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1. Introduction

This note does not contain original work by the authors. Its origin is the attempt
to understand some details of the construction of the moduli stack of elliptic curves.
As the details on several points seem to be hard to find in the literature (but are
surely well-known to the experts), we thought it would be good to write them down
before we forget them again ourselves. In particular, we tried to be very careful
about noetherianity assumptions, as often used in e.g. cohomology and base change
statements. The main sources for our note are [KM85], [DR73], [Ols16] and [Vis05].

We do not aim at making self-contained notes, which would be a far more exten-
sive task. Thus, whenever we need a statement e.g. in algebraic geometry which is
well-documented, we tend to just cite it (although we are not completely consistent
on this).

This note will probably contain errors at every level. Notifications about such
as well as more general feedback are welcome.

2. Elliptic curves

Before actually discussing the moduli stack of elliptic curves, we want to recall
and collect properties of elliptic curves which we will need in the further treatment.

Definition 2.1 ([Har77], Chapter IV). A curve over an algebraically closed field k
is an integral regular scheme of dimension 1, proper over k. The genus of a curve
X over k is defined to be dimkH

1(X,OX). A curve E of genus 1 together with a
chosen distinguished k-valued point P ∈ E is called elliptic.

Note that this implies in particular that the morphism X → Spec(k) is smooth
(cf. e.g. [Har77], Example 10.0.2).

We will need a variant of fpqc descent for elliptic curves over algebraically closed
fields, which we discuss in the next lemma.
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Lemma 2.2. Let L be an algebraically closed field and k ⊆ L an algebraically closed
field. Moreover, let the square

E′
p //

g

��

Spec(L)

f

��
E

q
// Spec(k)

be cartesian. Then E′ is a curve of genus g over L if and only if E is a curve of
genus g over k.

In particular, (E′, P ′) is an elliptic curve over L if and only if (E,P ) is an
elliptic curve over k for any choice of L- or k-valued point, respectively.

Proof. Note that f is an faithfully flat and quasi-compact morphism, thus p is
proper or smooth if and only if q is proper or smooth, respectively, as shown in
[Gro67], Proposition 2.7.1, and Corollaire 17.7.3. By [Sta17, Tag 038H], E being
irreducible is equivalent to E′ being irreducible. Thus, by Example III.10.0.3 of
[Har77], both E and E′ are regular integral schemes if one of them is, and by
[Har77], Proposition III.10.1, both of dimension 1 if one of them is.

Last we consider their genera. Using that by [Sta17, Tag 02KH], we have

H1(E,OE)⊗k L ∼= H1(E′,OE′),
so the genera of E and E′ coincide; thus the claim. �

Definition 2.3 (cf. e.g. [Ols16]). An elliptic curve over an arbitrary scheme S
is a smooth proper morphism p : E → S together with a chosen section e : S → E
so that the pullback of (E, e) to any geometric fiber is an elliptic curve.

The following easy (and well-known) observation will be helpful.

Lemma 2.4. Let p : C → S be a separated morphism of schemes with a right
inverse e : S → C. Then e is a closed immersion.

Proof. Indeed, by [Sta17, Tag 01W6], since p is separated and p◦e = idS is proper,
we may conclude that e is proper. Since e has a left inverse, it is a monomorphism
of schemes. Thus, by [Gro67], Corollaire 18.12.6, it is a closed immersion. �

Observe that Lemma 2.4 applies immediately to elliptic curves. Note that
Lemma 2.4 implies for an elliptic curve E over an algebraically closed field k that
specifying a k-valued point is the same as specifying a closed point in E (since E
is of finite type over Spec(k)).

Our goal will be to prove a descent property for elliptic curves with respect to
fpqc morphisms. We will reduce it to a descent property of polarized schemes, which
are roughly speaking schemes with certain additional line bundles which enable the
“gluing”.

In our case, we will use as suggested in [Ols16], Section 13.1.4, the line bundle
which deserves the name OE(−e) on E for (E, p, e) elliptic curve over S. This line
bundle will be the inverse of the ideal sheaf of e. We will recall these notions and
study the properties of such sheaves in the next lemmas.

Before actually doing so, we will show that every elliptic curve is Zariski locally
pulled back from an elliptic curve over a noetherian scheme. This is well-known
and is an important tool for reducing problems about elliptic curves over arbitrary
basis to elliptic curves over noetherian schemes.
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Lemma 2.5.
(1) Let p : E → Spec(R) be quasi-compact, separated smooth morphism of rel-

ative dimension 1. Then it is pulled back from such a morphism over noe-
therian affine scheme p0 : X0 → Spec(R0).

(2) If p in addition has a section e : Spec(R) → E, it can be arranged to be
pulled back from a section Spec(R0)→ X0.

(3) Let (E, p : E → Spec(R), e) be an elliptic curve over an affine scheme. Then
it is pulled back from an elliptic curve over noetherian affine scheme.

Proof. (1) We can write the ring R as a filtered colimit over a poset I of
subrings Ri which are finite type over Z, so in particular noetherian, and
thus Spec(R) ∼= lim←− Spec(Ri) [GW10, Proposition 10.53].

So we are in the situation of [Sta17, Tag 01ZM]. By possibly restricting to
a cofinal subset of I, we may assume I to have an initial object 0 ∈ I and we
might assume to have a morphism p0 : X0 → Spec(R0) of finite presentation
such that p is the pullback of p0 along the projection Spec(R)→ Spec(R0),
which can in addition be assumed to be of finite presentation. Now we are
in the situation of [Sta17, Tag 0C0C], so by possibly restricting to a cofinal
subset of I again, we may assume that p0 is smooth. Next, we use [Gro67,
Théorème 8.10.5], so by possibly restricting to a cofinal subset of I again,
we may assume that p0 is separated.

(2) Using [Sta17, Tag 01ZM] for morphisms, we obtain also a map e0 : Spec(R0)→
X0 of schemes over Spec(R0), so a section of p0, whose pullback to Spec(R)
is precisely e.

(3) Now we can apply [Sta17, Tag 0204] to conclude that we also may assume
p0 to be proper. Since its pullback p is of relative dimension 1, so is p0.

Our next goal is to show that the geometric fibers of p0 are connected.
We can use [Sta17, Tag 0CC1] to conclude that the image of Spec(R) is
dense in Spec(R0) since R0 is a subring of R. Consider now any geometric
point Spec(k) → Spec(R0). Since R0 is a noetherian ring, this implies by
[Sta17, Tag 01OZ] and [Sta17, Tag 04MF] that there is a connected open
U containing the image of Spec(k). Since it is open, the image of some
point (and thus also of a geometric point) coming from R, so we have a
commutative diagram

Spec(k) U Spec(R0)

Spec(L) Spec(R),

⊆

where L is some algebraically closed field. The pullback pY : Y := X0×Spec(R0)

U → U of p0 is now again a proper morphism with a section, smooth of
relative dimension 1 over a noetherian connected scheme. Over the geomet-
ric point Spec(L) → U , it is connected since by assumption (X0 ×Spec(R0)

U)×U Spec(L) ∼= E ×Spec(R) Spec(L) is an elliptic curve over L.
Now consider the Stein factorization Y → Y ′

g−→ U of the proper mor-
phism of noetherian schemes pY : Y → U (cf. [FGI+05], Theorem 8.2.12).
By [Sta17, Tag 034E], the fibers of the smooth map pY are geometrically
reduced, so we can apply Proposition 8.5.16 of [FGI+05] to conclude that
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Y ′ → U is étale. Thus also Y ′ ×U SpecL → SpecL is étale, and so
Y ′×U Spec(L) is a finite disjoint union of copies of Spec(L) (cf. [Sta17, Tag
02GL]). Next, we know by Zariski’s connectedness theorem ([FGI+05], The-
orem 8.2.12) that the fibers of Y → Y ′ are non-empty and connected. Since
being non-empty is compatible with faithfully flat base change, we conclude
that also the fibers of Y ×U Spec(L)→ Y ′×U Spec(L) are non-empty. Since
Y ×U Spec(L) is connected, we conclude Y ′×U SpecL ∼= SpecL. Moreover,
by definition of Stein factorization, the map g : Y ′ → U is finite, thus we
can apply [Sta17, Tag 02KB] to conclude that g∗OY ′ is a vector bundle
on U . Employing cohomology and base change [Sta17, Tag 02KG] and the
fact that the pullback of g to Spec(L) is an isomorphism, we conclude that
g∗OY ′ is a vector bundle of rank 1 on the connected scheme U . Thus,
also the pullback of g to Spec(k) is an isomorphism, and using Zariski’s
connectedness theorem once again implies that the fibers of Y → U are
geometrically connected.

So we now that the geometric fibers of pY are geometrically connected.
Again by [Har77], Example III.10.0.3, the geometric fibers are regular of
dimension 1. Thus they are in particular normal [Sta17, Tag 0569], and
thus [Sta17, Tag 033M] integral since we have already shown that they are
connected.

This implies that the geometric fibers of pY (and thus also of p0) are
curves. We still need to determine the genus of these curves. With the
notation above, we know that the curve Y ×U SpecL→ SpecL has genus 1.
As explained in [Oss], Theorem 1.3, one can deduce from [Gro63, Théorème
7.9.4] that the Euler characteristic of the geometric fibers is constant on the
connected scheme U (we also use compatility of cohomology with faithfully
flat base change [Sta17, Tag 02KH]). By [Liu02], Corollary 3.3.21, we know
that H0(Y ×U Spec k,OY×USpec k) is 1-dimensional, and by Grothendieck’s
vanishing theorem [Sta17, Tag 02UZ], cohomology groups in dimensions
≥ 2 vanish, so we conclude that all geometric fibers of pY and thus of p0
are indeed elliptic curves. This completes the proof of the lemma.

�

Recall (e.g. from [Har77], Section II.5) that if i : Z → X is a closed immersion,
we define the corresponding ideal sheaf of Z on X as the kernel of the surjective
morphism i# : OX → i∗OZ .

We will be considering the ideal sheaf of the section of an elliptic curve, which
makes sense due to Lemma 2.4. Now we have equipped each elliptic curve (E, p, e)
over any scheme S with a particular quasi-coherent sheaf, namely with the ideal
sheaf of its section e : S → E. To obtain a polarized scheme, we need to show that
this sheaf is a line bundle and that its inverse is ample. Moreover, we will need this
construction to be functorial in the sense made more precise below. Before actually
dealing with elliptic curves, we will show some more general statements about ideal
sheaves.

We have already seen that the section of an elliptic curve (E, p : E → S, e)
exhibits the image of S as a closed subscheme of E. Our next goal is to show (as
stated in [Ols16], Section 13.1.4) that this subscheme is indeed an effective Cartier
divisor, i.e., that its ideal sheaf is an invertible OE-module. The proof follows
[KM85], Sections 1.1 and 1.2.
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Proposition 2.6 ([KM85], Section 1.2). Let p : C → S be a smooth morphism of
relative dimension 1 which is separated and quasi-compact. Let e : S → C be a
section of p. Then it defines an effective Cartier divisor in C.

Proof. We can apply Lemma 2.4 to e to see that it is a closed immersion. We still
need to show that the corresponding ideal sheaf on C is a locally free OC-module.

First, the ideal sheaf of e being a locally free OC-module of rank 1 is a Zariski-
local statement, so we can assume S to be an affine scheme, say, Spec(R). Further-
more, we apply Lemma 2.5 to see that C → Spec(R) is a pullback of an elliptic
curve (E0, p0, e0) over a noetherian affine scheme.

It is enough to prove the lemma over noetherian schemes (using the pullback
property [KM85, Section 1.1.4] of effective Cartier divisors; note that the flatness
assumption in the relative setting is satisfied since p0 ◦ e0 = idS0). This is precisely
done in [KM85, Corollary 1.1.5.2]. �

Next, to formalize functoriality properties for the ideal sheaf of the section
e : S → E of an elliptic curve (E, p, e) over S, we need to introduce a notion of
morphism for elliptic curves.

Definition 2.7. Let (E, p, e) be an elliptic curve over S and (E′, p′, e′) an elliptic
curve over S′. A morphism of elliptic curves

(f, g) : (E, p, e)→ (E′, p′, e′)

consists of morphisms of schemes f : S → S′ and g : E → E′ which satisfy g ◦ e =
e′ ◦ f and make the diagram

E

p

��

g // E′

p′

��
S

f // S′,

cartesian.

We define composition and identity morphisms for elliptic curves componentwise.

Proposition 2.8 ([Ols16], Section 13.1.4). Let (E, p, e) be an elliptic curve over S
and (E′, p′, e′) an elliptic curve over S′. Let J ⊂ OE and J ′ ⊂ OE′ be the ideal
sheaves of e and e′, respectively. Moreover, let (f, g) : (E, p, e) → (E′, p′, e′) be a
morphism of elliptic curves as above. Then:

(1) g∗J ′⊗r ∼= J⊗r for any r ∈ Z, and these isomorphisms are compatible with
composition of morphisms.

(2) J−1 is an ample line bundle over S.

Proof. First, we observe that e and e′ are actually closed immersions by Lemma 2.4
so that it makes sense to talk about corresponding ideal sheaf.

(1) This follows from Proposition 2.6 together with the fact [KM85, Section
1.1.2] that relative effective Cartier divisors behave well under pullbacks
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and finally the observation that in the commutative diagram

(2.1) S
f //

e

��

S′

e′

��
E

p

��

g // E′

p′

��
S

f // S′

the outer and the lower square are cartesian, thus so is the upper square.
(2) By Proposition 2.6, J is an invertible line bundle.

To check that J−1 is ample, we use the criterion of Corollaire 9.6.5
from [Gro67], saying that it is enough to check that J−1 is ample in
every fiber. Moreover, by [Sta17, Tag 0D2P], it is enough to consider
the geometric points. By the first part, we can identify J−1Spec(k) with
OESpec(k)

(eSpec(k)). Thus, we can use Example IV.3.3.3 of [Har77] to see
that J−3Spec(k)

∼= OESpec(k)
(3eSpec(k)) is very ample.

�

3. Moduli stack of elliptic curves

The aim of this section is to define the moduli stack of elliptic curves and to
prove that it is actually a stack in the fpqc topology on Sch / SpecZ. The material
of this section is well-known to the experts. We would like to provide some details
for the convenience of the reader. Large part of the following are taken from [Ols16],
Chapter 13. More background on fpqc topology and stacks can be found in [Vis05].

Definition 3.1 ([Ols16], Chapter 13). The moduli stack of elliptic curves Mell

over SpecZ is the category over Sch / SpecZ with:
• objects (S, (E, p, e)), where S is a scheme and (E, p, e) is an elliptic curve
over S,

• morphisms are morphisms of elliptic curves.
The functor Mell → Sch / SpecZ is given by (S, (E, p, e)) 7→ S on objects and
(f, g) 7→ f on morphisms.

It is easy to see that Mell is a category fibered in groupoids over Sch / SpecZ.
Our goal is now to prove thatMell is a stack in the fpqc (and thus in particular in
the étale) topology on Sch / SpecZ.
Theorem 3.2 ([Ols16], Chapter 13). Mell is a stack in the fpqc topology on
Sch / SpecZ.

We will imitate the proof of Theorem 4.38 in [Vis05].
Thus, we will show first that Mell is an fpqc prestack. Recall that Mell(U)

for a scheme U denotes the fiber of Mell → Sch / SpecZ over U (and identity of
U). Recall moreover that given an fpqc covering {Ui

σi−→ U}{i∈I}, the category of
descent data (cf. [Vis05], Definition 4.2)Mell({Ui

σi−→ U}) is defined as follows:
• An object ofMell({Ui

σi−→ U}) consists of an elliptic curve (Ui, (Ei, pi, ei))
for every i ∈ I, together with isomorphisms of elliptic curves

ϕij : (Ui ×U Uj , (pr∗2 Ej ,pr∗2(pj),pr∗2(ej)))→ (Ui ×U Uj , (pr∗1 Ei,pr∗1(pi),pr∗1(ei)))
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for all i, j ∈ I, and these isomorphisms are required to satisfy a cocycle
condition.

• A morphism

(Ui, (Ei, pi, ei), ϕij)→ (Ui, (E
′
i, p
′
i, e
′
i), ϕ

′
ij)

consists of a morphism of elliptic curves (id, gi) : (Ei, pi, ei) → (E′i, p
′
i, e
′
i)

for each i ∈ I such that ϕ′ij ◦ pr∗2(id, gj) = pr∗1(id, gi) ◦ ϕij .
Composition and identities are defined again componentwise.

Lemma 3.3. Mell is a prestack in the fpqc topology on Sch / SpecZ, i.e., the
functor

Mell(S)
(σ∗i )−−−→Mell({Ui

σi−→ S})
induced by pullbacks is fully faithful for any fpqc covering {Ui

σi−→ S}{i∈I}.

Proof. We will check faithfulness first. Let (E, p, e) and (E′, p′, e′) be two elliptic
curves over S and let (id, f), (id, g) : (S, (E, p, e)) → (S, (E′, p′, e′)) be two mor-
phisms in Mell which agree on the covering {Ui → S}. More precisely, we recall
that we have chosen pullbacks to define functors σ∗i : Mell(S)→Mell(Ui) and re-
quire σ∗i (f) = σ∗i (g) for all i ∈ I. Note that {σ∗iE

τi−→ E} is an fpqc covering again.
Thus, the two maps f, g : E → E′ are equal since they are equal composed with
σ∗iE

τi−→ E (here, we are using that the fpqc site is subcanonical, as shown e.g. in
[Vis05], Theorem 2.55).

Next, we want to show that our functor is full. Let (E, p, e) and (E′, p′, e′) be
two elliptic curves over S again, and assume that with the same choice of σ∗i , we
are given morphisms

βi : ((σ∗iE, σ
∗
i p, (id, e ◦ σi)), α−1pr1,σi

(E) ◦ αpr2,σj (E))→
((σ∗iE

′, σ∗i p
′, (id, e′ ◦ σi)), α−1pr1,σi

(E′) ◦ αpr2,σj (E′)),

compatible with the transition maps, where αf,g(X) : f∗g∗X → (gf)∗X is the
canonical isomorphism. It is easy to check that the pullback pr∗1 σ

∗
iE is canonically

isomorphic to σ∗iE×E σ∗jE, and thus also that βi and βj coincide when pulled back
to this fiber product and composed with the corresponding α?,?’s. This implies
that (using again that {σ∗iE

τi−→ E} is an fpqc covering and that E′ is a sheaf on
the fpqc site) there is a unique map β : E → E′ so that β ◦ τi coincides with the

composition σ∗iE
βi−→ σ∗iE

′ τ
′
i−→ E′. So we have a commutative diagram

σ∗iE
βi //

τi

��

σ∗iE
′

τ ′i
��

σ∗i (p
′) // Ui

σi

��
E

β
// E′

p′
// S.

For this map to make (id, β) into a morphism of elliptic curves, we need to check
p′ ◦ β = p and β ◦ e = e′. It is enough to check this fpqc-locally.

p′βτi = p′τ ′iβi (definition of β)

= σi ◦ σ∗i (p′) ◦ βi (pullback diagram defining σ∗iE
′)

= σi ◦ σ∗i (p) (definition of βi)
= p ◦ τi (pullback diagram defining σ∗iE).
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Similarly, one can check that σ∗i (β) = βi using the universal property of pullbacks.
Similarly, we have

βeσi = β ◦ τi(id, e ◦ σi) (definition of (id, e ◦ σi))
= τ ′i ◦ βi ◦ (id, e ◦ σi) (definition of β)

= τ ′i ◦ (id, e′ ◦ σi) (definition of βi)

= e′ ◦ σi (definition of (id, e′ ◦ σi)).

Altogether, this proves the fullness and thus we have shown thatMell is a prestack
in the fpqc topology. �

We will use Lemma 4.25 of [Vis05], stating that to prove Theorem 3.2 it is enough
to check the following two points:

(1) Mell is a stack in the Zariski topology.
(2) For any flat surjective morphism of affine schemes V → U , the functor
Mell(U)→Mell(V → U) is an equivalence of categories.

We have already shown that Mell is an fpqc prestack, so in particular a Zariski
prestack. Next, we want to show the “gluing” property for elliptic curves for Zariski
coverings.

Lemma 3.4. Mell is a stack in the Zariski topology.

Proof. Let S be any scheme and let {Ui
σi−→ S}{i∈I} be a Zariski covering of S. In

order to show that the functor given by chosen pullbacks

Mell(S)→Mell({Ui → S})

is an equivalence of categories, by Lemma 3.3 we only need to check that it is
essentially surjective.

We will use that morphisms of schemes form a stack in Zariski topology, which
we will denote by Mor. The stack property is explained in [Vis05], Section 4.3.
Note that this category is fibered just in categories and not in groupoids.

Thus, assume that we are given an object with descent data: A family of
(Ei, pi, ei) ∈Mell(Ui) together with isomorphisms of elliptic curves ϕij : pr∗2 Ej →
pr∗1 Ei satisfying the cocycle condition (taking into account the composition iso-
morphisms α?,?). We need to construct an elliptic curve E over S with σ∗iE ∼= Ei
(as elliptic curves, compatible with transition maps). Since Mor is a Zariski stack,
we know that we obtain a map p : E → S so that σ∗i (E) is isomorphic to Ei for
all i ∈ I, and these isomorphisms are compatible with ϕij and with pi and σ∗i (p),
respectively. It is proper and smooth since these properties can be checked Zariski
locally.

For the section, consider the compositions Ui
ei−→ Ei ∼= σ∗iE → E. These coincide

on intersections, so define a map e : S → E so that eσi = ei. We need to check
pe = idS . Again, we can do this Zariski locally, and there it is implied by the
commutativity of the following diagram:

Ui
ei // Ei

∼= //

pi

!!

σ∗iE

σ∗i (p)

��

τi // E

p

��
Ui σi

// S.
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Next, we need to check that the pullbacks of (E, e) to geometric fibers are elliptic
curves again. Note that since {Ui → S} is a Zariski covering, any map Spec(k)→ S
factors through some Ui, so that the pullback of E to Spec(k) is isomorphic to
the pullback of Ei to Spec(k), and also the induced sections coming from e and
ei coincide. Thus, the geometric fibers of p are elliptic curves since so are the
geometric fibers of pi by assumption.

This completes the proof. �

The main difficulty now is the fact that “gluing” of schemes given on an fpqc (in
fact, even on an étale) covering does not yield a scheme again. In the étale case,
we could in general obtain an algebraic space in this way. So we need some care
to see that in the case of elliptic curves (which goes back to the case of polarized
schemes), the gluing does work out. Note that this would not work for genus 1
curves without section, cf. [Vis05], Example 4.39.

The ideal sheaf J which we discussed in Proposition 2.8 will make every elliptic
curve into a polarized scheme. We will use this fact in combination with the fol-
lowing theorem, which is a slightly stronger statement than Proposition 4.4.12 of
[Ols16] and of [Sta17, Tag 0D40], and actually proven in the proof of Theorem 4.38
of [Vis05].

Proposition 3.5 (cf. [Ols16], Proposition 4.4.12 and Theorem 4.38 of [Vis05]).
Let Pol be the category whose objects are pairs (f : X → Y,L), where f is proper
flat morphism of finite presentation and L a relatively ample line bundle on X. A
morphism

(a, b, ε) : (f : X → Y,L)→ (f ′ : X ′ → Y ′,L′)
consists of morphisms of schemes a : X → X ′ and b : Y → Y ′ making the diagram

X

f

��

a // X ′

f ′

��
Y

b // Y ′

cartesian, and ε : a∗L → L′ isomorphism of sheaves on X ′. Composition is defined
componentwise (using composition isomorphisms for pullbacks).

Then Pol is fibered over Sch / SpecZ via (f : X → Y,L) 7→ Y , and it is a stack
in the fpqc topology.

Proof. This is exactly done on pp. 99-103 of [Vis05]. The main point where the
assumptions on objects of Pol are used is for applying Proposition 4.37 of [Vis05],
which is a version of cohomology and base change without noetherianity assump-
tions. �

Proof of Theorem 3.2. Using Lemma 4.25 of [Vis05], we are left to show that for
a flat surjective morphism of affine schemes ϕ : V = Spec(B) → U = Spec(A)
(so in particular an fpqc covering), the functor Mell(U) → Mell(V → U) is an
equivalence of categories. By Lemma 3.3 again, we only need to check that it
is essentially surjective. This is very similar to Theorem 4.38 in [Vis05] and to
Theorems 4.4.13 and 4.4.10 in [Ols16].

Let an elliptic curve p : E → V with section e : V → E be given, together
with descent data, i.e. an isomorphism β : pr∗2 E → pr∗1 E of elliptic curves over
V ×U V satisfying the appropriate cocycle condition. Observe that Proposition 2.8
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implies that we have a morphism of fibered categories over Sch / SpecZ fromMell

to Pol given by (S′, (E′, p′, e′)) 7→ (p′ : E′ → S′,J ′−1) where J ′ is the ideal sheaf
corresponding to e′ (see Proposition 2.8 for details). This implies in particular that
we have a 2-commutative diagram of categories

Mell(U) //

��

Pol(U)

��
Mell(V → U) // Pol(V → U).

Since in Proposition 3.5, we discussed Pol to be an fpqc stack, we conclude there
is a scheme X and a flat proper morphism of finite presentation q : X → U and
an isomorphism σ : ϕ∗X → E of schemes over V , satisfying certain compatibilities.
(Actually, we also get a relatively ample invertible sheaf L onX and an isomorphism
σ∗π∗L ∼= J−1 of OE-modules, where π denotes the projection ϕ∗X → X, but we
will not use this.) In particular, this means that σ is an isomorphism of descent
data, and more explicitly, we have a commutative diagram

(3.1) pr∗2 ϕ
∗X

pr∗2 σ //

α?,?

��

pr∗2 E

β

��

(ϕ ◦ pr2)∗X

α−1
?,?

��
pr∗1 ϕ

∗X
pr∗1 σ // pr∗1 E.

The last piece of data we need to construct is a section for q. To do so, we will
use that X is a sheaf in the fpqc topology (as shown in [Vis05], Theorem 2.55).
Observe that we have a map V → X, defined as

V
e−→ E

σ−1

−−→ ϕ∗X
π−→ X.

We have to show that precomposing this map with either projection pri : V ×U V →
V yields the same result. Since β is an isomorphism of elliptic curves, it satifies
β ◦ pr∗2(e) = pr∗1(e). Thus we have

π ◦ σ−1 ◦ e ◦ pr1 = π ◦ σ−1 ◦ pr1 ◦pr∗1(e) (as in (2.1))

= π ◦ σ−1 ◦ pr1 ◦β ◦ pr∗2(e) (definition of β)

= π ◦ pr1 ◦ pr∗1(σ)−1 ◦ β ◦ pr∗2(e) (definition of pr∗1(σ))

= π ◦ pr1 ◦α−1?,? ◦ α?,? ◦ pr∗2(σ)−1 ◦ pr∗2(e) (commutativity of (3.1))

= π ◦ pr2 ◦ pr∗2(σ)−1 ◦ pr∗2(e) (definition of α?,?)

= π ◦ σ−1 ◦ pr2 ◦pr∗2(e) (definition of pr∗2(σ))

= π ◦ σ−1 ◦ e ◦ pr2 (as in (2.1)).

Thus, we obtain a map j : U → X so that j ◦ϕ = π ◦σ−1 ◦ e. We still need to show
that qj = idU . Since U is a sheaf in fpqc topology, we only need to check qjϕ = ϕ,
which is straightforward.
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Next, we conclude by [Gro67], Corollaire 17.7.3, that q : X → U is actually
smooth since its pullback along the faithfully flat and quasi-compact map ϕ is
smooth.

We are left to show that for any algebraically closed field k and any morphism
Spec(k) → U , the pullback (Xk, jk) of (X, j) is an elliptic curve over k. Recall
that U = Spec(A), V = Spec(B) were assumed to be affine. Then we know that
Spec(k) ×U V ∼= Spec(B ⊗A k). Note that B ⊗A k is not the 0-ring since the
map A → B was assumed to be faithfully flat, thus it has some maximal ideal m.
Let L be the algebraic closure of the quotient field B ⊗A k/m; then we have the
commutative diagram

Spec(L) //

��

V

��
Spec(k) // U.

Let EL be the pullback of E along Spec(L)→ V . Note that then the diagram

EL pL
//

g

��

Spec(L)

g̃

��
Xk

qk // Spec(k)

is cartesian, which can be (roughly) seen as follows:

EL = E ×V Spec(L) ∼= (X ×U V )×V Spec(L)

∼= X ×U Spec(L) ∼= (X ×U Spec(k))×Spec(k) Spec(L)

= Xk ×Spec(k) Spec(L).

It is easy to check that also the pullback of the section jk : Spec(k) → Xk is the
section eL, and recall we assumed that (EL, eL) is an elliptic curve over L. Thus,
by Lemma 2.2, we conclude that (Xk, jk) is an elliptic curve over k.

All in all, this finishes the proof that the tuple (X, q, j) constructed above is an
elliptic curve over U whose pullback is up to isomorphism given by the descent data
we started with. This shows thatMell is indeed a stack in fpqc topology. �

4. Weierstraß equations

We have established in the previous section the stack property of the moduli
stack of elliptic curves. Our next objective is to show that it is an algebraic stack.
(In fact, it is even a Deligne-Mumford stack, but proving this requires more effort
and will be done at a later point.) Recall that we need to show that the diagonal of
Mell is representable and that it possesses a smooth atlas. The key ingredient will
be the fact that any elliptic curve is Zariski locally given by a Weierstraß equation.
These statements are well-known and can be found in e.g. [KM85] and [Ols16].

Lemma 4.1. Let R be an arbitrary ring, and let f1, . . . , fn be homogeneous poly-
nomials in R[T1, . . . , Tk] with n ≤ k − 1. Then

X = Proj(R[T1, . . . , Tk]/(f1, . . . , fn))
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is smooth over Spec(R) of relative dimension k − 1− n if and only if for any ring
homomorphism into a field α : R→ K, the scheme

XK = Proj(K[T1, . . . , Tk]/(α(f1), . . . , α(fn))

is smooth over K of relative dimension k − 1− n.

Proof. If X → Spec(R) is smooth of relative dimension k−1−n, so is any pullback
X ×Spec(R) Spec(K)→ Spec(K). (Here, we are using [Sta17, Tag 01N2].)

For the converse, it is enough to show that X → Spec(R) is smooth of relative
dimension k− 1−n when restricted to each of the D+(Ti). Thus, we need to check
whether the map

R→ R[T1, . . . , T̂i, . . . , Tk]/(f1(Ti = 1), . . . , fn(Ti = 1))

is smooth of relative dimension k− 1− n. We already know that the restriction to
D+(Ti) ⊂ XK is smooth of the same relative dimension for any α : R→ K, so that

K → K[T1, . . . , T̂i, . . . , Tk]/(α(f1(Ti = 1)), . . . , α(fn(Ti = 1)))

is smooth of same relative dimension and thus also standard smooth [Sta17, Tag
00TA]. This means that the matrix(

∂α(fr(Ti = 1))

∂Ts

)
1≤r≤n,1≤s≤k,s 6=i

has rank n. By Definition 6.18 of [GW10], this is enough to see smoothness. �

Remark 4.2. Note that a priori, Definition 6.18 of [GW10] and [Sta17, Tag 01V5]
do not coincide. They can be shown to be equivalent.

Lemma 4.3. Let R be any ring. Then the closed subscheme of P2
R cut out by the

Weierstraß equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

is an elliptic curve over R if ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 is invertible in R,
where

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

Moreover, if this equation cuts out a smooth scheme over Spec(R), then ∆ is
invertible in R.

Proof. Fist, recall that we mean

E = Proj(R[x, y, z]/(y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3))

by “cut out by this equation”. This comes with a natural map E → Spec(R) as in
[Sta17, Tag 01ME]. A section to D+(y) is given by

R[x, z]/(z + a1xz + a3z
2 = x3 + a2x

2z + a4xz
2 + a6z

3)→ R

x 7→ 0,

z 7→ 0.

(4.1)
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By [Sta17, Tag 01NH], the map P2
R → Spec(R) is proper (being of finite type

is obvious here), and so is the closed immersion E → P2
R ([Sta17, Tag 01N0] and

[Sta17, Tag 01W5]), thus the map E → Spec(R) is proper.
For equivalence of smoothness and invertibility of ∆, we use the Lemma 4.1.

Note that using faithfully flat descent, it is enough to consider algebraically closed
fields. This is then shown in Proposition III.1.4(a) of [Sil92]. Moreover, Proposition
III.3.1 of [Sil92] shows that the geometric fibers are elliptic curves. This implies the
claim. �

To be able to produce certain embedding into projective spaces later on, we will
prove the following lemma.

Lemma 4.4. Let f : X → Y be a morphism of proper S-schemes such that for every
geometric point Spec(k) → S, the pullback fk : Xk → Yk is a closed immersion.
Then f is a closed immersion.

Proof. First, by [Sta17, Tag 01W6] we conclude that f itself is proper. Now we
want to apply [Gro67], Corollaire 18.12.6, so we only need to show that for every
y ∈ Y with residue field κ(y), the pullback map

Xκ(y) := X ×Y Specκ(y)→ κ(y)

is radicial (or equivalently, universally injective [Sta17, Tag 01S4]) and geometrically
reduced. Let s = f(y). The map Y → S induces a map of residue fields κ(s)→ κ(y)
and a commutative diagram

Specκ(y) //

��

Y

��
Specκ(s) // S,

so that we also obtain a map Specκ(y) → Yκ(s) := Y ×S Specκ(s) compatible
with the above morphisms. In particular, the map Specκ(y)→ Y factors through
Yκ(s) → Y , and a standard pullback manipulation yields shows that all the squares
below are pullback squares:

Xκ(y)
//

��

Xκ(s)

��

// X

��
Specκ(y) // Yκ(s) // Y.

Moreover, observe that κ(y) is indeed the residue field κ(y′) of its image point y′ in
Yκ(s) since the morphism Yκ(s) → Y by construction has the property κ(y) ⊂ κ(y′).
So using [Gro67], Corollaire 18.12.6 once again, we conclude that it is enough to
show that Xκ(s) → Yκ(s) is a closed immersion. We already know by assumption
that X

κ(s)
→ Y

κ(s)
is a closed immersion, with κ(s) the algebraic closure of κ(s).

Since Specκ(s) → Specκ(s) is fpqc, so is Y
κ(s)
→ Yκ(s), and thus by fpqc descent

(e.g. [Vis05], Proposition 1.15(xii)), the map Xκ(s) → Yκ(s) is a closed immersion.
This completes the proof. �

Our next objective is to provide local Weierstraß equations for all elliptic curves.
We will follow [Ols16], Section 13.1.6, but the statement can be found in many
other sources.
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Theorem 4.5 ([Ols16], Section 13.1.6). Zariski locally, any elliptic curve is given
by a Weierstraß form as in Lemma 4.3.

Proof. By Lemma 2.5, it is enough to show that any elliptic curve (E, p : E →
Spec(R), e) for a noetherian ring R is Zariski locally cut out by Weierstraß equa-
tions. Recall that we have shown in Proposition 2.6 and Proposition 2.8 that the
ideal sheaf I of the closed immersion e : Spec(R) → E is an invertible line bun-
dle, and also that the formation of L := I−1 is compatible with base change. By
definition, we had an exact sequence

0→ I → OE → e∗OSpec(R) → 0,

which yields for any n ≥ 0 the short exact sequence

0→ L⊗n → L⊗(n+1) → e∗OSpec(R) ⊗ L⊗(n+1) → 0.

Next, we want to show that p∗ (L⊗n) is a locally free module of rank n for n ≥ 1.
We will use again the variant of cohomology and base change of [Vis05], Proposition
4.37. To apply it, we need to compute H1(Ek,L⊗nk ), and it is enough to do so for
algebraically closed k. Using Serre duality (cf. [Har77], Section III.7) and the fact
that the dualizing sheaf of an elliptic curve over an algebraically closed field is
trivial (e.g.[Har77], Example IV.1.3.6), we conclude

H1(Ek,L⊗nk ) ∼= H0(Ek,L⊗(−n)k ).

As in the proof of Proposition 2.8, we can identify Lk ∼= OEk
(eSpec(k)). Using

[Har77], Lemma IV.1.2, we conclude that negative powers of Lk do not have non-
trivial global sections. So we may indeed apply [Vis05], Proposition 4.37 to conclude
that p∗ (L⊗n) is a locally free module and its formation commutes with base change.
To determine the rank, we use again the pullback to an algebraically closed field k.
Riemann-Roch theorem ([Har77], Theorem IV.1.3) immediately implies that there
the rank is n, thus so is the rank of p∗ (L⊗n).

Next, we want to show that the quotient of the pushforward map p∗(L⊗n) →
p∗(L⊗(n+1)) is a locally free module of rank 1. We can choose an affine covering
of Spec(R) trivializing both of these locally free sheaves. For any Spec(A) in this
covering, the quotient corresponds (via global sections) to an A-module M in the
exact sequence of the form

0→ An → An+1 →M → 0.

Given any A-algebra A′, we pull back to Spec(A′) and obtain an elliptic curve
(E′, p′, e′). We know by Proposition 2.8 that the inverse L′ of the ideal sheaf of e′
is precisely the pullback of L (and same for all its powers). Since the formation of
p∗ (L⊗n) commutes with base change, we conclude that the resulting map An ⊗A
A′ → An+1⊗A′ is injective, so that Tor1A(M,A′) = 0. This is in particular true for
all square 0 extensions A′ = A⊕N for any module N , so Tor1A(M,N) = 0 for any
A-module N . Thus, M is A-flat and finitely generated over A. Since R and thus
A are noetherian, we can conclude [Sta17, Tag 00NX] that M is locally free, and
then it is necessarily of rank 1.

By possibly restricting further, we may assume p∗ (L⊗n) for n ∈ {1, 2, 3, 6}
and also the quotients p∗

(
L⊗2

)
/p∗

(
L⊗1

)
, p∗

(
L⊗3

)
/p∗

(
L⊗2

)
to be trivial over

Spec(A). Moreover, we will use the product structure on
⊕

n≥0 L⊗n and the fact
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that the maps L⊗n → L⊗(n+1) exhibited above are compatible with multiplication.
Fixing identifications, we may choose the basis 1 for

A ∼= Γ(Spec(A), p∗L) ∼= Γ(E ×Spec(R) Spec(A),L)

(coming from OE → L). Using freeness of the quotients, we can also choose bases
1, x and 1, x, y for the cases n = 2 and n = 3, respectively. This defines the elements

1, x, x2, x3, y, xy, y2 ∈ Γ
(
Spec(A), p∗

(
L⊗6

)) ∼= A6.

Note also that the situation is stable under base change. We will first argue
that base change to any algebraically closed field k (and thus to any field, using
faithful flatness) of the resulting map A7 f−→ A6 is surjective. By [Har77], proof
of Proposition IV.4.6 (note that the characteristic assumption is not used at this
point) and [Sil92], proof of the Proposition III.3.1, we conclude that over k, any
relation between the elements above has to be of the form

(4.2) α1 + α2x+ α3y + α4x
2 + α5xy + α6y

2 + α7x
3 = 0

with α6α7 6= 0, since otherwise every term would have a pole of different order
at the point at ∞. (Note we are using the identification Lk ∼= OEk

(eSpec(k)) once
again.) Over k, we know that the dimension of the kernel is at least one, but the
above argument shows also it is precisely 1, since having two such relations would
also imply one with α6α7 = 0, and this relation is necessarily 0 then. Thus, over
k this map is surjective. Using the fact that it is enough to check surjectivity for
all localizations at prime ideals and Nakayama’s lemma, we conclude that the map
A7 → A6 is surjective.

Next, we want to conclude that a Weierstraß relation holds over A. We have a
short exact sequence

0→ Ker(f)→ A7 f−→ A6 → 0,

which remains exact after tensoring with any A-algebra since the last term is free.
Since we now that the kernel is non-trivial over algebraically closed fields, we con-
clude that it is non-trivial and we have a relation of the form (4.2). Moreover, since
α6 and α7 are units after base change to every field, they are units in A. We may
immediately divide by α7 and so assume that α7 = 1.

We want to embed EA := E ×Spec(R) Spec(A) → P2
A using the map given by

the sections x, y, 1. This map is a closed immersion if we base-change from A
to any algebraically closed field [Har77], Example IV.3.3.3, or [Sil92], Proposition
III.3.1. We use Lemma 4.4 to conclude that thus the corresponding map E×Spec(R)

Spec(A)→ P2
A is also a closed immersion.

Consider the homogeneous variant of (4.2), namely the polynomial

F = α1Z
3 + α2XZ

2 + α3Y Z
2 + α4X

2Z + α5XY Z + α6Y
2Z +X3 ∈ A[X,Y, Z].

Using the automorphism Z 7→ α−16 Z of P2
A, we may assume α6 = 1. Unpacking the

construction of the proof of Theorem II.7.1 in [Har77] on the affine parts and keeping
track of trivializations of L⊗k, one can check that the map defined in the sense of the
aforementioned theorem by the sections x, y, 1 in Γ(EA,L⊗3) = Γ(SpecA, p∗L⊗3)
factors through the closed subscheme

V+(F ) := Proj (A[X,Y, Z]/(F ))
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of P2
A (cf. [Sta17, Tag 01QP]), and the map to this subscheme is a closed immersion

j again. Our goal is to show that the resulting map EA → V+(F ) is an isomorphism
of schemes over SpecA.

To do so, we need to show that the corresponding ideal sheaf J vanishes; recall
that it is defined as the kernel

0→ J → OV+(F ) → j∗OEA
→ 0.

Once again we exploit that, if we base-change the whole situation to an algebraically
closed field k, the pullback Jk of J to V+(Fk) vanishes. Indeed, if we pull back
the exact sequence along a morphism P2

k → P2
A induced by a morphism Spec k →

SpecA, the sequence remains exact since j∗OEA
is flat over SpecA. (We then

check the exactness in an affine cover.) Moreover, we can use cohomology and base
change for affine maps ([Sta17, Tag 02KG]) to conclude that the pulled back exact
sequence is of the form

0→ Jk → OV+(Fk) → (jk)∗OEk
→ 0.

Since jk is by construction the closed immersion defined by the sections x, y, 1 of
L⊗3k now over k, it is an isomorphism as shown in [Sil92], Proposition 3.1(a). So
if we restrict the original exact sequence to standard opens on P2

A, we in each case
get a corresponding sequence of A-modules

0→ J → S → N → 0,

where we in addition know that S is a finitely generatedA-algebra, thus in particular
a noetherian ring. Moreover, after tensoring with k for any ring homomorphism
A → k to an algebraically closed field k, we have deduced J ⊗A k = 0. Then also
J ⊗A k = 0 holds for any ring homomorphism A → k into any field k. Now given
a ring homomorphism S → K to some field K, we obtain by composition with the
structure morphism A → S a map A → K, and in particular, the tensor product
J ⊗S K is a quotient of J ⊗A K and thus 0 itself. This applies in particular to
K = Sp/pSp for all prime ideals p ⊂ S. Since S is noetherian, we know that J
is finitely generated as S-module so we can apply Nakayama’s Lemma to conclude
J = 0.

So we have shown that we obtain an isomorphism over SpecA from EA to V+(F ).
In particular, by the second statement of Lemma 4.3, we know that the discriminant
∆ of the Weierstraß equation (4.2) (or its homogeneous version) is invertible in A.
To make the isomorphism into an isomorphism of elliptic curves, we need it to
respect the sections. Recall that the section of V+(F ) is given by “ [0 : 1 : 0]”,
meaning a map from Spec(A) to D+(Y ) ⊂ V+(F ) given via

A[X,Z]/(F (Y = 1))→ A

X 7→ 0,

Z 7→ 0.

We want to show that for any point p ∈ SpecA, the stalks of the sections x and
1 lie in me(p)L⊗3e(p). Since x, y, 1 are a basis of global sections of L⊗3, we then may
conclude that

im(e) ⊆ (EA)y := {P ∈ EA| yP /∈ mPL⊗3P
}
,

Then we will show that on this affine subscheme, the isomorphism EA → V+(F )
sends the section e precisely to “[0 : 1 : 0]” (cf. Theorem II.7.1 and Proposition
II.7.2 of [Har77]).
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For the behaviour the sections x and 1, consider once again the exact sequence

0→ IA → OEA
→ e∗OSpec(A) → 0.

Recall that both 1, x are images of global sections of L⊗2 under the map

L⊗2 ∼= I ⊗ L⊗3 → OEA
⊗ L⊗3.

For a point p ∈ SpecA, we have (e∗OSpec(A))e(p) ∼= Ap 6= 0, so that Ie(p) ⊆ me(p)
and thus the section e goes into (EA)y.

According to Proposition II.7.2, [Har77], the open subscheme (EA)y is affine, say
SpecB. Then the restriction IA|SpecB corresponds to an ideal IB ⊂ B such that
B/IB ∼= A, and the projection is inducing e. Since the restrictions of x, 1 are in
I ⊗L⊗3, this implies that sections x

y ,
1
y correspond to elements of IB ⊂ B and thus

are mapped to 0 in A, making the diagram of sections commute. This completes
the proof. �

Remark 4.6. The actual proof that local Weierstrass equations imply thatMell is
algebraic will be added later.
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