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MICHAEL STOLZ

Abstract. In recent years, Stein’s method of normal approximation has been applied to
Haar distributed orthogonal matrices by several authors. We give an introduction to the
relevant aspects of the method, highlight a few results thus obtained, and finally argue that
the quantitative multivariate central limit theorem for traces of powers that was recently
obtained by Döbler and the author for the special orthogonal group remains true for the
full orthogonal group.

1. Introduction

The observation that random matrices, picked according to Haar measure from orthogo-
nal groups of growing dimension, give rise to central limit theorems, dates back at least to
Émile Borel, whose 1905 result on random elements of spheres can be read as saying that if
the upper left entry of a Haar orthogonal n × n matrix is scaled by

√
n, it converges to a

standard normal distribution as n tends to infinity. See [DDN03] for more historical back-
ground. Borel’s observation may be seen as an early result in random matrix theory, but it
must be emphasized that from this point of view it is rather atypical. In the best known
random matrix models, such as the Gaussian Unitary Ensemble (GUE) or Wigner matri-
ces, the distributions of the individual matrix entries are either known or subject to certain
assumptions, and one is interested in various global and local features of the eigenvalues of
the random matrix. On the other hand, for Haar orthogonal matrices or, more generally, for
Haar distributed elements of a compact matrix group, properties of the distributions of the
individual entries have to be inferred from the distribution of the matrix as a whole.

Nevertheless, GUE matrices and Wigner matrices give rise to central limit theorems in
a different way: If Mn is an n × n GUE matrix, say, with (necessarily real) eigenvalues
λ1, . . . , λn, then the empirical eigenvalue distribution

Ln := Ln(Mn) :=
1

n

n∑
j=1

δλj
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is known to converge to Wigner’s semicircular distribution σ in various senses. Then for
suitable real valued test functions f the fluctuation

n

(∫
fdLn − E

(∫
fdLn

))
tends to a Gaussian limit as n→∞, see, e.g., [LP09].

This type of question also makes sense for Haar distributed matrices from a compact group,
such as the orthogonal group, the uniform distribution on the unit circle T of the complex
plane replacing the semicircular distribution. If f : T → R is continuous and of bounded
variation, then the fluctuation on the orthogonal group has a pointwise expression

n(Ln(f)− E(Ln(f))) = f(λn1) + . . .+ f(λnn)− nf̂(0)(1)

=
∞∑
j=1

f̂(j) Tr(M j
n) +

∞∑
j=1

f̂(j) Tr(M j
n)

= 2
∞∑
j=1

Re(f̂(j)) Tr(M j
n).

This expansion shows that if f is a trigonometric polynomial, a CLT for fluctuations will be
equivalent to a CLT for random vectors of the form

(Tr(Mn),Tr(M2
n), . . . ,Tr(Md

n)).

This CLT was established in the famous paper of Diaconis and Shahshahani [DS94] from
1994 that turned traces of powers into a popular subject in the theory of Haar distributed
matrices. It was used as a stepping stone for the treatment of more general test functions
by Diaconis and Evans [DE01] in 2001.

Diaconis and Shahshahani proved their theorem using the method of moments. It turned
out that the moment

E
(
(Tr(Mn))a1(Tr(M2

n))a2 . . . (Tr(Md
n))ad

)
actually coincided with the corresponding moment of the Gaussian limit distribution (to be
described in Lemma 6.4 below) as soon as

(2) 2n ≥ ka :=
d∑
j=1

jaj

(see [Sto05] for the threshold given here). This led Diaconis to conjecture that the speed of
convergence should be rather fast. Subsequently, only a few years later, Stein [Ste95] proved
superpolynomial, and Johansson [Joh97] finally exponential convergence.

During the last decade several authors, certainly inspired by Stein’s paper, have turned
to the broader approach to normal approximation that bears the name “Stein’s method”
to investigate the speed of convergence in various CLTs for Haar orthogonals (and Haar
distributed elements of other compact matrix groups), obtaining worse rates of convergence,
but a wider range of results. It is the aim of this survey paper to introduce the relevant
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techniques, present some results on the linear combinations and traces of powers problems,
and extend the multivariate traces of powers result from the special orthogonal to the full
orthogonal group.

2. Univariate normal approximation via Stein’s method

Consider random variables W and Z, with distributions P and Q, respectively. A useful
recipe to quantify the distance between P and Q is to choose a family H of test functions
and define

dH(P,Q) := sup
h∈H
|E(h(W ))− E(h(Z))|.

Well-known examples are H = {1]−∞,z] | z ∈ R}, giving rise to the Kolmogorov distance

dH(P,Q) = sup
z∈R
|P(W ≤ z)− P(Z ≤ z)|,

andH = {h : Rd → R,Lipschitz with constant ≤ 1}, which defines the Wasserstein distance.

Stein’s method, developed by Charles Stein since the early 1970s (see [Ste72]), serves to
bound distances of this type. Stein himself developed his method for normally distributed
Z, his student L.H.Y. Chen developed a parallel theory for the Poisson distribution, see
[BHJ92] for a monographic treatment. Nowadays, the methods for normal and Poisson lim-
its are still the best developed instances of Stein’s approach, but progress has been made on
other distributions as well (see, e.g., [CFR11] and [Döb12]). In accordance with the nature
of the limit theorems to be discussed in this survey, we will focus on the normal case and
start with a sketch of the case of a univariate normal distribution. A much more detailed
picture of the fundamentals (and a lot more) of Stein’s method of normal approximation can
be found in the recent textbook [CGS11].

Write ϕ for the density of the univariate standard normal distribution. Since ϕ is strictly
positive, for h measurable and E|h(Z)| <∞ we may define

fh(x) :=
1

ϕ(x)

∫ x

−∞
(h(y)− E(h(Z))) ϕ(y) dy.

Then it can be verified by partial integration that fh solves the Stein equation

f ′(x) = xf(x) + h(x)− E(h(Z)).

For Z a standard normal random variable and W such that h(W ) is integrable for all h ∈ H,
this implies that

(3) |E(h(W ))− E(h(Z))| = |E(f ′h(W ))− E(Wfh(W ))|.
So to bound the distance, defined by the class H of test functions, between the law of W
and the standard normal distribution, which is the law of Z, it suffices to bound the right
hand side of the last equation for all Stein solutions fh, where h runs over H. Note that
this right-hand side involves only W , not Z. A crucial fact to be used in what follows is
that estimates on fh and its first and second derivatives are available that require only little
information about h. To be specific, one has that if h is absolutely continuous, then

(i) ‖fh‖∞ ≤ 2‖h′‖∞.
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(ii) ‖f ′h‖∞ ≤
√

2/π ‖h′‖∞.
(iii) ‖f ′′h‖∞ ≤ 2‖h′‖∞.

Actually there are several approaches to bound the right-hand side of (3), see, e.g., [Rei05].
The orthogonal group examples will use “exchangeable pairs”, a device that was introduced
by Stein in his monograph [Ste86] of 1986. To illustrate the main ideas of this variant of the
method, we will extract a few steps from an argument that Stein provided in his book.

An exchangeable pair is a pair (W,W ′) of random variables, defined on the same probability
space and taking values in the same state space, such that (W,W ′) and (W ′,W ) have the
same distribution. An elementary, but crucial, consequence is that

E g(W,W ′) = 0

for any antisymmetric function g defined on pairs of elements of the state space. For con-
creteness, we assume for now that W and W ′ are real-valued. In later applications they will
be elements of a finite dimensional real vector space.

One further condition that has to be imposed on (W,W ′) is that there exist 0 < λ < 1 such
that

E(W ′|W ) = (1− λ)W.

This “regression condition” is quite natural in the context of normal approximation, since it
is known to hold if (W,W ′) has a bivariate normal distribution. Actually, it is desirable to
weaken the condition to the effect that the regression property needs to hold only approxi-
mately, and indeed this may be done, as shown by Rinott and Rotar in [RR97]. But for our
purely illustrative purposes, we assume the condition as it stands.
Since λ is assumed to lie strictly between 0 and 1, W , W ′ must be centered, as

E(W ) = E(W ′) = E(E(W ′|W )) = E((1− λ)W ) = (1− λ)E(W ).

Making the specific choice

g(x, y) := (x− y)(f(x) + f(y))

of an antisymmetric function, where f is a function that will be specialized to a Stein solution
later on, one obtains that

0 = E((W −W ′)(f(W ) + f(W ′))

= E((W −W ′)(f(W ′)− f(W )) + 2E((W −W ′)f(W ))

= E((W −W ′)(f(W ′)− f(W )) + 2E(f(W )E((W −W ′)|W ))

= E((W −W ′)(f(W ′)− f(W )) + 2λE(Wf(W )).

From this one concludes that
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E(Wf(W )) =
1

2λ
E((W −W ′)(f(W )− f(W ′))

=
1

2λ
E
[∫ W

W ′
(W −W ′)f ′(t)dt

]
=

1

2λ
E
[∫ 0

−(W−W ′)
f ′(W + t)(W −W ′)dt

]
=

1

2λ
E
[∫

R
f ′(W + t)K(t)dt

]
,

where
K(t) = (W −W ′)

(
1{−(W−W ′)≤t≤0} − 1{0<t≤−(W−W ′)}

)
.

On the other hand, a similar argument yields

E(f ′(W )) = E
[
f ′(W )(1− 1

2λ
E((W −W ′)2|W )

]
+

1

2λ
E
[∫

R
f ′(W )K(t)dt

]
.

Assume h Lipschitz with minimal constant ‖h′‖∞, and choose the Stein solution fh in the
place of f . Then it follows from the above that

|E(h(W ))− E(h(Z))| = |E(f ′h(W ))− E(Wfh(W ))|

≤ E
∣∣∣∣f ′h(W )

(
1− 1

2λ
E((W −W ′)2|W )

)∣∣∣∣
+

1

2λ
E
[∫

R
|f ′h(W )− f ′h(W + t)|K(t)dt

]
.

Observing that
|f ′(W )− f ′h(W + t)| ≤ ‖f ′′h‖∞|t| ≤ 2‖h′‖∞|t|

and recalling the bound
‖f ′h‖∞ ≤ (2/π)‖h′‖∞

on the solutions of Stein’s equation, one finally arrives at a bound

|E(h(W ))−E(h(Z))|

≤ 2

π
‖h′‖∞ E

[∣∣∣∣1− 1

2λ
E((W −W ′)2|W )

∣∣∣∣]+
‖h′‖∞

2λ
E(|W −W ′|3).

Since this bound in particular holds for all 1-Lipschitz functions h, this means that the
Wasserstein distance between the distribution of W and the standard normal law has been
bounded from above by the expression

(4)
2

π
E
[∣∣∣∣1− 1

2λ
E((W −W ′)2|W )

∣∣∣∣]+
1

2λ
E(|W −W ′|3).

This is a crude version of a bound. In the proofs of the orthogonal group results to be pre-
sented in what follows, more elaborate results will be required. In particular, in a situation
which exhibits continuous rather than discrete symmetries, such as in a Lie group context, it
may be an advantage to consider a continuous family of exchangeable pairs simultaneously,
yealding theorems of the type given in Prop. 3.1 below. Nonetheless, the proof of the present
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crude version illustrates how the exchangeability condition and the regression condition fit
together.

It should be noted that there is no guarantee at all that (4) will yield a reasonable bound.
The true challenge is to find an exchangeable pair such that the moments of W −W ′ which
appear in (4) get small in the relevant limit, satisfying a regression condition for which λ
does not become too small in this limit.

3. Stein’s method in the multivariate case

Against the backdrop of the sketch of univariate normal approximation that has been pro-
vided above, it does not seem straightforward to extend Stein’s approach to the multivariate
case. For instance, it is not obvious which differential operator should be used to con-
struct a Stein equation. The most popular choice is the Ornstein-Uhlenbeck (OU) generator
L = ∆ − x · ∇. To see that it serves this purpose, denote by (Tt) the operator semigroup
corresponding to the OU process in Rd, and by νd the d-dimensional standard normal distri-
bution. It is known that the OU process is stationary w.r.t. νd. Hence, for f from a suitable
class of test functions, one has that

d

dt

∫
Ttf dνd = 0,

hence ∫
Lf dνd = 0.

This observation was exploited by Götze [Göt91] in 1991 in his treatment of the multivariate
CLT in euclidean space. On the other hand, a multivariate version of the exchangeable pairs
method is only a recent achivement. The handy version that will be presented below, due to
E. Meckes [Mec09], builds upon her previous joint work with Chatterjee [CM08] from 2008
as well as on a paper of Reinert and Röllin [RR09] that appeared in 2009.

For a vector x ∈ Rd let ‖x‖2 denote its euclidean norm induced by the standard scalar
product on Rd that will be denoted by 〈·, ·〉. For A,B ∈ Rd×k let 〈A,B〉HS := Tr(ATB) =

Tr(BTA) = Tr(ABT ) =
∑d

i=1

∑k
j=1 aijbij be the usual Hilbert-Schmidt scalar product on

Rd×k and denote by ‖ · ‖HS the corresponding norm. For random matrices Mn,M ∈ Rk×d,
defined on a common probability space (Ω,A,P), we will say that Mn converges to M in
L1(‖ · ‖HS) if ‖Mn −M‖HS converges to 0 in L1(P).
For A ∈ Rd×d let ‖A‖op denote the operator norm induced by the euclidean norm, i.e.,
‖A‖op = sup{‖Ax‖2 : ‖x‖2 = 1}. We now state a multivariate normal approximation
theorem, due to E. Meckes ([Mec09, Thm. 4]) that has been used in [DS11] to treat the
multivariate CLT for traces of powers of Haar orthogonals. Z = (Z1, . . . , Zd)

T denotes a
standard d-dimensional normal random vector, Σ ∈ Rd×d a positive definite matrix and
ZΣ := Σ1/2Z with distribution N(0,Σ).

Proposition 3.1. Let W,Wt (t > 0) be Rd-valued L2(P) random vectors on the same
probability space (Ω,A,P) such that for any t > 0 the pair (W,Wt) is exchangeable. Suppose
there exist an invertible non-random matrix Λ, a positive definite matrix Σ, a random vector
R = (R1, . . . , Rd)

T , a random d×d-matrix S, a sub-σ-field F of A such that W is measurable
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w.r.t. F and a non-vanishing deterministic function s : ]0,∞[→ R such that the following
three conditions are satisfied:

1

s(t)
E[Wt −W |F ]

t→0−→ −ΛW +R in L1(P).(i)

1

s(t)
E[(Wt −W )(Wt −W )T |F ]

t→0−→ 2ΛΣ + S in L1(‖ · ‖HS).(ii)

lim
t→0

1

s(t)
E
[
‖Wt −W‖2

2 1{‖Wt−W‖22>ε}

]
= 0 for each ε > 0.(iii)

Then

(5) dW(W,ZΣ) ≤ ‖Λ−1‖op

(
E[‖R‖2] +

1√
2π
‖Σ−1/2‖op E[‖S‖HS]

)
.

It should be remarked that the more complete statement of this theorem given in [Mec09,
Thm. 4] also treats the case that Σ is only positive semidefinite.

4. Exchangeable pairs and quantitative Borel type theorems

As mentioned in the introduction, the historical precursor of CLTs for Haar distributed
orthogonal matrices is Borel’s result about the first coordinate of a random unit vector in
euclidean space. This result is a special case (for A(n) specialized to a matrix with 1 in the
(1, 1) coordinate and 0 elsewhere) of the following result, due to D’Aristotile, Diaconis, and
Newman [DDN03]:

Theorem 4.1. For n ∈ N choose (deterministic) A(n) ∈ Rn×n such that Tr(A(n)(A(n))′) = n
and let Mn ∈ On be distributed according to Haar measure. Then Tr(A(n)Mn) converges in
distribution to N(0, 1) as n tends to infinity.

Quantitative versions of this result, both with a rate of order 1
n−1

in total variation distance
and with only slightly different constants, have been proven by E. Meckes in [Mec08] and by
Fulman and Röllin in [FR11]. In both papers the method of exchangeable pairs is applied,
but the specific exchangeable pairs are quite different. Meckes uses a family (W,Wε), where
W = Tr(AM) and Wε = Tr(AMε.) Here, for any ε > 0, the matrix Mε is defined by
Mε = HBεH

TM , where H is a Haar orthogonal independent of M , and

Bε =



√
1− ε2 ε

−ε
√

1− ε2 0
1

0
. . .

1

 .

Fulman and Röllin, on the other hand, obtain a family (Tr(AM0),Tr(AMt)) (t > 0) of
exchangeable pairs from a Brownian motion on On that is started in Haar measure, which is
the stationary distribution of this process. This construction will be explained more carefully
below in the context of the multivariate CLT for traces of powers.
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5. Exchangeable pairs and vectors of traces of powers

Let M = Mn be distributed according to Haar measure on Kn = SOn or Kn = On. For
d ∈ N, r = 1, . . . , d, consider the r-dimensional real random vector

W := W (d, r, n) := (fd−r+1(M), fd−r+2(M), . . . , fd(M)),

where

fj(M) =

{
Tr(M j), j odd,

Tr(M j)− 1, j even

Theorem 5.1. If Kn = SOn and n ≥ 4d + 1 or Kn = On and n ≥ 2d, the Wasserstein
distance between W and ZΣ is

(6) dW(W,ZΣ) = O

max
{

r7/2

(d−r+1)3/2 , (d− r)3/2
√
r
}

n

 .

In particular, for r = d we have

dW(W,ZΣ) = O

(
d7/2

n

)
,

and for r ≡ 1

dW(W,ZΣ) = O

(
d3/2

n

)
.

If 1 ≤ r = bcdc for 0 < c < 1, then

dW(W,ZΣ) = O

(
d2

n

)
.

For the special orthogonal group this result is proven in [DS11] (where the conditions on n
in the special orthogonal and symplectic cases have been interchanged in the statement of
the main result). The main steps of this proof will be indicated in Section 6 below, where
it will also be shown how to adapt this strategy of proof to On in the place of SOn. The
univariate version of this theorem, including the construction of the exchangeable pair that
will be explained below, is due to Fulman [Ful10].

Remark 5.2. In the case of a single fixed power, the rate of convergence in Theorem 5.1 is
clearly significantly worse than the exponential rate that was obtained by Johansson [Joh97]
in the context of limit theorems for Toeplitz determinants. The merit of Theorem 5.1 may
be seen in the fact that it is multivariate and that the powers under consideration may grow
with n. That the latter property yields practical benefits is demonstrated by Döbler and the
author in [DS12]. There this property is used to prove, actually in the case of the unitary
group, that the fluctuation of the linear eigenvalue statistic in (1) will converge to a normal
limit with a rate of O(n−(1−ε)) for any ε > 0 if the test function f is of class C∞. This result
extends to the orthogonal group in a straightforward way.
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6. On the proof of the multivariate traces of powers result

The aim of this section is to summarize the main steps of the proof of Theorem 5.1, as
provided in [DS11], for the special orthogonal group, and indicate how this argument can be
supplemented to yield a proof of the full orthogonal case.

The overall strategy is to apply Proposition 3.1 to the traces of powers problem. To do so,
one has to find a suitable family of exchangeable pairs. The following construction has been
proposed by Fulman in [Ful10] to treat the univariate case. See [IW89, Section V.4] for the
relevant facts about diffusions on manifolds.

Let (Mt)t≥0 be Brownian motion on the compact connected Lie group K = SOn, started in
the Haar measure λK on K, which is known to be its stationary distribution. What is more,
(Mt) is reversible w.r.t. λK . In particular, for any t > 0 and measurable f , (f(M0), f(Mt))
is an exchangeable pair. Let (Tt)t≥0 be the associated semigroup of transition operators on
C2(K) corresponding to (Mt). Its infinitesimal generator is the Laplace-Beltrami operator
∆, and the map (t, g) 7→ (Ttf)(g) satisfies the heat equation on K. Hence

Ttf(g) = T0f(g) + t
d

dt

∣∣∣∣
t=0

Ttf(g) + O(t2)

= f(g) + t(∆f)(g) + O(t2),(7)

and basic Markov process theory yields an expansion that will be useful to establish the
regression property that is fundamental for applying the method of exchangeable pairs:

(8) E[f(Mt)|M0] = (Ttf)(M0) = f(M0) + t(∆f)(M0) + O(t2).

To study traces of powers within this framework, it is useful to express them via power sum
symmetric polynomials. To this end, consider g ∈ Cn×n with eigenvalues c1, . . . , cn (with
multiplicities). Then

Tr(gk) = ck1 + . . .+ ckn,

i.e., the power sum symmetric polynomial pk = Xk
1 + . . .+Xk

n evaluated at (c1, . . . , cn) ∈ Cn.
As pk is symmetric in its arguments, we may unambiguously consider pk as a function on
Cn×n, in accordance with the usual functional calculus for operators. For k, l ∈ N we write

pk,l(g) := pk(g)pl(g) = Tr(gk) Tr(gl),

which is but a special instance of the general definition of power sum symmetric polynomials,
as in [Mac95]. Recalling the notation introduced in Section 5, we have that

fj(M) =

{
pj(M), j odd,

pj(M)− 1, j even.

Setting
W := (fd−r+1(M), fd−r+2(M), . . . , fd(M))

and
Wt := (fd−r+1(Mt), fd−r+2(Mt), . . . , fd(Mt)),
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we see from the discussion above that for any t > 0 the pair (W,Wt) is exchangeable.

We will have to verify that this family of exchangeable pairs satisfies the regression property
in the refined form of (i), (ii) from Proposition 3.1. Obviously, the expansion (8) may
be used to this end, as soon as one is able to describe the action of the Laplacian on the
polynomials pj in an explicit way. Fortunately, such formulae are available from work of
Rains [Rai97] and Lévy [Lév08]. The latter reference provides a conceptual account of how
they follow from an extension of Schur-Weyl duality to the universal enveloging algebra of
the Lie algebra of K, hence to invariant differential operators on K. In concrete terms, we
have the following lemma:

Lemma 6.1. For the Laplacian ∆SOn on SOn,

∆SOnpj = −(n− 1)

2
jpj −

j

2

j−1∑
l=1

pl,j−l +
j

2

j−1∑
l=1

p2l−j.(i)

∆SOnpj,k = −(n− 1)(j + k)

2
pj,k −

j

2
pk

j−1∑
l=1

pl,j−l −
k

2
pj

k−1∑
l=1

pl,k−l

− jk pj+k +
j

2
pk

j−1∑
l=1

pj−2l +
k

2
pj

k−1∑
l=1

pk−2l + jk pj−k.

(ii)

The expansion (8) and Lemma 6.1 make it possible to identify the vector R and the matrices
Λ and S in Proposition 3.1. By way of illustration, one may argue as follows:

Lemma 6.2. For all j = d− r + 1, . . . , d

E[Wt,j −Wj|M ] = E[fj(Mt)− fj(M)|M ] = t ·
(
−(n− 1)j

2
fj(M) +Rj + O(t)

)
,

where

Rj = −j
2

j−1∑
l=1

pl,j−l(M) +
j

2

j−1∑
l=1

p2l−j(M) if j is odd,

Rj = −(n− 1)j

2
− j

2

j−1∑
l=1

pl,j−l(M) +
j

2

j−1∑
l=1

p2l−j(M) if j is even.

Proof. First observe that always fj(Mt) − fj(M) = pj(Mt) − pj(M), no matter what the
parity of j is. By (8) and Lemma 6.1

E[pj(Mt)− pj(M)|M ] = t(∆pj)(M) + O(t2)

= t

(
−(n− 1)j

2
pj(M)− j

2

j−1∑
l=1

pl,j−l(M) +
j

2

j−1∑
l=1

p2l−j(M)

)
+ O(t2) ,

and the claim follows from the definition of fj in the even and odd cases. �

From Lemma 6.2 and the compactness of the group K we conclude
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1

t
E[Wt −W |M ]

t→0−→ −ΛW +R almost surely and in L1(P) ,

where Λ = diag
(

(n−1)j
2

, j = d− r + 1, . . . , d
)

and R = (Rd−r+1, . . . , Rd)
T . Thus, Condition

(i) of Proposition 3.1 is satisfied, and we have identified Λ and R. The verification of (ii),
and identification of Σ and S, is based on the following lemma, which is proven along the
same lines as Lemma 6.2.

Lemma 6.3. For all j, k = d− r + 1, . . . , d

E[(pj(Mt)− pj(M))(pk(Mt)− pk(M))|M ] = t (jkpj−k(M)− jkpj+k(M)) + O(t2).

With Lemma 6.3 in hand, we obtain that

1

t
E[(Wt,j −Wj)(Wt,k −Wk)|M ] =

1

t
E[(fj(Mt)− fj(M))(fk(Mt)− fk(M))|M ]

=
1

t
E[(pj(Mt)− pj(M))(pk(Mt)− pk(M))|M ] = jkpj−k(M)− jkpj+k(M) + O(t2)

t→0→ jkpj−k(M)− jkpj+k(M) a.s. and in L1(P) ,

for all j, k = 1, . . . , d. Noting that for j = k the last expression is j2n− j2p2j(M) and that
2ΛΣ = diag((n− 1)j2 , j = d− r + 1, . . . , d) we see that Condition (ii) of Proposition 3.1 is
satisfied with the matrices Σ = diag(d− r + 1, . . . , d) and S = (Sj,k)j,k=d−r+1,...,d given by

Sj,k =

{
j2(1− p2j(M)), j = k

jkpj−k(M)− jkpj+k(M), j 6= k .

To proceed further, i.e., to verify Condition (iii) of Proposition 3.1 and bound the right hand
side of (5), one has to be able to integrate products of traces of powers with respect to Haar
measure. Such formulae are available from the moment-based proof of the CLT for vectors
of traces of powers given by Diaconis and Shahshahani in [DS94], and subsequent work. A
version for the special orthogonal group, due to Pastur and Vasilchuk [PV04], is as follows:

Lemma 6.4. If M = Mn is a Haar-distributed element of SOn, n − 1 ≥ ka, Z1, . . . , Zr iid
real standard normals, then

(9) E

(
r∏
j=1

(Tr(M j))aj

)
= E

(
r∏
j=1

(
√
jZj + ηj)

aj

)
=

r∏
j=1

fa(j),

where

fa(j) :=


1 if aj = 0,
0 if jaj is odd, aj ≥ 1,
jaj/2(aj − 1)!! if j is odd and aj is even, aj ≥ 2,

1 +
∑baj/2c

d=1 jd
(
aj

2d

)
(2d− 1)!! if j is even, aj ≥ 1.

Here we have used the notations (2m− 1)!! = (2m− 1)(2m− 3) · . . . · 3 · 1,

ka :=
r∑
j=1

jaj, and ηj :=

{
1, if j is even,
0, if j is odd.
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Using Lemma 6.4, it is tedious, but straightforward, to complete the proof of Theorem 5.1
in the special orthogonal case.

It should be evident from this sketch that an extension of Theorem 5.1 to the full orthogonal
group will be proven once one has extended the construction of the exchangeable pair in
a way that preserves the expansion (8), and verified the validity of Lemma 6.1 for the full
orthogonal group. Lemma 6.4 for the full orthogonal group is due to Diaconis and Shahsha-
hani [DS94], and the condition on n can be even weakened to 2n ≥ ka as a consequence
of the invariant-theoretic proof given in [Sto05] (which does not directly carry over to the
special orthogonal group).

In a nutshell, the arguments involving the Laplacian extend to the full orthogonal group be-
cause the special orthogonal group is the connected component of the full orthogonal group
that contains the identity. Consequently, both groups share the same Lie algebra, and the
action of one-parameter semigroups, hence of differential operators, can be extended from
SOn to On in a canonical way. Although this has already been briefly discussed by Fulman
and Röllin [FR11] in the context of linear functions of matrix entries, it is perhaps useful to
close this survey by expanding a bit on this argument in the present situation.

The full orthogonal group has two connected components, consisting of orthogonal matrices
of determinant 1 and−1, respectively. Writing J for the diagonal matrix diag(−1, 1, 1, . . . , 1),
the connected components of the group K := On are the cosets K+ := SOn and K− :=
J SOn. For any f ∈ C(K) denote by f+ ∈ C(K+) and f− ∈ C(K−) its restrictions to
K+ and K−, respectively. Then we may extend the family (Tt) of transition operators
from C(K+) to C(K) by requiring that for f ∈ C(K) there hold (Ttf)+ = Tt(f+) and
(Ttf)− = Tt(f− ◦ τJ) ◦ τJ , where τJ is the left translation (x 7→ Jx). To verify that the
process that corresponds to the extended semigroup is reversible w.r.t. Haar measure, one
deduces from the invariance of Haar measure under translations and from reversibiliy of the
process on the special orthogonal group that for f, g ∈ C(K) one has

∫
K−

(Ttf)−(x) g−(x) λK(dx) =

∫
K−

((Tt(f− ◦ τJ)) ◦ τJ)(x) g−(x) λK(dx)

=

∫
1K+(Jx) ((Tt(f− ◦ τJ))(Jx) g−(x) λK(dx)

=

∫
K+

(Tt(f− ◦ τJ))(x) g−(Jx) λK(dx)

=

∫
K+

(f− ◦ τJ)(x) Tt(g− ◦ τJ)(x) λK(dx)

=

∫
K−

f−(x) (Tt(g− ◦ τJ)) ◦ τJ)(x) λK(dx)

=

∫
K−

f−(x) (Ttg)−(x) λK(dx).
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Since a Laplacian is invariant under translations, the action of ∆ = ∆K+ on C2(K) in
particular satisfies

(10) ∆(f ◦ τJ) = (∆f) ◦ τJ .

So we have that for any x ∈ K−
d

dt
(Ttf)−(x) =

d

dt
Tt(f− ◦ τJ)(Jx) = ∆(f− ◦ τJ)(Jx) = ∆(f−)(x).

That Lemma 6.1 extends to the full orthogonal group is a direct consequence of (10).

References

[BHJ92] A. D. Barbour, Lars Holst, and Svante Janson. Poisson approximation, volume 2 of Oxford Studies
in Probability. The Clarendon Press Oxford University Press, New York, 1992. Oxford Science
Publications.

[CFR11] Sourav Chatterjee, Jason Fulman, and Adrian Röllin. Exponential approximation by Stein’s
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