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Elliptical graphical modeling in higher dimensions
D. Vogel, A. Dürre and R. Fried

Abstract—Simpson’s famous paradox vividly exemplifies the
importance of considering conditional, rather than marginal,
associations for assessing the dependence structure of several
variables. The study of conditional dependencies is the subject
matter of graphical models. The statistical methods applied in
graphical models for continuous variables rely on the assumption
of normality, which leads to the term Gaussian graphical models.
We consider elliptical graphical models, that is, we allow the popu-
lation distribution to be elliptical instead of normal. We examine
the class of affine equivariant scatter estimators and propose
an adjusted version of the deviance tests, valid under ellipticity.
A detailed derivation can be found in [1]. In this exposition
we report the results of a simulation study, demonstrating the
feasibility of our approach also in higher dimensions. Graphical
models based on classical, non-robust estimators have been used,
e.g., to explore successfully the partial correlation structure
within high-dimensional physiological time series [2] and within
high-dimensional time series describing neural oscillators [3].

Index Terms—partial correlation, deviance test,

I. GRAPHICAL MODELS

We first introduce the basic terms and notions. Let p ≥ 3
and X = (X1, X2,Y ) with Y = (X3, ..., Xp) be a p-
dimensional random vector following some distribution F with
non-singular covariance matrix Σ. Let X̂i(Y ), i = 1, 2, be the
projection of Xi onto the space of all affine linear functions
of Y . Then the partial correlation p1,2 of X1 and X2 given
X3, ..., Xp is defined as the correlation between the residuals
X1 − X̂1(Y ) and X2 − X̂2(Y ). The partial correlation p1,2
can be interpreted as a measure of the linear association
between X1 and X2 after the common linear effects of all
other variables have been removed. It is a moment-based
characteristic of the distribution F and can be computed from
the covariance matrix Σ. It holds

p1,2 = − k1,2√
k1,1k2,2

,

where ki,j , i, j = 1, ..., k, are the elements of K = Σ−1, see
e.g. [4]. The matrix K is called the concentration matrix (or
precision matrix) of X .

The partial correlation structure of the random variable X
can be coded in a graph, which originates the term graphical
model. An undirected graph G = (V,E), where V is the vertex
set and E the edge set, is constructed the following way: the
variables X1, ..., Xp are the vertices, and an (undirected) edge
is drawn between Xi and Xj , i 6= j, if and only if pi,j 6= 0.
The thus obtained graph G is called the partial correlation
graph (PCG) of X . Formally we set V = {1, ..., p} and write
the elements of E as unordered pairs {i, j}, 1 ≤ i < j ≤ p.
The partial correlation graph is a useful data analytical tool. It
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concisely displays the important aspects of the interrelations
of several variables. It allows furthermore to draw conclusions
about the dependence between groups of variables (note that
the graph is constructed from pairwise relations between
individual variables) and facilitates the understanding of the
underlying physiological process. We will not dwell further
on the purpose and the properties of the PCG, the reader may
consult the review article [5] or any of the classical textbooks
[4], [6], [7], [8]. Our concern here is the statistical modeling.

II. GAUSSIAN GRAPHICAL MODELS

Suppose we have a data set Xn = (xT1 , ...,x
T
n )T of n i.i.d.

realizations of the p-dimensional random vector X . In order to
sensibly “estimate” the PCG of X from the data, we have to
make some distributional assumption about X . This assump-
tion is usually multivariate normality, i.e. X ∼ Np(µ,Σ) for
some µ ∈ Rp and positive definite matrix Σ ∈ Rp×p. Then the
Gaussian graphical model M (G) induced by the undirected
graph G = (V,E) is the set of all p-dimensional Gaussian
distributions satisfying the zero partial correlation restrictions
specified by G. Precisely, if we denote the set of all positive
definite p× p matrices by S +

p and let

S +
p (G) =

{
K ∈ S +

p

∣∣ ki,j = 0∀ i 6= j with {i, j} /∈ E
}
,

then

M (G) =
{
Np(µ,Σ)

∣∣ µ ∈ Rp, K = Σ−1 ∈ S +
p (G)

}
.

An integral part of almost any model selection scheme is the
possibility to test if a model under consideration fits the data or
not. In the context of Gaussian graphical models the classical
tool for this purpose is the deviance test, which is described in
the following. For any graph G = (V,E) define the function
hG : S +

p → S +
p : A 7→ AG by{

[AG]i,j = ai,j , {i, j} ∈ E or i = j,

[A−1
G ]i,j = 0, {i, j} /∈ E and i 6= j.

(1)

It is not trivial and a deeper result of the theory of Gaussian
graphical models that a unique and positive definite solution
AG of (1) exists for any positive definite A. The solution can
be found by the iterative proportional scaling algorithm, for
which convergence has been shown, cf. [7], Chap. 5. If we let
further Σ̂n denote the sample covariance matrix, then Σ̂G =
hG(Σ̂n) is a sensible estimator for Σ subject to the assumption
Σ−1 ∈ S +

p (G). It is indeed the maximum likelihood estimator
in the Gaussian graphical model M (G). Now suppose we have
two nested models M (G0) ( M (G1), i.e. the edge set E0

of G0 is a strict subset of the edge set E1 of G1. Let q be
the number of edges that are in E1 but not E0. Then, under
M (G0),

D̂n(Σ̂n) = n
(

ln dethG0(Σ̂n)− ln dethG1(Σ̂n)
)

(2)
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converges to a χ2 distribution with q degrees of freedom.
This the likelihood ratio test for testing M (G0) against the
larger model M (G1). The statistic D̂n(Σ̂n) is also referred
to as deviance. Many model selection procedures (backward
elimination, forward selection, Edwards-Havránek,...) consist
of an iterative application of this test. For details see, e.g., [8].

III. ELLIPTICAL GRAPHICAL MODELS

A problem of the Gaussian graphical modeling described
in the previous section is its lack of robustness, which is
mainly due to the poor robustness of the estimator Σ̂n. Hence
a promising way of robustifying the procedure is to replace Σ̂n
by a more robust scatter estimator. Over the last four decades
many proposals of robust multivariate dispersion estimators
have been made, for a review see, e.g., [9]. Indeed, it can
be shown that the convergence of (2) remains true, if Σ̂n is
replaced by any scatter estimator Ŝn that fulfills the following
regularity conditions.

(I) Ŝn is (at least proportionally) affine equivariant, i.e.
Ŝn(XnAT + b) ∝ AŜn(Xn)AT for any b ∈ Rp and
full rank matrix A ∈ Rp×p, and

(II) Ŝn is
√
n-convergent, i.e.

√
n(Ŝn − S) converges in

distribution, where S is some multiple of Σ.
These two conditions are very natural conditions for multivari-
ate scatter estimators. For details see [1]. Then, under M (G0),

1
σ1
D̂n(Ŝn) = n

σ1

(
ln dethG0(Ŝn)− ln dethG1(Ŝn)

)
(3)

converges to a χ2 distribution with q degrees of freedom,
where σ1 > 0 is a suitable scalar-valued constant, which is
a function of the estimator Ŝn, but does neither depend on
G0, G1 nor the true covariance Σ. We call D̂n(Ŝn) pseudo-
deviance, and the corresponding test adjusted deviance test,
since we have to divide the test statistic by the consistency
factor σ1.

Furthermore, 1
σ1
D̂n(Ŝn) also converges to a χ2

q limit, if
the data x1, ...,xn are sampled from an elliptical distribution.
Then σ1 has to be chosen accordingly, examples are given in
the next section. A continuous distribution F in Rp is said to
be elliptical if it has a density f of the form

f(x) = det(S)−
1
2 g
(
(x− µ)TS−1(x− µ)

)
. (4)

for some µ ∈ Rp and positive definite p × p matrix S.
We call µ the symmetry center and S the shape matrix
of F . If the second-order moments of X ∼ F exist, then
E(X) = µ, and Var(X) = Σ(F ) is proportional to S. The
class of all continuous, elliptical distributions constitutes a
generalization of the multivariate normal model, that allows
arbitrarily heavy tails and is therefore well suited to model
outlying observations. The normal distribution is obtained by
gNp(y) = (2π)−

p
2 exp

(
− 1

2y
)
. A prominent example of a

heavy-tailed distribution is the tν,p-distribution, specified by

gtν,p(y) =
Γ(ν+p2 )

(νπ)
p
2 Γ(ν2 )

(
1− y

ν

)− ν+p
2

,

where the index ν is referred to as the degrees of freedom.
The moments of tν,p are finite only up to order ν − 1. For

ν ≥ 3 its covariance is Σ = ν
ν−2S, and for ν ≥ 5 the

excess kurtosis (of each component) is 6/(ν − 4). Elliptical
distributions do generally not possess finite moments, i.e. Σ
does not necessarily exist. Provided Ŝn is

√
n-convergent, we

may nevertheless use the adjusted deviance test to test (more
generally) for a certain zero pattern in the inverse of the shape
matrix S instead of Σ.

IV. EXAMPLES OF ROBUST SCATTER ESTIMATORS

If the fourth-order moments of X ∼ F are finite, then
Σ̂n fulfills conditions (I) and (II). The corresponding value of
σ1 is 1 + κ

3 , where κ is the excess kurtosis of the first (or
any other component) of X . Thus, if we assume an elliptical
population distribution F (with finite fourth-order moments),
we may apply the adjusted deviance test, but have to divide
D̂n(Σ̂n) by a consistent estimate of σ1. Under a heavy-tailed
distribution, i.e., if κ is large, the estimator Σ̂n is relatively
inefficient, resulting in a test with poor power. An alternative,
which keeps its efficiency under heavy tails, is Tyler’s scatter
estimator. It is defined as the solution T̂n = T̂n(Xn) of

p

n

n∑
i=1

(xi − µ̂n)(xi − µ̂n)T

(xi − µ̂n)T T̂−1
n (xi − µ̂n)

= T̂n (5)

which satisfies det T̂n = 1. Here µ̂n is an appropriate location
estimator, which may be the mean, or, in light of robust-
ness, the Hettmansperger-Randles median [10]. Existence and
uniqueness of a solution of (5) and the asymptotic properties
of the estimator T̂n are treated in the original publication [11].
The estimator evidently satisfies condition (I) and under some
mild regularity conditions on the population distribution also
condition (II). The corresponding value of σ1 is 1 + 2

p , irre-
spective of the specific elliptical distribution. This remarkable
fact may be phrased as to say the test statistic D̂n(T̂n) is
asymptotically distribution-free within the elliptical model, a
property which it inherits from the estimator T̂n. This has the
nice practical implication that, when carrying out the adjusted
deviance test, σ1 needs not to be estimated. Furthermore, for
large p, T̂n is almost as efficient as the MLE Σ̂n at the
normal distribution and outperforms Σ̂n at distributions with
slightly heavier than normal tails, e.g., at the tν,p distribution,
if ν < p+ 4.

The third example we want to mention is the RMCD,
the reweighted version of Rousseeuw’s minimum covariance
determinant estimator [12], see also [13], Chap. 7, which has
become a very popular highly robust scatter estimator. Very
roughly, a subsample of size h = btnc, where 1

2 ≤ t < 1 is
some fixed fraction, of the data points is chosen such that the
determinant of the sample covariance matrix computed from
this subsample is minimal. Afterwards a reweighting step is
applied, which increases the efficiency, but maintains the high
breakdown point of the initial estimator. The RMCD fulfills
conditions (I) and (II). The asymptotics are treated in [14] and
[15]. Values for σ1 can be found in [15]. The RMCD is an
appropriate estimator if the outlying observations are assumed
to be contaminations, but the bulk of the data is well described
by a Gaussian distribution. Similar to Tyler’s estimator, the
efficiency of the RMCD, relative to sample covariance matrix,
increases with p.
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Fig. 1. Partial correlation matrix (absolute values)

V. SIMULATION STUDY

We want to compare the estimators mentioned in the pre-
vious section in a simulation study, to give an impression of
their applicability in elliptical graphical modeling. In [1] we
report the results obtained from a small toy model consisting
of five nodes and five edges. The following is aimed at comple-
menting these numerical investigations by considering a high-
dimensional example, where e.g. also run-time plays a role.
Our set-up is as follows. We sample 200 i.i.d. observations
of a 50-dimensional random vector that follows an elliptical
distribution. For each of the elliptical distributions we consider,
cf. Table I, we take 1000 samples, and from each sample
compute several estimates. Based on each estimate, we select
a model and compare it to the true model. In all runs we use
the same model (Figure 3) and the same shape matrix with
identical diagonal elements. The partial correlation matrix is
visualized in Figure 1: the absolute values of the matrix entries
are coded by different shades of gray, ranging from 0 (white)
to 1 (black). Despite the many intersecting edges in Figure 3
this is a sparse graph. Of 1225 possible edges only 94 are
present, and only two nodes (11 and 18) have more than six
neighbors.

We perform a very simple model selection: we carry out an
edge-exclusion test for every possible edge, i.e. we test, for
each pair {i, j}, the model with all edges but {i, j} against
the saturated model and exclude the edge {i, j}, if the test
accepts the smaller model. More sophisticated model search
procedures generally show better results, but lead to similar
conclusions as far as the comparison of the estimators is
concerned. Our simple one-step model selection allows to
better study the properties of the adjusted deviance tests and
the effects of the choice of the scatter estimator. We perform
each test at the significance level α = 0.01, which is an ad
hoc choice. It is chosen rather small due to the sparsity of
the graph. Since the vast majority of possible edges is absent,
identifying these non-edges correctly is of greater importance
for the overall performance in this example. If we view the
model selection as a multiple-testing problem, i.e. we want
to restrict the probability that the fitted graph is too large, an
individual significance level of α = 0.01 is already high.

Besides getting an impression of the general performance
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Fig. 2. Asymptotic approximation of the test statistic for n = 200 at the
normal distribution

we want to examine the finite-sample behavior of the estima-
tors, i.e. check if the asymptotic χ2-approximation of the test
statistics are useful in practice. A sample size of 200 seems
large enough to expect some “validity” of the asymptotics. We
therefore consider two criteria. The main criterion by which
we measure the goodness of the model selection is the relative
mean edge difference (RMED), i.e. the average number of
edges (averaged over all 1000 runs) that are wrongly specified
in the selected model—may it be that an existing edge was
rejected or an absent edge was wrongly included—divided by
the total number of possible edges (1225). An RMED below
0.5 indicates that the model selection procedure is superior to
random guessing. In a less complex situation it might be also
of interest to know, how often the true model is found, but with
1225 test decisions in each trial we can not expect a positive
number in only 1000 trials. Any model selection procedure that
is based on testing for zero parameters aims at controlling the
probability of correctly specifying the non-edges. Our second
criterion is therefore the percentage of wrongly specified non-
edges, which is the same as the rejection probability of the
test under the null and should turn out to be about 1%.

The findings of our experiment are summarized in Table I.
The benchmark is traditional graphical modeling, i.e. the
performance of Σ̂n at the normal distribution, cf. first row
of Table I. We observe two things: First, the test is anti-
conservative. The actual rejection probability under the null
hypothesis is about 2.7%. The simulated cdf of the test statistic
(for n = 200) and its limit for n→∞ are plotted in Figure 2.
Second, the test goes wrong, if we move away from normality.
We assume only ellipticity but no further knowledge about
the distribution and want methods that are valid over the
whole class of elliptical distributions. A possible remedy is to
adjust the Σ̂n-based test statistic by an estimate of σ1, which
is here based on the component-wise sample kurtosis. The
results of this adjusted deviance test are reported in the second
row of Table I. This adjustment repairs the test, and does
so surprisingly well—even in the case of the t3-distribution,
where the population kurtosis is not defined. In this case we do
not have an “asymptotic justification” of the test, but we find
it to be conservative. This effect, which we did not observe at



PROCEEDINGS OF BIOSIGNAL 2010, JULY 14-16, 2010, BERLIN, GERMANY 4

1
2

3

4

5

6

7

8 9

10
11

12

13

14

15

16

17

18

19

20

21
22

2324

25

26

27

28

29

30

31

32

3334

3536

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Fig. 3. Example graph

TABLE I
ONE-STEP MODEL SELECTION BASED ON DIFFERENT ESTIMATORS

RMED / WRONGLY SPECIFIED NON-EDGES (%)

distribution normal t20 t5 t3
Σ̂ 4.9 / 2.6 5.5 / 3.2 8.1 / 6.0 11.4 / 9.5
Σ̂∗ 5.0 / 2.7 5.0 / 2.5 5.3 / 1.1 6.1 / 0.3
T̂ 5.1 / 2.6 5.0 / 2.6 5.0 / 2.6 5.1 / 2.6

RMCD 0.5∗∗ 6.4 / 1.0 6.1 / 0.8 6.2 / 0.9 6.3 / 1.0
RMCD 0.75∗∗ 4.2 / 1.0 4.5 / 1.3 6.0 / 2.9 8.1 / 5.2

∗ test statistic adjusted by estimated kurtosis
∗∗ with finite-sample correction

the low-dimensional example, certainly deserves some further
investigation.

For Tyler’s estimator, there are mainly two things to note.
We recognize its asymptotic efficiency properties: it almost
equals the performance of Σ̂n at the normal model, but shows
no loss under larger tails. On the other hand, the test statistic
shows a very similar behavior as the Σ̂n-based deviance under
normality, cf. Figure 3. It has in particular the same bias w.r.t.
the asymptotic χ2

1-distribution. This gives rise to the hope that
finite-sample correction techniques developed for Σ̂n-based
analyses, cf. e.g. [7], p. 143, can be applied to T̂n as well
and be brought to benefit also under ellipticity.

Finally, Table I also reports results for the RMCD, with
subsample fractions t = 0.5 and t = 0.75, which both exhibit
generally good efficiencies, which is in contrast to the low-
dimensional example. But it must be pointed out that we
did not carry out an asymptotic test in this situation. It is
a known problem of the RMCD that it converges very slowly
to its asymptotic distribution. The “asymptotic” σ1-value is
of no use here. The problem is usually taken care of by
multiplying by a correction factor which has to be determined
numerically. We have chosen σ1 such that the test delivers
the desired rejection probability of 0.01 under the null at the
normal model. This makes the RMCD look unjustifiably good
in comparison to the other estimators.

All calculations were done in R 2.9.1, employing rou-
tines from the packages mvtnorm (random sampling), ggm
(constrained estimation, i.e. the function hG), ICSNP (Tyler
matrix) and rrcov (RMCD). The simulations were run on

a 2.83 GHz Intel Core2 CPU. The computation of Tyler’s
estimator lasted less then a second, the RMCD less than 3
seconds, all 1225 edge-exclusion tests took about 37 seconds.
Figure 3 was created using Graphviz.
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