMell
(ω⊗(−k), p∗OEuni((k − 1)e)/p∗OEuni((k − 2)e)) ∼= H1(Mell;ω) ∼= Z/2,

whose non-trivial element we call η. As shown in [38, Proposition 2.16], the image
of η in H1(M1(n);ω) is trivial and thus the inclusions p∗OE((k− 1)e)→ p∗OE(ke)
are split for k > 1.

As ω is ample on M1(n) [39, Lemma 5.11], the pullback π∗ω on M1

1(n) is
both trivial and ample and thus M1

1(n) is quasi-affine, i.e. the canonical mor-
phism M1

1(n) → SpecH0(M1

1(n),OM1
1(n)

) = Spec mf1(n) is an open immersion
[18, Propositions 13.83 and 13.80]. As a cubic curve defines a generalized elliptic
curve only if c4 and ∆ vanish nowhere simultaneously [46, Proposition III.1.4], we
see that the immersion M1

1(n) → Spec mf1(n) has image in the complement U of
the common vanishing locus of c4 and ∆. Note that the inclusion M1

1(n) → U is
Gm-equivariant.

By Lemma 3.4, U/Gm is separated. As M1(n) is proper over SpecZ[ 1
n ] and

U/Gm is separated, we obtain analogously to [19, Corollary II.4.6] that the open
immersion M1(n) ↪→ U/Gm is proper. Thus, the image is closed and M1(n) ↪→
U/Gm is an isomorphism.

The last point is an instance of the following more general observation. If
S → Mell classifies a generalized elliptic curve E → S given by a Weierstraß
equation, then the images of c4,∆ ∈ H0(Mell;ω

⊗∗) in H0(S;ω⊗∗E ) coincide with
the corresponding polynomials in the coefficients ai of the Weierstraß equation. �
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Lemma 3.6. Let E → S := SpecR be an elliptic curve given by a Weierstraß
equation. Assume that the degrees of the associated quantities ai ∈ Γ(OS) = R have
degree i, where the grading on Γ(OS) comes from a Gm-action on S (equivalently, a
grading on R). Let there furthermore be a section P : S → E of exact order n ≥ 3.
Then there are coordinates for E such that the associated Weierstraß equation is of
the form

y2 + α1xy + α3y = x3 + α2x
2

and P corresponds to the point (0, 0) and |αi| = i.

This special form of the Weierstraß equation is called Tate normal form or also
sometimes Kubert–Tate normal form.

Proof. We perform a similar transformation as in the proof of [4, Theorem 1.1.1].
First, observe from formulae in [46, Section III.1] that any Weierstraß equation of
the form

y2 + a1xy + a3x = x3 + a2x
2 + a4x+ a6

can be transformed so that the chosen torsion point (x0, y0) on this curve is moving
to (0, 0). This transformation has the transformation parameter

r = x0, t = y0, s = 0.

Thus we may assume a6 = 0 and the torsion point to be (0, 0). Over any field
K, it follows from [23, Remark 4.2.1] that if a3 = 0 over this field, then (0, 0) would
be either singular or a 2-torsion point, contradicting the assumption that it is a
torsion point of strict order n ≥ 4. Thus, a3 is invertible in R since it maps to a
non-zero element in every field for any ring map R→ K.

This allows to define a transformation with transformation parameters

r = 0, t = 0, s =
a4

a3
,

and the resulting coefficients are

y2 + α1xy + α3y = x3 + α2x
2.

�

Remark 3.7. If we start with the Weierstraß equation y2 +a1xy+a3x = x3 +a2x
2 +

a4x+ a6 as above, we want to record for later use the values of αi obtained by the
procedure in the proof of the lemma above. Denote by s′ the auxiliary quantity
(the invertibility of the denominator follows from the lemma above)

s′ =
a4 + 2a2x0 − a1y0 + 3x2

0

a3 + a1x0 + 2y0
.

Then we obtain

α1 =
a1a3 + 2a4 + (a2

1 + 4a2)x0 + 6x2
0

a3 + a1x0 + 2y0

α2 =a2 + 3x0 − a1s
′ − (s′)2

α3 =a3 + a1x0 + 2y0.
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3.2. The q-expansions of the αi. In the last subsection, we showed that the
universal elliptic curve overM1

1(n) has a Weierstraß equation in Tate normal form
and that the corresponding quantities αi are meromorphic modular forms (i.e. el-
ements in H0(M1

1(n);OM1
1(n))) of degree i. In this subsection, we will show that

the αi are actually holomorphic modular forms and provide a general formula for
the q-expansion. This will allow us to identify them with explicit polynomials in
the zi in the case n = 7. Our first goal will be to prove a criterion how to check
that a meromorphic Γ1(n)-modular form is actually holomorphic.

Given a matrix γ =

(
a b
c d

)
∈ GL2(R) with positive determinant, an integer k

and a meromorphic function g : H → C, one defines a new meromorphic function
g[γ]k as follows:

g[γ]k : H→ C

z 7→ (cz + d)−kg

(
az + b

cz + d

)
.

Moreover, if g was holomorphic, so is g[γ]k.
Whether a Γ1(n)-modular form g of weight k(in the analytic sense) is holomor-

phic, can by definition be checked as follows: For representatives γ =

(
a b
c d

)
of

cosets SL2(Z)/Γ1(n), we need the map g[γ]k, given by

z 7→ (cz + d)−kg

(
az + b

cz + d

)
to be holomorphic at ∞.

Let g ∈ Natk(EllΓ1(n)(−),Γ(−)) be a Katz modular form over C. Let β1(g)
denote the corresponding complex modular form as in Lemma A.15. We want to

analyze the effect of γ =

(
a b
c d

)
∈ SL2(Z) on this modular form.

τ 7→ β1(g)

(
aτ + b

cτ + d

)
= g

(
C/Z + Zn

aτ + b

cτ + d
, dz,

aτ + b

cτ + d

)
Similarly to e.g. [13, Section 4], we use certain operators to rephrase holomorphy

of a Γ1(n)-modular forms.

Lemma 3.8. Let g : H → C be a meromorphic Γ1(n)-modular form of weight k.
Then g is holomorphic if and only if the map

Wmg := g[Wm]k : H→ C

τ 7→ (mτ)−kg

(
− 1

mτ

)
is holomorphic at ∞ for some fixed divisor m ≥ 1 of n, where Wm denotes the

matrix
(

0 −1
m 0

)
.

Proof. Given any matrix γ =

(
a b
c d

)
∈ Γ1(n), observe that the matrix

WmγW
−1
m =

(
d − c

m
−bm a

)
also lies in Γ1(n). By [14, Lemma 1.2.2], the oper-

ation γ → g[γ]k is compatible with matrix multiplication in SL2(Z) and the same
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computation shows that it is also true for matrices in GL2(R)+. We obtain the
identity

((g[Wm]k)[γ]k)(τ) = g[WmγW
−1
m ]k[Wm]k(τ).

Thus the map g[Wm]k is itself a Γ1(n)-weak modular form and asking for holomor-
phy at ∞ makes sense.

As W1 ∈ SL2(Z), we see that W1 SL2(Z)W−1
1 = SL2(Z) and thus g is holomor-

phic if and only if g[W1]k is holomorphic. This proves the statement for m = 1.
Otherwise, observe that

g[Wm]k(τ) = g[W1]k(mτ).

Thus, the claim follows from the fact that a function satisfying the Γ1(n)-
transformation formula is holomorphic at ∞ if and only if it is bounded as
Im(τ)→∞. �

For the next lemma recall the Tate curve Tate(qn) from the discussion after
Theorem A.18, as well as the description of torsion points on this curve.

Lemma 3.9. Let g ∈ Natk(EllΓ1(n)(−),Γ(−)) be a Katz modular form over C.
Assume that the evaluation at the Tate curve Tate(qn) with its invariant differential
ηcan over Convqn yields a power series (as opposed to a general Laurent series)
for any choice of torsion point (X(ζdqc, qn), Y (ζdqc, qn), 1). Then the associated
modular form β1(g) ∈ MF(Γ1(n);C) is actually holomorphic.

Proof. Throughout this proof, let τ be an arbitrary point in the upper half plane.
By definition, β1(g)(τ) = g(C/Z + nτZ, dz, τ). We claim that (Wnβ1(g))(τ) =
(−n)−kg(C/Z + τZ, dz, 1

n ). Indeed, multiplication by −τ induces an isomorphism
from the elliptic curve C/Z + n −1

nτ Z to C/Z + τZ. Thus, (C/Z + n −1
nτ Z, dz,

−1
nτ )

is isomorphic to (C/Z + τZ, (−τ)−1dz, 1
n ). We obtain

(Wnβ1(g))(τ) = (nτ)−kβ1(g)(− 1

nτ
) = (nτ)−k(−τ)kg(C/Z + τZ, dz,

1

n
)

as was to be shown.
The assignment g′ : H→ C, given by τ 7→ g(C/Z+ τZ, dz, 1

n ), can be checked to
define a meromorphic Γ1(n)-modular form. In particular, it suffices by Lemma 3.8
and our previous computation to show that g′ is holomorphic. By definition, this
means that all g′[γ]k are holomorphic at ∞, where γ runs over the cosets Γ1(n) \

SL2(Z). If we write γ =

(
a b
c d

)
, we have

g′[γ]k(τ) = (cτ + d)−kg

(
C/Z +

aτ + b

cτ + d
Z, dz,

1

n

)
= g

(
C/Z +

aτ + b

cτ + d
Z, (cτ + d)dz,

1

n

)
= g

(
C/Z + τZ, dz,

cτ + d

n

)
= g

(
C×/qnZ0 ,

du

u
, ζdqc0

)
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with q0 = e2πiτ . Recall that over Convqn , we have the Tate curve with chosen
torsion point (Eqn , η

can, (X(ζdqc, qn), Y (ζdqc, qn), 1)). If we pull it back the evalu-
ation map evq0 : Convqn → C, the resulting elliptic curve with chosen torsion point
is isomorphic to

(
C×/qnZ0 , duu , ζ

dqc0
)
. By naturality, the values of g are also related

via evq0 . Recall that g(Eqn , η
can, (X(ζdqc, qn), Y (ζdqc, qn), 1)) is a power series by

assumption. Thus, g′[γ] is holomorphic at ∞ for every γ ∈ SL2(Z).
�

From now on we will assume n ≥ 3. Our aim now is to compute the q-expansions
of the coefficients αi of the Tate normal form

y2 + α1xy + α3y = x3 + α2x
2

for the Tate curve Tate(qn) given by y2 + xy = x3 + a4(qn)x+ a6(qn) over Convqn

with a chosen n-torsion point (x0, y0). The values from Remark 3.7 specialize to

s′ =
a4(qn)− y0 + 3x2

0

x0 + 2y0
,

α1 =
x0 + 6x2

0 + 2a4(qn)

x0 + 2y0
,

α2 = 3x0 − s′ − (s′)2,

α3 = x0 + 2y0.

Next, we want to specify the torsion point (x0, y0) on the Tate curve Tate(qn).
We use methods from [47, Section V.3], to simplify the expressions for X(vqk, qn)
and Y (vqk, qn) in our case, where v and q are complex numbers with |v| = 1 and
|q| < 1 and 0 ≤ k < n. First, we reindex the sum over positive natural numbers:

X(vqk, qn) =
∑
m∈Z

vqmn+k

(1− vqmn+k)2
− 2s1(qn),

=
vqk

(1− vqk)2
+
∑
m≥1

(
vqmn+k

(1− vqmn+k)2
+

v−1qmn−k

(1− v−1qmn−k)2

−2
qmn

(1− qmn)2

)
.

Recall the following formulae for |x| < 1, obtained e.g. by differentiating the geo-
metric series:

x

(1− x)2
=
∑
l≥1

lxl and
x2

(1− x)3
=
∑
l≥1

l(l − 1)

2
xl and

x

(1− x)3
=
∑
l≥0

l(l + 1)

2
xl.

Inserting this into the expression for X(vqk, qn), we obtain for k > 0

X(vqk, qn) =
∑
l≥1

lvlqkl +
∑
m≥1

∑
l≥1

(
lvlq(mn+k)l + lv−lq(mn−k)l − 2lqmnl

)
For k = 0 and v 6= 1 we obtain similarly

X(v, qn) =
v

(1− v)2
+
∑
m>0

∑
l|m

l(vl + v−l − 2)

 qmn
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For Y (vqk, qn) we get

Y (vqk, qn) =
∑
m∈Z

v2q2(mn+k)

(1− vqmn+k)3
+ s1(qn),

=
v2q2k

(1− vqk)3
+
∑
m≥1

(
v2q2(mn+k)

(1− vqmn+k)3
− v−1qmn−k

(1− v−1qmn−k)3

+
qmn

(1− qmn)2

)
.

Using again the formulae derived from geometric series, we obtain

Y (vqk, qn) =
∑
l≥2

(l − 1)l

2
vlqkl +

∑
m≥1

∑
l≥1

(
(l − 1)l

2
vlq(mn+k)l

− l(l + 1)

2
v−lq(mn−k)l + lqmnl

)
.

For k = 0 and v 6= 1, we obtain instead

Y (v, qn) =
v2

(1− v)3
+
∑
m>0

∑
l|m

(
l(l − 1)

2
vl − l(l + 1)

2
v−l + 1

) qmn

Lemma 3.10. As before let |q| < 1, |v| = 1 and 0 ≤ k < n. In terms of the
X(vqk, qn) and Y (vqk, qn) the Laurent series α1, α2 and α3 are actually power
series as well if v 6= ±1 if k = 0 or k = n

2 .

Proof. Note that in each of the cases above both X(vqk, qn) and Y (vqk, qn) are not
just Laurent series in q, but actually power series. In particular, so is α3 = X+2Y .
Given the expressions for α1 and α2, we only need to check that

s′ =
a4(qn)−X(vqk, qn) + 3X(vqk, qn)2

X(vqk, qn) + 2Y (vqk, qn)

is a power series to obtain that α1 and α2 are power series as well. In our Tate
curve, we have

a4(qn) = −5s3(qn) = −5
∑
m≥1

σ3(m)qmn

so this power series has n > k as lowest exponent of q. Thus, the lowest power of
q occuring in the numerator is the same as for X (unless the numerator is 0 and
thus s′ = 0). It thus suffices to show that the lowest term of the power series for
X has at least the order of the lowest term of the power series defining X + 2Y . In
the table below we will compute the lowest term in the power series defining X, Y
and X + 2Y in the different cases.
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X Y X + 2Y

k = 0 v
(1−v)2

v2

(1−v)3
v+v2

(1−v)3

0 < k < n
2 vqk higher term vqk

k = n
2 (v + v−1)q

n
2 −v−1q

n
2 (v − v−1)q

n
2

n
2 < k < n v−1qn−k −v−1qn−k −v−1qn−k

Note that v+v2

(1−v)3 = 0 only if v = −1 and v − v−1 = 0 only if v = ±1. �

Proposition 3.11. If n ≥ 3, the universal elliptic curve overM1
1(n) has a Weier-

straß equation of the form

y2 + α1xy + α3y = x3 + α2x
2,

where the αi are holomorphic modular forms in mf(Γ1(n);Z[ 1
n ]) of degree i.

Proof. Lemma 3.10 checks exactly the holomorphicity criterion Lemma 3.9 once we
observe that P = (X(ζdqk, qn), Y (ζdqk, qn), 1) cannot be a point of exact order n
if k = 0 or k = n

2 and ζd = ±1 because this would imply that P is of order 2. �

According to the conventions from Appendix A.4 we obtain the q-expansions of
the αi by specializing to the torsion point (X(q, qn), Y (q, qn), 1) above and use our
explicit expressions of the αi in terms of X and Y .

In our case of n = 7 we obtain the following q-expansions for X and Y :

X = q + 2q2 + 3q3 + 4q4 + 5q5 + 7q6 + 5q7 + 9q8 + · · ·
Y = q2 + 3q3 + 6q4 + 10q5 + 14q6 + 22q7 + 28q8 + · · ·

The form of the q-expansions of z1, z2 and z3 implies that there are elements of
mfk(Γ1(7);Z[ 1

7 ]) with q-expansions of the form qi + higher terms where i runs over
all integers in [0, 2k]. As mfk(Γ1(7);Z[ 1

7 ]) is free of rank 2k+1, these elements form
automatically a basis and thus every element in mfk(Γ1(7);Z[ 1

7 ]) is determined by
its q-expansion modulo q2k+1. Comparing the q-expansions of the zi with those of
the αi using MAGMA implies the following theorem.

Theorem 3.12. The elliptic curve classified by the composition
Spec MF(Γ1(7),Z[ 1

7 ])→M1(7)→Mell is given by the equation

y2 + α1xy + α3y = x3 + α2x
2

with

α1 = z1 − z2 + z3,

α2 = z1z2 + z1z3,

α3 = z1z
2
3 .
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4. Graded Hopf algebroids and stacks

In this section, all gradings can be taken to be either over Z (as convenient in the
algebraic setting) or over 2Z (as convenient in the topological setting) if this choice
is done consistently. In either case, we assume our graded rings to be commutative
and not just graded commutative. All comodules over Hopf algebroids, a notion
which we will recall in this section, are chosen to be left comodules.

4.1. General theory. Let (B,Σ) be a graded Hopf algebroid, i.e. a cogroupoid
object in the category of graded rings. To such a graded Hopf algebroid, we can
associate an ungraded Hopf algebroid (B,Σ[u±1]) as follows. The structure maps
ηL and ε are essentially unchanged. The right unit η(B,Σ[u±1])

R : B → Σ[u±1] is given
via

η
(B,Σ[u±1])
R (x) = uiη

(B,Σ)
R (x)

if x ∈ B is a homogeneous element of degree i. The comultiplication
ψ(B,Σ[u±1]) : Σ[u±1]→ Σ[u±1]⊗B Σ[u±1] is given by

ψ(B,Σ[u±1])(s) = uiψ(B,Σ)(s)

for homogeneous elements s ∈ Σ of degree i and ψ(u) = 1⊗u + u⊗ 1. One can
show that the category of (evenly) graded comodules over (B,Σ) is equivalent to
that of comodules over (B,Σ[u±1]).

In the following, we will assume that (B,Σ) is flat, i.e. that Σ is flat as a B-
module. We observe that Σ is flat as a B-module with respect to left module
structure given by ηL if and only if it is flat as a B-module with respect to the right
module structure given by ηR.

Definition 4.1. The associated stack for a graded Hopf algebroid (B,Σ) is the
stack X (B,Σ) associated to the (ungraded) Hopf algebroid (B,Σ[u±1]) defined
above, i.e. the stackification of the represented presheaf of groupoids.

As explained in [41, Section 3] the stack X = X (B,Σ) is automatically algebraic
in the sense of op. cit. and actually an Artin stack if Σ is a finitely presented B-
algebra (see [29, Théorème 10.1]). Moreover, it comes with a map SpecB → X and
the pullback SpecB ×X SpecB can be identified with Spec Σ[u±1]. The pullback

QCoh(X )→ QCoh(SpecB) ' B -mod

refines to an equivalences from QCoh(X ) to (B,Σ[u±1])-comodules by [41, Section
3.4].

Example 4.2. Let B be a graded ring viewed as a graded Hopf algebroid (B,B). Its
associated stack is SpecB/Gm with the Gm action corresponding to the grading.
Graded B-modules are the same as graded comodules over (B,B) and are thus
equivalent to QCoh(SpecB/Gm).

Composing the equivalence betweeen QCoh(X ) and (B,Σ[u±1])-comodules and
between the latter and graded (B,Σ)-comodules, we obtain the following.

Proposition 4.3. The map (idB , ε) : (B,Σ) → (B,B) of graded Hopf algebroids
induces a map fB : SpecB/Gm → X and the pullback functor (fB)∗ : QCoh(X )→
QCoh(SpecB/Gm) refines to an equivalence of quasi-coherent sheaves on X to
graded comodules over (B,Σ).
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As just described, the pullback functor QCoh(X ) → QCoh(SpecB/Gm) trans-
lates into the forgetful functor from graded (B,Σ)-comodules to graded B-
modules. This forgetful functor has a right adjoint, sending a graded B-module
M to the extended graded (B,Σ)-comodule Σ⊗BM with the comodule structure
ψ⊗ idM : Σ⊗BM → Σ⊗B Σ⊗BM [44, Definition A1.2.1]. Under the equivalence
above this translates into the right adjoint fB∗ : QCoh(SpecB/Gm) → QCoh(X )
to (fB)∗.

The pullback SpecB ×X SpecB/Gm can be identified with Spec Σ and the Gm-
action on SpecB induces a Gm-action on Spec Σ that corresponds to the grading on
Σ. By [41, Section 3.3], the map SpecB → X is fpqc and as SpecB → SpecB/Gm
is also fpqc, SpecB/Gm → X is fpqc as well.

In the next lemma we investigate what happens after base change along a mor-
phism B → C.

Lemma 4.4. Let B → C and B → D be grading preserving ring morphisms. This
induces a morphism fC : SpecC/Gm → SpecB/Gm → X and similarly for D.

(1) The pullback SpecB×X SpecC/Gm is equivalent to Spec Σ⊗B C, where Σ
is a B-module via the right unit ηR.

(2) Under the equivalence from Proposition 4.3, the quasi-coherent sheaf
fC∗ OSpecC/Gm corresponds to the extended (B,Σ)-comodule structure on
Σ⊗B C.

(3) The pullbacks SpecC×X SpecD/Gm and SpecD/Gm×X SpecC are equiv-
alent to Spec Ω with Ω = C ⊗B Σ⊗B D or Ω = D⊗B Σ⊗B C, respectively.
If C = D and the maps B → C coincide, then (C,Ω) obtains the structure
of a graded Hopf algebroid.

(4) The stack associated with (C,Ω) is equivalent to X .

Proof. Recall that SpecB ×X SpecB/Gm ' Spec Σ. Pulling back along
SpecC/Gm → SpecB/Gm gives the equivalence in the first item. The sec-
ond item follows by the remarks above as we can factor fC into the map
SpecC/Gm → SpecB/Gm and fB . Pulling back the equivalence from the first
item along SpecD → SpecB gives the equivalences in the third item. The pullback
SpecC×X SpecC is of the form Ω[u±1] for analogous reasons. By [41, Section 3.3],
X is the stack associated with the (ungraded) Hopf algebroid (C,Ω[u±1]) and thus
also with the graded Hopf algebroid (C,Ω). �

4.2. Stacks related to elliptic curves. Recall that we are working with the
moduli stack of elliptic curvesMell. Let

A := Z[a1, a2, a3, a4, a6] and Γ := A[r, s, t].

There is an element ∆ ∈ A corresponding to the discriminant for cubical curves,
see e.g. [46, Section III.1] for a precise formula. The stack Mell is equivalent to
the stack associated with the graded Weierstraß Hopf algebroid (A[∆−1],Γ[∆−1])
in the sense recalled in Section 4.1. For the precise structure maps, see e.g. [2];
note the name comes from the fact that this Hopf algebroid is related to Weierstraß
equation for elliptic curves and the right unit ηR comes from change-of-coordinates
formulas for these. Our grading convention is that |ai| = i.

One observes that the structure maps do not use the fact that ∆ was involved,
so one can consider the graded Weierstraß Hopf algebroid (A,Γ).
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Definition 4.5. Let the moduli stack of cubical curves Mcub be the Artin stack
associated with the graded Weierstraß Hopf algebroid (A,Γ).

The name is justified, as there is a modular interpretation for this stack, see
[32, Section 3.1], and in particular the morphism SpecA → Mcub classifies the
Weierstraß cubical curve over A given by the usual equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We record the relationship with the moduli stack of elliptic curves.

Lemma 4.6. There is a pullback square

SpecA[∆−1] SpecA

Mell Mcub

In particular, Mcub contains Mell as an open substack and the inclusion is an
affine morphism.

Proof. The existence of the pullback square corresponds to the fact that a cubical
curve given by a Weierstraß equation is an elliptic curve if and only if its discrimi-
nant ∆ is invertible.

As noted in the last subsection, SpecA→Mcub is fpqc. Since both being open
immersion and being affine can be checked after faithfully flat base change, the
remaining claims follow. �

Definition 4.7. We define the line bundle ω onMcub to be the one corresponding
to the shift A[1] under the equivalence between quasi-coherent sheaves on Mcub

and graded (A,Γ)-comodules.

By [11, (1.2)], our definition of ω agrees with the more geometric definition of
Deligne; in particular, our definition restricts to the corresponding definition on
Mell we give in the appendix. Next, we will need the following easy lemma.

Lemma 4.8. The morphism SpecA/Gm →Mcub is smooth.

Proof. As noted in the last subsection, SpecA → Mcub is fpqc. Moreover, Γ =
A[r, s, t] is smooth over A and Spec Γ ' SpecA×Mcub

SpecA/Gm. As smoothness
can be tested after base change along an fpqc morphism [48, Tag 02VL], we obtain
the claim. �

When working at the prime 3, it turns out to be more convenient to work with
a different smooth cover ofMcub =Mcub,Z(3)

, namely with Spec Ã→Mcub, where
Ã := Z(3)[a2, a4, a6] and the morphism is given by composition of the canonical
morphism SpecA→Mcub with the one induced by the ring map A→ Ã, given by

a1, a3 7→ 0 and ai 7→ ai for i ∈ {2, 4, 6}.

The cubical curve corresponding to the morphism Spec Ã→Mcub is

y2 = x3 + a2x
2 + a4x+ a6.

Note that there are different conventions for simplifying the elliptic or cubical curves
when 2 is inverted. In particular, the convention used in [46] differs from ours.

https://stacks.math.columbia.edu/tag/02VL
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We want to show that this smooth cover induces a different Hopf algebroid
(Ã, Γ̃) with Γ̃ := Ã⊗A Γ⊗A Ã representingMcub. For more details on the explicit
description of (Ã, Γ̃), see [2, Section 3]. We will first prove that it is indeed a
presentation forMcub, and then recall some of the structure maps we will be using
later.

Lemma 4.9. At the prime 3, the stack associated to the graded Hopf algebroid
(Ã, Γ̃) is equivalent to Mcub. In particular, there is an equivalence between quasi-
coherent sheaves on Mcub and graded (Ã, Γ̃)-comodules. Moreover, the morphism
Spec Ã/Gm →Mcub is a smooth cover.

Proof. We would like to apply Lemma 4.4. Thus, we only have to check that the
composition Spec Ã/Gm → SpecA/Gm → Mcub is fpqc. As explained in Sec-
tion 4.1, the map SpecA→Mcub is fpqc, so by faithfully flat descent, it is enough
to check that the pullback map SpecA×Mcub

Spec Ã/Gm → SpecA is smooth. By
Lemma 4.4, the source can be identified with Spec Γ⊗A Ã. By inspection, we arrive
at the isomorphism of A-modules

Γ⊗A Ã ∼= A[r, s, t]/(ηR(a1), ηR(a3)).

Using the right unit formulae

ηR(a1) = a1 + 2s,

ηR(a3) = a3 + a1r + 2t,

and the fact that we inverted 2, we get Γ ⊗A Ã ∼= A[r]. In particular, this is a
smooth A-module, thus we conclude the claim. �

By the proof of the previous lemma we obtain

Γ̃ ∼= Ã⊗AA[r] ∼= Ã[r].

The structure formulae for the Hopf algebroid (A,Γ) determine under this identifi-
cation the formulae

ηR(a2) = a2 + 3r,

ηR(a4) = a4 + 2ra2 + 3r2,

ηR(a6) = a6 + ra4 + r2a2 + r3,

whereas ηL is the canonical inclusion of Ã.

Remark 4.10. Note that there is an even easier smooth cover ofMcub coming from
M1(2)cub and a corresponding graded Hopf algebroid yielding Mcub again. For
our approach, it has the following disadvantage: there is no meaningful module
structure on mf1(7) over the corresponding ring. On the contrary, mf1(7) is a
Ã-module corresponding to a cubical curve discussed later.

5. The definition and properties of M1(7)cub and M0(7)cub

Fix throughout the section a number n ≥ 2 and the notation

A = Z
[

1
n

]
[a1, . . . , a4, a6].

We want to extend the moduli stacks M0(n) = M0(n)Z[ 1
n ] and M1(n) =

M1(n)Z[ 1
n ] to algebraic stacks that are finite over Mcub via a normalization con-

struction.
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5.1. Definition and basic properties ofM1(n)cub andM0(n)cub. Let us recall
the notion of normalization. Let X be an Artin stack and A a quasi-coherent
sheaf of OX -algebras. Let A′ ⊂ A be the presheaf that evaluated on any smooth
SpecC → X consists of those elements in A(SpecC) that are integral over C. This
is an fpqc (and in particular étale) sheaf because being integral for an element can
be tested fpqc-locally (as generating a finite module can be checked fpqc-locally).
Thus, we obtain a sheaf on the subsite of the lisse-étale site of X consisting of affine
schemes (see [29, Section 12] or [48, Tag 0786] for the definition).

Lemma 5.1. This construction has the following properties.
(1) If X = SpecD is affine, then A′ is the quasi-coherent sheaf associated with

the D-algebra that is the normalization of D in A(SpecD).
(2) If p : Y → X is a smooth morphism of Artin stacks, the map p∗(A′) →

(p∗A)′ is an isomorphism.
(3) The sheaf A′ is quasi-coherent for general Artin stacks X .

Proof. Let X = SpecD affine and let D → C be a smooth map of rings. By
[48, Tag 03GG] and using that A is quasi-coherent we obtain that the canonical
map A′(SpecD)⊗D C → A′(SpecC) is an isomorphism. This implies that A′ is
quasi-coherent in this case.

Let now p : Y → X be a smooth morphism of Artin stacks with X general
again and let SpecC

q−→ Y be smooth as well. Then both p∗(A′)(SpecC) and
(p∗A)′(SpecC) are computed as the normalization of C in (q∗p∗A)(C) = A(C).

Finally, let
SpecC SpecD

X

r

p q

be a 2-commutative diagram where the vertical maps are smooth. To show the
quasi-coherence of A′, we need to show that the natural map

A′(SpecD)⊗D C → A′(SpecC)(5.2)

is an isomorphism. From the above, q∗A′ is quasi-coherent on SpecD. Hence
(r∗q∗A′)(SpecC) can be computed as (q∗A′)(SpecD)⊗D C = A′(SpecD)⊗D C.
Thus we can identify the map (5.2) with the evaluation of the isomorphism
r∗q∗A′∗ ∼= p∗A′ on SpecC. �

Definition 5.3. We define the normalization of X in A to be the relative Spec
of A′ over X . For a quasi-compact and quasi-separated morphism p : Y → X , we
define the normalization of X in Y to be the normalization of X in p∗OY , where
p∗ denotes the pushforward of quasi-coherent sheaves as in [48, Tag 070A].

Directly from Lemma 5.1 and [29, Proposition 13.1.9] we obtain:

Lemma 5.4. Relative normalization commutes with smooth base change.

Recall that the compactificationsM0(n) andM1(n) are defined as the normal-
izations of Mell in M0(n) and M1(n), respectively. This motivates the following
definition.

Definition 5.5. We defineM0(n)cub andM1(n)cub as the normalizations ofMcub

inM0(n) andM1(n).
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We warn that there is no reason to expect the map M1(n)cub → M0(n)cub to
be the stack quotient by the natural (Z/n)×-action on the source.

Note that the normalization maps are by definition affine and in the next lemma
we will even show finiteness.

Lemma 5.6. The mapsM1(n)cub →Mcub andM0(n)cub →Mcub are finite.

Proof. Let X → Mell be an affine map of finite type from a reduced Artin stack.
Note that reducedness is local in the smooth topology [48, Tag 034E]. We want to
show that the normalization X ′ of Mcub in X is finite over Mcub. The relevant
cases for us are X =M1(n) and X =M0(n).

Let SpecA→Mcub be the usual smooth cover. Denote by T the global sections
of the pullback X ×Mcub

SpecA, which is an affine scheme. By Lemma 5.4, the
pullback X ′ ×Mcub

SpecA is equivalent to the spectrum of the normalization A′ of
A in T . As finiteness can be checked after faithfully flat base change, it thus suffices
to show that A′ is a finite A-module.

By [48, Tag 03GR], we just have to check that A is a Nagata ring, SpecT →
SpecA is of finite type and T is reduced. As A is a polynomial ring over a quasi-
excellent ring, it is quasi-excellent again and hence Nagata [48, Tag 07QS]. The
second point is clear by base change. For the last one note that SpecT is equiva-
lent to SpecA[∆−1] ×Mell

X by Lemma 4.6, and also that this pullback is affine.
Moreover, SpecA[∆−1] → Mell is smooth by Lemma 4.8. Since being reduced is
local in the smooth topology, we conclude that T is reduced. Hence, we obtain
finiteness of A′ over A and thus of X ′ overMcub. �

5.2. Commutative algebra of rings of modular forms. For structural results
aboutM1(n)cub we need some information about the commutative algebra of rings
of modular forms. Throughout this subsection, we will use the abbreviation mf1(n)
for mf(Γ1(n);Z[ 1

n ]). Recall from A.5 that mfk(Γ1(n);R) ∼= H0(M1(n)R;ω⊗ k) for
every subring R ⊂ C and thus we set in general mfk(Γ1(n);R) = H0(M1(n)R;ω⊗ k)
for every Z[ 1

n ]-algebra R. In general, mf(Γ1(n);R) differs from mf1(n)⊗R, but we
have the following useful lemma.

Lemma 5.7. Let R → S be a flat ring extension of Z[ 1
n ]-algebras. Then the

canonical map mf(Γ1(n);R)⊗R S → mf(Γ1(n);S) is an isomorphism.

Proof. This is a variant of flat base change applied to the sheaf ω⊗ i onM1(n). If
M1(n) is a scheme, we can apply [30, Lemma 5.2.26] directly. For Deligne–Mumford
stacks, the proof is the same using étale instead of Zariski coverings. �

Our next goal is to investigate when mf1(n) is Cohen–Macaulay. Recall that
a commutative ring R is called Cohen–Macaulay if the depth of every maximal
ideal mRm equals the Krull dimension of Rm. On the other hand mf1(n) is a
graded ring and it might appear more natural to consider the following graded
analogue: A graded ring R is graded Cohen–Macaulay if for every homogeneous
ideal m ⊂ R the graded depth of mRm equals the Krull dimension of Rm, where the
graded depth is at least d if there is a regular sequence of homogeneous elements
x0, . . . , xd. Note that the Krull dimension of Rm agrees with the length of the
maximal chain of homogeneous ideals by [6, Theorem 1.5.8]. It turns out that
under usual circumstances there is no difference between the two notions of Cohen–
Macaulay for graded rings.

https://stacks.math.columbia.edu/tag/03GR
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Lemma 5.8. Let R be a nonnegatively graded noetherian commutative ring. Then
R is Cohen–Macaulay if and only if it is graded Cohen–Macaulay.

Proof. The ring R is Cohen–Macaulay if and only if for every maximal ideal m ⊂ R0

the ring Rm is Cohen–Macaulay. Likewise, the ring R is graded Cohen–Macaulay
if and only if every maximal ideal m ⊂ R0 the ring Rm is graded Cohen–Macaulay.
Thus we can assume that R0 is local and thus R is local in the graded sense, i.e. has
a unique maximal homogeneous ideal, namely the ideal I generated by the elements
of positive degree.

By [6, Exercise 2.1.27], R is Cohen–Macaulay if and only if RI is Cohen–
Macaulay. The Krull dimension d of R equals that of RI . By definition, RI is
Cohen–Macaulay if there is a regular sequence of length d in IRI . This is equiva-
lent to there being a regular sequence of length d in I itself by (the proof of) [24,
Theorem 135]. By [6, Proposition 1.5.11], this happens if and only if there is a
regular sequence of homogeneous elements of length d in I, i.e. that R is graded
Cohen–Macaulay. �

Remark 5.9. By [6, Corollary 2.2.6] every regular ring is Cohen–Macaulay, but the
ring mf1(n) is not regular in general, even over the complex numbers. Indeed, the
maximal ideal of mf1(n)⊗C is generated by all elements of positive degree and thus
needs at least dimC mf1(n)⊗C many generators. On the other hand, mf1(n)1⊗C
has Krull dimension 2 as in the proof of [38, Theorem 5.14] and thus mf1(n)⊗C
can only be regular if mf1(n)⊗C is of dimension at most 2. This does not happen
for n ≥ 7 as the dimension of mf1(n)1⊗C is at least half the number of regular
cusps, i.e. at least 1

4

∑
d|n ϕ(d)ϕ(nd ) by [14, Theorem 3.6.1 and Figure 3.3], where

ϕ denotes Euler’s totient function.

Proposition 5.10. The ring mf1(n) is a Cohen–Macaulay ring if and only if
mf1(n)1 → mf1(Γ1(n);Fl) is surjective for all primes l not dividing n. This happens
if and only if H1(M1(n);ω) is torsionfree.

Proof. This follows from [38, Theorem 5.14] and the fact that a ring is Cohen–
Macaulay if all its localizations at maximal ideals are Cohen–Macaulay. �

Example 5.11. As noted in [38, Remark 3.14], the condition of Proposition 5.10 is
equivalent to the existence of a cusp form in mf1(Γ1(n);Fl) that is not liftable to a
cusp form in mf1(n)1. For n ≤ 28, Buzzard [8] shows that only for n = 23 there is
a nonvanishing cusp form in mf(Γ1(n);Fl). But [39, Corollary 5.8] shows that on
M1(23) there is an isomorphism Ω1

M1(23)/Z[ 1
n ]
∼= ω. By [38, Proposition 2.11], this

implies that we can identify the reduction map mf1(n)1 → mf1(Γ1(n);Fl) with the
surjection Z[ 1

n ]→ Fl. (A similar argument also appears in [8].)
Thus, mf1(n) is Cohen–Macaulay for all 2 ≤ n ≤ 28. It is not Cohen–Macaulay

for example for n = 74 or n = 82 (see [38, Remark 3.14]).

In the context of normalizations it is furthermore an important question whether
the rings mf1(n) are normal.

Conjecture 5.12. The ring mf1(n) is normal for every n ≥ 2.

We plan to come back to this conjecture in a forthcoming article. For the present
article, the following example suffices.
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Example 5.13. The rings mf1(n) for 2 ≤ n ≤ 6 are polynomial rings over Z[ 1
n ] in two

variables and thus regular. The ring mf1(7) ∼= Z[ 1
7 ][z1, z2, z3]/(z1z2 + z2z3 + z3z1)

is no longer regular by Remark 5.9, but still Cohen–Macaulay and normal. The
former follows either directly or by Example 5.11. Serre’s criterion states that a ring
is normal if it satisfies (R1) and (S2). The latter is automatic for Cohen–Macaulay
rings and the former states that the localization at every prime ideal of height 1
is regular. The singular locus of Spec mf1(7) is the common vanishing locus of the
derivatives of z1z2 + z2z3 + z3z1, i.e. the ideal I = (z2 + z3, z1 + z3, z1 + z2). The
quotient mf1(7)/I is isomorphic to Z[ 1

7 ][x]/(2x, x2) and thus the vanishing locus
V (I) has codimension 2. In particular, the localization at every prime ideal of
height 1 is regular and mf1(7) is normal.

5.3. The flatness ofM1(n)cub →Mcub. Throughout this section let n be chosen
so that mf1(n) is normal. Conjecturally, this is true for all n ≥ 2 and we have shown
it in Example 5.13 for 2 ≤ n ≤ 7. Our first aim is to show that M1(n)cub agrees
with Spec mf1(n)/Gm, but before this we state the following simple observation.

Lemma 5.14. Let R be a graded normal domain with a graded ring map A→ R.
Consider the induced map

SpecR[∆−1]/Gm → SpecA[∆−1]/Gm →Mell.

Then the normalization of Mcub in SpecR[∆−1]/Gm is equivalent to SpecR/Gm
if RA = Γ⊗AR is finite over A.

Proof. According to Lemma 4.4, the pullback SpecA×Mcub
SpecR/Gm is equivalent

to SpecRA. Thus, SpecR/Gm is finite overMcub.
Let now SpecC →Mcub be any smooth map and denote by SpecRC the fiber

product SpecC ×Mcub
SpecR/Gm. As RC is finite over C, every element of RC

is integral over C. As R is normal and RC is smooth over R, also RC is normal
[48, Tag 033C]. Thus, every element that is integral over C (and hence RC) in
RC [∆−1] is already in RC . Thus, RC is the normalization of C in RC [∆−1]. As
SpecRC [∆−1] is equivalent to the fiber product SpecC ×Mcub

SpecR[∆−1]/Gm,
this shows the result. �

For the rest of the section, we reinstate the convention that we work implicitly
over Z[ 1

n ], i.e. thatMcub meansMcub,Z[ 1
n ] etc.

Proposition 5.15. The maps M1(n) →Mell and M0(n) →Mell are finite and
flat. In particular, alsoM1(n)→Mell andM0(n)→Mell are finite and flat. The
degree dn of M1(n)→Mell satisfies dn = n2

∏
p|n(1− 1

p2 ) and M0(n)→Mell is
of degree dn

ϕ(n) for ϕ Euler’s totient function.

Proof. The first part is contained in Theorem 4.1.1 of [9]. For the formula for dn
note that the degree of M1(n) → Mell agrees with that of M1(n)C → Mell,C as
Mell is connected. As recalled in Appendix A.2.3, for n ≥ 5 the analytification of
M1(n)C agrees with X1(n) and as the generic point of Mell,C has automorphism
group of order 2, the degree dn is twice the degree of X1(n) → X1(1), which is
computed in [14, Sections 3.8+3.9]. The cases n = 2, 3 and 4 are easily computed
by hand.

The degree ofM0(n)→Mell agrees with that ofM0(n)→Mell. AsM1(n)→
M0(n) is a (Z/n)×-Galois cover, it has degree ϕ(n). The formula for the degree of
M0(n)→Mell follows. �



A SPLITTING OF TMF0(7) 27

Before we come to the next proposition, consider again the Gm-torsorM1

1(n)→
M1(n) that trivializes ω. As H0(M1

1(n),OM1
1(n)

) = mf1(n), we obtain a Gm-

equivariant map M1

1(n) → Spec mf1(n) and thus M1(n) → Spec mf1(n)/Gm,
where the Gm action on Spec mf1(n) corresponds to the standard grading on the
ring of modular forms.

Lemma 5.16. The map M1(n) → Mell → Mcub factors over Spec mf1(n)/Gm,
resulting in the following commutative square:

M1(n) Spec mf1(n)/Gm

Mell Mcub

j

h h̃

i

Proof. Proposition 3.5 yields a commutative square

M1

1(n) Spec mf1(n)

SpecA

Mell Mcub

Quotiening by Gm gives the result since the map A→ mf1(n) is grading preserving
(i.e. |ai| = i). �

Proposition 5.17. The stackM1(n)cub is equivalent to Spec mf1(n)/Gm and the
A-module RA = Γ⊗A mf1(n) is finite.

Proof. The stack M1
1(n) is representable by an affine scheme for n ≥ 2 (see e.g

[38, Proposition 2.4, Example 2.5]). As MF1(n) coincides with the global sections
of OM1

1(n), we obtainM1
1(n) ' Spec MF1(n) and thusM1(n) = Spec MF1(n)/Gm

for all n ≥ 2.
Moreover by assumption mf1(n) is normal. Thus, Lemma 5.14 reduces the

proof to showing that RA is finite over A for R = mf1(n), where we use the map
SpecR/Gm →Mcub from the commutative square introduced in Lemma 5.16:

M1(n) SpecR/Gm

Mell Mcub

j

f f̃

i

Consider the cartesian square

U SpecA

Mell Mcub,

k

q p

i

where k is an open immersion onto the complement of the common vanishing locus
V (c4,∆) of c4 and ∆ by [46, Proposition III.1.4]. As a quasi-coherent sheaf on
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SpecR/Gm is determined by its graded global sections as explained in Example 4.2,
we see that j∗OM1(n) is exactly OSpecR/Gm . We see that RA are the global sections
of

p∗f̃∗j∗OM1(n)
∼= p∗i∗f∗OM1(n).

As p is flat, we have an isomorphism p∗i∗f∗OM1(n)
∼= k∗q

∗f∗OM1(n). As f is finite
flat by the last proposition, q∗f∗OM1(n) is a vector bundle. We claim that for
every reflexive sheaf F on U the pushforward k∗F is reflexive and hence coherent.
In particular, this would imply that Γ(k∗q

∗f∗OM1(n)) = RA is a finitely generated
A-module if we apply the claim to F = q∗f∗OM1(n).

To finish the proof, let F be a reflexive sheaf on U . It is possible to extend F to
a reflexive sheaf E on SpecA (see e.g. [37, Lemma 3.2]). By [20, Proposition 1.6],
we see that k∗F ∼= k∗k

∗E ∼= E as A is normal and the complement V (c4,∆) of U
has codimension 2. Thus, k∗F is reflexive. �

Lemma 5.18. Let R be a graded A-algebra that is Cohen–Macaulay. Assume
furthermore that R is concentrated in nonnegative degrees and satisfies R0 = Z

[
1
n

]
.

Then RA = Γ⊗AR is flat over A if it is finite over A.

Proof. As RA ∼= R[r, s, t], we see that RA is Cohen–Macaulay as well. It suffices
to show that (RA)(p) is flat over A(p) for every prime p. Note that both A(p) and
(RA)(p) are graded local rings. As RA is finite over A, we see that dimR(p) =
dim(RA)(p). We obtain by a graded version of Hironaka’s flatness criterion (see e.g.
[17, Theorem 18.16]) that (RA)(p) is flat over A(p). �

Recall for the next proposition our standing assumption that we only consider
n such that mf1(n) is normal.

Proposition 5.19. If mf1(n)1 → mf1(Γ1(n);Fl) is surjective for all primes l not
dividing n, the map M1(n)cub → Mcub is flat. This is in particular true for all
those n ≤ 28 for which mf1(n) is normal.

Proof. This follows from Lemma 5.18, Proposition 5.10 and Example 5.11. �

We will fix the notation of previous lemma in the following, specializing the
earlier choices.

Notation 5.20. For a given n and an A-algebra C, we define RC and SC by the
equivalences

SpecRC 'SpecC ×Mcub
M1(n)cub

SpecSC 'SpecC ×Mcub
M0(n)cub.

Here we use that by construction M1(n)cub → Mcub and M0(n)cub → Mcub are
affine. We will show in the next lemma that SC = (RC)(Z/n)× .

As normalization commutes with smooth base change by Lemma 5.4,Mell×Mcub

M1(n)cub is the normalization ofMell inM1(n), which isM1(n) itself asM1(n)→
Mell is finite by Proposition 5.15. Thus

SpecC ×Mcub
M1(n) ' SpecRC ×Mcub

Mell.

As RC is an A-algebra and SpecA ×Mcub
Mell ' SpecA[∆−1] by Lemma 4.6, we

obtain an equivalence SpecC ×Mcub
M1(n) ' SpecRC [∆−1] that forms a commu-

tative square with defining equivalence of RC and the obvious maps. Similarly, we
obtain SpecC ×Mcub

M0(n) ' SpecSC [∆−1] with the analogous property.
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Lemma 5.21. Let C be an A-algebra such that the composite SpecC → SpecA→
Mcub is smooth.

(1) The map SC → R
(Z/n)×

C is an isomorphism.
(2) The ring of invariants R(Z/n)×

C[∆−1] is projective over C[∆−1]. Its rank is pre-
cisely the degree of the mapM0(n)→Mell.

A formula for the degree ofM0(n)→Mell was recalled in Proposition 5.15.

Proof. We start by analyzing the situation after inverting ∆. As the mapM1(n)→
M0(n) is a (Z/n)×-torsor, the pullback

SpecC ×Mcub
M1(n)→ SpecC ×Mcub

M0(n)

is a (Z/n)×-torsor as well. This map can be identified with SpecRC [∆−1] →
SpecSC [∆−1] and thus the map SC [∆−1] → RC [∆−1](Z/n)× is an isomorphism.
As M0(n) → Mell is finite and flat, we deduce that SC [∆−1] is projective over
C[∆−1]. By base change, the rank of this module is the degree ofM1(n)→M0(n)
(or equivalently ofM0(n)→Mell).

Next we want to show that the map SC → (RC)(Z/n)× is an isomorphism. By
Lemma 5.4, SC consists of those elements in SC [∆−1] that are integral over C and
in particular SC → SC [∆−1] is an injection. For analogous reasons RC → RC [∆−1]
is injective as well. Thus, the two maps in the composition

SC → R
(Z/n)×

C → R
(Z/n)×

C [∆−1] ∼= SC [∆−1]

are injections. Hence, it remains to show that every element in R(Z/n)×

C is integral
over C to obtain that SC → R

(Z/n)×

C is surjective as well.
As RA is a finite A-module by Proposition 5.17, RC ∼= C ⊗ARA is a finite C-

module. Moreover, C is noetherian as it is smooth and hence finitely presented
over the stackMcub and the latter is noetherian because A is. Hence, (RC)(Z/n)×

is finite over C and thus every element of it is indeed integral over C. �

6. Computation of invariants

Throughout this section, we localize implicitly at the prime 3.
Recall that at the prime 3, there is a smooth cover Spec Ã → Mcub, where

Ã := Z(3)[a2, a4, a6], discussed in Section 4.2. This defines rings RÃ and SÃ as

in Notation 5.20. Lemma 5.21 identifies SÃ with the invariants R(Z/7)×

Ã
. Here

and in the following we consider the case n = 7 so that SpecRÃ ' Spec Ã ×Mcub

M1(7)cub. Our main goal in this section is to compute explicitly RÃ together with
its (Z/7)×-action and also the invariants SÃ. Later we will see that the pushforward
of OM0(n)cub to Mcub corresponds under the equivalence from Lemma 4.9 to a
(Ã, Γ̃)-comodule structure on SÃ. Thus, the computation of SÃ will be key to our
splitting results.

We will need to recall from Section 4.2 the graded Hopf algebroid (Ã, Γ̃), in
particular, that Γ̃ ∼= Ã[r], and that ηR is determined under this identification by

ηR(a2) = a2 + 3r,

ηR(a4) = a4 + 2ra2 + 3r2,

ηR(a6) = a6 + ra4 + r2a2 + r3,
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whereas ηL is the canonical inclusion of Ã.
We transform the Tate normal form of the universal cubical curve over

mf1(7) ∼= Z(3)[z1, z2, z3]/(z1z2 + z2z3 + z3z1)

into the Weierstraß form

y2 = x3 + κ(a2)x2 + κ(a4) + κ(a6),

determining a map κ : Ã→ mf1(7) which makes the diagram

Spec mf1(7) Spec Ã

M1(7)cub Mcub

κ

commutative. Note that from Theorem 3.12, we can deduce that the module struc-
ture on mf1(7) is given by the map κ : Ã→ mf1(7) determined via

a2 7→
1

4
α2

1 + α2 =
1

4
(z1 − z2 + z3)2 − z2z3,

a4 7→
1

2
α1α3 =

1

2
z1z

2
3(z1 − z2 + z3),

a6 7→
1

4
α2

3 =
1

4
z2

1z
4
3 .

Using Lemma 4.4 and Lemma 4.9, the map Ã→ mf1(7) allows us to rewrite RÃ
as follows:

RÃ
∼= Γ̃ηR ⊗

Ã

mf1(7).

Proposition 6.1. RÃ is a free Ã-module of rank 48.

Proof. Recall that SpecRÃ is the pullback Spec Ã ×Mcub
M1(n)cub. The map

M1(n)cub → Mcub is finite and flat by Lemma 5.6, Proposition 5.19 and Exam-
ple 5.13. Thus, RÃ is a finite projective module over Ã. As Ã is a polynomial ring
over a discrete valuation ring, the Quillen-Suslin-Theorem [43], [49] implies that RÃ
is already free. Its rank coincides with the degree of the map M1(7)cub → Mcub

that coincides with that of the restriction M1(7) → Mell. By Proposition 5.15,
this is 72 − 1 = 48. �

We want to identify RÃ with mf1(7)[r]. The tensor product RÃ ∼= Γ̃ηR ⊗
Ã

mf1(7)

can be described as

RÃ
∼= mf1(7)[a2, a4, a6, r]/(ηR(a2) = κ(a2), ηR(a4) = κ(a4), ηR(a6) = κ(a6)).

Looking closely at the formulae, we can eliminate a2, a4, a6 and this yields a ring
isomorphism to mf1(7)[r]. The resulting composite

λ : Ã
ηL⊗ 1−−−−→ Γ̃⊗Ã mf1(7) ∼= mf1(7)[r]
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defines a rather complicated Ã-module structure. Concretely it is given by:

a2 7→
1

4
(z1 − z2 + z3)2 − z2z3 − 3r,

a4 7→
1

2
z1z

2
3(z1 − z2 + z3)− 2r(

1

4
(z1 − z2 + z3)2 − z2z3 − 3r)− 3r2,

a6 7→
1

4
z2

1z
4
3 − r(

1

2
z1z

2
3(z1 − z2 + z3)− 2r(

1

4
(z1 − z2 + z3)2 − z2z3 − 3r)− 3r2)

− r2(
1

4
(z1 − z2 + z3)2 − z2z3 − 3r)− r3.

The map λ corresponds to the projection Spec Ã×Mcub
M1(7)cub → Spec Ã under

the identification of the source with Spec mf1(7)[r].
Our next aim is to make Proposition 6.1 explicit. More precisely, we claim that

there is an Ã-basis of RÃ of the form XtXrtXr2, where X is a 16-element subset
of the image of mf1(7) in RÃ. To prove this, we will use the following graded version
of the Nakayama lemma.

Lemma 6.2. Let R be a nonnegatively graded commutative ring such that R0 is
local with maximal ideal m0. Let m be the homogeneous ideal generated by m0 and
the ideal R+ of all homogeneous elements of positive degree. Let furthermoreM and
N be graded R-modules that are finitely generated over R0 in every degree. Then a
map M → N is surjective if M/m→ N/m is surjective.

Proof. It suffices to show that N = 0 if N/m = 0. By the usual Nakayama lemma
it suffices to show that N/(m0) is zero. Assume otherwise and let i be the minimal
non-vanishing degree of N/(m0). As (N/(m0))i ∼= (N/m)i, we see that (N/(m0))i
vanishes as well. �

Recall the notation σ1 = z1 + z2 + z3 and σ3 = z1z2z3 for elementary symmetric
polynomials in zi.

Lemma 6.3. The subset
X ={1} ∪ {σ1, z2, z3} ∪ {σ2

1 , σ1z2, σ1z3, z2z3} ∪ {σ3
1 , σ

2
1z2, σ

2
1z3, σ3}

∪ {σ4
1 , σ

3
1z2, σ

3
1z3} ∪ {σ4

1z2}.

of RÃ gives an Ã-basis of RÃ of the form X tXr tXr2.

Proof. The verification is heavily based on a MAGMA-computation.
As we already know by Proposition 6.1 that RÃ is a free Ã-module of rank 48

and Ã is noetherian, it is enough to show that X tXrtXr2 is a generating system
(since it has precisely 48 elements).

We want to apply the graded Nakayama Lemma 6.2 to the ideal I = (3, a2, a4, a6)

in the ring Ã.
It is enough to show that the images of X t Xr t Xr2 form a basis of RÃ/I.

This is done by the following MAGMA code.

F3:=FiniteField(3);
M<z1, z2, z3, r>:=PolynomialRing(F3,4);
ka2:=(z1-z2+z3)^2/4-z2*z3;
ka4:=z1*z3^2*(z1-z2+z3)/2;
ka6:=z1^2*z3^4/4;
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la2:=ka2-3*r;
la4:=ka4-2*r*la2-3*r^2;
la6:=ka6-r*la4-r^2*la2-r^3;
RAtildeModI:=quo<M|z1*z2+z2*z3+z3*z1,la2,la4,la6>;
RAtildeModIasVSp, pr:=VectorSpace(RAtildeModI);
Dimension(RAtildeModIasVSp);
sigma1:=z1+z2+z3;
sigma3:=z1*z2*z3;
X:={1, sigma1, z2, z3, sigma1^2, sigma1*z2, sigma1*z3, z2*z3,
sigma1^3, sigma1^2*z2, sigma1^2*z3, sigma3,
sigma1^4, sigma1^3*z2, sigma1^3*z3, sigma1^4*z2};
Xr:={x*r: x in X};
Xr2:={x*r^2: x in X};
IsIndependent(pr(X) join pr(Xr) join pr(Xr2));

Here ka2 denotes κ(a2) and la2 denotes λ(a2) etc. We first check the quotient
RÃ/I to be 48-dimensional F3 vector space and then show that X tXr tXr2 is
linearly independent. �

Now that we have some understanding of RÃ as Ã-module, we can look at the
(Z/7)×-action on it and the invariants under this action. Recall we have chosen the
generator τ = [3] ∈ (Z/7)

× to act on the zi ∈ mf1(7) via

τ(z1) = −z3,

τ(z2) = −z1,

τ(z3) = −z2.

This grading-preserving action induces an action on RÃ by the identification of
its spectrum with Spec Ã ×Mcub

(Spec mf1(7)/Gm) via Proposition 5.17 and thus
on mf1(7)[r] as well. By definition, the projections onto both factors are (Z/7)×-
equivariant with the trivial action on Ã and the action above on mf1(7). Thus,
the obvious inclusion mf1(7) → mf1(7)[r] is (Z/7)×-equivariant and so is λ : Ã →
mf1(7)[r]. In particular, τ(λ(a2)) = λ(a2) enforces τ(r) = r + z2z3.

The computation of invariants relies on heavy MAGMA computations. We will list
now some elements which can be checked to be invariant, and the remainder of the
section is devoted to the proof that these elements actually form a basis of SÃ as
an Ã-module, in particular proving that this module is free.

We consider the elements 1, σ2
1 , σ

4
1 , σ

2
3 as well as

n4 := σ2
1r − z3

1z3 − z1z
3
2 − z2

1z
2
3 ,

σ2
1n4 = σ4

1r − σ2
1 · (z3

1z3 + z1z
3
2 + z2

1z
2
3),

n6 := σ2
1r

2 − 2z3
1z3r − 2z1z

3
2r − 2z2

1z
2
3r + 2z3

1z
3
3 − z2

1z
4
3

= 2n4r − σ2
1r

2 + 2z3
1z

3
3 − z2

1z
4
3 ,

σ2
1n6 = σ2

1 · (σ2
1r

2 − 2z3
1z3r − 2z1z

3
2r − 2z2

1z
2
3r + 2z3

1z
3
3 − z2

1z
4
3),

which we claim to elements in SÃ.
Indeed, to check that the non-obvious elements n4 and n6 are invariant, we use

MAGMA. For the example of n4, we have used the following code:
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QQ:=RationalField();
M<z1, z2, z3, r>:=PolynomialRing(QQ,4);
RAtildeQ:=quo<M|z1*z2+z2*z3+z3*z1>;
tau:=hom<M ->RAtildeQ| -z3, -z1, -z2, r+z2*z3>;
proj:=hom<M ->RAtildeQ| z1, z2, z3, r>;
sigma1:=z1+z2+z3;
n4:=sigma1^2*r -z1^3*z3-z1*z2^3-z1^2*z3^2;
tau(n4)-proj(n4);

Our aim is to prove the following proposition.

Proposition 6.4. The elements

1, σ2
1 , σ

4
1 , n4, σ

2
1n4, n6, σ

2
1n6, σ

2
3

form a Ã-basis of SÃ; in particular, SÃ is a free Ã-module of rank 8.

Proof. The proof will proceed in several steps.
Step 1: As a first step, we compute using MAGMA the following expressions for the
listed invariants in terms of the basis X tXr tXr2:

1 =1

σ2
1 =σ2

1

σ4
1 =σ4

1

n4 =
1

2
σ3

1z3 + 4σ2
1r − 6σ1z3r − 2a2σ1z3 + a2σ

2
1 − 4a2

2 + 12a4

n6 =− 33

32
σ4

1r +
3

8
σ3

1z2r +
13

4
σ3

1z3r +
233

8
σ2

1r
2 − 21

4
σ1z2r

2 − 42σ1z3r
2

+
3

2
z2z3r

2 − 18a6 −
7

8
a4σ

2
1 −

1

4
a4σ1z2 − a4σ1z3 +

13

2
a4z2z3 +

123

2
a4r

− 11

2
a3

2 +
11

4
a2

2σ
2
1 −

1

2
a2

2σ1z2 − 3a2
2σ1z3 − 2a2

2z2z3 −
41

2
a2

2r

+
37

2
a2a4 −

11

32
a2σ

4
1 +

1

8
a2σ

3
1z2 +

3

4
a2σ

3
1z3 +

67

4
a2σ

2
1r

− 7

2
a2σ1z2r − 24a2σ1z3r + a2z2z3r

σ2
1n4 =− 8σ4

1r + 6σ3
1z2r + 24σ3

1z3r + 252σ2
1r

2 − 336σ1z3r
2

+ 24a4σ1z2 − 16a4σ1z3 + 96a4z2z3 + 576a4r

− 64a3
2 + 28a2

2σ
2
1 − 8a2

2σ1z2 − 32a2
2σ1z3 − 32a2

2z2z3 − 192a2
2r

+ 192a2a4 − 3a2σ
4
1 + 2a2σ

3
1z2 + 8a2σ

3
1z3 + 168a2σ

2
1r − 224a2σ1z3r

σ2
3 =

81

64
σ4

1r −
3

16
σ3

1z2r −
33

8
σ3

1z3r −
537

16
σ2

1r
2 +

69

8
σ1z2r

2 + 51σ1z3r
2 − 3

4
z2z3r

2

− 9a6 −
17

16
a4σ

2
1 +

17

8
a4σ1z2 +

1

2
a4σ1z3 −

13

4
a4z2z3 −

267

4
a4r

+
27

4
a3

2 −
27

8
a2

2σ
2
1 +

1

4
a2

2σ1z2 +
11

2
a2

2σ1z3 + a2
2z2z3 +

89

4
a2

2r

− 77

4
a2a4 +

27

64
a2σ

4
1 −

1

16
a2σ

3
1z2 −

11

8
a2σ

3
1z3

− 179

8
a2σ

2
1r +

23

4
a2σ1z2r + 34a2σ1z3r −

1

2
a2z2z3r
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σ2
1n6 =

5933

3488
σ4

1r
2 +

7599

872
σ3

1z2r
2 − 255

872
σ3

1z3r
2

+
2997

218
a6σ

2
1 −

11475

109
a6σ1z2 +

816

109
a6σ1z3

− 2339

436
a4σ

4
1 +

4267

1744
a4σ

3
1z2 +

21951

1744
a4σ

3
1z3 +

52113

436
a4σ

2
1r

− 28203

436
a4σ1z2r −

64187

436
a4σ1z3r +

2397

109
a4z2z3r −

13005

218
a4r

2

+
16659

109
a2

4 +
11279

1744
a2σ

4
1r +

789

436
a2σ

3
1z2r −

7061

436
a2σ

3
1z3r − 168a2σ

2
1r

2

+ 224a2σ1z3r
2 +

15373

436
a2a4σ

2
1 −

1077

436
a2a4σ1z2 −

17833

436
a2a4σ1z3

− 6177

109
a2a4z2z3 −

46191

109
a2a4r +

13485

3488
a2

2σ
4
1 −

2059

1744
a2

2σ
3
1z2

− 16675

1744
a2

2σ
3
1z3 −

66203

436
a2

2σ
2
1r +

9401

436
a2

2σ1z2r +
86505

436
a2

2σ1z3r

− 799

109
a2

2z2z3r +
4335

218
a2

2r
2 − 51561

218
a2

2a4 +
13485

218
a4

2 −
13485

436
a3

2σ
2
1

+
2059

436
a3

2σ1z2 +
16675

436
a3

2σ1z3 +
2059

109
a3

2z2z3 +
15397

109
a3

2r

Step 2: We want to show that the 8 invariants listed in the statement of the
proposition are Ã-linearly independent elements of RÃ. Since Ã is torsion-free,
it is enough to check linearly independency over Ã ⊗Z Q. We observe that there
is a non-vanishing 8 × 8-minor in the 48 × 8-matrix corresponding to the map
Ã8 → RÃ

∼= Ã48 given by the invariants above. More precisely, after tensoring with
Q, the determinant of the following matrix

1 σ2
1 σ4

1 n4 n6 σ2
1n4 σ2

3 σ2
1n6



1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

σ2
1 0 1 ∗ ∗ ∗ ∗ ∗ ∗

σ4
1 0 0 1 ∗ ∗ ∗ ∗ ∗

σ2
1r 0 0 0 4 ∗ ∗ ∗ ∗

σ4
1r 0 0 0 0 − 33

32 −8 81
64 ∗

σ1z2r
2 0 0 0 0 − 21

4 0 69
8 ∗

z2z3r
2 0 0 0 0 3

2 0 − 3
4 ∗

σ4
1r

2 0 0 0 0 0 0 0 5933
3488

is invertible in Ã ⊗Z Q. On the left, we recorded the elements of our chosen basis
to which the selected 8 out of 48 rows correspond. This shows that the map
(Ã ⊗Z Q)8 → RÃ ⊗Z Q given by the invariants above is an inclusion of a direct
Ã⊗Z Q-summand.
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Thus, we have shown that the 8 invariants listed above are Ã-linearly independent
elements of RÃ, so they generate a free sub-Ã-module of RÃ of rank 8, which we
denote by V .
Step 3: Our next goal is to show that this module V is already all of SÃ when

tensored with Q. Recall that we identify SÃ with R(Z/7)×

Ã
as in Lemma 5.21 and

likewise SÃ⊗Q with R(Z/7)×

Ã⊗Q
.

Moreover, there is an isomorphism SÃ⊗Q
∼= SÃ ⊗Z Q since RÃ ⊗Z Q can be

written as directed colimit of the form

RÃ
·2−→ RÃ

·3−→ . . .

and directed colimits commute with finite limits in the finitely presentable category
of abelian groups (see e.g. [1, Proposition 1.59]).

As the order of (Z/7)× is invertible in Ã ⊗ Q, the invariants SÃ⊗Q are a direct
summand of the free Ã ⊗ Q-module RÃ⊗Q and thus projective. By the Quillen-
Suslin Theorem, it implies that SÃ⊗Q is also free, automatically of rank 8 as this
is true after inverting ∆ by the second part of Lemma 5.21.

Since the map V ⊗Q→ RÃ⊗Q is split injective, so is the map V ⊗Q→ SÃ⊗Q.
Since we have shown now both sides to be free Ã⊗ZQ-modules of rank 8, this map
is also surjective and thus an isomorphism.
Step 4: In this step, we reduce the proof of the proposition to showing that the
map V → SÃ (or to RÃ) is injective when we tensor it with F3. This will imply
surjectivity of V → SÃ. Indeed, let x ∈ SÃ be some element. By the rational
statement, we know that there is an element y in V and k ∈ N such that 3kx = y.
If k = 0, we are done; otherwise we can conclude that y is mapped to 0 in RÃ after
tensoring with F3, so by injectivity of the map V ⊗F3 → RÃ⊗F3 it can be divided
by 3 in V . Inductively, this implies the claim.
Step 5: Finally, we show that the map V → RÃ is still injective after tensoring
F3. We do a similar computation for F3 as we did above rationally. This time,
we consider the following 8× 8-minor of the 48× 8-matrix describing the inclusion
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V → RÃ, again with the corresponding basis elements displayed on the left:

1 σ2
1 σ4

1 n4 n6 σ2
1n4 σ2

3 σ2
1n6



1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

σ2
1 0 1 ∗ ∗ ∗ ∗ ∗ ∗

σ4
1 0 0 1 ∗ ∗ ∗ ∗ ∗

σ2
1r 0 0 0 4 67

4 a2 168a2 − 179
8 a2 ∗

σ3
1z3 0 0 0 1

2
3
4a2 8a2 − 11

8 a2 ∗

σ4
1r 0 0 0 0 − 33

32 −8 81
64 ∗

σ3
1z3r 0 0 0 0 13

4 24 − 33
8 ∗

σ4
1r

2 0 0 0 0 0 0 0 5933
3488

Its determinant is a rational multiple of a2 not divisible by 3. It shows that the
map V → RÃ is still injective after tensoring with F3, as desired. This completes
the proof of V = SÃ.

�

7. Comodule Structures

Recall from Section 4.2 that we denote by Ã the ring Ã = Z(3)[a2, a4, a6]. Recall
moreover that we obtain a graded Hopf algebroid (Ã, Γ̃) representingMcub,Z(3)

, and
that quasi-coherent sheaves onMcub,Z(3)

are equivalent to graded (Ã, Γ̃)-comodules.
Thus it suffices for our main algebraic theorem to provide an isomorphism of certain
comodules, which will describe explicitly.

Throughout this section we will again (implicitly) localize everything at the
prime 3. Moreover, we will denote by fn the natural mapM1(n) →Mell and by
f ′n the resulting mapM1(n)cub →Mcub from the normalization. In the case n = 2,
we will use the abbreviations f = f2 and f ′ = f ′2. Lastly, we use hn for the natural
mapM0(n)→Mell and h′n for the resulting mapM0(n)cub →Mcub

7.1. The comodule corresponding to f∗f
∗O. We will use O as a short-

hand notation for the structure sheaf on Mell or Mcub. Recall that the
map f ′ : M1(2)cub →Mcub is affine by construction. This implies that the pushfor-
ward sheaf (f ′)∗(f

′)∗O is quasi-coherent. By the discussion above, it is equivalent
to a certain (Ã, Γ̃)-comodule.

At the prime 3, the universal elliptic curve with a Γ1(2)-structure has an equation
of the form

y2 = x3 + b2x
2 + b4x

with (0, 0) being the chosen point of order 2, resulting in an identificationM1(2) '
SpecZ(3)[b2, b4,∆

−1]/Gm (see e.g. [3, Section 1.3]). As in [38, Example 2.1] one
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can deduce mf1(2) ∼= Z(3)[b2, b4]. The resulting Ã-module structure is given by

a2 7→ b2 and a4 7→ b4 and a6 7→ 0.

The corresponding (Ã, Γ̃)-comodule is given by Γ̃⊗Ã mf1(2) with extended comod-
ule structure by Lemma 4.4. In this tensor product, we use the right Ã-module
structure of Γ̃. A similar computation to the following appears in [2].

Lemma 7.1. There is a ring isomorphism Γ̃⊗Ãmf1(2) ∼= Ã[r]/(a6+a4r+a2r
2+r3),

and the comodule structure is an Ã-module map determined by r 7→ 1 ⊗ r + r ⊗ 1
(and ai 7→ 1⊗ ai).

Forgetting the ring structure, we can identify this comodule with the free Ã-
module Ãw1 ⊕ Ãw2 ⊕ Ãw3 with (Ã, Γ̃)-comodule structure given by

w1 7→ 1⊗ w1,

w2 7→ 1⊗ w2 + r ⊗ w1,

w3 7→ 1⊗ w3 + 2r ⊗ w2 + r2 ⊗ w1.

Proof. Using the formulae for ηR, we obtain a ring isomorphism

Γ̃⊗Ã mf1(2) ∼= Ã[r, b2, b4]/(R),

where the relations R are generated by
a2 + 3r = b2,

a4 + 2a2r + 3r2 = b4,

a6 + a4r + a2r
2 + r3 = 0.

This immediately implies the first claim.
The first statement about the comodule structure is straightforward since Γ̃⊗Ã

mf1(2) carries the extended comodule structure.
For the second description of the comodule structure, observe that there is an

isomorphism of Ã-modules

Ãw1 ⊕ Ãw2 ⊕ Ãw3 → Ã[r]/(a6 + a4r + a2r
2 + r3)

given by wi 7→ ri−1. Thus, to identify the comodule structure, we only need to
compute it on 1, r, r2 on the left-hand side, and transfer it via this isomorphism,
using the compatibility of comodule structure with the ring structure of Ã[r]/(a6 +
a4r + a2r

2 + r3). This yields the claim. �

We will now identify the dual of the vector bundle f∗f∗O onM1(2), which will
be useful in the next section. For the identification, we use the translation into
comodules. Given a graded left (Ã, Γ̃)-comodule M that is finitely generated free
as a Ã-module, we can define a right comodule structure on HomÃ(M, Ã) whose
coaction is given as in [44, Definition A1.1.6] by the composite of

HomÃ(M, Ã)
Γ̃⊗ id−−−−→ HomÃ(Γ̃⊗ÃM, Γ̃)

Ψ∗M−−→ HomÃ(M, Γ̃)

with the inverse of the isomorphism

HomÃ(M, Ã)⊗Ã Γ̃
∼=−→ HomÃ(M, Γ̃).

Using the conjugation c on Γ̃ we can transform this into a left comodule. Recall
from Lemma 4.9 the equivalence of quasi-coherent sheaves onMcub to graded left
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(Ã, Γ̃)-comodules and denote by F the sheaf corresponding to M . Under the same
equivalence the graded left (Ã, Γ̃)-comodule HomÃ(M, Ã) corresponds to the sheaf
HomOMcub

(F ,OMcub
).

Lemma 7.2. The dual of f∗f∗O is isomorphic to f∗f∗ω⊗(−4).

Proof. Observe that the conjugation on Γ̃ is given by ai 7→ ηR(ai) and r 7→ −r be-
cause it corresponds on the level of represented functors to inverting an isomorphism
between Weierstraß curves. Inserting this into the above description of the internal
hom and using Lemma 7.1, we arrive at the following left comodule structure on
Ãw∗1 ⊕ Ãw∗2 ⊕ Ãw∗3 :

Ãw∗1 ⊕ Ãw∗2 ⊕ Ãw∗3 −→Γ̃⊗Ã
(
Ãw∗1 ⊕ Ãw∗2 ⊕ Ãw∗3

)
w∗1 7→ 1⊗ w∗1 − r ⊗ w∗2 + r2 ⊗ w∗3
w∗2 7→ 1⊗ w∗2 − 2r ⊗ w∗3
w∗3 7→ 1⊗ w∗3 .

Looking more closely shows that this comodule is actually isomorphic to Ãw1 ⊕
Ãw2 ⊕ Ãw3 as an ungraded comodule from Lemma 7.1 via the following isomor-
phism:

w1 7→ w∗3 , w2 7→ −
1

2
w∗2 , w3 7→ w∗1 .

This map shifts grading by 4 and thus HomO(f ′∗(f
′)∗O,O) ∼= f ′∗(f

′)∗O⊗ω⊗(−4)

and by the projection formula this yields the result. �

7.2. The comodule corresponding to (f7)∗(f7)∗O. Recall from Proposition 2.3
that 3-locally, mf1(7) ∼= Z(3)[z1, z2, z3]/(σ2). Again by Lemma 4.4 we obtain that
RÃ
∼= Γ̃⊗Ãmf1(7) is equipped with the extended comodule structure. Recall further

from the beginning of Section 6 the induced Ã-module structure on mf1(7)[r] from
the identification RÃ ∼= mf1(7)[r].

Lemma 7.3. Consider the natural morphism f7 : M1(7)cub → Mcub. Under the
ring isomorphism RÃ

∼= Z(3)[z1, z2, z3, r]/(σ2) the (Ã, Γ̃)-comodule structure corre-
sponding to (f7)∗(f7)∗O is completely determined by

zi 7→ 1⊗ zi, for i ∈ {1, 2, 3},
r 7→ 1⊗ r + r ⊗ 1.

7.3. The comodule corresponding to (h7)∗(h7)∗O. Recall that we identified
SÃ
∼= (RÃ)(Z/7)× (cf. Lemma 5.21) in Proposition 6.4 as Ã-module with a free

8-dimensional Ã-module with basis

1, σ2
1 , σ

4
1 , n4, σ

2
1n4, n6, σ

2
1n6, σ

2
3 .

We will now describe the comodule structure on this Ã-module.
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Lemma 7.4. The graded (Ã, Γ̃)-comodule structure on SÃ is given by

1 7→ 1⊗ 1,

σ2
1 7→ 1⊗ σ2

1 ,

σ4
1 7→ 1⊗ σ4

1 ,

n4 7→ 1⊗ n4 + r ⊗ σ2
1 ,

σ2
1n4 7→ 1⊗ σ2

1n4 + r ⊗ σ4
1 ,

n6 7→ 1⊗ n6 + 2r ⊗ n4 + r2 ⊗ σ2
1 ,

σ2
1n6 7→ 1⊗ σ2

1n6 + 2r ⊗ σ2
1n4 + r2 ⊗ σ4

1 ,

σ2
3 7→ 1⊗ σ2

3 .

Proof. This follows from Lemma 7.3 and Proposition 6.4 by a straightforward com-
putation. �

7.4. The conclusion. We continue to work 3-locally.

Proposition 7.5. There is an isomorphism of (Ã, Γ̃)-comodules

Ã⊕ (Γ̃⊗Ã mf1(2))[2]⊕ (Γ̃⊗Ã mf1(2))[4]⊕ Ã[6]→ SÃ,

given by
1B 7→ 1,

w1[2] 7→ σ2
1 ,

w2[2] 7→ n4,

w3[2] 7→ n6,

w1[4] 7→ σ4
1 ,

w2[4] 7→ σ2
1n4,

w3[4] 7→ σ2
1n6,

1B [6] 7→ σ2
3 .

Proof. This follows by inspection from Lemma 7.1 and Lemma 7.4. �

This implies our main algebraic theorem by the equivalence of (Ã, Γ̃)-comodules
and quasi-coherent sheaves onMcub,Z(3)

from Lemma 4.9:

Theorem 7.6. There is 3-locally an isomorphism

(h′7)∗OM0(7)cub
∼=OMcub

⊕ ω⊗(−6) ⊕
(

(f ′)∗OM1(2)cub ⊗ω
⊗(−2)

)
⊕
(

(f ′)∗OM1(2)cub ⊗ω
⊗(−4)

)
of vector bundles onMcub.

By restricting to the open substackMell,(3), this implies Theorem 1.2. Similarly,
we obtain a splitting result onMell,(3) by restriction as well.
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8. Topological conclusions

Recall from [15] that one obtains the spectrum Tmf as the global sections of a
sheaf of E∞-ring spectra Otop on the étale site ofMell. Given any sheaf of spectra
F on the étale site of any Deligne–Mumford stack X , there is a descent spectral
sequence

Hq(X ;πpF)⇒ πp−q(F(X )),

where π∗F denotes the sheafification of the naive presheaf of homotopy groups
[15, Chapter 5]. We have π2p−1Otop = 0 and π2pOtop ∼= ω⊗ p and in particular
π0Otop ∼= OMell

. Thus the descent spectral sequence takes the form

Hq(Mell;ω
⊗ p)⇒ π2p−q Tmf .

In general, the edge homomorphism takes the form πn(F(X ))→ (πnF)(X ). In the
case of Otop, this produces a morphism π2n Tmf → mfn(SL2(Z);Z) that is not an
isomorphism integrally even for n ≥ 0.

Actually, the approach of [15, Chapter 12] defines sheaves of E∞-ring spec-
tra OtopR on Mell,R for every localization R of the integers by varying the set of
primes in the arithmetic square following Remark 1.6 in op. cit. By construc-
tion, π∗OtopR is again concentrated in even degrees with π2kOtopR being the pullback
of ω⊗ k to Mell,R. As R is a filtered colimit over the integers, we can form the
analogous filtered homotopy colimit over Tmf to obtain a spectrum TmfR with
π∗ TmfR ∼= (π∗Tmf)⊗R. As homotopy colimits do not commute with global sec-
tions in general, we have to prove the following lemma about the global section
Γ(OtopR ) = OtopR (Mell,R).

Lemma 8.1. The map Tmf → Γ(OtopR ) factors over an equivalence TmfR →
Γ(OtopR ).

Proof. The map (Mell,R,OtopR ) → (Mell,Otop) induces a map of descent spectral
sequences in the opposite direction. As R is flat over Z and cohomology commutes
with flat base change, this map of spectral sequences is just tensoring with R. The
map converges moreover to a map π∗Tmf → π∗(OtopR (Mell,R)) and we claim that
the induced map

π∗Tmf ⊗R ∼= π∗TmfR → π∗Γ(OtopR )

is an isomorphism. This is true because the E∞-pages of these descent spectral
sequences are concentrated in finitely many lines, either by computation [28] or
conceptually as in [31, Theorem 3.14]. As Γ(OtopR ) is R-local, the map Tmf →
Γ(OtopR ) factors over a map TmfR → Γ(OtopR ) that is an equivalence by the argument
above. �

To avoid cluttering the notation, we will set Mell = Mell,R and Tmf = TmfR
etc. in the following.

We will work in the homotopy category of Otop-modules. We denote the de-
rived smash product over Otop by ⊗Otop and the internal Hom in this category by
HomOtop (see [39, Section 2.2] for details on the latter). Given two Otop-modules
F and G, we denote by [F ,G]O

top

the morphism set in the homotopy category and
this coincides with π0 of the global sections HomOtop(F ,G) of the sheaf of spectra
HomOtop(F ,G).
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Definition 8.2. An Otop-module F is locally free of rank n if there is an étale
covering {Ui →Mell} such that F restricted to Ui is equivalent to

⊕
nOtop|Ui .

Lemma 8.3. Let F and G be Otop-module and assume F to be locally free.
(1) The homotopy groups πpF are zero for p odd and isomorphic to π0F ⊗ω⊗

p
2

for p even.
(2) The map πpHomOtop(F ,G)→ HomOMell

(π0F , πpG) is an isomorphism for
every p ∈ Z.

Proof. The sheaf πpF vanishes for p odd as it vanishes locally. For p even, we can
write πpF ∼= π0Σ−pF ∼= π0 (Σ−pOtop ∧Otop F). The map

ω⊗
−p
2 ⊗π0F ∼= π0Σ−pOtop⊗π0Otop π0F → π0Σ−pF ∼= π0

(
Σ−pOtop ∧Otop F

)
is an isomorphism as it is an isomorphism locally when F ' (Otop)n.

For the second part, we argue similarly that the map

πpHomOtop(F ,G)→ HomOMell
(π0F , πpG)

is an isomorphism as it is one locally when F ' (Otop)n. �

A related lemma to the following already appears in [4, Lemma 2.2.2].

Lemma 8.4. Let A be a sheaf of Otop-algebras onMell that is locally free of rank
n as an Otop-module. There is a trace map

trA : A → Otop

such that the composite trA u with the unit map

u : Otop → A
equals multiplication by n.

Proof. Consider the composite

trA : A → HomOtop(A,A)
'←− A⊗Otop HomOtop(A,Otop) ev−→ Otop.

Here, the middle map is an equivalence because A is locally free. We claim that
the composite

trA u : Otop → Otop

equals multiplication by n.
Note first that the map

π0 : [Otop,Otop]O
top

→ Homπ0Otop(π0Otop, π0Otop)
is a bijection. Indeed, the source agrees with π0Γ(Otop) = π0 Tmf and
the morphism is the edge homomorphism of the descent spectral sequence for
HomOtop(Otop,Otop) ' Otop. It can be deduced from [28, Section 3, Figure 11,
Figure 26] that this edge homomorphism is an isomorphism, i.e. that the E∞-term
contains in the zeroth column only a Z in line 0 and nothing above it (see also the
proof of [22, Lemma 4.9] for a different approach). Thus, it is enough to show that
trA u is multiplication by n on π0.

As A is locally free,

π0A⊗OMell
π0HomOtop(A,Otop)→ π0(A⊗Otop HomOtop(A,Otop))

is locally and hence globally an isomorphism. Note that the source is naturally
isomorphic to π0A⊗OMell

HomOMell
(π0A,OMell

) by the discussion before this
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lemma. Using these isomorphisms it can be checked that π0 trA : π0A → π0Otop
agrees with the trace map of π0A over π0Otop = OMell

. Its precomposition with
π0u equals n as it does locally (since we get exactly the trace of the identity map
of a free module of rank n). This shows the claim. �

Now we assume that 1
2 ∈ R. We will need the following variant of [36, Lemma

5.2.2]. Recall that we denote by f the natural mapM1(2)→Mell. By [21], we have
a sheaf of E∞-ring spectra OtopM1(n)

on the étale site of everyM1(n). We denote by

f∗f
∗Otop the sheaf f∗OtopM1(n)

onMell, i.e. the one associating with every étale map

U → Mell the E∞-ring spectrum OtopM1(2)
(U ×Mell

M1(2)). By the proof of [35,
Theorem 3.5] the odd homotopy of f∗f∗Otop vanishes and π2if∗f

∗Otop ∼= f∗f
∗ω⊗ i.

Lemma 8.5. Let F be a locally free Otop-module on Mell of finite rank. Let
galg : f∗f

∗ω⊗(−i) → π0F be a split injection. Then galg can be uniquely realized by
a split map

g : Σ2if∗f
∗Otop → F

with π0g = galg.

Proof. By Lemma 8.3,

πkHomOtop(F ,G) ∼= Homπ0Otop(π0F , πkG)

for an arbitrary Otop-module G.
Using Lemma 8.3 again and the projection formula, we reduce to the case

i = 0. The dual of the vector bundle f∗f∗OMell

∼= f∗OM1(2) is isomorphic to
ω⊗ 4⊗OMell

f∗OM1(2)
∼= f∗f

∗ω⊗ 4 by Lemma 7.2.
This implies that

HomOMell
(f∗f

∗OMell
, πkF) ∼= f∗f

∗ω⊗ 4⊗Mell
πkF

∼= f∗f
∗(ω⊗ 4⊗Mell

πkF).

As f is affine and every quasi-coherent sheaf onM1(2) has cohomology at most in
degrees 0 and 1 by [38, Proposition 2.4(4)], the descent spectral sequence

Hq(Mell;πpHomOtop(f∗f
∗Otop,F))⇒ πp−q HomOtop(f∗f

∗Otop,F)

is concentrated in the lines 0 and 1. Moreover, the E2-term is zero for p odd and
thus the edge homomorphism

[f∗f
∗Otop,F ]O

top

= π0 HomOtop(f∗f
∗Otop,F)→ HomOMell

(f∗f
∗OMell

, π0F)

is an isomorphism.
Similarly, one shows that

[F , f∗f∗Otop]O
top

= π0 HomOtop(F , f∗f∗Otop)→ HomOMell
(π0F , f∗f∗OMell

)

is an isomorphism. The lemma follows. �

Recall that we denote the natural map M0(7) → Mell by h. By the work of
[21], we have a sheaf of E∞-ring spectra OtopM0(7)

on the étale site ofM0(7) and we

denote by h∗h∗Otop its pushforward toMell along h.
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Theorem 8.6. We can decompose Tmf0(7)(3) as

Tmf(3)⊕Σ4 Tmf1(2)(3) ⊕ Σ8 Tmf1(2)(3) ⊕ L,

where L ∈ Pic(Tmf(3)), i.e. L is an invertible Tmf(3)-module. There is a corre-
sponding splitting

h∗h
∗Otop(3) ' O

top
(3) ⊕ Σ4f∗f

∗Otop(3) ⊕ Σ8f∗f
∗Otop(3) ⊕ L

for a certain invertible Otop(3) -module L.

Proof. Throughout this proof, we will implicitly localize at 3. By Lemma 8.4, the
unit map Otop → h∗h

∗Otop splits off as an Otop-module; denote the cofiber by F .
Note that πkF = 0 for k odd. By Theorem 7.6,

π0F ∼= ω⊗(−6) ⊕ f∗f∗ω⊗(−2) ⊕ f∗f∗ω⊗(−4).

By Lemma 8.5, we obtain a decomposition

F ∼= L ⊕ Σ4f∗f
∗Otop ⊕ Σ8f∗f

∗Otop

with π0L ∼= ω⊗(−6). As a summand of a locally free module, L is locally free as
well and thus an invertible Otop-module as it has rank 1. We obtain our result by
taking global sections because the global sections of h∗h∗Otop are Tmf0(7). To see
that L = Γ(L) is an invertible Tmf-module, we use that the global sections functor

Γ: QCoh(Mell,Otop)→ Tmf −mod

is a symmetric monoidal equivalence of ∞-categories by one of the main results of
[33]. �

Remark 8.7. In [34], the Picard group Pic(Tmf(3)) is identified with Z⊕Z/3, where

Z→ Pic(Tmf(3))

is the map k 7→ Σk Tmf(3). The image of the generator of Z/3 is called Γ(J ) [34,
Construction 8.4.2]. As one can compute the homotopy groups of all ΣkJ⊗ l from
those of Tmf via a Mayer–Vietoris sequence, one can deduce the identity of L in the
previous theorem by calculating π∗ Tmf0(7). This was done in unpublished work
by Martin Olbermann and he shows that L ' Σ36Γ(J⊗ 2).

Note that Γ(J⊗ l) is in the kernel of Pic(Tmf(3)) → Pic(TMF(3)) so that L
becomes Σ36 TMF(3) after base changing to TMF(3).

Appendix A. Modular forms and q-expansions

The aim of this appendix is to review several different definitions of modular
forms (complex-analytic, in the sense of Katz and via stacks) and compare them
via explicit isomorphisms. Moreover, we will repeat this for modular forms with
respect to the congruence subgroup Γ1(n) and the corresponding algebraic definition
via the moduli stack of elliptic curves with level structure. We have no claim of
originality here. The main reason for writing this appendix anyhow is the existence
of two different versions of level structures, often called naive and arithmetic, whose
precise relationship has at least confused the authors in the past. In particular, we
will deduce a q-expansion principle for the naive level structure, namely Theorem
A.22.



44 LENNART MEIER AND VIKTORIYA OZORNOVA

We have based our treatment on [14], [13], [25] and [26, Section 2], of which we
recommend especially the first two as an introduction to modular forms. We also
refer to [10] for a thorough treatment of the geometry on the analytic side.

A.1. Modular forms. In this section, we will give three definitions of modular
forms and compare them.

A.1.1. Three definitions of modular forms. We start with the classical definition
and denote by MFk(SL2(Z);C) the set of holomorphic functions f : H→ C satisfy-

ing for every z ∈ H and every
(
a b
c d

)
∈ SL2(Z) the compatibility condition

f

(
az + b

cz + d

)
= (cz + d)kf(z),(A.1)

and meromorphic at∞. To make this last condition precise, recall that the SL2(Z)-
compatibility implies in particular that f is 1-periodic, and so there is a well-defined
holomorphic function g : D \ {0} → C satisfying f(z) = g(e2πiz), where D denotes
the open unit disk. We require this g to be meromorphically extended to 0. We
will say that the Laurent expansion of g at 0 is the classical q-expansion of f at∞.

Elements of MFk(SL2(Z);C) are called meromorphic modular forms. Denote by
MFk(SL2(Z);R0) for a subring R0 of C the subset of MFk(SL2(Z);C) of modular
forms with coefficients of classical q-expansion of f lying in R0.

Note that the direct sum MF(SL2(Z);R0) =
⊕

k∈Z MFk(SL2(Z);R0) carries a
multiplication of functions, making it into a graded ring of modular forms. The
q-expansion defines a ring homomorphism MF(SL2(Z);R0)→ R0((q)).

For the algebro-geometric definitions of modular forms, we denote for a (gener-
alized) elliptic curve p : E → T the quasi-coherent sheaf p∗Ω1

E/T by ωE . For the
definition of a generalized elliptic curve see [12, Definition 1.12].

Proposition A.2 ([12, Proposition II.1.6]). Let p : E → T be a generalized elliptic
curve, and denote its chosen section by e : T → E. Then the sheaf ωE = p∗Ω

1
E/T

is a line bundle on T . Moreover, the adjunction counit

p∗p∗Ω
1
E/T → Ω1

E/T

is an isomorphism, implying also p∗Ω1
E/T
∼= e∗Ω1

E/T .

An invariant differential for E is a nowhere vanishing section of Ω1
E/T or equiv-

alently a trivialization of ωE .
Our second definition of modular forms will define them as a certain kind of

natural transformations. Fix a commutative ring R0. For any R0-algebra R, denote
by Ell1(R) the set of isomorphism classes of pairs (E,ω) consisting of an elliptic
curve E over R together with an invariant differential. This defines (together with
pullback of elliptic curves and of invariant differentials) a functor

Ell1(−) : (AffSh / Spec(R0))op → Sets .

As in [25, Section 1.1], we can consider a notion of a modular form of level 1
and weight k over R0 as the subset of the set of natural transformations f ∈
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Nat(Ell1(−),Γ(−)) with the following scaling property: For any R0-algebra R,
elliptic curve with chosen invariant differential (E,ω) and any λ ∈ R×, we have

f(E, λω) = λ−kf(E,ω).(A.3)

Denote the set of such natural transformations by Natk(Ell1(−),Γ(−)). Also here,
the direct sum

⊕
k∈Z Natk(Ell1(−),Γ(−)) carries a multiplication by multiplying

values in the target. This multiplication gives again a definition of a graded ring
of modular forms.

For the third definition, let Mell,R0 be the moduli stack of elliptic curves over
Spec(R0) (see e.g. [12] or [40]). On its big étale site, one defines a line bundle
ω = ωR0

as follows. For a morphism t : T →Mell,R0
from a scheme T , let p : E → T

be the corresponding elliptic curve with unit section e. We associate with (T, t) the
line bundle ωE on T . To check that this actually defines a line bundle consider a
cartesian square

E′ E

T ′ T

p′

f̃

p

f

with unit section e′ : T ′ → E′. We obtain a chain of natural isomorphisms

(A.4) f∗ωE ∼= f∗e∗Ω1
E/T
∼= (e′)∗f̃∗Ω1

E/T
∼= (e′)∗Ω1

E′/T ′
∼= ωE′

as required.
The third definition of the meromorphic modular forms over R0 of weight k is

H0(Mell,R0
;ω⊗ kR0

). Here, the direct sum
⊕

k∈ZH
0(Mell,R0

;ω⊗ kR0
) carries a multi-

plication inherited from the tensor algebra
⊕

k∈Z ω
⊗ k
R0

, defining also here a graded
ring of modular forms. Sometimes it is convenient to reinterpret this ring as
H0(M1

ell,R0
,OM1

ell,R
), where M1

ell,R0
is the relative spectrum of

⊕
i∈Z ω

⊗ i
R0

[18,
Section 12.1].

A.1.2. Comparision of definitions of modular forms. We start by comparing the
last two definitions, both coming from algebraic geometry.

Proposition A.5. There is a natural isomorphism

α : H0(Mell,R0 , ω
⊗k
R0

)→ Natk(Ell1(−),Γ(−)).

Moreover, on the direct sum for all k ∈ Z, the map α induces an isomorphism of
graded rings.

Proof. There is an easy map

α : H0(Mell,R0 , ω
⊗k
R0

)→ Natk(Ell1(−),Γ(−)),

constructed as follows. Start with an element f ∈ H0(Mell,R0
, ω⊗kMell,R0

), an R0-
algebra R and an elliptic curve E/R together with an invariant differential ω. If E
is classified by ϕ : Spec(R) →Mell,R0

, we have ϕ∗(ω⊗kR0
) ∼= ω⊗kE . By pulling back,

f defines an element in Γ(ϕ∗(ω⊗kR0
)), which via the previous isomorphism and via

the isomorphism ω⊗k from O⊗kR to ω⊗kE/R is identified with

Γ(ϕ∗(ω⊗kR0
)) ∼= Γ(ω⊗kE ) ∼= Γ(O⊗kR ) ∼= Γ(OR) = R.
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Define α(f)(E,ω) to be the image in R of the element defined by f in the left-hand
side. The naturality of α(f) is clear. Replacing ω by λω for λ ∈ R× multiplies the
chosen isomorphism above by λk, so we obtain

α(f)(E, λω) = λ−kα(f)(E,ω).

Let us sketch why α is an isomorphism. By definition, the section f corresponds
to a compatible choice of sections in H0(T ;ω⊗ kE ) for all T →Mell,R0 classifying an
elliptic curve E/T . As ωE is locally trivial, f is uniquely determined by its values
on those T where ωE is already trivial and T = SpecR is affine and every coherent
choice of values on such T induces a section of ω⊗ kMell,R0

. For such T , a section of
ω⊗ kE corresponds exactly to associating with each trivialization ω of ωE an element
f(E,ω) such that f(E, λω) = λ−kf(E,ω). This describes Natk(Ell1(−),Γ(−)). �

Next, we exhibit the map which will turn out to be an isomorphism between the
algebraic geometric definitions and the complex analytic ones.

Proposition A.6. For any subring R0 of C define

β : Natk(Ell1(−),Γ(−))→ MFk(SL2(Z), R0),

as follows. For any f ∈ Natk(Ell1(−),Γ(−)) and any τ ∈ H, set

β(f)(τ) = f(C/Z⊕ Zτ, dz) ∈ C.
Then β is a natural isomorphism, and induces an isomorphism of graded rings on
the direct sum for all k ∈ Z.

We will check (A.1) for β(f). Let
(
a b
c d

)
∈ SL2(Z) be given. Observe that we

have a biholomorphism

ψ : C/ (Z · 1⊕ Zτ)→ C/
(
Z · 1⊕ Z

aτ + b

cτ + d

)
,

[z] 7→
[

z

cτ + d

]
and by GAGA thus an isomorphism of the associated algebraic curves. This shows
that, since f is well-defined on isomorphism classes and the scaling property,

β(f)

(
aτ + b

cτ + d

)
= f

(
C/
(
Z · 1⊕ Z

aτ + b

cτ + d

)
, dz

)
= (cτ + d)kf(C/Z · 1⊕ Zτ, dz) = (cτ + d)kβ(f)(τ).

We will later sketch why this is holomorphic in the interior and meromorphic at
the cusp and why β is an isomorphism.

A.1.3. Holomorphic modular forms. In each of the three definitions above, we can
also restrict to modular forms that are “holomorphic at the cusps”.

In the classical definition we say that a meromorphic modular form f is holo-
morphic if the associated meromorphic function g on D2 is actually holomorphic at
0 or, equivalently, that the classical q-expansion of f lies in CJqK. By requiring that
the classical q-expansion is in R0JqK, we obtain the R0-module mfk(SL2(Z);R0) of
holomorphic modular forms. An important example is ∆ ∈ mf12(SL2(Z);Z) with
q-expansion q − 24q2 + · · · . Thus for every meromorphic modular form f , there
is a k > 0 such that ∆kf is a holomorphic modular form. Moreover, ∆ vanishes



A SPLITTING OF TMF0(7) 47

nowhere on the upper half plane [14, Corollary 1.4.2] so that ∆−1 is a meromorphic
modular form over Z again. We see that mf(SL2(Z);R0)[∆−1]→ MF(SL2(Z);R0)
is an isomorphism.

For the algebro-geometric version, we have to work with generalized elliptic
curves instead[12, Definition II.1.12]. These allow to define the compactified moduli
stackMell (which is our notation for M1 from [12, Remarque III.2.6]). As before
we can use Proposition A.2 to show that the line bundles ωE define a line bundle ω
onMell. Our algebro-geometric definition of holomorphic modular forms of weight
k is H0(Mell,R0

, ω⊗ k).
We will later sketch the comparison between these two definitions.

A.2. Level structures. Throughout this section, let R0 be a Z[ 1
n ]-algebra.

We begin with the classical definition of modular forms with level structure. Let
Γ1(n) ⊂ SL2(Z) be the subgroup of matrices that reduce to a matrix of the form(

1 ∗
0 ∗

)
modulo n.

A meromorphic/holomorphic modular form of level n and weight k is a holomor-
phic function f : H→ C satisfying the transformation formula (A.1) for matrices in
Γ1(n) and is meromorphic/holomorphic at all cusps. We will say more about cusps
later, but for the moment see [14, Section 1.2] for details. Note that modular forms
of level n are still 1-periodic and thus the classical q-expansion still makes sense.
Assume that R0 ⊂ C. We will denote by MFk(Γ1(n);R0) the meromorphic mod-
ular forms of level n and weight k that have classical q-expansion with coefficients
in R0 and by mfk(Γ1(n);R0) the analogue for holomorphic modular forms.

For the algebro-geometric definitions of modular forms with level structure, we
have to distinguish between two different ways to phrase them, the naive and the
arithmetic level structures.

A.2.1. Naive level structures.

Definition A.7 ([12, Construction 4.8]). For an R0-algebra R, let Ell1Γ1(n)(R)

denote the set of isomorphism classes of triples (E,ω, j), where E is an elliptic curve
over R, further ω is a chosen trivialization of the line bundle ωE , and j : Z/nZR →
E is a morphism of group schemes over Spec(R) and a closed immersion. This
morphism j is called a Γ1(n)-level structure.

Recall that Z/nZR =
∐

Z/nZ Spec(R) as a scheme, with the obvious map to
SpecR and group structure coming from the group structure on Z/nZ. The group
structure on the elliptic curve is explained in [27, Section 2.1]. We can identify j
with the image P = j(1) ∈ E(R) since it determines j completely.

Remark A.8. We should remark that this variant of level structures is often called
“naive” in the literature. Note also that the analogous definition in [13, Section
8.2], looks slightly different, but is equivalent by using that being closed immersion
can be checked for proper schemes on geometric points.

Using again the scaling condition (A.3) we can define Natk(Ell1Γ1(n)(−),Γ(−))
analogously to our definition without level in Section A.1.

We can also define a moduli stack M1(n) classifying elliptic curves over Z[ 1
n ]-

schemes with Γ1(n)-level structure. We obtain a morphism fn : M1(n) → Mell
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by forgetting the level structure. As in Section A.1.2 we obtain a comparison
isomorphism

α : H0(M1(n);ω⊗ k)→ Natk(Ell1Γ1(n)(−),Γ(−));

here and in the following we will abuse notation to denote the pullback of ω to
M1(n) by ω as well.

There are different ways to compare modular forms with and without level struc-
ture. The particular form of compatibility is expressed in the following commutative
diagram.

Natk(Ell1(−),Γ(−)) Natk(Ell1Γ1(n)(−),Γ(−))

MFk(SL2(Z), R0) MF(Γ1(n), R0)

(C/Z+τZ,dz)

(E,P ) 7→E/〈P 〉

(C/Z+nτZ,dz,τ)

We will denote the left vertical morphism by β1. The reason for our particular choice
of β1(n) might become clearer in the next subsection and even clearer when we
discuss q-expansions. Note that we have not shown yet that the vertical morphism
actually land in the indicated target, but we will do so later.

Remark A.9. The group (Z/n)× acts on Ell1Γ1(n)(−) by multiplication on the point
of order n. Moreover, Γ1(n) \ Γ0(n) acts on MF(Γ1(n),C) as follows. For g ∈
MFk(Γ1(n),C) and γ ∈ Γ0(n), we define the action by g.[γ] = g[γ]k in the sense of
Section 3.2. The map

Γ1(n) \ Γ0(n)→ (Z/n)×,

(
a b
c d

)
7→ a

is an isomorphism and under this isomorphism β1 is equivariant.
To be compatible with [14, Section 5.2], we will actually work with the opposite

convention though. This means that we will act with the inverse of an element of
(Z/n)× on Ell1Γ1(n)(−) andM1(n) and use the identification

Γ1(n) \ Γ0(n)
∼=−→ (Z/n)×,

(
a b
c d

)
7→ d.

By the above, this makes β1 into an equivariant map as well and this will the
equivariance we will use throughout this document.

A.2.2. Arithmetic level structures. Now we would like to discuss a different variant
of level structures, called “arithmetic” in the literature.

Definition A.10. For an R0-algebra R, let Ell1Γµ(n)(R) denote the set of isomor-
phism classes of triples (E,ω, ι), where E is an elliptic curve over R, again ω is a
chosen trivialization of the line bundle ωE , and ι : µn,R → E is a morphism of group
schemes over Spec(R) and a closed immersion. Here, µn,R is a group scheme given
by the spectrum of the bialgebra R[t]/(tn−1) with comultiplication determined by
t 7→ t⊗ t. The morphism ι is called an arithmetic (or Γµ(n)-) level structure on E.

One can check that for a Z
[

1
n , ζn

]
-algebra R, both group schemes µn,R and

Z/nZ(R) are isomorphic, but this is not true in general. Now we can de-
fine the set of weight k modular forms with arithmetic level structure to be
Natk(Ell1Γµ(n)(−),Γ(−)) with the same scaling condition as before. Likewise, we
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can define a moduli stackMµ(n) of elliptic curves with Γµ(n)-level structure (over
bases with n invertible). As before we obtain a comparison isomorphism

α : H0(Mµ(n);ω⊗ k)→ Natk(Ell1Γµ(n)(−),Γ(−)),

where we abuse notation again to denote the pullback of ω toMµ(n) by ω as well.
We need to discuss a relation between Γ1(n)- and Γµ(n)-level structures. This

relation will be based by dividing out finite subschemes and we refer to [16, Example
4.40] for the fact that the quotient of an elliptic curve by a finite subscheme is an
elliptic curve again. We have the following lemma from [26, Section 2.3].

Lemma A.11. There is an equivalence ϕ : M1(n)→Mµ(n) sending (E → S, P )
to (E/〈P 〉 → S, δ), where δ is an arithmetic level structure to be discussed in the
proof.

A choice of a primitive n-th root of unity ζn ∈ Γ(OS), if it exists, specifies
an isomorphism µn,S ∼= (Z/n)S. Under this identification, we obtain a mor-
phism δ : (Z/n)S → E/〈P 〉 that corresponds to π(Q) for Q ∈ E[n](S) a point
with en(P,Q) = ζ−1

n . Here π : E → E/〈P 〉 denotes the projection and en is the
Weil pairing.

Proof. With notation as in the statement of the lemma, we define δ : µn,S → E/〈P 〉
as follows: As explained in [27, Section 2.8] there is a bilinear pairing

(A.12) 〈−,−〉π : ker(π)× ker(πt)→ Gm,S
of abelian group schemes for π : E → E/〈P 〉 the projection and πt the dual isogeny.
By [27, 2.8.2.1] and because ker(π) = 〈P 〉 ∼= (Z/n)S this induces a chain of isomor-
phisms

(A.13) ker(πt)→ HomS−gp(ker(π),Gm,S)
evP−−→ µn,S .

The map δ is the composition of the inverse of this isomorphism with the natural
inclusion ker(πt) → E/〈P 〉 composed with [−1]. The reasons for composing with
[−1] will be apparent in the example below.

An analogous construction dividing out µn,S provides an inverse of ϕ. To see this,
we are using that in the situation above, (E/〈P 〉)/δ ∼= E/E[n], and the isomorphism
E/E[n] ∼= E induced by [n], the multiplication-by-nmorphism. Thus, ϕ : M1(n)→
Mµ(n) is an equivalence of stacks.

One can compute ϕ in terms of the Weil pairing as follows: As ππt = [n], we
obtain from [27, 2.8.4.1] that 〈P, π(Q)〉π for Q ∈ E[n](S) can be computed as
en(P,Q).Assume now the existence of a primitive n-th root of unity ζn ∈ µn(S).
The inverse of the composition (A.13) sends ζn to π(Q) for some Q ∈ E[n](S) with
en(P,Q) = ζn. We obtain en(P,−Q) = ζ−1

n showing the result. �

Example A.14. Let E = C/(Z + nτZ) be an elliptic curve over SpecC with chosen
n-torsion point τ . We claim that ϕ(E, τ) = (C/Z + τZ, ζn 7→ 1

n ) with ζn = e
2πi
n .

Indeed, we have en(τ, 1
n ) = ζ−1

n by [27, 2.8.5.3] and thus 〈τ, 1
n 〉π = ζ−1

n .The claim
follows.

Under the isomorphism

C/Z + τZ→ C×/qZ, z 7→ e2πiz

with q = e2πiτ the morphism α corresponds thus just to the obvious inclusion of
µn.
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The example implies directly the following lemma.

Lemma A.15. The following diagram commutes:

H0(Mµ(n)R0
, ω⊗k) H0(M1(n)R0

, ω⊗k)

Natk(Ell1Γµ(n)(−),Γ(−)) Natk(Ell1Γ1(n)(−),Γ(−))

MF(Γ1(n), R0)

ϕ∗

α α

ϕ∗

(C/Z+τZ,dz,ζn 7→ 1
n )

(C/Z+nτZ,dz,τ)

We will denote the diagonal arrow by βµ. Moreover, we denote for an abelian
group scheme G over a scheme S by G[n] the n-torsion, i.e. the pullback G ×G S,
where we use the multiplication-by-n-map [n] : G→ G and the unit map S → G.

Lemma A.16. Let E/S be an elliptic curve and n be invertible on S. Let ι : µn,S →
E be a Γµ(n)-structure. Then we have a short exact sequence

(A.17) 1→ µn,S
ι−→ E[n]

κ−→ (Z/n)S → 1

of étale sheaves of abelian groups.

Proof. The Weil pairing discussed in [27, Section 2.8] induces an isomorphism

E[n]
∼=−→ HomS−gp(E[n],Gm,S).

Postcomposing with ι∗ induces a surjection

E[n]→ HomS−gp(µn,S ,Gm,S) ∼= (Z/n)S ,

which we call κ. By [27, Theorem 2.3.1], the sequence (A.17) looks étale locally
like

0→ (Z/n)S → (Z/n× Z/n)S → (Z/n)S → 0.

As exactness can be checked étale locally, it remains to check that the composition
κι is zero, which is true by [27, 2.8.7]. �

A.2.3. Compactifications and comparison of algebraic and analytic theory. In this
section we discuss how to compactifyM1(n) and also the comparison of the alge-
braic and the analytic theory. The basic sources are [12] and [10] and we will just
give a short summary.

The moduli stackM1(n) has a compactificationM1(n), which can be defined as
the normalization ofMell inM1(n) (see Section 5 for the normalization construc-
tion). It is shown in [12, Section IV] thatM1(n)→ SpecZ[ 1

n ] is proper and smooth
of relative dimension 1. For n ≥ 5, the stackM1(n) is representable by a projective
scheme (see e.g. [38]). It is shown in [10, Thm 2.2.2.1] that the Riemann surface
associated withM1(n)C is isomorphic to a more classical construction, namely the
compactification X1(n) of the quotient Y1(n) of the upper half plane H by Γ1(n).
Indeed, Conrad shows that both M1(n)C and X1(n) classify generalized elliptic
curves over complex analytic spaces with Γ1(n)-level structure. The family of ellip-
tic curves (C/Z + nτZ, τ) with Γ1(n)-level structure over H descends to Y1(n) and
extends to X1(n). (Indeed, Conrad considers the universal family (C/Z+ τZ, 1

n ) as
in [10, Section 2.1.3], but the choice of e2πi/n as an n-th root of unity allows us to
consider the automorphismM1(n)C

ϕ−→Mµ(n)C 'M1(n)C that carries one family



A SPLITTING OF TMF0(7) 51

of elliptic curves into the other as follows from Example A.14.) This specifies an
isomorphism M1(n)C → X1(n). More information about X1(n) can be found in
[10] and in [14, Chapter 2].

We will abuse notation again and denote by ω the line bundle on X1(n) cor-
responding to the analytification of ω on M1(n)C under the isomorphism above
and likewise its restriction to Y1(n). By GAGA [45, Théorème 1], the morphism
H0(M1(n)C;ω⊗ k)→ H0(X1(n);ω⊗ k) is an isomorphism. Moreover, this restricts
to an isomorphism H0(M1(n)C;ω⊗ k) → H0(Y1(n);ω⊗ k) as H0(M1(n)C;ω⊗∗) ∼=
H0(M1(n)C;ω⊗∗)[∆−1] and the corresponding statement is true for sections on
X1(n) and Y1(n) as well.

Given a section of ω⊗ k on Y1(n) we can pull it back along π : H → Y1(n) and
obtain a holomorphic function on H by trivializing π∗ω via dz. It is shown in [10,
1.5.2.4 and Lemma 1.5.7.2] that the image consists exactly of the meromorphic
modular forms of weight k for Γ1(n). Moreover, Conrad shows that the image of
H0(X1(n);ω⊗ k) ↪→ H0(Y1(n);ω⊗ k) consists exactly of the holomorphic modular
forms of weight k for Γ1(n).

In summary, we obtain exactly that our comparison map

H0(M1(n)C;ω⊗ k)
∼=−→ Natk(EllΓ1(n)(−),Γ(−))→ MF(Γ1(n);C)

is an isomorphism, where we restricted the domain of EllΓ1(n) and Γ to C-algebras.
Moreover, this restricts to an isomorphism H0(M1(n)C;ω⊗ k)→ mf(Γ1(n);C).

For n < 5, M1(n) is no longer a scheme. In this case, one can analogously use
a GAGA theorem for stacks as, for example, proven in [42]. In our situation the
proof should be considerably simplified though asM1(n)C has a finite faithfully flat
cover by a scheme (e.g. byM1(5n)C) and one should be able to deduce a sufficiently
strong GAGA theorem just by descent from the scheme case.

A.3. The Tate curve. In this section, we will discuss the Tate curve, which will
give us an algebraic way to define q-expansions of modular forms. We first discuss
the situation over the complex numbers.

Theorem A.18 ([47, Theorem V.1.1]). For any q, u ∈ C with |q| < 1, define the
following quantities:

σk(n) =
∑
d|n

dk,

sk(q) =
∑
n≥1

σk(n)qn =
∑
n≥1

nkqn

1− qn
,

a4(q) = − 5s3(q),

a6(q) = − 5s3(q) + 7s5(q)

12
,

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2s1(q),

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+ s1(q).

(1) Then the equation

(A.19) y2 + xy = x3 + a4(q)x+ a6(q)
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defines an elliptic curve Eq over C, and X,Y define a complex analytic
isomorphism

C×/qZ → Eq

u 7→

{
(X(u, q), Y (u, q)), if u /∈ qZ,
O, if u ∈ qZ

(2) The power series a4(q) and a6(q) define holomorphic functions on the open
unit disk D.

(3) As power series in q, both a4(q), a6(q) have integer coefficients.
(4) The discriminant of Eq is given by

∆(q) = q
∏
n≥1

(1− qn)24 ∈ ZJqK.

(5) Every elliptic curve over C is isomorphic to Eq for some q with |q| < 1.

Let Conv ⊂ Z((q)) be the subset of “convergent” Laurent series, i.e. those that
define meromorphic functions on D that are holomorphic away from 0; in particular,
a4, a6 ∈ Conv. By the explicit description of the discriminant, we can use the
Weierstraß equation (A.19) to define an elliptic curve Tate(q) over Conv. For our
computations in Section 3 it will be convenient to consider the analogously defined
ring Convqn ⊂ Z((qn)) with the Tate curve Tate(qn) defined by a4(qn) and a6(qn)
over it.

Let q0 ∈ D be a nonzero point and consider the morphism evq0 : Conv→ C. By
the theorem above, we see that the analytic space associated with ev∗q0 Tate(q) is
isomorphic to C×/qZ0 . The invariant differential ηcan associated to the Weierstraß
equation corresponds under this isomorphism to du

u , as can be shown by elementary
manipulations using [47, Section V.1].

Next, we want to describe a group homomorphism ι : µn,Conv → Tate(q)[n] for
n ≥ 2. For simplicity, we will only describe it over Conv[ 1

n ]. We first describe ι
after base change to Conv[ 1

n , ζn] = Conv⊗Z Z[ 1
n , ζn]. As µn is isomorphic to Z/n

over this ring, it suffices to give an n-torsion point in Tate(q)[n](Conv[ 1
n , ζn]); we

take [X(ζn, q), Y (ζn, q), 1]. This is compatible with the Galois action and thus, we
obtain a morphism µn,Conv[ 1

n ] → Tate(q)[n]Conv[ 1
n ]. Note that we can check that

this is indeed a group homomorphism into the n-torsion by evaluating at infinitely
many points in D. For a nonzero q0 ∈ D, this ι corresponds under the isomorphism
of ev∗q0 Tate(q) with C×/qZ0 exactly to the composite µn(C)→ C× → C×/qZ0 . Note
that ι defines a Γµ(n)-structure on Tate(q).

We remark that there are other possible choices to define ι, corresponding to
different constructions of the Tate curve. To avoid possible ambiguity, we show the
following uniqueness statement.

Proposition A.20. The morphism

Z/n→ Hom(µn,Conv,Tate(q)), k 7→ kι

is a bijection.

Proof. The group Tate(q)[n]ConvC[q1/n] is isomorphic to (Z/n)2 with

(X(ζaqb/n, q), Y (ζaqb/n, q), 1)
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as the non-trivial torsion points, where ζ = e2πi/n; indeed these are all n-torsion
points as we can check on infinitely many points in D (away from some chosen ray
so that q1/n makes sense as a holomorphic function) and there cannot be more
n-torsion points.

We see that only n of these torsion points have coordinates in ConvC and thus
Tate(q)[n]ConvC

∼= Z/n. We obtain that Hom(µn,ConvC ,Tate(q)ConvC) ∼= Z/n and
the existence of ι shows that the injective map

Hom(µn,Conv,Tate(q))→ Hom(µn,ConvC ,Tate(q)ConvC)

is also a surjection. �

By Lemma A.16, we obtain for each n ≥ 1 a short exact sequence

0→ µn,Conv[ 1
n ]

ι′−→ Tate(q)[n]
κ−→ (Z/nZ)Conv[ 1

n ] → 0

of étale sheaves of abelian groups. We can normalize κ in the following way: For
any Conv[ 1

n ]-algebra R, any ζ ∈ µn(R) and X ∈ Tate(q)[n](R), the Weil pairing
en(ι(ζ), X) equals ζκ(X).

We remark that by comparing the explicit equations , one sees that our definition
of the Tate curve agrees with the one discussed in [27, Section 8.8] (and e.g. in [12]
before).

A.4. q-expansions. Our goal in this subsection is to define the q-expansion both
in the holomorphic and in the algebraic context, to compare them and to obtain a
q-expansion principle.

Consider a modular form g in MF(Γ1(n);C) (possibly n = 1 so Γ1(n) = SL2(Z)).
We recall that g(τ) = g(τ + 1) and thus g factors through a meromorphic function
g̃ : D→ C with only pole in 0?, where D denotes the open disk with radius 1; more
precisely, we have g̃(q) = g(τ), where q = q(t) = e2πiτ . Taylor expansion of g̃ at 0
yields a map

Φhol : MFk(Γ1(n);C)→ C((q)).

On the algebraic side, we obtain a map

Φµ,R0 : Natk(Ell1Γµ(n)(−),Γ(−))→ R0((q))

(for Ell living over a fixed Z[ 1
n ]-algebra R0 again) by evaluating the natural trans-

formation at the Tate curve (Tate(q), ηcan, ι) from the last section. More precisely,
we evaluating on the pullback of the Tate curve to R0((q)).

We want to show that Φhol and Φµ,C correspond to each other under βµ. Both
have actually image in C̃onv ⊂ C((q)). Thus we can check the agreement of
Φholβµ(n) with Φµ,C after postcomposing these two maps with evq0 : Conv → C
for infinitely many q0 ∈ D \ {0}.

Choose τ0 ∈ H with e2πiτ0 = q0. By definition, evq0 Φhol(g) = g̃(q0) =
g(τ0). Using thatC/(Z + τ0Z) ∼= C×/qZ0 , we observe that evq0 Φholβµ(g) (with
g ∈ Natk(Ell1Γµ(n)(−),Γ(−))) equals g(C×/qZ0 ,

dq
q , ι

can), where ιcan denotes the
composition µn(C)→ C× → C×/qZ0 .

On the other hand, evq0 Φµ,C(g) equals (ev∗q0 Tate(q), ev∗q0 ι, ev∗q0 η
can). We have

seen in the last section that this triple is isomorphic to (C×/qZ0 , ιcan,
dq
q ), what was

to be shown. Thus, the following triangle commutes:
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Natk(Ell1Γµ(n)(−),Γ(−)) C((q))

MFk(Γ1(n),C)

Φµ,C

βµ
Φhol

We obtain the q-expansion morphism

Φ1,R0 : Natk(Ell1Γµ(n)(−),Γ(−))→ Conv⊗R0

as the composition Φµ,R0(ϕ∗)−1, where ϕ is as in Subsection A.2.2.

Lemma A.21. Assume that R0 ⊂ C and let q0 6= 0 be a point in the open unit
disk. Evaluating at q0 yields a morphism evq0 : Conv[q−1]⊗R0 → C. Then

evq0 Φ1,R0(g) = g(C×/qnZ,
dq

q
, q)

for every g ∈ Natk(Ell1Γµ(n)(−),Γ(−)).

Proof. It suffices to show that

ϕ(C×/qnZ,
dq

q
, q) = (C×/qZ,

dq

q
, ιcan).

This follows from Example A.14. �

Note that these discussions actually show that β1 and βµ actually have target
MF(Γ1(n);R0), i.e. that the classical q-expansion ofβ1 of a modular form over R0

actually has coefficients in R0 and similarly for βµ.

Theorem A.22 (q-expansion principle). Let R0 be a subring of C. The morphisms

βµ : Natk(Ell1Γµ(n)(−),Γ(−))→ MF(Γ1(n);R0)

and
β1 : Natk(Ell1Γ1(n)(−),Γ(−))→ MF(Γ1(n);R0)

are isomorphisms. In other words: If the coefficients of the q-expansion of a complex
modular form are in R0, it is actually already defined over R0.

Proof. By the considerations above, it suffices to show the first statement. For
R0 = C, this was discussed in Subsection A.2.3. The general case follows by the
q-expansion principle as stated in [13, Theorem 12.3.4]. �

A.5. Summary. Let R be any ring. We can define holomorphic modular forms for
Γ1(n) of weight k over R as H0(M1(n);ω⊗ k) and meromorphic modular forms as
H0(M1(n)R;ω⊗ k). We have a morphism SpecC →M1(n) classifying the elliptic
curve C/Z + nτZ with chosen point τ of order n. Pulling f ∈ H0(M1(n);ω⊗ k)
back to SpecC and using the trivialization ω⊗ k induced by the choice of differential
dz, defines a holomorphic function of τ ∈ H that is a meromorphic modular form
for Γ1(n) in the classical sense. This defines an isomorphism

β1 : H0(M1(n)C;ω⊗ k)→ MFk(Γ1(n);C).

The q-expansion of β1(f) lies in R ⊂ C if and only if f is in the image of the
injection

H0(M1(n)R;ω⊗ k)→ H0(M1(n)C;ω⊗ k).



A SPLITTING OF TMF0(7) 55

Appendix B. (Potentially) Computation of homotopy groups of
Tmf0(7)
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