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Frequency domain methods form a ubiquitous part of the statistical tool-
box for time series analysis. In recent years, considerable interest has been
given to the development of new spectral methodology and tools capturing
dynamics in the entire joint distributions and thus avoiding the limitations of
classical, L2-based spectral methods. Most of the spectral concepts proposed
in that literature suffer from one major drawback, though: their estimation re-
quires the choice of a smoothing parameter, which has a considerable impact
on estimation quality and poses challenges for statistical inference. In this
paper, associated with the concept of copula-based spectrum, we introduce
the notion of copula spectral distribution function or integrated copula spec-
trum. This integrated copula spectrum retains the advantages of copula-based
spectra but can be estimated without the need for smoothing parameters. We
provide such estimators, along with a thorough theoretical analysis, based on
a functional central limit theorem, of their asymptotic properties. We leverage
these results to test various hypotheses that cannot be addressed by classical
spectral methods, such as the lack of time-reversibility or asymmetry in tail
dynamics.

1. Introduction. Spectral methods always have been central in the analysis of time se-
ries and remain (see von Sachs (2020) for a recent review) a very active domain of method-
ological and applied statistical research. Their applications are without number, ranging from
econometrics and finance (with classical monographs such as Granger and Hatanaka (2015))
to geophysics (Likkason, 2011), fluid mechanics (Lange et al., 2019), environmetrics, and
climate change (Ghil et al., 2002).

Powerful as they are, classical spectral methods, however, suffer from the significant limi-
tations inherited from their L2 nature: being covariance-based, they fail to capture important
distributional features such as dependence without correlation (as typically observed in fi-
nancial returns), time-irreversibility, asymmetric dependence between high and low quantile
values, or higher-order dynamics. This has motivated, in the past decades, a rich strand of lit-
erature replacing covariances with alternative measures of dependence related to joint distri-
butions, copulas, and characteristic functions. Pioneering contributions in this direction were
made by Hong (1999), who proposes a generalized characteristic function-based concept of
spectral density. In the specific problem of testing pairwise independence (rather than pair-
wise non-correlation), Hong (2000) introduces a test statistic based on spectra derived from
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joint distribution functions and copulas at different lags. More recent contributions introduce
the notions of Laplace, quantile-based, and copula spectral densities and spectral density
kernels, involving various quantile-related spectral concepts, along with the corresponding
sample-based (smoothed) periodograms. That strand of literature includes Li (2008, 2012,
2013), Hagemann (2013), Dette et al. (2015); Kley et al. (2016a) and Lee and Rao (2012).
Extensions to locally stationary and multivariate time series are considered in Birr et al.
(2017) and Baruník and Kley (2019), respectively. An analysis of related concepts under
long-range dependence can be found in Lim and Oh (2021). The utility of quantile and cop-
ula spectra for model building and model assessment is demonstrated in Birr et al. (2019)
and Li (2021), while an application of quantile- and copula-based spectral techniques to the
analysis of cryptocurrency returns can be found in Su et al. (2021). An extension of these
concepts to the analysis of extreme events, which is related in spirit but different in many
other respects, was considered by Davis et al. (2013). Finally, in the time domain, Linton
and Whang (2007), Davis and Mikosch (2009), and Han et al. (2014) introduced the related
concepts of quantilograms and extremograms.

Unfortunately, despite many attractive properties, spectral densities—whether tradi-
tional L2 or generalized—in practice suffer from several drawbacks; among them, the need
to choose a smoothing parameter to ensure consistent estimation and a lack of process con-
vergence of the resulting estimators when indexed by frequencies. The latter makes it chal-
lenging to use them for inferential purposes such as testing for specific time series features.

In the classical L2 world, this drawback has motivated the recourse to L2 spectral dis-
tribution functions F resulting from the integration of the spectral density over frequencies.
In contrast to spectral densities, such integrated spectra can be estimated without the need
for smoothing. Estimation of F along with process convergence of the resulting estimators
under increasingly general conditions was discussed in Grenander and Rosenblatt (1957),
Ibragimov (1963), Brillinger (1969), Dahlhaus (1985), and Anderson (1993) among others.
Applications of this process convergence to various testing problems are provided in Priest-
ley (1987), Section 6.2.6 and Anderson (1993). An extension to related processes indexed by
more general classes of functions is considered in Dahlhaus (1988); Mikosch and Norvaiša
(1997). Integrated versions of certain normalized periodograms were also studied in Klüp-
pelberg and Mikosch (1996) under various tail assumptions (including the infinite-variance
case) on the underlying time series and extended to long-memory processes in Kokoszka and
Mikosch (1997).

The aim of the present paper is to combine the attractive features of copula–based spectra
with the theoretical merits of spectral distributions. To this end, we define the copula spectral
distribution function, which arises from integrating copula spectral densities over frequen-
cies. We provide estimators which are based on partial sums of copula periodograms and do
not require the choice of smoothing parameters.

The remaining paper is organized as follows. Copula spectral distribution functions are
formally defined in Section 2 where their estimation is also discussed. Weak convergence (as
stochastic processes) of the estimators from Section 2 is established in Section 3. Section 4
shows how this process convergence can be combined with sub–sampling to construct uni-
form confidence bands for integrated copula spectra and test various hypotheses about the
underlying time series. Section 5 demonstrates the finite-sample properties of the method-
ology from Section 4 in an extensive simulation study. All proofs and additional simulation
results are deferred to a series of Appendices.

2. Integrated copula spectra – definition and estimation. In what follows, let (Xt)t∈Z
denote a strictly stationary real-valued time series. Denote by F the marginal distribution
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function of X0 and by τ 7→ qτ = F−1(τ) := inf{x ∈ R : τ ≤ F (x)}, τ ∈ (0,1) the corre-
sponding quantile function. As argued in Dette et al. (2015); Kley et al. (2016a), a natural
way to capture the nonlinear dynamics of (Xt)t∈Z is the analysis of its copula spectral density

f(ω; τ1, τ2) :=
1

2π

∑
k∈Z

γUk (τ1, τ2)e−iωk, ω ∈R, (τ1, τ2) ∈ (0,1)2(1)

where Ut := F (Xt),

γUk (τ1, τ2) := Cov(I{Uk ≤ τ1}, I{U0 ≤ τ2}) =Ck(τ1, τ2)− τ1τ2,

and Ck denotes the copula of the random vector (Xk,X0); here I{A} denotes the indicator
function of A. To ensure the existence of f, it suffices to assume that the γUk (τ1, τ2) are abso-
lutely summable over k ∈ Z for each pair (τ1, τ2), which we throughout implicitly assume.
As shown in Dette et al. (2015); Kley et al. (2016a); Birr et al. (2019), copula spectral den-
sities enjoy many attractive properties; see also Li (2013, 2021) for similar findings in the
setting of Laplace spectra. They exist without any moment assumptions, are invariant under
strictly increasing marginal transformations (hence are scale–free), and provide a complete
characterization of the pairwise copulas—hence the pairwise dependencies—of the series at
arbitrary lags. The last point is in stark contrast to classical spectral densities which are un-
able to capture many important properties of time series such as lack of time-reversibility,
conditional heteroscedasticity, or asymmetry between upper- and lower-tail dynamics.

Yet, despite their flexibility, copula spectral densities are sharing with the traditional ones
an important practical drawback: the choice of a smoothing parameter is required to obtain
consistent estimators. Selecting this smoothing parameter is difficult in practice and poses
substantial challenges for inference. Indeed, larger bandwidths lead to smaller variance but
larger (asymptotic) bias and the exact amount of bias depends on unknown smoothness prop-
erties of the underlying copula spectral density. The need for local smoothing also leads to
difficulties in obtaining results that hold uniformly in frequencies (more formally, no process
convergence is possible). This poses a major roadblock for subsequent inference procedures.
We note that those drawbacks are not limited to copula spectral densities but also appear in
the estimation of classical, L2–based spectral densities.

Motivated by the above discussion, we propose to consider copula spectral distribution
functions which are defined as

F(λ; τ1, τ2) :=

∫ λ

0
f(ω; τ1, τ2)dω, λ ∈ [0, π].(2)

Copula spectral distributions inherit the virtues of copula spectral densities and are conveying
the same information; at the same time, their estimation (as discussed below) does not involve
the choice of smoothing parameters, and process convergence can be established in quantile
levels and frequencies simultaneously (see Theorem 3.1 below).

Before proceeding to estimation, let us provide two examples of hypotheses about time
series dynamics that can be conveniently formulated and tested through the use of spectral
distribution functions.

EXAMPLE 2.1. Testing for time-reversibility. A strictly stationary process (Xt)t∈Z is

called pairwise time-reversible at lag k iff (X0,Xk)
d
= (X0,X−k). A process is pairwise

time-reversible if it is time-reversible for all lags k ≥ 1. Determining if data can be modeled
as a time-reversible process has important consequences for subsequent modeling: testing for
time-reversibility therefore has attracted substantial interest in the literature—see Brillinger
and Rosenblatt (1967) for an early contribution, and chapter 8 in De Gooijer (2017) for an
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overview. Copula spectral distribution functions provide a natural way of assessing time-
reversibility since a process is pairwise time-reversible if and only if the imaginary part of
the corresponding spectral distribution function is uniformly zero:

=F(λ; τ1, τ2) = 0 for all λ, τ1, and τ2.

We will leverage this property of spectral distribution functions in Section 4.2 to construct a
test that has power against the lack of (pairwise) time-reversibility at specified or unspecified
lag.

EXAMPLE 2.2. Assessing symmetry of tail dynamics. It is well known that financial time
series exhibit asymmetric dependence structures in left- and right-hand tails, respectively—
see Jondeau and Rockinger (2003), Li (2021), among many others. Copula spectral distri-
butions provide a natural model-free way to access this kind of asymmetry in tail dynamics.
From a distributional perspective, asymmetry in tail dynamics corresponds to asymmetry in
the lag-k copula Ck of (X0,Xk) for some lag k: if

Ck(τ1, τ2)− τ1τ2 6=Ck(1− τ1,1− τ2)− (1− τ1)(1− τ2)

for small values of τ1, τ2, then the tail behavior of (Xt,Xt+k) is asymmetric. Copula spectral
distributions provide a natural way of assessing this type of asymmetry since

F(λ; τ1, τ2) = F(λ; 1− τ1,1− τ2)

for all λ is equivalent to

Ck(τ1, τ2)− τ1τ2 =Ck(1− τ1,1− τ2)− (1− τ1)(1− τ2)

for all k. A more formal discussion of the corresponding null hypothesis and testing proce-
dure is provided in Section 4.3

We next discuss estimation. Recall the definition (Kley et al., 2016a) of the copula rank
periodogram (in short, the CR periodogram):

Iτ1,τ2n,R (ω) :=
1

2πn
dτ1n,R(ω)dτ2n,R(−ω), ω ∈R, (τ1, τ2) ∈ [0,1]2(3)

with

dτn,R(ω) :=

n−1∑
t=0

I{F̂n(Xt)≤ τ}e−iωt and F̂n(x) :=
1

n

n−1∑
t=0

I{Xt ≤ x}.(4)

As shown in Kley et al. (2016a), the vector (Iτ1,τ2n,R (ω1), . . . ,Iτ1,τ2n,R (ωK)) is approximately
multivariate complex normal with expected values f(ω1; τ1, τ2), . . . , f(ωK ; τ1, τ2) and inde-
pendent entries; see Proposition 3.4 in there for a formal statement. This motivates, for the
copula spectral distribution function, the estimator

F̂n,R(λ; τ1, τ2) :=
2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
Iτ1,τ2n,R

(2πs

n

)
, λ ∈ [0, π].(5)

Observe that, in contrast to the copula spectral density estimators considered in Kley et al.
(2016a), no smoothing parameter is required. In addition, as we shall show in Section 3, this
estimator converges as a process in all three arguments when properly centered and scaled.
This makes it a very attractive choice for testing various hypotheses about distributional dy-
namics of the underlying time series.



THE INTEGRATED COPULA SPECTRUM 5

3. Asymptotic theory. This section is devoted to proving process convergence of the
estimator F̂n,R after proper centering and scaling. We begin by stating the main technical
conditions which are needed to establish this result.

ASSUMPTION 3.1. (S) The real-valued process (Xt)t∈Z is strictly stationary; the
marginal distribution F of X0 is continuous.

(C) There exist constants ρ ∈ (0,1) andK <∞ such that, for arbitrary intervalsA1, . . . ,Ap
of R and arbitrary t1, . . . , tp ∈ Z,

(6)
∣∣∣cum

(
I{Xt1 ∈A1}, . . . , I{Xtp ∈Ap}

) ∣∣∣≤Kρmaxi,j |ti−tj |.

(D) The partial derivatives of the function

(7) (τ1, τ2) 7→G(λ; τ1, τ2) :=
1

2π

∑
k∈Z\{0}

γUk (τ1, τ2)
i

k

(
e−ikλ − 1

)
exist and are continuous for (λ; τ1, τ2) ∈ [0, π]× (0,1)× (0,1).

REMARK 3.1 (Discussion of assumptions). Assumption (C) places restrictions on the
strength of time dependence in (Xt)t∈Z. This assumption also appears in the asymptotic
analysis by Kley et al. (2016a) of copula spectral densities. In particular, Kley et al. (2016a)
show that (6) is implied by several standard assumptions such as exponential α- and β-
mixing. The same reference also shows that processes satisfying some geometric moment
contraction properties defined in Wu and Shao (2004) fulfill Assumption (C).

Condition (D) is needed to quantify the effect of estimating the marginal cdf F by its
empirical version F̂n. The derivatives of G also appear in the covariance kernel of the limiting
process.

In the following Lemma we show that Assumption (D) is satisfied for strictly stationary
centered Gaussian processes (Xt)t∈Z with absolutely summable pairwise copula cumulants.
The details of the proof are deferred to Section B.

LEMMA 3.1. Let (Xt)t∈Z be a stationary centered Gaussian process with auto–
covariances ρk where ρk ∈ (−1,1) for k 6= 0 and

∑
k≥1 |ρk|/k < ∞. Then the par-

tial derivatives of the function (τ1, τ2) 7→ G(λ; τ1, τ2) exist and are continuous on the
set {(λ; τ1, τ2) ∈ [0, π]× [η,1− η]× [η,1− η]}.

In order to state our main result we need some additional notation. Define the copula
spectral density of order K as

f(ω1, . . . , ωK−1; τ1, . . . , τK) := (2π)−K+1
∞∑

k1,...,kK−1=−∞
γUk1,...,kK−1

(τ1, . . . , τK)e−i
∑K−1
j=1 kjωj

with the copula cumulant function of order K

γUk1,...,kK−1
(τ1, . . . , τK) := cum(I{Uk1 ≤ τ1}, . . . , I{UkK−1

≤ τK−1}, I{U0 ≤ τk})

for k1, . . . , kK−1 ∈ Z. We are now ready to state our main result—process convergence of
the properly centered and scaled estimator F̂n,R. Applications of this result to inference will
be discussed in the following sections.
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THEOREM 3.1. Let Assumptions 3.1 hold. Then, for any 0< η < 1
2 , the process

Gn,R(λ; τ1, τ2) :=
√
n
(
F̂n,R(λ; τ1, τ2)−F(λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

(8)

converges weakly to the centered Gaussian process (G(λ; τ1, τ2))
(λ;τ1,τ2)∈

(
[0,π]×[η,1−η]×[η,1−η]

)
with covariance structure

Cov
(
G(λ1; τ1, τ2),G(λ2;κ1, κ2)

)
= 2π

∫ λ1∧λ2

0
f(α; τ1, κ1)f(−α; τ2, κ2)dα+ 2π

∫ λ1

0

∫ λ2

0
f(α,−α,−β; τ1, τ2, κ1, κ2)dαdβ

+

2∑
j=1

∂G

∂κj
(λ2;κ1, κ2)2π

∫ λ1

0
f(α,−α; τ1, τ2, κj)dα

+
∂G

∂τj
(λ1; τ1, τ2)2π

∫ λ2

0
f(α,−α;κ1, κ2, τj)dα

+

2∑
j=1

2∑
k=1

∂G

∂τj
(λ1; τ1, τ2)

∂G

∂τk
(λ1; τ1, τ2)2πf(0; τj , τk),

(9)

that is, (Gn,R(·, ·, ·)) (G(·, ·, ·)) where  denotes weak convergence, as n→∞, with
respect to the uniform metric in the space `∞C

(
[0, π]× [η,1− η]× [η,1− η]

)
. Moreover, the

paths of the process Gn,R are asymptotically uniformly equicontinuous with respect to any
norm on R3.

Let us briefly compare this result with related results in the literature. Similarly to estima-
tors of L2 spectral distribution functions, we obtain process convergence in λ with a n−1/2

convergence rate. However, in contrast to the results in that literature, we have two addi-
tional parameters (τ1, τ2) and we also obtain process convergence in these, which calls for
completely different proofs.

Spectral distribution functions without marginal normalization are considered in Hong
(2000). The latter author establishes process convergence in λ and two parameters which
play a similar role as our quantile levels assuming that the time series is a collection of
i.i.d. data. This considerably simplifies the entire analysis and the proof technique used there
does not extend to the case of general serial dependence. In addition, our analysis differs
since we consider marginal normalization by estimating the marginal distribution function,
something which is not covered by the results of Hong (2000), even in the special case of
i.i.d. observations.

Finally, we provide a comparison with corresponding results for the estimation of copula
spectral densities as discussed in Kley et al. (2016a). There are several key differences in the
form of the final result and the resulting theoretical analysis. First, observe that Theorem 3.1
provides process convergence of the integrated copula spectral densities in the quantile lev-
els τ1, τ2 as well as the frequencies λ. This is in contrast to the copula spectral densities (1)
considered in Kley et al. (2016a) where only process convergence in the quantile levels is
obtained. This is the case also for autocovariance-based spectral densities—due to the fact
that the limiting processes, for distinct frequencies, are mutually independent, so that no tight
element with the right finite-dimensional distributions exists in `∞C

(
[0, π]× [0,1]2

)
[see Re-

mark 3.5 in Kley et al. (2016a)]. Second, we obtain an n−1/2 convergence rate, which is
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strictly faster than the rates obtained in Kley et al. (2016a) for any permissible bandwidth
choice. This is due to the need for local smoothing when estimating copula spectral densi-
ties, and similar phenomena also occur in the context of L2 spectra and “classical” kernel
density estimation. Third, as discussed in more detail in Remark 3.2, the limiting covariance
in Theorem 3.1 has several terms that are due to empirical normalization of the margins.
Such terms do not appear in the limiting process when estimating copula spectral densities
because the effect of marginal standardization there is negligible relative to the convergence
rate of the estimator with known margins. The fact that we need to account for such terms in
our limit considerably complicates our asymptotic analysis compared to the developments in
Kley et al. (2016a).

REMARK 3.2 (A sketch of the proof). The proof of Theorem 3.1 is long and technical;
deferring details to the online supplement, we only outline here the main steps.

(a) A key ingredient is the weak convergence of the process(
Gn,U (λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

:=
√
n
(
F̂n,U (λ; τ1, τ2)−F(λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

where F̂n,U denotes the (infeasible) oracle estimator where the empirical distribution func-
tion F̂n in F̂n,R is replaced by F . We show that this process converges, in `∞C

(
[0, π]× [η,1−

η] × [η,1 − η]
)
, to a centered Gaussian process

(
GU (λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

with
covariance structure

Cov
(
GU (λ1; τ1, τ2),GU (λ2;κ1, κ2)

)
= 2π

∫ λ1∧λ2

0
f(α; τ1, κ1)f(−α; τ2, κ2)dα

+ 2π

∫ λ1

0

∫ λ2

0
f(α,−α,−β; τ1, τ2, κ1, κ2)dαdβ.

(b) Utilizing uniform asymptotic equicontinuity in probability of (τ1, τ2) 7→Gn,U (λ; τ1, τ2)
along with a Taylor expansion of the spectral distribution function F, we obtain the stochastic
representation

Gn,R(λ; τ1, τ2) = Gn,U (λ; τ1, τ2) +
√
n

2∑
j=1

(τj − F̂n(F−1(τj)))
∂G

∂τj
(λ; τ1, τ2) + oP (1)

as n→∞, where the remainder is uniform in (λ, τ1, τ2).
(c) The remaining part of the proof is devoted to establishing process convergence of

the leading term in this representation. The sum
√
n
∑2

j=1(τj − F̂n(F−1(τj)))
∂G
∂τj

(λ; τ1, τ2)

captures the impact of estimating the marginal distribution function F by its empirical coun-
terpart. This expression also explains the additional terms in the covariance function of G
when compared to that of GU . Such additional terms also appear in the limiting distribution
of empirical copula processes [see, for instance, Fermanian et al. (2004) or Segers (2012)].
However, they do not appear in the estimation of copula spectra in Kley et al. (2016a) because
the convergence speed of the estimator there is strictly slower than n−1/2.

4. Subsampling-based inference . Theorem 3.1 is a very powerful instrument allowing
us to perform copula spectral analysis in a broad range of practical problems. Deriving valid
procedures for inference, however, crucially depends on the limit process G in Theorem 3.1—
that is, on the covariance kernel defined in (9). This covariance kernel in turn depends on
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second-, third-, and fourth-order copula spectra and some partial derivatives of the function G
defined in (7). While for some testing problems (e.g., under the null hypothesis of serial
independence: cf. Hong (2000)) these quantities simplify substantially, they are quite difficult
to estimate in general. In this section, we demonstrate how subsampling methods (Politis
et al., 1999) yield feasible and asymptotically valid confidence bands and tests for time-
reversibility [Example 2.1] and asymmetry of tail dynamics [Example 2.2].

A key quantity in all subsampling procedures described in this section is the estimator

(10) F̂n,b,t,R(λ; τ1, τ2) :=
2π

b

b−1∑
j=1

I
{

0≤ 2πj

b
≤ λ
}
Iτ1,τ2n,b,t,R

(2πj

b

)
,

of F computed from the subsample Xt, . . . ,Xt+b−1, where

Iτ1,τ2n,b,t,R(ω) :=
1

2πb
dτ1n,b,t,R(ω)dτ2n,b,t,R(−ω), ω ∈R, (τ1, τ2) ∈ [0,1]2(11)

with

dτn,b,t,R(ω) :=

b−1∑
j=0

I{F̂n,b,t(Xt+j)≤ τ}e−iωj and F̂n,b,t(x) :=
1

b

t+b−1∑
i=t

I{Xi ≤ x}.(12)

The block length b is an integer between 1 and n; for our asymptotic results to hold, we will
choose it such that b→∞ and b= o(n) as n→∞.

4.1. Constructing uniform confidence bands. We now describe how asymptotically valid
confidence bands can be obtained via subsampling. We will consider two types of confidence
bands: (a) bands that are uniform in λ for fixed quantile levels τ1, τ2 and (b) bands that are
uniform in all three arguments λ, τ1, τ2.

By Theorem 3.1 and the Continuous Mapping Theorem,
√
nDn(τ1, τ2) :=

√
n max
λ∈[0,π]

∣∣∣<F̂n,R(λ; τ1, τ2)−<F(λ; τ1, τ2)
∣∣∣ max

λ∈[0,π]

∣∣∣<G(λ; τ1, τ2)
∣∣∣,

in `∞([0,1]2), as n→∞. Further, for any continuous weight function s : [η,1− η]2→R+

that is bounded away from 0, we have

√
nEn :=

√
n max

(τ1,τ2)∈[η,1−η]2

Dn(τ1, τ2)

s(τ1, τ2)
 max

(λ;τ1,τ2)∈[0,π]×[η,1−η]2

∣∣∣<G(λ; τ1, τ2)

s(τ1, τ2)

∣∣∣,
in distribution, as n→∞.

For the construction of an asymptotically valid (1−α)-confidence band for <F(λ; τ1, τ2),
it is sensible to proceed as follows. We require

Iα := [<F̂n,R(λ; τ1, τ2)−∆(λ; τ1, τ2),<F̂n,R(λ; τ1, τ2) + ∆(λ; τ1, τ2)]

to satisfy

lim inf
n

P
(
<F(λ; τ1, τ2) ∈ Iα

)
≥ 1− α.

For a uniform-in-λ confidence band for fixed (τ1, τ2), choose ∆(λ; τ1, τ2)≡ CD and, for
a uniform-in-(λ, τ1, τ2) confidence band, choose ∆(λ; τ1, τ2)≡CE · s(τ1, τ2). The use of the
weighting function s improves the uniform confidence intervals by allowing the width to de-
pend on (τ1, τ2); cf. Neumann and Paparoditis (2008). These confidence bands are (asymptot-
ically) valid if CD and CE are the (1−α) quantiles of the (limit) distributions of Dn(τ1, τ2)
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and En, respectively. In practice, neither these distributions nor their limits are analytically
tractable and we therefore propose the following subsampling-based intervals.

The (1− α)-confidence band that is uniform in λ for fixed (τ1, τ2) is defined by
(13)
ÎDα,Re(λ, τ1, τ2) :=

[
<F̂n,R(λ, τ1, τ2)−CD,α(τ1, τ2),<F̂n,R(λ, τ1, τ2) +CD,α(τ1, τ2)

]
,

where

CD,α(τ1, τ2) := (1/n)1/2 inf{x : LDn,b(x, τ1, τ2)≥ 1− α}

with

LDn,b(x) :=
1

n− b+ 1

n−b+1∑
t=1

I{
√
bD̃n,b,t(τ1, τ2)≤ x} and

(14)

D̃n,b,t(τ1, τ2) :=(1− b/n)−1/2 max
`=0,1,...,bd/2c

∣∣∣∣<F̂n,b,t,R

(2π`

d
, τ1, τ2

)
−<F̂n,R

(2π`

d
, τ1, τ2

)∣∣∣∣ .
(15)

Note that CD,α(τ1, τ2) is the empirical (1− α)-quantile of

{D̃n,b,t(τ1, τ2), t= 1, . . . , n− b+ 1},

scaled by a factor (b/n)1/2. Intuitively, the proposed interval will be asymptotically valid, be-
cause the distributions of

√
nDn(τ1, τ2) and

√
bD̃n,b,t(τ1, τ2) converge to the same limit and

the distribution of
√
bD̃n,b,t(τ1, τ2) is well approximated by the empirical distribution LDn,b.

The factor (1 − b/n)−1/2 in (15) is an optional finite-population correction and can be
replaced by any sequence converging to one. Such correction is recommended by Politis
et al. (1999); our simulations in Section 5 below indicate that it is indeed quite advisable in
this context. As for d, a positive integer, it is typically chosen such that

{0,1/d, . . . , bd/2c/d} ⊆ {0,1/b, . . . , bb/2c/b},

which facilitates the evaluation of the estimates.

Similarly define the uniform-in-(λ, τ1, τ2) (1− α)-confidence band as
(16)
ÎEα,Re(λ, τ1, τ2) := [<F̂n,R(λ, τ1, τ2)−CE,αs(τ1, τ2),<F̂n,R(λ, τ1, τ2) +CE,αs(τ1, τ2)],

where

CE,α := (1/n)1/2 inf{x : LEn,b(x)≥ 1− α}

with

LEn,b(x) :=
1

n− b+ 1

n−b+1∑
t=1

I{
√
bẼn,b,t ≤ x} and Ẽn,b,t := max

(τ1,τ2)∈Sn

D̃n,b,t(τ1, τ2)

s(τ1, τ2)

where Sn, the role of which will be made clear in the sequel, is a sequence of finite subsets
of the interval [η,1− η]2.

Uniform confidence intervals ÎDα,Im(λ, τ1, τ2) and ÎEα,Im(λ, τ1, τ2) for the imaginary
parts =F(λ; τ1, τ2) are defined in the same way, with real parts replaced by imaginary parts.

We now state a result that ensures correct asymptotic coverage for the subsampling-based
confidence bands just defined.
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THEOREM 4.1. Let the assumptions of Theorem 3.1 hold and assume moreover
that (Xt)t∈Z is α-mixing such that α(n)→ 0 as n→∞. Assume that b→∞ and b= o(n)
as n→∞. Then, for the confidence band defined in (13),

P
(
<F(λ; τ1, τ2) ∈ ÎDα,Re(λ, τ1, τ2), ∀λ ∈ [0, π]

)
→ 1− α,

as n,d→∞. Further, assuming that

(17) d(Sn, S) := sup
y∈S

inf
x∈Sn

‖x− y‖→ 0

for some S ⊂ [η,1− η]2, we have, for the confidence band defined in (16),

P
(
<F(λ; τ1, τ2) ∈ ÎEα,Re(λ, τ1, τ2), ∀(τ1, τ2) ∈ S,λ ∈ [0, π]

)
→ 1− α.

as n,d→∞. The same results hold for the bands for imaginary parts =F(λ; τ1, τ2).

4.2. Testing for time-reversibility. An important feature that cannot be captured by
second-order moments, hence escapes traditional spectral analysis, is time-(ir)reversibility.
Time-irreversibility in time series is the rule rather than the exception (see e.g. Hallin et al.
(1988)); it is ubiquitous in some applications such as financial econometrics. Yet, due to the
fact that Cov(Xt,Xt−k) = Cov(Xt−k,Xt), most classical time-series models generate time-
reversible processes while classical spectral analysis, being second-order-based, is unable to
detect time-irreversibility. Copula-based spectral methods can.

Let the stochastic process (Xt)t∈Z satisfy Assumption 3.1; denote by fX its copula spec-
tral density, by Fk(x, y) := P(Xk ≤ x,X0 ≤ y), k ∈ Z, (x, y) ∈ R2 its marginal bivariate
distributions. We say that the process (Xt)t∈Z is pairwise time-reversible if, for all k ∈ Z,
the distributions of (Xt,Xt+k) and (Xt,Xt−k) coincide, i.e., Fk = F−k for all k ∈ N. The
following characterization has been established by Dette et al. (2015).

PROPOSITION 4.1. The process (Xt)t∈Z is pairwise time-reversible if and only if

=fX(λ; τ1, τ2) = 0 for all (λ, τ1, τ2) ∈ [0, π]× (0,1)2.

A test for (pairwise) time-reversibility thus is a test of the null hypothesis

H0 : Fk(x, y) = F−k(x, y) for all (k,x, y) ∈ Z×R2,(18)

with alternative

H1 : Fk(x, y) 6= F−k(x, y) for some (k,x, y) ∈ Z×R2.

It follows from Proposition 4.1 that H0 in (18) also can be written as

H0 : sup
(λ,τ1,τ2)∈[0,π]×[η,1−η]2

∣∣∣=F(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣= 0,(19)

for arbitrarily small η ∈ (0,1/2), where s : [0,1]2→ [ε,∞) for some ε > 0. The function s
is essential to construct the critical region uniformly in (λ; τ1, τ2) (see the discussion in Sec-
tion 4.1). Consider the test statistic (for testing H0 against H1)

(20) T̃
(n)
TR :=

√
n sup

(λ,τ1,τ2)∈[0,π]×[η,1−η]2

∣∣∣=F̂n,R(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣.
The next result is an immediate consequence of Theorem 3.1.
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PROPOSITION 4.2. Let (Xt)t∈Z satisfy Assumption 3.1. Then, under H0 defined in (19),
as n→∞,

√
nT̃

(n)
TR converges in distribution to

(21) sup
(λ,τ1,τ2)∈[0,π]×[η,1−η]2

∣∣∣=G(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣,
where G(λ; τ1, τ2) is a centered Gaussian process with covariance structure (9).

In actual calculations, T̃ (n)
TR needs to be discretized, and we compute it as

(22) T
(n)
TR :=

√
n max

(λ,τ1,τ2)∈Sn

∣∣∣=F̂n,R(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣,
where Sn denotes a sequence of discrete sets the exact choice of which will be discussed in
more detail in Section 5. In our theoretical analysis, we will assume that there exists a sub-
set S ⊆ [0, π]× [η,1− η]2 such that

(23) sup
x∈S

inf
y∈Sn
‖x− y‖→ 0 as n→∞.

Asymptotic p–values for this test can be determined based on subsampling: let

pTR :=
1

n− b+ 1

n−b∑
t=0

I
{
T

(n,b,t)
TR1 > T

(n)
TR

}
,

where

T
(n,b,t)
TR1 :=

√
b max

(λ,τ1,τ2)∈Sn

∣∣∣=F̂n,b,t,R(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣
with F̂n,b,t,R(λ, τ1, τ2) defined in (10) denoting the subsampled version of T (n)

TR on the
block Xt, . . . ,Xt+b−1 of length b. The validity of this subsampling procedure is discussed
in the next theorem.

THEOREM 4.2. Let the assumptions of Theorem 3.1 hold and assume moreover
that (Xt)t∈Z is α-mixing such that α(n)→ 0 as n→∞. Assume further that (23) holds
and that the weight function s is continuous. Then

(i) the test rejecting H0 in (18) whenever pTR <α has asymptotic level α;
(ii) the power of this test converges to one whenever |=F(λ, τ1, τ2)| 6= 0 for some (λ, τ1, τ2) ∈ S.

REMARK 4.1. We also considered the subsampled statistic

T
(n,b,t)
TR2 :=

√
b max

(λ,τ1,τ2)∈Sn

∣∣∣=F̂n,b,t,R(λ, τ1, τ2)−=F̂n,R(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣,
but this did not yield better results in simulations.

4.3. Assessing asymmetry in tail dynamics. Assessing asymmetry in tail dynamics is of
critical importance for, e.g., risk management and investment strategy. Value at risk (VaR)
and expected shortfall (ES) are popular risk measures in finance that are related to quan-
tiles. According to Jondeau and Rockinger (2003), investors suspect that the left tail of stock
returns is heavier than the right one. And Li (2021) pointed out asymmetry between lower
quantiles and upper quantiles for the S&P500 index. As for copula-based modeling, asym-
metry between upper and lower quantiles excludes families of (radially) symmetric copulas
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such as Gaussian and t-copulas. Misspecified copulas lead to false conclusions and involve
grave risks (Rosco and Joe (2013); Mangold (2017)). Hence, the investigation of tail behavior
is important. Further discussions can be found in So and Chan (2014) and Krupskii and Joe
(2019).

Denote by Ck the lag–k copula of (X0,Xk) for some lag k. We are interested in the case
where

Ck(τ1, τ2)− τ1τ2 6=Ck(1− τ1,1− τ2)− (1− τ1)(1− τ2)

for some (τ1, τ2) ∈ (0,ψ)2: the copula Ck then is called tail asymmetric at a level ψ. This is
not the case when Ck(τ1, τ2)− τ1τ2 = Ck(1− τ1,1− τ2)− (1− τ1)(1− τ2) for all k ∈ Z
and all (τ1, τ2) ∈ (0,ψ)2, where ψ ∈ (0,1/2]: then we say that the copula Ck is pairwise tail-
symmetric at level ψ. Note that tail symmetry boils down to radial symmetry when it holds
that

Ck(τ1, τ2)− τ1τ2 =Ck(1− τ1,1− τ2)− (1− τ1)(1− τ2)

for all τ1, τ2 ∈ (0,1), see e.g. Nelsen (2006, p.36-p.38). We call a process (Xt)t∈Z pairwise
tail-symmetric at level ψ if the copula Ck of (Xt+k,Xt) is tail-symmetric at a level ψ for
all k ∈ Z.

A test for (pairwise) tail symmetry of (Xt)t∈Z at given level ψ ∈ (0,1/2] is a test of the
null hypothesis
(24)
H0 :Ck(τ1, τ2)− τ1τ2 =Ck(1− τ1,1− τ2)− (1− τ1)(1− τ2) ∀(k, τ1, τ2) ∈ Z× (0,ψ)2

against the alternative

H1 :Ck(τ1, τ2)−τ1τ2 6=Ck(1−τ1,1−τ2)−(1−τ1)(1−τ2) for some (k, τ1, τ2) ∈ Z×(0,ψ)2.

The null hypothesis H0 can be rewritten as

f(λ; τ1, τ2) = f(λ; 1− τ1,1− τ2) for all (λ, τ1, τ2) ∈ [0, π]× (0,ψ)2.

Hence, the following proposition holds true.

PROPOSITION 4.3. The process (Xt)t∈Z is pairwise tail-symmetric at level ψ ∈ (0,1/2)
if and only if

F(λ; τ1, τ2) = F(λ; 1− τ1,1− τ2) for all (λ, τ1, τ2) ∈ [0, π]× (0,ψ)2.

In view of Proposition 4.3, we also consider the following hypothesis, which is slightly
weaker than (24): for arbitrary small η ∈ (0,1/2] such that η ≤ ψ,

H0 : sup
(λ,τ1,τ2)∈[0,π]×[η,ψ]2

∣∣∣F(λ, τ1, τ2)−F(λ,1− τ1,1− τ2)

s(τ1, τ2)

∣∣∣= 0,(25)

where s : [0,1]2→ [ε,∞) for some ε > 0. For testing H0 against H1, define

(26) T̃
(n)
EQ :=

√
n sup

(λ,τ1,τ2)∈[0,π]×[η,ψ]2

∣∣∣ F̂n,R(λ, τ1, τ2)− F̂n,R(λ,1− τ1,1− τ2)

s(τ1, τ2)

∣∣∣.
The next result then is an immediate consequence of Theorem 3.1.

PROPOSITION 4.4. Let (Xt)t∈Z satisfy Assumption 3.1. Then, under H0 defined in (25),
as n→∞,

√
nT̃

(n)
TR converges in distribution to

sup
(λ,τ1,τ2)∈[0,π]×[η,ψ]2

∣∣∣G(λ, τ1, τ2)−G(λ,1− τ1,1− τ2)

s(τ1, τ2)

∣∣∣,
where G(λ; τ1, τ2) is a centered Gaussian process with covariance structure (9).
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In practice, a discretisation

(27) T
(n)
EQ :=

√
n max

(λ,τ1,τ2)∈Sn

∣∣∣ F̂n,R(λ, τ1, τ2)− F̂n,R(λ,1− τ1,1− τ2)

s(τ1, τ2)

∣∣∣,
of T̃ (n)

EQ is required, where the sequence Sn is such that

(28) sup
x∈S

inf
y∈Sn
‖x− y‖→ 0 for some S ⊆ [0, π]× [η,ψ]2.

The p-value of the resulting test for (pairwise) tail symmetry is

pEQ :=
1

n− b+ 1

n−b∑
t=0

I
{
T

(n,b,t)
EQ > T

(n)
EQ

}
,

where

T
(n,b,t)
EQ :=

√
b max

(λ,τ1,τ2)∈Sn

∣∣∣ F̂X
n,b,t,R(λ, τ1, τ2)− F̂X

n,b,t,R(λ,1− τ1,1− τ2)

s(τ1, τ2)

∣∣∣
with F̂n,b,t,R(λ, τ1, τ2) defined in (10). The next theorem establishes the properties of the
testing procedure based on T (n,b,t)

EQ .

THEOREM 4.3. Let the assumptions of Theorem 3.1 hold and assume moreover
that (Xt)t∈Z is α-mixing such that α(n)→ 0 as n→∞. Assume further that (28) holds
and that the weight function s is continuous. Then

(i) the test rejecting H0 in (25) whenever pEQ <α has asymptotic level α;
(ii) the power of that test converges to one whenever |fX(λ; τ1, τ2)−fX(λ,1−τ1,1− τ2)| 6= 0

for some (λ, τ1, τ2) ∈ S.

5. Simulations. This section illustrates the finite-sample performance of the methods
proposed in Sections 4.1–4.3. We consider a range M0-M15 of fifteen models, which we
describe in detail in the Appendix. These models include linear and nonlinear ones, Gaus-
sian and non-Gaussian ones, models with serial independence, weak serial dependence, and
stronger serial dependence. Table 1 lists the main features of these models. The R package
quantspec (Kley, 2016) was used for all simulations.

5.1. Confidence bands. In this subsection, models M0-M7 from Table 1 are used to
study the empirical coverage1 of the confidence bands described in Section 4.1. We consi-
der n∈ {100,128,200,256,400,512,700,1024} and, for each n (choosing powers of 2 for b
allows for quick computation of the CR periodograms), b ∈B(n) := {24,25, . . . ,}∩ [0, n/2];
as a rule of thumb, we selected

(29) brtn := max{2j : 2j ≤ 2n2/3, j = 4, . . . ,8},

yielding b = 32,32,64,64,64,128,128,128 for n = 100,128,200,256,400,512,700,1024,
respectively. As for the Fourier frequencies in (15), we put d= 32.

We simulated R = 1000 independent series for each configuration. For each of them, we
computed the confidence band as explained in Section 4.1. To obtain their empirical cover-
age, we compare them with the actual value of the integrated copula spectral density. The

1Throughout, with a slight abuse of language, we write “coverage probability” instead of “coverage frequency”
in order to avoid confusion with λ.
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TABLE 1
Main features of models M0-M15. A check mark indicates that a model violates the null hypothesis H0. A cross

mark indicates a null hypothesis H0 we are not interested in for the model.

model H0 : time H0 : tail short
-reversibility symmetry description

M0 i.i.d. Gaussian
M1 X X QAR(1) (Koenker and Xiao, 2006)
M2 AR(2) (Li, 2012)
M3 X ARCH(1) (Lee and Rao, 2012).
M4 X GARCH(1,1) (Birr et al., 2019)
M5 X X EGARCH(1,1,1) (Birr et al., 2019)

M6a–c AR(1) with Gaussian innovation
M7a–c X AR(1) with Cauchy innovation

M8a–g X × time series based on an asymmetric Gumbel
copula (Beare and Seo, 2014)

M9a–g X × time series based on a zero total circulation
copula (Beare and Seo, 2014)

M10a–g X × the modified models M8a–g
M11a–g X × the modified models M9a–g

M12a–c × X
time series based on a Gumbel copula

(Li and Genton, 2013)

M13a–c × X
time series based on a Clayton copula

(Li and Genton, 2013)

M14 × X
time series based on copula 3

of Nelsen (1993)

M15 × X
time series based on copula 6

of Nelsen (1993)

latter can be computed precisely for M0; else, it was obtained from 500,000 simulated CR
periodograms.

The finite-population correction in (15) was applied; without it, the results (not shown
here) are significantly worse: the correction, thus, is essential in numerical applications.

We throughout used α = 0.05. We simulated pointwise in (τ1, τ2) coverage for all τ1, τ2

in {1/16, . . . ,15/16}. For the uniform procedures, maxima with respect to all 15 quantile
levels were used [see Appendix A.1 for a detailed description of how coverage is computed].
For pointwise coverage, we only display results for τ1, τ2 ∈ {0.125,0.25,0.5,0.75,0.875}.

Figure 1 reports, for models M0-M7 and the (λ, τ1, τ2)-uniform procedure with finite-
population correction (15), the coverage probabilities as functions of the sample size. For
weighting, we have used the weights s1, . . . , s5 defined in the Appendix. All results are very
close to the nominal 0.95 level; the equal weights function s4 yields the best results. Fig-
ures 2 (for models M0-M5) and 3 (for models M6-M7) report the coverage probabilities of
the λ-uniform, (τ1, τ2)-pointwise procedure, still with finite-population correction. Here and
in subsequent tables reporting (τ1, τ2)-pointwise results, we have followed the convention
to show the results for real parts on and below the diagonal and the results for imaginary
parts above the diagonal. Overall, the method (with finite-population correction) works well.
As expected, large sample sizes are required to obtain reasonable coverage probability for
extreme quantiles, for example, τ1 = τ2 = 0.125,0.875. Especially, the construction of con-
fidence bands for extreme quantiles in models M3, M4, and M7c is challenging. For τ1 6= τ2,
the results for imaginary parts are better than for real parts.

5.2. Time-reversibility. In this subsection, we evaluate, based on models M0-M7 and
M8-M11, the finite-sample performance of the tests for time-reversibility introduced in
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FIG 1. Uniform in (λ, τ1, τ2) confidence bands, models M0-M7. Coverage probabilities with finite-
population correction and weight functions s1, . . . , s5 as a function of n. Column i corresponds to
the weight function si, the first and third rows to the real parts, the second and fourth rows to the
imaginary parts, of the integrated copula spectra.

Section 4.2 and compare it to that of their main competitors. The simulation proce-
dure is essentially the same as in Section 5.1: for each value of the sample size n
in {100,128,150,200,256,400,512,700,1024}, a subsampling block size b(n) is chosen
via the rule of thumb (29). The maxima in the test statistic (22) are taken over the fre-
quency range {2π`/32; `= 0,1, . . . ,16} and the quantiles {τ1, τ2 = k/8;k = 1, . . . ,7}, with
the weight functions s1, . . . , s5 defined in the Appendix. The significance level throughout
is α= 0.05.

For each case, R= 1000 replications were generated. For each replication, two tests were
performed, based on T

(n,b,t)
TR1 (no finite-population correction) and T

(n,b,t)
TR1_fpc := T

(n,b,t)
TR1

(1−b/n)1/2

(finite-population correction), respectively. The resulting rejection frequencies with weight
function s4 ≡ 1 (empirical sizes for M0, M2, M6, empirical powers for M1, M3, M4, M5,
and M7) are shown in Figure 4 for T (n,b,t)

TR1 and Figure 5 for T (n,b,t)
TR1_fpc, respectively.

The test based on T (n,b,t)
TR1 suffers of size distortion (over–rejection) while the size control,

for the test based on T (n,b,t)
TR1_fpc, is good. The finite-population correction, thus, is highly re-

commended. We can see that the power of our tests is high for large sample sizes except
for M3-M5. Results for other weight functions are provided in the online supplement.

Next, we compare our tests with the few existing ones, namely, the tests proposed by
Ramsey and Rothman (1996), Chen et al. (2000), Paparoditis and Politis (2002), and Beare
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FIG 2. Uniform in λ (pointwise in (τ1, τ2)) confidence bands, models M0-M5. Coverage probabilities
with finite-population correction. Each subplot has a label indicating whether it is dealing with the real
or imaginary part of the integrated spectrum, and which quantile levels (τ1, τ2) were considered: e.g.,
the subplot with label Re-0.25/0.125 is about the real part of the integrated spectrum with τ1 = 0.25
and τ2 = 0.125.

and Seo (2014), based on the test statistics
(30)

TRR :=
1

n− 1

∑n−2
t=0 (X2

t+1Xt −Xt+1X
2
t ), TCCK :=

1

n− 1

∑n−2
t=0

Xt+1 −Xt

1 + (Xt+1 −Xt)2

TPP :=
1

n− 1

∑n−2
t=0 I{Xt+1 >Xt} −

1

2
, and TBS := sup(x,y)∈R2

∣∣∣F̂n(x, y)− F̂n(y,x)
∣∣∣ ,

respectively, where F̂n(x, y) :=
∑n−2

t=0 I{Xt ≤ x,Xt+1 ≤ y}/(n − 1). The critical values
of these tests are calculated via local bootstrap (see Sections 3.2 and 3.3 in Beare and Seo
(2014)). The intuition behind TCCK and TPP is that time-reversibility of the process Xt im-
plies the symmetry of (Xt − Xt−1) about the origin, while TRR is motivated by the fact
that EX2

tXt−1 = EXtX
2
t−1 under time-reversibility if Xt has finite third moments. These

facts, however, are just necessary conditions for time-reversibility. As for TBS, it is based on
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FIG 3. Uniform in λ (pointwise in (τ1, τ2)) confidence bands, models M6-M7. Coverage probabilities
with finite-population correction. Each subplot has a label indicating whether it is dealing with the real
or imaginary part of the integrated spectrum, and which quantile levels (τ1, τ2) were considered: e.g.,
the subplot with label Re-0.25/0.125 is about the real part of the integrated spectrum with τ1 = 0.25
and τ2 = 0.125.

a property of Markov processes, which are time-reversible at lag one if and only if the copula
of (X0,X1) is.

Our comparison is based on simulations of models M8-M9 with sample size n = 150
(Figure 6), of models M10-M11 with sample size n= 512 (Figure 7), with subsampling block
sizes b = 16 and b = 32 and weight function s4 ≡ 1. Other settings and simulations have
been performed, and yield similar results. Empirical power plots are provided in Figures 6
and 7, with increasing degree of time-reversibility (measured by the parameters λ and γ−1,
respectively, with value one corresponding to the null hypothesis of time-reversibility) on the
horizontal axis. Model M9 is such that, among the competitors (30), only TBS can detect time-
irreversibility; models M10 and M11 are such that none of these competitors can detect time-
irreversibility. Our tests were implemented with and without finite population correction.
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FIG 4. Empirical sizes (left, time-reversible models M0, M2, and M6a-c) and powers (right, time-
irreversible models M1, M3, M4, M5, and M7a-c) as functions of n, of the tests for time-reversibility
based on T (n,b,t)

TR1 (no finite-population correction).
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FIG 5. Empirical sizes (left, time-reversible models M0, M2, and M6a-c) and powers (right, time-
irreversible models M1, M3, M4, M5, and M7a-c) as functions of n, of the tests for time-reversibility
based on T (n,b,t)

TR1_fpc (with finite-population correction).

Figure 6 shows the expected result that the power of all tests increases with the degree of
time-irreversibility for M8; the same holds true for M9, but only for our tests and the test
based on TBS, while TPP, TRR, and TCCK (which are best under M8) are totally powerless.
Our tests behave quite well in all cases, although outperformed by the test based on TBS.
Figure 7, however, establishes that in models M10 and M11 with moderate degree of time-
irreversibility, our tests very efficiently do reject time-reversibility while all their competitors,
including the TBS-based one, fall short from detecting anything. The finite population correc-
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tion and the choice of the subsampling block size apparently have little impact, irrespective of
the model and the sample size. Additional simulations can be found in the online Supplement.

5.3. Asymmetry in tail dynamics. In order to study the empirical size and power of the
test for quantile symmetry introduced in Section 4.3, we simulated observations from models
M0–M7c and M12a–M15. For each sample size n ∈ {100,128,200,256,400,512,700,1024},
a subsampling block size b(n) is chosen via the rule of thumb (29). As in Section 5.2, the
maxima in statistic (27) were taken over the frequency range {2π`/32; `= 0,1, . . . ,16} and
the quantiles {τ1, τ2 = k/16;k = 2,3,4}, with weight functions s4 ≡ 1. Significance level
throughout is α= 0.05.

For each case, R= 1000 replications were generated. For each replication, two tests were
performed, based on the test statistics T (n,b,t)

EQ (as defined in (27); no finite-population correc-

tion) and T (n,b,t)
EQ_fpc := (1− b/n)−1/2T

(n,b,t)
EQ (with finite-population correction), respectively.

The resulting rejection frequencies (empirical sizes for M0, M2, M3, M4, M6a-c,
and M7a- c, empirical powers for M1, M5, M12a-c, M13a-c, M14, and M15) are displayed
in Figure 8 for T (n,b,t)

EQ and Figure 9 for TEQ_fpc.

The test based on T (n,b,t)
EQ (Figure 8) exhibits significant size distortions for small sample

sizes—particularly so under models M7b–c and M6c. The test based on the corrected statis-
tic T (n,b,t)

EQ_fpc provides much better results in that respect, although overrejection is still present
under M7b–c. The finite population correction, thus, is still recommended. As for empiri-
cal powers, they all increase with the sample size; detecting tail asymmetry in M5 and, to
a lesser extent, in M12a remains difficult. Simulation results for additional weight functions
are provided in the online Supplement.
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FIG 6. Empirical power of the tests for time-reversibility described in Section 4.2 for n = 150. The
upper and lower plots correspond to M8a–g and M9a–g, the left and right ones to subsampling block
sizes b= 16 and b= 32, respectively.
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FIG 7. Empirical power of the tests for time-reversibility described in Section 4.2 for n = 512. The
upper plots and lower plots correspond to M10a–g and M11a–g, the left and right ones to subsampling
block sizes b= 16 and b= 32, respectively.

APPENDIX: ADDITIONAL DETAILS ON SIMULATIONS

A.1. Computation of coverage frequencies. The coverage probability of the procedure
that is uniform with respect to λ and pointwise with respect to (τ1, τ2) for a real part is defined
by the empirical probability (with respect to the iterations) of the event, for fixed τ1 and τ2,{

<F
(2π`

d
, τ1, τ2

)
∈ ÎDα,Re

(2π`

d
, τ1, τ2

)
for all `= 1, . . . , d

}
,
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FIG 8. Empirical sizes (left) and powers (right), as functions of n, of the tests for tail symmetry based
on T (n,b,t)

EQ under various models.
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FIG 9. Empirical sizes (left) and powers (right), as functions of n, of the tests for tail symmetry based
on TTR1_fpc described in Section 4.3 under various models. The models in the left plots and right
plots belong to the null and alternative, respectively.

where <F is the true spectrum derived by the direct calculation for (M0) and the true spec-
trum simulated by quantspec for the other cases. In case of the simulated spectra, they are
available at the Fourier frequencies 2πk/N , with N = 211 and we round down to the next
available such frequency 2πbN`/xc/N , where ` ∈ 0, . . . , bd/2c.

The coverage probability of the procedure that is uniform with respect to (λ, τ1, τ2) for a
real part is defined by the empirical probability (with respect to the iterations) of the event{
<F

(2π`

d
, τ1, τ2

)
∈ ÎEα,Re

(2π`

d
, τ1, τ2

)
for all `= 1, . . . , d and all (τ1, τ2) in the range

}
.

The coverage probabilities of the procedure that is uniform with respect to λ and pointwise
with respect to (τ1, τ2) and of the procedure that is uniform with respect to (λ, τ1, τ2) for
imaginary parts are defined in the same way.

A.2. Weight functions. The weight functions s1 − s5 are defined as

s1(τ1, τ2) :=
√
τ1(1− τ1)τ2(1− τ2),

s2(τ1, τ2) := max{τ1, τ2} − τ1τ2,

s3(τ1, τ2) := min{τ1, τ2} − τ1τ2,

s4(τ1, τ2) :=1,

s5(τ1, τ2) :=
√
s3(τ1, τ2).

A.3. Detailed definitions of the models used in simulations. Models M0–M15 are
defined, for j = a, b, c and i= a, . . . , g, as

Xt ∼N (0,1) i. i. d.,(M0)

Xt = 0.1Φ−1(Ut) + 1.9(Ut − 0.5)Xt−1,(M1)

Xt =−0.36Xt−2 + εt,(M2)

Xt =
(
1/1.9 + 0.9X2

t−1

)1/2
εt,(M3)
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Xt = σtεt, where σ2
t = 0.01 + 0.4X2

t−1 + 0.5σ2
t−1,(M4)

Xt = σtεt, ln(σ2
t ) = 0.1 + 0.21(|Xt−1| − IE|Xt−1|)− 0.2Xt−1 + 0.8 ln(σ2

t−1),(M5)

Xt = φjXt−1 + εt,(M6j)

Xt = φjXt−1 + νt,(M7j)

Xt =C−1
1 (Ut|Xt−1) with γi,(M8i)

Xt =C−1
2 (Ut|Xt−1) with λi,(M9i)

X2t−1 = Yt, X2t = Y ′t with Yt and Y ′t ∼ (M8i), Yt⊥⊥Y ′t ,(M10i)

X2t−1 = Yt, X2t = Y ′t with Yt and Y ′t ∼ (M9i), Yt⊥⊥Y ′t ,(M11i)

Xt =C−1
3 (Ut|Xt−1) with τ3j ,(M12j)

Xt =C−1
4 (Ut|Xt−1) with τ4j ,(M13j)

Xt =C−1
5 (Ut|Xt−1),(M14)

Xt =C−1
6 (Ut|Xt−1).(M15)

In (M1), (Ut) denotes a sequence of i.i.d. standard uniform random variables, and Φ de-
notes the cdf of N (0,1). This model is from the class of QAR(1) processes, which was
introduced by Koenker and Xiao (2006). In (M2), (εt) denotes a sequence of standard
normal white noise. This AR(2) process was previously considered by Li (2012). (M3)
is ARCH(1) process previously considered by Lee and Rao (2012). (M4) and (M5) are
GARCH(1,1) and EGARCH(1,1,1) models, respectively, previously considered by Birr et al.
(2019). (M6j) is AR(1) model with a Gaussian innovation. The AR coefficient of this model
is defined as φj := 0.3,0.5,0.7 for j = a, b, c in order. In (M7j), (νt) denotes a sequence
of i.i.d. standard Cauchy distribution. This is AR(1) model with a Cauchy innovation. The
ordinary spectral density of (M7j) does not exist. In (M8i) and (M9i), Ut denotes a se-
quence of i.i.d. standard uniform distribution. The conditional distribution function C−1

j (u|v)

is defined, for (U,V ) whose joint distribution follows Cj , as C−1
j (u|v) := P(U ≤ u|V = v)

for j = 1,2. The function C1(u, v) is the asymmetric Gumbel copula, which is defined as

C1(u, v) := u1−αv1−β exp
[
−{(−α logu)γ + (−β log v)γ}1/γ

]
,

where (α,β) = (1,0.5) and γ ≥ 1. The function C2(u, v) is the zero total circulation copula,
which is defined, for λ ∈ [0,1], as

C2(u, v) :=

∫ u

0

∫ v

0
λ+ (1− λ)c0(s, t)dsdt,

where

c2(u, v) :=


1 {0≤ v < 1/4,1/4≤ u < 1/2} ∪ {1/4≤ v < 1/2,3/4≤ u≤ 1}
∪{1/2≤ v < 3/4,0≤ u < 1/4},∪{3/4≤ v ≤ 1,1/2≤ u < 3/4}

0 otherwise,

and the generalized inverse C−1
j is calculated via a grid of 1000 points equispaced over [0,1].

Let γ−1
i and λi take values 0.15,0.29,0.43,0.57,0.71,0.85,0.99 for i = a, . . . , g, re-

spectively. These models were considered by Beare and Seo (2014) in their simulation.
When γi = 1 and λi = 1, both models reduce to the product copula. Therefore, (M8i)
with γi = 1 and (M9i) with λi = 1 are time-reversible. The models (M10i) and (M11i)
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are designed that any time-reversibility tests based on a first-order Markov process cannot
detect time-irreversibility. In (M12j), the function C3(u, v) is the Gumbel copula, which is
defined as

C3(u, v) := exp
[
−{(− logu)γ + (− log v)γ}1/γ

]
,

where γ = 1/(1− τ3j)≥ 1 with Kendall’s tau τ3j for C3. In (M13j), the function C4(u, v) is
the Clayton copula, which is defined as

C4(u, v) := (u−γ + v−γ − 1)−1/γ ,

where γ = 2τ4j/(1− τ4j)> 0 with Kendall’s tau τ4j for C4. The parameters τ3j and τ4j are
defined as τ3j , τ4j := 0.25,0.5,0.75 for j = a, b, c, respectively. These models are considered
by Li and Genton (2013) in their simulation. In (M14), the function C5(u, v) is the copula 3
of Nelsen (1993, Figure 1), which is defined as

C5(u, v) :=

∫ u

0

∫ v

0
c5(s, t)dsdt,

where

c5(u, v) :=


1 {0≤ v < 1/4,0≤ u < 1/4} ∪ {0≤ v < 1/4,3/4≤ u < 1}
∪{1/4≤ v < 1/2,1/2≤ u≤ 1} ∪ {1/2≤ v < 3/4,1/4≤ u≤ 3/4}
∪{3/4≤ v < 1,0≤ u < 1/2},

0 otherwise.

In (M15), the functionC6(u, v) is the copula 6 of Nelsen (1993, Figure 1), which is defined as

C6(u, v) :=

∫ u

0

∫ v

0
c6(s, t)dsdt,

where

c6(u, v) :=


1 {0≤ v < 1/2,1/4≤ u < 3/4} ∪ {1/2≤ v ≤ 1,0≤ u < 1/4}
∪{1/2≤ v ≤ 1,3/4≤ u≤ 1},

0 otherwise.

The models M12j–M15 are not radially symmetric.
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Online Supplement
B. Proofs.

B.1. Proof of Lemma 3.1.

PROOF. Throughout the proof, let Φk and Φ denote the cumulative distribution func-
tions of

(Xk,X0)T ∼N2

((
0
0

)
,
(

1 ρk
ρk 1

))
and X0 ∼N

(
0,1
)
, respectively.

Note that

G(λ; τ1, τ2) =
1

2π

∑
k∈Z\{0}

γUk (τ1, τ2)
i

k
(e−ikλ − 1)

=
1

2π

∑
k∈Z\{0}

(
Ck(τ1, τ2)− τ1τ2

) i
k

(e−ikλ − 1).

Furthermore, as (Xt)t∈Z is Gaussian, by Sklar’s theorem [see Sklar (1959)],

Ck(τ1, τ2) :=C
(
τ1, τ2, ρ(k)

)
= Φk

(
Φ−1(τ1),Φ−1(τ2)

)
.

We first provide a bound on γUk (τ1, τ2)− τ1τ2. Observe the following representation:

γUk (τ1, τ2)− τ1τ2 = Φk

(
Φ−1(τ1),Φ−1(τ2)

)
− τ1τ2

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
k

exp
(
− x2 − 2ρkxy+ y2

2(1− ρ2
k)

)
− 1

2π
exp

(
− x2 + y2

2

)
dxdy

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
h(x, y, ρk)− h(x, y,0)dxdy

where

h(x, y, ρ) :=
1

2π
√

1− ρ2
exp

(
− x2 − 2ρxy+ y2

2(1− ρ2)

)
.

Now, from a Taylor expansion, we find∣∣∣h(x, y, ρ)− h(x, y,0)
∣∣∣≤ |ρ|∣∣∣∂h(x, y, ρ)

∂ρ

∣∣
ρ=κ(x,y)

∣∣∣
where κ(x, y) is a value between 0 and ρ. In particular, |κ(x, y)| ≤ |ρ| for any x, y. A
straightforward calculation shows that there exists a function H : R2→ [0,∞), independent
of κ(x, y) such that for all κ(x, y) ∈ [−1/2,1/2]∣∣∣∂h(x, y, ρ)

∂ρ

∣∣
ρ=κ(x,y)

∣∣∣≤H(x, y)

for all x, y ∈R2 and such that

K :=

∫
R

∫
R
H(x, y)dxdy <∞.
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Summarizing, we have shown that for any ρk ∈ [−1/2,1/2] and any τ1, τ2 ∈ (0,1)

|γUk (τ1, τ2)− τ1τ2| ≤K|ρk|.
Since by assumption

∑
k |ρk|/|k|<∞, we can have |ρk|> 1/2 for at most a finite set of k.

Thus,
1

2π

∑
k∈Z\{0}

|γUk (τ1, τ2)
i

k
(e−ikλ − 1)| ≤ 1

π

∑
k∈Z\{0}

|γUk (τ1, τ2)|/|k|

≤
∑

k:|ρk|≥1/2

|γUk (τ1, τ2)|+K
∑

k:|ρk|<1/2

|ρk|
|k|

<∞.(31)

Next note that, employing Leibniz’s integral rule, we have

∂
(
C(u, v;ρ)− uv

)
∂u

=
∂

∂u

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(
− x2 − 2ρxy+ y2

2(1− ρ2)

)
dxdy− v

=
dΦ−1(u)

du

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(
− y2 − 2ρΦ−1(u)y+ (Φ−1(u))2

2(1− ρ2)

)
dy−Φ(Φ−1(v)).

Observe that
dΦ−1(u)

du
=

1

Φ′(Φ−1(u))
=

1
1√
2π

exp
(
− (Φ−1(u))2

2

) =
√

2π exp
((Φ−1(u))2

2

)
and, by adding a square,

exp
(
− y2 − 2ρΦ−1(u)y+ (Φ−1(u))2

2(1− ρ2)

)
= exp

(
− [y− ρΦ−1(u)]2 + (1− ρ2)(Φ−1(u))2

2(1− ρ2)

)
= exp

(
− [y− ρΦ−1(u)]2

2(1− ρ2)

)
exp

(
− (Φ−1(u))2

2

)
.

Thus, altogether,

∂
(
C(u, v;ρ)− uv

)
∂u

=

∫ Φ−1(v)

−∞

1√
2π(1− ρ2)

exp
(
− [y− ρΦ−1(u)]2

2(1− ρ2)

)
dy−Φ(Φ−1(v))

= Φ
(Φ−1(v)− ρΦ−1(u)√

1− ρ2

)
−Φ

(
Φ−1(v)

)
.

Next, let g(u, v;ρ) := Φ−1(v)−Φ−1(u)ρ√
1−ρ2 and observe that g(u, v; 0) = Φ−1(v). The func-

tion ρ 7→ Φ(g(u, v;ρ)) is continuous and differentiable on (−1,1). Thus, by the mean value
theorem, for any ρ ∈ [−1 + ε,1− ε] with 0< ε< 1 there exists ρ0 with |ρ0| ≤ |ρ| such that

Φ
(
g(u, v;ρ)

)
−Φ

(
g(u, v; 0)

)
=
∂Φ
(
g(u, v;ρ)

)
∂ρ

∣∣∣
ρ=ρ0
· ρ.

Since
∂Φ
(
g(u, v;ρ)

)
∂ρ

∣∣∣
ρ=ρ0

=
∂g(u, v;ρ)

∂ρ

∣∣∣
ρ=ρ0

dΦ(x)

dx

∣∣∣
x=g(u,v,ρ0)

=
−Φ−1(u)

√
1− ρ2

0 +
(
Φ−1(v)− ρ0Φ−1(u)

)
ρ0(1− ρ2

0)−1/2

1− ρ2
0

1√
2π
e−g

2(u,v;ρ0)/2
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and, hence,

sup
u,v∈[η,1−η],ρ0∈[−1+ε,1−ε]

∣∣∣∂Φ
(
g(u, v;ρ)

)
∂ρ

∣∣∣
ρ=ρ0

≤Cη,

we obtain ∣∣∣Φ(g(u, v;ρ)
)
−Φ

(
g(u, v; 0)

)∣∣∣≤ |ρ|∣∣∣∂Φ
(
g(u, v;ρ)

)
∂ρ

∣∣∣
ρ=ρ0

≤Cη · |ρ|.

Therefore,

1

2π

∑
k∈Z\{0}

sup
τ1,τ2∈[η,1−η]

∣∣∣∂(C(u, v;ρ(k))− uv
)

∂u

∣∣∣
(u,v)=(τ1,τ2)

∣∣ i
k

(eikλ − 1)
∣∣

≤ 1

2π

∑
k∈Z\{0}

(
Cη|ρ(k)|

) 2

|k|
<∞,

where we have used that, by assumption,
∑

k∈Z\{0}
|ρ(k)|
|k| <∞. Combining this with (31) we

can apply Theorem 7.17 in Rudin et al. (1964) to conclude that the partial derivatives

∂G(λ,u, v)

∂u

∣∣∣
(u,v)=(τ1,τ2)

exist and are continuous on {(λ; τ1, τ2) ∈ [0, π]× [η,1− η]× [η,1− η]}.

B.2. Proof of Theorem 3.1. We begin by deriving an alternative representation for the
copula-based spectral distribution function defined in (2) and introduce some additional no-
tation.

Observe that from definitions (3) and (4) we can derive the following representation of the
copula rank periodogram:

Iτ1,τ2n,R

(2πs

n

)
=

1

2πn
dτ1n,R

(2πs

n

)
dτ2n,R

(
− 2πs

n

)
=

1

2πn

n−1∑
t1=0

I{F̂n(Xt1)≤ τ1}e−it1
2πs

n

n−1∑
t2=0

I{F̂n(Xt2)≤ τ2}eit2
2πs

n .(32)

Since
∑n−1

t=0 e
−it2πs/n = 0 for s 6∈ nZ, we have, for τ ∈ [0,1],

n−1∑
t=0

I{F̂n(Xt)≤ τ}e−it
2πs

n =

n−1∑
t=0

(
I{F̂n(Xt)≤ τ} − a

)
e−it

2πs

n ,(33)

where a ∈ R can be chosen arbitrarily. Using property (33) in (32), after rearranging sums,
we obtain

Iτ1,τ2n,R

(2πs

n

)
=

1

2πn

∑
|k|≤n−1

∑
t∈Tk

(
I{F̂n(Xt+k)≤ τ1} − a

)(
I{F̂n(Xt)≤ τ2} − b

)
e−ik

2πs

n ,

(34)

with arbitrary a, b ∈R,

Tk := {t ∈ {0, . . . , n− 1}|t, t+ k ∈ {0, . . . , n− 1}}
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and k ∈ {−(n − 1), . . . , n − 1}. Next, using (34) in the definition of the estimator of the
spectral distribution function (2) and rearranging sums yields

F̂n,R(λ; τ1, τ2) =
1

2π

∑
|k|≤n−1

2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
e−ik

2πs

n
n− |k|
n

· 1

n− |k|
∑
t∈Tk

(
I{F̂n(Xt+k)≤ τ1} − a

)(
I{F̂n(Xt)≤ τ2} − b

)
.

Define the weights

wn,λ(k) :=
2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
e−ik

2πs

n(35)

and the rank-based copula cumulant function of order k

γ̂Rk (τ1, τ2) =
1

n− |k|
∑
t∈Tk

(
I{F̂n(Xt+k)≤ τ1} − a

)(
I{F̂n(Xt)≤ τ2} − b

)
.(36)

Then, we obtain

F̂n,R(λ; τ1, τ2) :=
1

2π

∑
|k|≤n−1

wn,λ(k)
n− |k|
n

γ̂Rk (τ1, τ2)

=
1

2π

∑
0<|k|≤n−1

wn,λ(k)
n− |k|
n

γ̂Rk (τ1, τ2) +
1

2π
wn,λ(0)γ̂R0 (τ1, τ2)(37)

as an alternative representation of the estimator of the copula spectral distribution function.
Similarly, the copula spectral distribution function has the alternative representation

F(λ; τ1, τ2) =
1

2π

∑
k∈Z\{0}

γUk (τ1, τ2)
i

k
(e−ikλ − 1) +

λ

2π
(τ1 ∧ τ2 − τ1τ2).

In the subsequent analysis, we sometimes will consider versions of F̂n,R(λ; τ1, τ2)
and F(λ; τ1, τ2), where the terms corresponding to lag 0 are removed, that is,

Ĝn,R(λ; τ1, τ2) :=
1

2π

∑
0<|k|≤n−1

2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
e−ik

2πs

n
n− |k|
n

γ̂Rk (τ1, τ2)

and G(λ; τ1, τ2) as defined in (7). Also, in the analysis of the asymptotic properties, instead
of the process

{F̂n,R(λ; τ1, τ2)}(λ;τ1,τ2)∈[0,π]×[0,1]2 ,

we often prove intermediate results for the process

{F̂n,U (λ; τ1, τ2)}(λ;τ1,τ2)∈[0,π]×[0,1]2 ,

where F̂n,U (λ; τ1, τ2) is defined exactly as F̂n,R(λ; τ1, τ2) but with the actual distributions
function F replacing the empirical one F̂n. More precisely, in order to prove the weak con-
vergence of the process {F̂n,R(λ; τ1, τ2)}(λ;τ1,τ2)∈[0,π]×[η,1−η]2 for 0 < η < 1/2, we derive,
according to Lemma 2.2.2 in van der Vaart and Wellner (1996), the stochastic equicontinuity
for the process {F̂n,U (λ; τ1, τ2)}(λ;τ1,τ2)∈[0,π]×[η,1−η]2 . The impact of replacing the true dis-
tribution functions F by the empirical versions F̂n in {F̂n,R(λ; τ1, τ2)}(λ;τ1,τ2)∈[0,π]×[η,1−η]2
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is then seen in the derivation of the covariance structure of the limiting process.

We are now ready to start with the main proof. We first prove several intermediate results
for the process

Gn,U (λ; τ1, τ2) :=
√
n
(
F̂n,U (λ; τ1, τ2)−F(λ; τ1, τ2)

)
indexed by (λ; τ1, τ2) ∈ [0, π]× [η,1− η]2, where

F̂n,U (λ; τ1, τ2) :=
2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
Iτ1,τ2n,U

(2πs

n

)
,

with Ut := F (Xt) and

Iτ1,τ2n,U (ω) = (2πn)−1dτ1n,U (ω)dτ2n,U (−ω), dτn,U (ω) :=

n−1∑
t=0

I{Ut ≤ τ}e−iωt.

As for F̂n,R(λ; τ1, τ2), we have

F̂n,U (λ; τ1, τ2) =
1

2π

∑
0<|k|≤n−1

wn,λ(k)
n− |k|
n

γ̂Uk (τ1, τ2) +
1

2π
wn,λ(0)γ̂U0 (τ1, τ2),

where wn,λ(k) is defined in (35),

γ̂Uk (τ1, τ2) =
1

n− |k|
∑
t∈Tk

(
I{Ut+k ≤ τ1} − a

)(
I{Ut ≤ τ2} − b

)
(38)

with Tk := {t ∈ {0, . . . , n − 1}|t, t + k ∈ {0, . . . , n − 1}}, k ∈ {−(n − 1), . . . , n − 1},
where a, b ∈R can be chosen arbitrarily since

∑n−1
t=0 e

−it2πs/n = 0 for s 6∈ nZ.
Finally, as for the rank-based versions, we define

Ĝn,U (λ; τ1, τ2) :=
1

2π

∑
0<|k|≤n−1

2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
e−ik

2πs

n
n− |k|
n

γ̂Uk (τ1, τ2)

and

G(λ; τ1, τ2) :=
1

2π

∑
k∈Z\{0}

γUk (τ1, τ2)
i

k
(e−ikλ − 1),

where the terms corresponding to lag k = 0 have been removed.

B.2.1. Proof of Theorem 3.1 – Main arguments. The proof of Theorem 3.1 is rather tech-
nical and consists of a series of lemmas and intermediate results. To facilitate the reading we
give an overview of the most important arguments of the proof.

For all n ∈N, consider the stochastic process

Gn,R(λ; τ1, τ2) :=
√
n
(
F̂n,R(λ; τ1, τ2)−F(λ; τ1, τ2)

)
(39)

indexed by (λ; τ1, τ2) ∈ [0, π]× [η,1−η]2. Observe that since F is assumed to be continuous,
the ranks ofX0, . . . ,Xn−1 are almost surely the same as the ranks of U0, . . . ,Un−1, i.e., with-
out loss of generality, we can assume the marginals to be uniformly distributed. In what fol-
lows, let F̂n,U denote the empirical distribution function of U0, . . . ,Un−1. With τ̂ := F̂−1

n,U (τ),
we have, by Lemma C.1 (the proof of which is deferred to Section C.3),

F̂n,R(λ; τ1, τ2) = F̂n,U (λ, τ̂1, τ̂2) + oP(n−1/2).(40)
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Furthermore, by Lemma C.2 (which is also proved in Section C.3),

Gn,R(λ; τ1, τ2) =
√
n
(
Ĝn,R(λ; τ1, τ2)−G(λ; τ1, τ2)

)
+ oP(1),

Gn,U (λ; τ1, τ2) =
√
n
(
Ĝn,U (λ; τ1, τ2)−G(λ; τ1, τ2)

)
+ oP(1),

and, therefore, we have the decomposition

Gn,R(λ; τ1, τ2) = Gn,U (λ, τ̂1, τ̂2)−Gn,U (λ; τ1, τ2)

+Gn,U (λ; τ1, τ2) +
√
n
(
G(λ, τ̂1, τ̂2)−G(λ; τ1, τ2)

)
+ oP(1)

= Gn,U (λ, τ̂1, τ̂2)−Gn,U (λ; τ1, τ2) +Gn,U (λ; τ1, τ2)

+
√
n
(

(τ̂1 − τ1)
∂G

∂τ1
(λ; τ1, τ2) + (τ̂2 − τ2)

∂G

∂τ2
(λ; τ1, τ2)

)
+ oP(1)(41)

where, by Assumption (D),

√
n
(
G(λ, τ̂1, τ̂2)−G(λ; τ1, τ2)

)
=
√
n

2∑
j=1

(τ̂j − τj)
∂G

∂τj
(λ; τ1, τ2) + oP(1),

as , by Lemma A.5 in Kley et al. (2016a),

sup
τ∈[0,1]

|F̂−1
n,U (τ)− τ |=OP(n−1/2).

Moreover, noting that
√
n
(
F̂n,U (τ)− τ

)
converges to a tight Gaussian limit with continuous

sample paths [see the proof of Lemma A.5 in Kley et al. (2016b)], we obtain under the given
assumptions by Vervaat’s Lemma [see Vervaat (1972)],

τ̂j − τj =−
(
F̂n,U (τj)− τj

)
+ oP(n−1/2).(42)

Substituting (42) into (41) yields the decomposition

Gn,R(λ; τ1, τ2) = Gn,U (λ, τ̂1, τ̂2)−Gn,U (λ; τ1, τ2) +Gn,U (λ; τ1, τ2)

+
√
n

2∑
j=1

(τj − F̂n,U (τj))Gj(λ; τ1, τ2) + oP(1),(43)

where Gj(λ; τ1, τ2) := ∂G
∂τj

(λ; τ1, τ2); j = 1,2.

As a second step, to prove the weak convergence of Gn,R, it suffices, by Lemmas 1.5.4
and 1.5.7 in van der Vaart and Wellner (1996), to show that the finite-dimensional distri-
butions converge in distribution and to prove stochastic equicontinuity. That is, we need to
establish

(i) the convergence of the finite-dimensional distributions of the process (8), i.e.(
Gn,R(λj , τ

(j)
1 , τ

(j)
2 )
)
j=1,...,L

D−→
(
G(λj , τ

(j)
1 , τ

(j)
2 )
)
j=1,...,L

(44)

for any (λj , τ
(j)
1 , τ

(j)
2 ) ∈ [0, π]× [η,1− η]2, j = 1, . . . ,L and L ∈N and
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(ii) stochastic equicontinuity, i.e., for all x > 0,

lim
δ↓0

lim sup
n→∞

P
(

sup
(λ;τ1,τ2),(λ′,τ ′1,τ

′
2)∈[0,π]×[η,1−η]2

‖(λ;τ1,τ2)−(λ′,τ ′1,τ
′
2)‖1≤δ

|Gn,R(λ; τ1, τ2)−Gn,R(λ′, τ ′1, τ
′
2)|> x

)
= 0.

(45)

We start by proving the stochastic equicontinuity (45). In regard of equation (43), our proof
consists of three steps:

• establish the stochastic equicontinuity of
(
Gn,U (λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

;

• establish the stochastic equicontinuity of
√
n(F̂n,U (τ)− τ)τ∈[0,1];

• show that

sup
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

∣∣Gn,U (λ, τ̂1, τ̂2)−Gn,U (λ; τ1, τ2)
∣∣= oP(1).(46)

The assertion in the second step has been established in Kley et al. (2016a) and the
third step follows from the first one (see Section C.1.1). For simplicity of notation, intro-
duce a := (λ; τ1, τ2) and b := (λ′, τ ′1, τ

′
2) ∈ [0, π]× [η,1− η]2. The main part in the proof of

the stochastic equicontinuity of Gn,U (λ; τ1, τ2) is the establishment of a uniform bound on
the increments of the process Gn,U . The derivation of this bound relies on two intermediate
bounds. First, we need a general bound on the moments of Gn,U (a) − Gn,U (b) which is
obtained in Lemma C.4. Second, we provide in Lemma C.5 a sharper bound on the same
increments when a and b are “close.”

We now turn to the proof of the weak convergence of the finite-dimensional distribu-
tions (44). From (46), we have

Gn,R(λ; τ1, τ2) = Gn,U (λ; τ1, τ2) +
√
n

2∑
j=1

(τj − F̂n,U (τj))Gj(λ; τ1, τ2) + oP(1)

and hence, it suffices to show the convergence of the finite-dimensional distributions of the
process

Kn(λ; τ1, τ2) := Gn,U (λ; τ1, τ2) +
√
n

2∑
j=1

(τj − F̂n,U (τj))Gj(λ; τ1, τ2)

indexed by (λ; τ1, τ2) ∈ [0, π]× [η,1−η]2. By Lemma P4.5 of Brillinger (1975), it suffices to
prove that for any λ1, . . . , λJ ∈ [0, π], J ∈N and any τ (1)

1 , . . . , τ
(J)
1 , τ

(1)
2 , . . . , τ

(J)
2 ∈ [η,1−η],

the cumulants of the vector(
Kn(λ1, τ

(1)
1 , τ

(1)
2 ),Kn(λ1, τ

(1)
1 , τ

(1)
2 ), . . . ,Kn(λL, τ

(J)
1 , τ

(J)
2 ),Kn(λJ , τ

(J)
1 , τ

(J)
2 )

)
converge to the corresponding cumulants of the vector(

G(λ1, τ
(1)
1 τ

(1)
2 ),G(λ1, τ

(1)
1 τ

(1)
2 ), . . . ,G(λJ , τ

(J)
1 τ

(J)
2 ),G(λJ , τ

(J)
1 τ

(J)
2 )

)
.

To this end, we proceed again in three steps:

• show that the first-order moments of Kn(λ1; τ1, τ2) vanish;
• show that the second-order moments yield the asymptotic covariance structure (9);
• show that the moments of order greater than two vanish.

The first assertion is proved in Lemma C.3; detailed proofs of the second and third ones can
be found in Section C.2.

In the remaining part of this section, we present the proofs of (44) and (45), where technical
details are deferred to Section C.
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B.2.2. Proof of (45) – stochastic equicontinuity. Assertion (46) mainly follows by the
stochastic equicontinuity of

(
Gn,U (λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

which will be proved in
the rest of this section. Details of the proof of (46) can be found in Section C.1.1.

We now prove the stochastic equicontinuity of
(
Gn,U (λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

. By
Lemma C.3, it suffices to consider the process(
Gn,U (λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

:=
(√

n(F̂n,U (λ; τ1, τ2)

− IE[F̂n,U (λ; τ1, τ2)])
)

(λ;τ1,τ2)∈[0,π]×[η,1−η]2
(47)

and we need to prove that ,for all x > 0,

lim
δ↓0

lim sup
n→∞

P
(

sup
(λ;τ1,τ2),(λ′,τ ′1,τ

′
2)∈[0,π]×[η,1−η]2

‖(λ;τ1,τ2)−(λ′,τ ′1,τ
′
2)‖1≤δ

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x

)
= 0.

This will be achieved by applying Lemma A.1 from Kley et al. (2016a) to the process (47).
Therefore, we will prove in Section C.1.2 that the assumptions for that lemma are fulfilled
with the metric

d
(
(λ; τ1, τ2), (λ′, τ ′1, τ

′
2)
)

:= ‖(λ; τ1, τ2)− (λ′, τ ′1, τ
′
2)‖γ/21

for a γ > 0 that will be specified in the proof of (48). More precisely, for all (λ; τ1, τ2), (λ′, τ ′1, τ
′
2)

in [0, π]× [η,1− η]2 with d
(
(λ; τ1, τ2), (λ′, τ ′1, τ

′
2)
)
≥ η̄/2≥ 0, we have

‖Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)‖Ψ ≤Kd

(
(λ; τ1, τ2), (λ′, τ ′1, τ

′
2)
)

(48)

where Ψ denotes the Orlicz norm ‖X‖Ψ := inf{C > 0 : IE[Ψ(|X|/C)]≤ 1}.

In particular, (48) holds for Ψ(x) := x8, i.e. L = 4. Denoting by D(ε, d) the packing
number of T := ([0, π]× [η,1− η]2, d) [cf. van der Vaart and Wellner (1996), page 98], we
have D(ε, d) � ε−6/γ . Therefore, by Lemma A.1 in Kley et al. (2016a), for all x, δ > 0
and all η̃ ≥ η̄n, there exists a random variable S1 and a constant K < ∞ such that,
for s := (λ; τ1, τ2) and t := (λ′, τ ′1, τ

′
2),

sup
d(s,t)≤δ

|Gn,U (s)−Gn,U (t)| ≤ S1 + 2 sup
d(s,t)≤η̄n,t∈T̃

|Gn,U (s)−Gn,U (t)|

with

‖S1‖Ψ ≤K
[∫ η̃

η̄n/2
Ψ−1

(
D(ε, d)

)
dε+ (δ + 2η̄n)Ψ−1

(
D2(η̃, d)

)]
where the set T̃ contains at most D(η̄n, d) points. In particular, by Markov’s inequality [cf.
van der Vaart and Wellner (1996), page 96],

P(|S1|> x)≤
(

Ψ
(
x[8K

(∫ η̃

η̄n/2
Ψ−1

(
D(ε, d)

)
dε+ (δ+ 2η̄n)Ψ−1

(
D2(η̃, d)

))]−1))−1
.

Hence,

P

(
sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

‖(λ;τ1,τ2)−(λ′,τ ′1,τ
′
2)‖1≤δ2/γ

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x

)
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= P

(
sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

d((λ;τ1,τ2),(λ′,τ ′1,τ
′
2))≤δ

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x

)

≤ P

(
S1 + 2 sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

d((λ;τ1,τ2),(λ′,τ ′1,τ
′
2))≤η̄n

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x

)

≤ P(|S1|> x/2) + P

(
sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

d((λ;τ1,τ2),(λ′,τ ′1,τ
′
2))≤η̄n

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x/4

)

≤
((x

2
[8K

(∫ η̃

η̄n/2
(C1ε

−6/γ)1/8dε+ (δ + 2η̄n)(C2η̃
−12/γ)1/8

)]−1)8)−1

+ P

(
sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

d((λ;τ1,τ2),(λ′,τ ′1,τ
′
2))≤η̄n

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x/4

)

≤
[ 8K̄

x/2

(∫ η̃

η̄n/2
ε−3/(4γ)dε+ (δ + 2η̄n)η̃−3/(2γ)

)]8

+ P

(
sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

d((λ;τ1,τ2),(λ′,τ ′1,τ
′
2))≤η̄n

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x/4

)
.

Now choose 1> γ > 3/4. Letting n tend to infinity, the second term equals

P

(
sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

‖(λ;τ1,τ2)−(λ′,τ ′1,τ
′
2)‖1≤22/γn−1/γ

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x/4

)

and converges to 0 by Lemma C.5. Hence,

lim
δ↓0

lim sup
n→∞

P

(
sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

‖(λ;τ1,τ2)−(λ′,τ ′1,τ
′
2)‖1≤δ2/γ

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x

)

≤ lim
δ↓0

[8K̄

x

(∫ η̃

0
ε−3/(4γ)dε+ δη̃−3/(2γ)

)]8

≤
[8K̄

x

∫ η̃

0
ε−3/(4γ)dε

]8

for every x, η̃ > 0. Since, η̃ can be chosen arbitrarily small, the integral can be made arbitrar-
ily small and (45) follows.

B.2.3. Proof of (44) – convergence of the finite-dimensional distributions. In view of
(43) and (46), it suffices to prove that the finite-dimensional distributions of

Kn(λ; τ1, τ2) := Gn,U (λ; τ1, τ2) +
√
n

2∑
j=1

(τj − F̂n,U (τj))Gj(λ; τ1, τ2)

converge, i.e. that(
Kn(λj , τ

(j)
1 , τ

(j)
2 )
)
j=1,...,J

D−→
(
G(λj , τ

(j)
1 , τ

(j)
2 )
)
j=1,...,J

.
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for any (λj , τ
(j)
1 , τ

(j)
2 ) ∈ [0, π] × [η,1 − η]2, j = 1, . . . , J and J ∈ N, where the process G

is defined in Theorem 3.1. For this purpose, we apply Lemma P4.5 of Brillinger (1975),
that is we prove that for any λ1, . . . , λJ ∈ [0, π], J ∈ N and any τ (1)

1 , . . . , τ
(J)
1 , τ

(1)
2 , . . . , τ

(J)
2

in [η,1− η], the cumulants of the vector(
Kn(λ1, τ

(1)
1 , τ

(1)
2 ),Kn(λ1, τ

(1)
1 , τ

(1)
2 ), . . . ,Kn(λJ , τ

(J)
1 , τ

(J)
2 ),Kn(λJ , τ

(J)
1 , τ

(J)
2 )

)
converge to the corresponding cumulants of the vector(

G(λ1, τ
(1)
1 τ

(1)
2 ),G(λ1, τ

(1)
1 τ

(1)
2 ), . . . ,G(λJ , τ

(J)
1 τ

(J)
2 ),G(λJ , τ

(J)
1 τ

(J)
2 )

)
.

It can easily be shown that Kn(λj , τ
(j)
1 , τ

(j)
2 ) = Kn(λj , τ

(j)
2 , τ

(j)
1 ). Hence, it is equivalent

to show the convergence of the cumulants of the vector(
Kn(λ1, τ

(1)
1 , τ

(1)
2 ),Kn(λ1, τ

(1)
2 , τ

(1)
1 ), . . . ,Kn(λJ , τ

(J)
1 , τ

(J)
2 ),Kn(λJ , τ

(J)
2 , τ

(J)
1 )

)
.

It follows from Lemma C.3 that the first-order cumulants vanish as

|IE[Kn(λ; τ1, τ2)]|= |IE[Gn,U (λ; τ1, τ2) +
√
n

2∑
j=1

(τj − F̂n,U (τj))Gj(λ; τ1, τ2)]|

=
√
n|IE[F̂n,U (λ; τ1, τ2)]−F(λ; τ1, τ2)|

=O(n−1/2)

for any λ ∈ [0, π] and τ1, τ2 ∈ [η,1 − η]. Furthermore, for the second-order cumulants we
obtain

cum
(
Kn(λ; τ1, τ2),Kn(µ, ξ1, ξ2)

)
= 2π

∫ λ

0

∫ µ

0
f
(
α,−α,β; τ1, τ2, ξ1, ξ2

)
dαdβ

+ 2π

∫ λ∧µ

0
f
(
α; τ1, ξ2

)
f
(
− α; τ2, ξ1

)
dα

−
2∑
j=1

Gj(µ, ξ1, ξ2)2π

∫ λ

0
f
(
α,−α; τ1, τ2, ξj

)
dα

−
2∑
j=1

Gj(λ; τ1, τ2)2π

∫ λ

0
f
(
α,−α; ξ1, ξ2, τj

)
dα

+

2∑
j1=1

2∑
j2=1

Gj1(λ; τ1, τ2)Gj2(µ, ξ1, ξ2)2πf
(
0; τj , ξj

)
+O(n−1).(49)

The details of the derivation of (49) are given in Section C.2.1.
It remains to show that all cumulants of order 2 < l ≤ 2J vanish. For this purpose we

prove in Section C.2.2 that∣∣∣cum
(
Kn(λ1, τ

(1)
1 , τ

(1)
2 ), . . . ,Kn(λl, τ

(l)
1 , τ

(l)
2 )
)∣∣∣=O(n−l/2+1),(50)

i.e. all cumulants of order greater than 2 tend to zero. This proves that the limiting process G
is Gaussian and concludes the proof of (44). 2
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B.3. Proof of Theorem 4.1. We only prove the second part; the proof of the first part
indeed is similar but simpler, and we only focus on confidence bands for the real part of F.
Define

S̃n :=
{2π`

d
, `= 0,1, . . . , bd/2c

}
× Sn, S̃ := [0, π]× S.

Observe that

P
(
<F(λ; τ1, τ2) ∈

[
<F̂n,R(λ; τ1, τ2)−CE,αs(τ1, τ2),

<F̂n,R(λ; τ1, τ2) +CE,αs(τ1, τ2)
]
, ∀(λ, τ1, τ2) ∈ S̃n

)
=P

(
sup

(λ,τ1,τ2)∈S̃n

|<F̂n,R(λ; τ1, τ2)−<F(λ; τ1, τ2)|
s(τ1, τ2)

≤CE,α
)

=P
(
Yn ≤G−1

n (1− α)
)
,(51)

where

Yn :=
√
n sup

(λ,τ1,τ2)∈S̃n

|<F̂n,R(λ; τ1, τ2)−<F(λ; τ1, τ2)|
s(τ1, τ2)

,(52)

Gn(x) :=
1

n− b+ 1

n−b+1∑
t=1

I{
√
bẼn,b,t ≤ x},

G−1
n (1− α) := inf{x :Gn(x)≥ 1− α}, α ∈ (0,1).

By Corollary 1.3 and Remark 4.1 in Gaenssler et al. (2007), the distribution function G of
the random variable

Y := sup
(λ,τ1,τ2)∈S̃

|<G(λ, τ1, τ2)|
s(τ1, τ2)

= sup
(λ,τ1,τ2)∈S̃

max
{−<G(λ, τ1, τ2)

s(τ1, τ2)
,
<G(λ, τ1, τ2)

s(τ1, τ2)

}
is continuous and strictly increasing on (0,∞). Let us show that Yn converges in distribution
to Y . Defining

Ŷn :=
√
n sup

(λ,τ1,τ2)∈S̃

|<F̂n,R(λ; τ1, τ2)−<F(λ; τ1, τ2)|
s(τ1, τ2)

,

note that Ŷn converges in distribution to Y by Theorem 3.1 and the continuity of the map

f 7→ sup
(λ,τ1,τ2)∈S

|f(λ; τ1, τ2)/s(τ1, τ2)|.

By Slutzky, it suffices to show that Ŷn − Yn = oP (1). Note that, for any bounded function f
on S̃ and any S̃n ⊂ S, we have, by the triangle inequality,

sup
x∈S̃
|f(x)| ≤ sup

x∈S̃
inf
y∈Sn

(
|f(x)− f(y)|+ |f(y)|

)
≤ sup
x∈S̃

inf
y∈S̃n
|f(x)− f(y)|+ sup

z∈S̃n
|f(z)|

which yields

0≤ sup
x∈S̃
|f(x)| − sup

x∈S̃n
|f(x)| ≤ sup

x∈S̃
inf
y∈S̃n
|f(x)− f(y)| ≤ sup

x,y∈S:‖x−y‖≤d(S̃n,S̃)

|f(x)− f(y)|.
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Define

gn(λ, τ1, τ2) :=
√
n
|<F̂n,R(λ; τ1, τ2)−<F(λ; τ1, τ2)|

s(τ1, τ2)

and apply the above inequality with x= (λ, τ1, τ2) and f(x) = gn(λ, τ1, τ2) to obtain

0≤ Ŷn − Yn ≤ sup
x,y∈S̃:‖x−y‖≤d(S̃n,S̃)

|gn(x)− gn(y)|.

By a simple calculation and Theorem 3.1, the paths of gn are uniformly asymptotically
equicontinuous, whence the right-hand side of the last display is oP (1). Indeed, for any
fixed δ > 0 and ε > 0, we have

lim sup
n→∞

P
(

sup
x,y∈S:‖x−y‖≤d(S̃n,S̃)

|gn(x)−gn(y)| ≥ ε
)
≤ lim sup

n→∞
P
(

sup
x,y∈S̃:‖x−y‖≤δ

|gn(x)−gn(y)| ≥ ε
)
.

Since the left-hand side above does not depend on δ we can take the limit limδ↓0 on both
sides to obtain

lim
δ↓0

lim sup
n→∞

P
(

sup
x,y∈S̃:‖x−y‖≤d(S̃n,S̃)

|gn(x)− gn(y)| ≥ ε
)

≤ lim
δ↓0

lim sup
n→∞

P
(

sup
x,y∈S̃:‖x−y‖≤δ

|gn(x)− gn(y)| ≥ ε
)

= 0

where the last equality follows from uniform asymptotic equicontinuity. Since ε > 0 was
arbitrary this implies supx,y∈S̃:‖x−y‖≤δ |gn(x)− gn(y)|= oP (1). Thus, by continuity of the

distribution of Y , we have, for all x ∈R,

(53) P(Yn ≤ x)→P(Y ≤ x) =G(x).

Denote by ρL the bounded Lipschitz metric on the space of distribution functions on R:
the following result will be established later in the proof

(54) ρL(Gn,G)
P∗−→ 0.

From (54) and the continuity of G, we obtain the following two convergences (note
that both suprema are measurable since their value does not change if supx∈R is replaced
by supx∈Q and the latter is taken over a countable set):

(55) sup
x∈R
|Gn(x)−G(x)| P−→ 0,

and

(56) sup
x∈R
|Gn(x)−Gn(x−)| P−→ 0.

Here (56) follows from (55) by continuity of G. Indeed, any continuous distribution function
is also uniformly continuous, and we have, for any ε > 0,

sup
x
|Gn(x)−Gn(x−)| ≤ sup

x
|Gn(x)−Gn(x− ε)|

≤ 2 sup
x
|Gn(x)−G(x)|+ sup

x
|G(x)−G(x− ε)|.

Letting ε ↓ 0, we obtain, from the uniform continuity of G,

sup
x
|Gn(x)−Gn(x−)| ≤ 2 sup

x
|Gn(x)−G(x)|.
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To establish (55), note that, by Problem 23.1 in Van der Vaart (2000), (55) is equivalent
to Gn(x) =G(x) +oP(1) for every x, which can be established by a standard approximation
of indicator functions through Lipschitz continuous functions.

Then, the assertion of the theorem follows from (51), (53), the continuity of G, (55),
and (56). The coverage probability in (51) indeed is bounded from above by

P
(
Gn(Yn)≤Gn

(
G−1
n (1− α)

))
=P

(
G(Yn) + r1,n + r2,n ≤ 1− α

)
,

→P
(
G(Y )≤ 1− α

)
= 1− α,

(57)

where the first equality follows from the fact that Gn is monotone increasing; for the sec-
ond equality, letting r1,n := Gn(Yn) −G(Yn) and r2,n := 1 − α −Gn

(
G−1
n (1 − α)

)
, note

that r1,n = oP(1) and r2,n = oP(1) since

|r1,n|= |Gn(Yn)−G(Yn)| ≤ sup
x∈R
|Gn(x)−G(x)| P−→ 0

and, in view of Lemma 21.1 (ii), (iii) in Van der Vaart (2000),

|r2,n|= |1− α−Gn
(
G−1
n (1− α)

)
| ≤ sup

x∈R
|Gn(x)−Gn(x−)| P−→ 0.

Finally, as G is continuous, it follows from the Continuous Mapping Theorem and Slutzky’s
lemma, that

G(Yn) + oP(1)
D−→G(Y );

this completes the proof of (57). Now, the same coverage probability in (51) is bounded from
below by

P
(
Gn(Yn)<Gn

(
G−1
n (1− α)

))
=P

(
G(Yn) + r1,n + r2,n < 1− α

)
→P

(
G(Y )< 1− α

)
= 1− α,

since Gn is non-decreasing2 and since the continuity of G implies that G(Y ) ∼ U [0,1].
Theorem 4.1 follows from combining this with (57).

Proof of (54) The proof of (54) follows along similar arguments as in Section 7.3 of Politis
et al. (1999). Similar to the notation there, let θ(P ) =<F(·; ·, ·) and

Rn
(
X1, . . . ,Xn;θ(P )

)
:= Yn =

√
n sup

(λ,τ1,τ2)∈S̃n

|<F̂n,R(λ; τ1, τ2)−<F(λ; τ1, τ2)|
s(τ1, τ2)

,

Rb,n(Xt, . . . ,Xt+b−1, θ(P )
)

:=At =
√
b sup

(λ,τ1,τ2)∈S̃n

|<F̂n,b,t,R(λ; τ1, τ2)−<F(λ; τ1, τ2)|
s(τ1, τ2)

,

Rb,n(Xt, . . . ,Xt+b−1, θ̂n
)

:=Bt =
√
bẼn,b,t

=
√
b sup

(λ,τ1,τ2)∈S̃n

|<F̂n,b,t,R(λ; τ1, τ2)−<F̂n,R(λ; τ1, τ2)|
s(τ1, τ2)

.

Denoting by Jn the cdf of Rn
(
X1, . . . ,Xn;θ(P )

)
= Yn (recall that Yn was defined in (52)),

let Hn,b be the empirical cdf of {Rb,n(Xt, . . . ,Xt+b−1, θ(P )
)

: t= 1, . . . , n− b+ 1} (recall

2Indeed, by contraposition, Gn(t) < Gn(s) implies t < s, so Gn(Yn) < Gn(G
−1
n (1 − α)) yields Yn ≤

G−1
n (1− α)
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that Gn denotes the empirical cdf of {Rb,n(Xt, . . . ,Xt+b−1, θ̂n
)

: t = 1, . . . , n− b+ 1}). A
close look at the proof of Proposition 7.3.1 from Politis et al. (1999) reveals that this result
continues to hold if Rb in there is replaced by Rb,n as in our setting.3 It follows that

ρL(Hn,b, Jn)
P−→ 0.

By the reverse triangle inequality and some elementary computations, we have

sup
t=1,...,n−b+1

|Rb(Xt, . . . ,Xt+b−1, θ̂n
)
−Rb(Xt, . . . ,Xt+b−1, θ(P )

)
|

≤
√
b/nRn

(
X1, . . . ,Xn;θ(P )

)
=OP(

√
b/n) = oP(1).

Let

BL1 :=
{
f : R→R : |f(x)− f(y)| ≤ |x− y|, sup

x
|f(x)| ≤ 1

}
denote the set of bounded Lipschitz functions from R to R: we have

sup
f∈BL1

∣∣∣ ∫
R
f(x)Hn,b(dx)−

∫
R
f(x)Gn(dx)

∣∣∣
= sup

f∈BL1

∣∣∣ 1

n− b+ 1

n−b+1∑
t=1

f(At)−
1

n− b+ 1

n−b+1∑
t=1

f(Bt)
∣∣∣

≤ sup
t
|Rb(Xt, . . . ,Xt+b−1, θ̂n

)
−Rb(Xt, . . . ,Xt+b−1, θ(P )

)
|

= oP(1).

Thus, we have shown that ρL(Hn,b,Gn) = oP(1). Note that (53) also entails ρL(Jn,G) = o(1).
Together with ρL(Hn,b, Jn) = oP(1) and the triangle inequality, this yields (54). 2

B.4. Proof of Theorem 4.2. We begin with Part 1 of the theorem. Let us show that, under
the null,

T
(n)
TR ⇒TTR := sup

(λ,τ1,τ2)∈S

∣∣∣=G(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣ as n→∞.

More precisely, by employing Theorem 3.1 and the Continuous Mapping Theorem, it holds
that, under the null,

√
n max

(λ,τ1,τ2)∈S

∣∣∣=F̂n,R(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣⇒ TTR as n→∞.

Further,

0≤ T (n)
TR − max

(λ,τ1,τ2)∈S

∣∣∣=F̂n,R(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣≤ sup
x,y∈S:‖x−y‖≤d(Sn,S)

|gn(x)− gn(y)|

where x = (λ, τ1, τ2) and gn(x) :=
√
n|=F̂n,R(λ; τ1, τ2)|/s(τ1, τ2). Uniform asymptotic

equicontinuity of gn(x) (which follows from Theorem 3.1 after a simple computation) im-
plies that supx,y∈S:‖x−y‖≤d(Sn,S) |gn(x)− gn(y)| P−→ 0 as n→∞.

3Note that we have an additional dependence on the full sample size n which is not present in Politis et al.
(1999).
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Proposition 7.3.1 in Politis et al. (1999) then implies that ρL(HTR
n,b ,G

TR)
P∗−→ 0 as n→∞,

where GTR is the cdf of TTR and

HTR
n,b (x) :=

1

n− b+ 1

n−b+1∑
t=1

I{T (n,b,t)
TR1 ≤ x}.

Next note that the function GTR is continuous; this can be established similarly to the conti-
nuity of G in the proof of Theorem 3.1. Now we obtain, as in the proof of (55), that

sup
x∈R

∣∣∣HTR
n,b (x)−GTR(x)

∣∣∣= oP (1),

which in turn yields

HTR
n,b (T

(n)
TR ) =GTR(T

(n)
TR ) + op(1).

Consequently, it holds that, for α ∈ (0,1),

P

(
pTR ≤ α

)
=P

(
1− α≤HTR

n,b (T
(n)
TR )

)
=P

(
1− α≤GTR(T

(n)
TR ) + op(1)

)
→P

(
1− α≤GTR(TTR)

)
= α as n→∞,

in view of the continuity of GTR which, by the Continuous Mapping Theorem and Slutzky’s
Lemma, implies GTR(T

(n)
TR ) + op(1)⇒GTR(TTR)∼ U [0,1]. This establishes Part 1 of the

theorem.

We now turn to Part 2 of the same theorem. Note that it suffices to show that pTR = oP (1),
since then P(pTR ≤ α) = 1 − P(pTR > α)→ 1 for all α > 0. Next, since all copulas are
continuous and since Assumption 3.1(C) implies uniform convergence of the series defin-
ing f(ω; τ1, τ2) in (1), we have that f(ω; τ1, τ2) is continuous as a function of (τ1, τ2). Now
recall the definition in (2): F(λ; τ1, τ2) =

∫ λ
0 f(ω; τ1, τ2)dω. Thus, =F is continuous. Now,

by assumption there exists (λ, τ1, τ2) ∈ S such that |=F(λ, τ1, τ2)|=: c > 0. The continuity
of =F together with (17) implies that there exist n0 such that

(58) sup
(λ,τ1,τ2)∈Sn

∣∣∣=F(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣≥ c/(2smax), for all n≥ n0,

where smax := sup(τ1,τ2)∈[η,1−η]2 s(τ1, τ2).
Let

T̄
(n)
TR :=

√
n max

(λ,τ1,τ2)∈Sn

∣∣∣=F̂n,R(λ, τ1, τ2)−=F (λ, τ1, τ2)

s(τ1, τ2)

∣∣∣
and

T̄
(n,b,t)
TR1 :=

√
b max

(λ,τ1,τ2)∈Sn

∣∣∣=F̂n,b,t,R(λ, τ1, τ2)−=F (λ, τ1, τ2)

s(τ1, τ2)

∣∣∣.
We have, under H1, that

(59) T̄
(n)
TR  TTR := max

(λ,τ1,τ2)∈S

∣∣∣=G(λ, τ1, τ2)

s(τ1, τ2)

∣∣∣ as n→∞.
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Denoting by ḠTR the cdf of T̄ (n)
TR and defining

H̄TR
n,b (x) :=

1

n− b+ 1

n−b∑
t=0

I
{
T̄

(n,b,t)
TR1 ≤ x

}
,

we have, by the subsampling arguments used in the proof of Part 1, that

sup
x∈R
|H̄TR

n,b (x)− ḠTR(x)| P−→ 0.

Finally, letting ‖f‖Sn := max(λ,τ1,τ2)∈Sn |
f(λ,τ1,τ2)
s(τ1,τ2) |, we have

pTR =
1

n− b+ 1

n−b∑
t=0

I
{
T

(n,b,t)
TR1 > T

(n)
TR

}
=

1

n− b+ 1

n−b∑
t=0

I
{√

b‖=F̂n,b,t,R −=F+=F‖Sn >
√
n‖=F̂n,R −=F+=F‖Sn

}
≤ 1

n− b+ 1

n−b∑
t=0

I
{
T̄

(n,b,t)
TR1 +

√
b‖=F‖Sn >

√
n‖=F‖Sn − T̄

(n)
TR

}
= 1− H̄TR

n,b

(
(
√
n−
√
b)‖=F‖Sn − T̄

(n)
TR

)
= 1− ḠTR

(
(
√
n−
√
b)‖=F‖Sn − T̄

(n)
TR

)
+ oP (1).

Let us show that this implies pTR = oP (1). From (59) we have that T̄ (n)
TR =OP (1); i. e., for

every ε > 0, there exists M and n0 such that P(T̄
(n)
TR >M)< ε for all n≥ n0. Hence,

lim sup
n→∞

P
(

1− ḠTR
(
(
√
n−
√
b)‖=F‖Sn − T̄

(n)
TR

)
> κ
)

≤ lim sup
n→∞

P
(

1− ḠTR
(
(
√
n−
√
b)c/(2smax)−M

)
> κ
)

+ lim sup
n→∞

P(T̄
(n)
TR >M)

≤ ε,

Here we used the fact that (
√
n −

√
b)c/(2smax) − M → ∞, which in turn implies

that ḠTR
(
(
√
n −
√
b)c/(2smax) −M

)
→ 1 since ḠTR is a cdf. Since ε > 0 is arbitrary,

it follows that pTR = oP (1), which completes the proof of Part 2. 2

B.5. Proof of Theorem 4.3. First, we show that the proposed test based on T
(n)
EQ hs

asymptotic size α. By the uniform asymptotic equicontinuity of Gn,R and Theorem 3.1, a
simple calculation shows that under the null H0,

T
(n)
EQ ⇒TEQ := sup

(λ,τ1,τ2)∈S

∣∣∣G(λ, τ1, τ2)−G(λ,1− τ1,1− τ2)

s(τ1, τ2)

∣∣∣.
Proposition 7.3.1 of Politis et al. (1999) entails ρL(HEQ

n,b ,G
EQ)

P∗−→ 0, where

HEQ
n,b (x) :=

1

n− b+ 1

n−b+1∑
t=1

I{T (n,b,t)
EQ ≤ x}
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is the empirical distribution function of T (n)
EQ and GEQ is the distribution function of TEQ.

The continuity of GEQ follows from the same arguments as used for the continuity of G in
the proof of Theorem 4.1. This, combined with the arguments used in the proof of (55), yields

sup
x∈R

∣∣∣HEQ
n,b (x)−HEQ(x)

∣∣∣= oP (1).

Therefore, it holds that, under the null H0,

P

(
pEQ ≤ α

)
=P

(
1− α≤HEQ

n,b (T
(n)
EQ )

)
=P

(
1− α≤GEQ(T

(n)
EQ ) + op(1)

)
→P

(
1− α≤GEQ(TEQ)

)
= α as n→∞,

where the last line follows from the fact that the continuity of GEQ implies that

GEQ(T
(n)
EQ ) + op(1)⇒GEQ(TEQ)∼ U [0,1].

This shows that the proposed test has asymptotic level α and completes the proof of the first
part of Theorem 4.3.

Next, we show that the test is consistent against fixed alternatives. To this end, let
us show that P(pEQ ≤ α) = 1 − P(pEQ > α) → 1 for all α > 0 follows from the fact
that pTR = oP (1). By assumption, there exists some (λ, τ1, τ2) ∈ S such that

|F(λ, τ1, τ2)−F(λ,1− τ1,1− τ2)|=: c > 0.

From (17) and the continuity of F with respect to (λ, τ1, τ2), there exists n0 such that

(60) sup
(λ,τ1,τ2)∈Sn

∣∣∣(F (λ, τ1, τ2)−F (λ,1− τ1,1− τ2))

s(τ1, τ2)

∣∣∣≥ c/(2smax) for all n≥ n0

where smax := sup(τ1,τ2)∈[η,1−η]2 s(τ1, τ2)<∞ by continuity of s on a compact set. Defining

T̄
(n)
EQ :=

√
n max

(λ,τ1,τ2)∈Sn

∣∣∣ F̂X
n,R(λ, τ1, τ2)− F̂X

n,R(λ,1− τ1,1− τ2)− (F (λ, τ1, τ2) +F (λ,1− τ1,1− τ2))

s(τ1, τ2)

∣∣∣,
and H̄EQ

n,b (x) :=
1

n− b+ 1

n−b∑
t=0

I
{
T̄

(n,b,t)
EQ ≤ x

}
with

T̄
(n,b,t)
EQ

:=
√
b max

(λ,τ1,τ2)∈Sn

∣∣∣ F̂X
n,b,t,R(λ, τ1, τ2)− F̂X

n,b,t,R(λ,1− τ1,1− τ2)− (F (λ, τ1, τ2)−F (λ,1− τ1,1− τ2))

s(τ1, τ2)

∣∣∣,
observe that, under the alternative H1,

(61) T̄
(n)
EQ

D−→ TEQ := sup
(λ,τ1,τ2)∈S

∣∣∣G(λ, τ1, τ2)−G(λ,1− τ1,1− τ2)

s(τ1, τ2)

∣∣∣ as n→∞.

By similar arguments as in the proof of the first part, it follows that

(62) sup
x∈R
|H̄EQ

n,b (x)− ḠEQ(x)| P−→ 0,
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where ḠEQ the cdf of T̄EQ. By (60), (61) and (62), it holds that

pEQ =
1

n− b+ 1

n−b∑
t=0

I
{
T

(n,b,t)
EQ > T

(n)
EQ

}
≤ 1− H̄EQ

n,b

(
(
√
n−
√
b) sup

(λ,τ1,τ2)∈Sn

∣∣∣(F (λ, τ1, τ2)−F (λ,1− τ1,1− τ2))

s(τ1, τ2)

∣∣∣− T̄ (n)
EQ

)

= 1− ḠEQ

(
(
√
n−
√
b) sup

(λ,τ1,τ2)∈Sn

∣∣∣(F (λ, τ1, τ2)−F (λ,1− τ1,1− τ2))

s(τ1, τ2)

∣∣∣− T̄ (n)
EQ

)
+ oP (1),

where the first inequality follows by the same arguments as in the proof of Theorem 4.2 and
the last line is a consequence of (62). Since T̄ (n)

EQ =OP (1) and since

(
√
n−
√
b) sup

(λ,τ1,τ2)∈Sn

∣∣∣(F (λ, τ1, τ2)−F (λ,1− τ1,1− τ2))

s(τ1, τ2)

∣∣∣→∞,
we obtain the desired result that that pEQ = oP (1) as n→∞. 2

C. Technical details.

C.1. Details for the proof of (45).

C.1.1. Proof of (46). Observe that, for any x > 0 and δn with n−1/2� δn = o(1), we
have

P
(

sup
λ∈[0,π]

τ1,τ2∈[η,1−η]

|Gn,U (λ, τ̂1, τ̂2)−Gn,U (λ; τ1, τ2)|> x
)

≤ P
(

sup
λ∈[0,π]

τ1,τ2∈[η,1−η]

sup
‖(u,v)−(τ1,τ2)‖∞

≤supτ∈[0,1] |F̂
−1
n,U (τ)−τ |

|Gn,U (λ,u, v)−Gn,U (λ; τ1, τ2)|> x
)

≤ P
(

sup
λ∈[0,π]

τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Gn,U (λ,u, v)−Gn,U (λ; τ1, τ2)|> x, sup
τ∈[0,1]

|F̂−1
n,U (τ)− τ | ≤ δn

)

+ P
(

sup
τ∈[0,1]

|F̂−1
n,U (τ)− τ |> δn

)
=: P1,n + P2,n, say.

It follows from Lemma A.5 in the online appendix of Kley et al. (2016a) that

sup
τ∈[0,1]

|F̂−1
n,U (τ)− τ |=OP(n−1/2);

since n−1/2� δn, this implies P2,n = o(1). As for P1,n we have

P1,n ≤ P

(
sup
λ∈[0,π]

τ1,τ2∈[η,1−η]

sup
‖(u,v)−(τ1,τ2)‖1≤2δn

|Gn,U (λ,u, v)−Gn,U (λ; τ1, τ2)|> x

)

≤ P

(
sup

(λ,u,v),(λ;τ1,τ2)∈[0,π]×[η,1−η]2

‖(λ,u,v)−(λ;τ1,τ2)‖1≤2δn

|Gn,U (λ,u, v)−Gn,U (λ; τ1, τ2)|> x

)
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which vanishes asymptotically for n−1/2� δn = o(1) by the stochastic equicontinuity

lim
δ↓0

lim sup
n→∞

P

(
sup

(λ;τ1,τ2),(λ′,τ ′1,τ
′
2)∈[0,π]×[η,1−η]2

‖(λ;τ1,τ2)−(λ′,τ ′1,τ
′
2)‖1≤δ

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|> x

)
= 0

of the process
(
Gn,U (λ; τ1, τ2)

)
(λ;τ1,τ2)∈[0,π]×[η,1−η]2

proved in Section B.2.2.

C.1.2. Proof of (48) – convergence of higher order cumulants. Let Ψ(x) := x2L, L ∈N.
In this case, the Orlicz norm coincides with the L2L-norm ‖X‖2L = (IE[|X|2L])1/(2L) so that

‖Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)‖Ψ

≤ 2(2L−1)/(2L)
(

IE[|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ1, τ2)|2L]

+ IE[|Gn,U (λ′, τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|2L]

)1/(2L)

=: 2(2L−1)/(2L)
(
R(1)
n +R(2)

n

)1/(2L)
, say.(63)

In order to bound for R(2)
n , observe that Gn,U (λ′, τ1, τ2) − Gn,U (λ′, τ ′1, τ

′
2) can be writ-

ten as

Gn,U (λ′, τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2) =

{
Cλ′H

U
n (τ, τ ′;λ′), if λ′ ∈ (0, π],

0, if λ′ = 0,

where τ = (τ1, τ2), τ ′ = (τ ′1, τ
′
2) and

HU
n (τ, τ ′;λ′) :=

√
nbλ′(H̃U

n (τ, τ ′;λ′)− IE[H̃U
n (τ, τ ′;λ′)])

with

H̃U
n (τ, τ ′;λ′) =

2π

n

n−1∑
s=1

Wn,λ′(
λ′

2
− 2πs/n)

{
Iτ1,τ2n,U (2πs/n)− Iτ

′
1,τ
′
2

n,U (2πs/n)
}
,

Wn,λ′(u) =

∞∑
j=−∞

b−1
λ′ W (b−1

λ′ (u+ 2πj)), and

W (·) =
1

2π
I{−π ≤ · ≤ π}

for Cλ′ =
√

2πλ′ and bλ′ = λ′

2π . Furthermore, by Lemma A.4 in Kley et al. (2016a), there
exist constants K and d, independent of ω1, . . . , ωp ∈R, n and A1, . . . ,Ap, such that∣∣∣cum

(
dA1
n (ω1), . . . , dApn (ωp)

)∣∣∣≤K(∣∣∣∆n

( p∑
i=1

ωi

)∣∣∣+ 1
)
ε(| log ε|+ 1)d

for any Borel sets A1, . . . ,Ap with minj P(X0 ∈Aj)≤ ε.

Lemma C.4 in Section C.3 below yields

IE[|Gn,U (λ′, τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|2L]≤K1‖W‖2L∞C2L

λ′

L−1∑
l=0

gL−l(‖τ − τ ′‖1)

(nbλ′)l
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for ‖τ − τ ′‖1 > 0 sufficiently small and g(ε) = ε(| log ε|+ 1)d. Observing that for ε suffi-
ciently small, g(ε) = ε(| log ε|+ 1)d < εκ for any κ ∈ (0,1), we obtain

IE[|Gn,U (λ′, τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|2L]≤ K̃1

L−1∑
l=0

‖τ − τ ′‖(L−l)κ1

nl
.(64)

Similarly, for R(1)
n ,

Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ1, τ2) =

{
C|λ−λ′|H

U
n (τ, τ ′; |λ− λ′|), if |λ− λ′| ∈ (0, π],

0, if |λ− λ′|= 0,

(65)

where τ = (τ1, τ2) = τ ′ and

HU
n (τ, τ ′; |λ− λ′|) :=

√
nb|λ−λ′|(H̃U

n (τ, τ ′; |λ− λ′|)− IE[H̃U
n (τ, τ ′; |λ− λ′|)])

with

H̃U
n (τ, τ ′; |λ− λ′|) =

2π

n

n−1∑
s=1

Wn,|λ−λ′|

(
λ+ λ′

2
− 2πs/n

){
Iτ1,τ2n,U (2πs/n)

− Iτ
′
1,τ
′
2

n,U (2πs/n)I{τ 6= τ ′}
}
,

Wn,|λ−λ′|(u) =

∞∑
j=−∞

b−1
|λ−λ′|W (b−1

|λ−λ′|(u+ 2πj)), and

W (·) =
1

2π
I{−π ≤ · ≤ π}

for C|λ−λ′| =
√

2π|λ− λ′| and b|λ−λ′| =
|λ−λ′|

2π .
Similar arguments imply

IE[|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ1, τ2)|2L]≤K1‖W‖2L∞C2L
|λ−λ′|

L−1∑
l=0

K2

(nb|λ−λ′|)l
,

and hence,

IE[|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ1, τ2)|2L]≤ K̄1

L−1∑
l=0

|λ− λ′|L−l

nl
.(66)

Plugging (66) and (64) into (63) yields

‖Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)‖Ψ

≤ 2(2L−1)/(2L)
(
K1

L−1∑
l=0

|λ− λ′|L−l

nl
+K2

L−1∑
l=0

‖τ − τ ′‖(L−l)κ1

nl

)1/(2L)
.

Furthermore, if |λ− λ′|< 1 then |λ− λ′|q ≤ |λ− λ′|qκ for all q > 0, κ ∈ (0,1) so that

2(2L−1)/(2L)
(
K1

L−1∑
l=0

|λ− λ′|L−l

nl
+K2

L−1∑
l=0

‖τ − τ ′‖(L−l)κ1

nl

)1/(2L)

≤ 2(2L−1)/(2L)
(
K1

L−1∑
l=0

|λ− λ′|(L−l)κ

nl
+K2

L−1∑
l=0

‖τ − τ ′‖(L−l)κ1

nl

)1/(2L)
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≤K3

(L−1∑
l=0

|λ− λ′|(L−l)κ + ‖τ − τ ′‖(L−l)κ1

nl

)1/(2L)

≤K3

(L−1∑
l=0

2(|λ− λ′| ∨ ‖τ − τ ′‖1)(L−l)κ

nl

)1/(2L)

≤ 21/(2L)K3

(L−1∑
l=0

(|λ− λ′|+ ‖τ − τ ′‖1)(L−l)κ

nl

)1/(2L)

= 21/(2L)K3

(L−1∑
l=0

‖(λ; τ1, τ2)− (λ′, τ ′1, τ
′
2)‖(L−l)κ1

nl

)1/(2L)
.

It follows that, for all (λ; τ1, τ2), (λ′, τ ′1, τ
′
2) with ‖(λ; τ1, τ2) − (λ′, τ ′1, τ

′
2)‖1 sufficiently

small and ‖(λ; τ1, τ2)− (λ′, τ ′1, τ
′
2)‖1 ≥ n−1/γ for all γ ∈ (0,1) such that γ < κ,

‖Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)‖Ψ ≤K4

(
‖(λ; τ1, τ2)− (λ′, τ ′1, τ

′
2)‖Lκ1

+ ‖(λ; τ1, τ2)− (λ′, τ ′1, τ
′
2)‖(L−1)κ+γ

1

+ · · ·+ ‖(λ; τ1, τ2)− (λ′, τ ′1, τ
′
2)‖κ+(L−1)γ

1

)1/(2L)

≤K5‖(λ; τ1, τ2)− (λ′, τ ′1, τ
′
2)‖γ/21 .

Observing that ‖(λ; τ1, τ2)− (λ′, τ ′1, τ
′
2)‖1 ≥ n−1/γ if and only if

d((λ; τ1, τ2), (λ′, τ ′1, τ
′
2)) = ‖(λ; τ1, τ2)− (λ′, τ ′1, τ

′
2)‖γ/21 ≥ n−1/2 =: η̄n/2,

we have

‖Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)‖Ψ ≤Kd((λ; τ1, τ2), (λ′, τ ′1, τ

′
2))

for all (λ; τ1, τ2), (λ′, τ ′1, τ
′
2) with d((λ; τ1, τ2), (λ′, τ ′1, τ

′
2))≥ η̄n/2. This establishes (48). 2

C.2. Details for the proof of (44). All results in this section rely on the assumption

(CS) Assume that assumption (S) holds and that, for given p≥ 2, l ≥ 0, a constant K < ∞
exists such that the summability condition∑

k1,...,kp−1∈Z
(1 + |kj |l)|cum(I{Xk1 ∈A1}, . . . , I{Xkp−1

∈Ap−1}, I{X0 ∈Ap})|<K

holds for arbitrary intervals A1, . . . ,Ap ⊂R and all j = 1, . . . , p− 1.

This condition is a consequence of Assumption (C), but is slightly weaker and, therefore,
mentioned seperately.

C.2.1. Proof of (49) . Note that

cum
(
Kn(λ; τ1, τ2),Kn(µ, ξ1, ξ2)

)
= cum

(
Gn,U (λ; τ1, τ2) +

√
n

2∑
j=1

(τj − F̂n,U (τj))Gj(λ; τ1, τ2),
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Gn,U (µ, ξ1, ξ2) +
√
n

2∑
j=1

(ξj − F̂n,U (ξj))Gj(µ, ξ1, ξ2)
)

=: U (1)
n −U (2)

n −U (3)
n +U (4)

n

where

U (1)
n = cum

(
Gn,U (λ; τ1, τ2),Gn,U (µ, ξ1, ξ2)

)
,

U (2)
n =

√
n

2∑
j=1

Gj(µ, ξ1, ξ2)cum
(
Gn,U (λ; τ1, τ2), F̂n,U (ξj)

)
,

U (3)
n =

√
n

2∑
j=1

Gj(λ; τ1, τ2)cum
(
F̂n,U (τj)− τj ,Gn,U (µ, ξ1, ξ2)

)
, and

U (4)
n = n

2∑
j1=1

2∑
j2=1

Gj1(λ; τ1, τ2)Gj2(µ, ξ1, ξ2)cum
(
F̂n,U (τj)− τj , F̂n,U (ξj)− ξj

)
.

First consider U (1)
n . We have

cum
(
Gn,U (λ; τ1, τ2),Gn,U (µ, ξ1, ξ2)

)
= n−3

n−1∑
r=1

n−1∑
s=1

I
{

0≤ 2πr

n
≤ λ
}
I
{

0≤ 2πs

n
≤ µ
}

× cum
(
dτ1n,U

(2πr

n

)
dτ2n,U

(
− 2πr

n

)
, dξ1n,U

(2πs

n

)
dξ2n,U

(
− 2πs

n

))
.

By Theorem 2.3.2 in Brillinger (1975), as IE[dτn,U (2πr/n)] = 0 for any r = 1, . . . , n− 1,

cum
(
dτ1n,U (2πr/n)dτ2n,U (−2πr/n) , dξ1n,U (2πs/n)dξ2n,U (−2πs/n)

= cum
(
dτ1n,U (2πr/n) , dτ2n,U (−2πr/n) , dξ1n,U (2πs/n) , dξ2n,U (−2πs/n)

)
+ cum

(
dτ1n,U (2πr/n) , dξ1n,U (2πs/n)

)
cum

(
dτ2n,U (−2πr/n) , dξ2n,U (−2πs/n)

)
+ cum

(
dτ1n,U (2πr/n) , dξ2n,U (−2πs/n)

)
cum

(
dτ2n,U (−2πr/n) , dξ1n,U (2πs/n)

)
and, from Theorem 1.3 in the online appendix of Kley et al. (2016a), we know that under
Assumption (CS) with p= 2,4 and l≥ 1, for all τ1, . . . , τk ∈ [η,1− η] and λ1, . . . , λK ∈R,

cum
(
dτ1n,U (λ1), . . . , dτKn,U (λK)

)
= (2π)K−1∆n

( K∑
j=1

λj

)
fqτ1 ,...,qτK (λ1, . . . , λK−1)

+ εn(τ1, . . . , τk, λ1, . . . , λK),(67)

where ∆n(·) :=
∑n−1

t=0 e
−it· and

sup
n

sup
τ1,...,τK∈[0,1]
λ1,...,λK∈[0,π]

|εn(τ1, . . . , τk, λ1, . . . , λK)|<∞.

Observe that

0≤∆n

(
2π

n
s

)
:=

{
n, if s ∈ nZ;

0, if s /∈ nZ.
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Hence, the functions ∆n(·) impose linear restrictions on the summation indices and we obtain

U (1)
n = n−3

n−1∑
r=1

n−1∑
s=1

I
{

0≤ 2πr

n
≤ λ}I

{
0≤ 2πs

n
≤ µ
}

×
{

(2π)3∆n (0) f
(2πr

n
,−2πr

n
,
2πs

n
; τ1, τ2, ξ1, ξ2

)
+O(1)

+
(

(2π)∆n

(2π(r+ s)

n

)
f
(2πr

n
; τ1, ξ1

)
+O(1)

)
×
(

(2π)∆n

(
− 2π(r+ s)

n

)
f
(
− 2πr

n
; τ2, ξ2

)
+O(1)

)
+
(

(2π)∆n

(2π(r− s)
n

)
f
(2πr

n
; τ1, ξ2

)
+O(1)

)
×
(

(2π)∆n

(2π(s− r)
n

)
f
(
− 2πr

n
; τ2, ξ1

)
+O(1)

)}
= n−3

n−1∑
r=1

n−1∑
s=1

I
{

0≤ 2πr

n
≤ λ}I

{
0≤ 2πs

n
≤ µ
}(

(2π)3n

× f
(2πr

n
,−2πr

n
,
2πs

n
+O(1); τ1, τ2, ξ1, ξ2

))
+ n−3

n−1∑
r=1

I
{

0≤ 2πr

n
≤ λ
}
I
{

0≤ 2π− 2πr

n
≤ µ
}

×
(

2πn f
(2πr

n
; τ1, ξ1

)
+O(1)

)(
2πn f

(
− 2πr

n
; τ2, ξ2

)
+O(1)

)
+ n−3

n−1∑
r=1

I
{

0≤ 2πr

n
≤ λ
}
I
{

0≤ 2πr

n
≤ µ
}

×
(

2πn f
(2πr

n
; τ1, ξ2

)
+O(1)

)(
2πn f

(
− 2πr

n
; τ2, ξ1

)
+O(1)

)
.

Similar arguments as in the proof of Lemma C.3 in Section C.3 below yield

U (1)
n = 2π

∫ λ

0

∫ µ

0
f
(
α,−α,β; τ1, τ2, ξ1, ξ2

)
dαdβ +O(n−1)

+ 2π

∫ 2π

0
I{0≤ α≤ λ}I{0≤ 2π− α≤ µ}f

(
α; τ1, ξ1

)
f
(
− α; τ2, ξ2

)
dα+O(n−1)

+ 2π

∫ λ∧µ

0
f
(
α; τ1, ξ2

)
f
(
− α; τ2, ξ1

)
dα+O(n−1)

and, as ∫ 2π

0
I{0≤ α≤ λ}I{0≤ 2π− α≤ µ}f

(
α; τ1, ξ1

)
f
(
− α; τ2, ξ2

)
dα= 0,

because λ,µ ∈ [0, π],

U (1)
n = 2π

∫ λ

0

∫ µ

0
f
(
α,−α,β; τ1, τ2, ξ1, ξ2

)
dαdβ
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+ 2π

∫ λ∧µ

0
f
(
α; τ1, ξ2

)
f
(
− α; τ2, ξ1

)
dα+O(n−1).(68)

As for U (2)
n , we have

U (2)
n =

2∑
j=1

Gj(µ, ξ1, ξ2)n−2
n−1∑
r=1

I
{

0≤ 2πr

n
≤ λ
}

cum
(
dτ1n,U

(2πr

n

)
dτ2n,U

(
− 2πr

n

)
, d
ξj
n,U (0)

)
,

where, in view of Theorem 2.3.2 in Brillinger (1975) and the fact that IE
[
dτ1n,U (2πr/n)

]
= 0

for r = 1, . . . , n− 1,

cum
(
dτ1n,U (2πr/n)dτ2n,U (−2πr/n) , d

ξj
n,U (0)

)
= cum

(
dτ1n,U (2πr/n) , dτ2n,U (−2πr/n) , d

ξj
n,U (0)

)
.

Hence, with similar arguments as in the derivation of (68), we obtain

U (2)
n =

2∑
j=1

Gj(µ, ξ1, ξ2)n−2
n−1∑
r=1

I
{

0≤ 2πr

n
≤ λ
}{

(2π)2∆n(0)f
(

2πr/n,−2πr/n; τ1, τ2, ξj

)
+ εn(τ1, τ2, ξj ,2πr/n,−2πr/n,0)

}
=

2∑
j=1

Gj(µ, ξ1, ξ2)2π

∫ λ

0
f
(
α,−α; τ1, τ2, ξj

)
dα+O(n−1).

Analogously,

U (3)
n =

2∑
j=1

Gj(λ; τ1, τ2)2π

∫ λ

0
f
(
α,−α; ξ1, ξ2, τj

)
dα+O(n−1)

and

U (4)
n =

2∑
j1=1

2∑
j2=1

Gj1(λ; τ1, τ2)Gj2(µ, ξ1, ξ2)2πf
(
0; τj , ξj

)
+O(n−1).

2

C.2.2. Proof of (50) – convergence of the second-order cumulants . Observe that

cum
(
Kn(λ1, τ

(1)
1 , τ

(1)
2 ), . . . ,Kn(λl, τ

(l)
1 , τ

(l)
2 )
)

= cum
(
Gn,U (λ1, τ

(1)
1 , τ

(1)
2 ) +

√
n

2∑
j=1

(τ
(1)
j − F̂n,U (τ

(1)
j ))Gj(λ1, τ

(1)
1 , τ

(1)
2 ), . . . ,

Gn,U (λl, τ
(l)
1 , τ

(l)
2 ) +

√
n

2∑
j=1

(τ
(l)
j − F̂n,U (τ

(l)
j ))Gj(λl, τ

(l)
1 , τ

(l)
2 )
)
.

Let cum
(
As,Bt;s ∈ S, t ∈ T

)
:= cum

(
As1 , . . . ,As|S| ,Bt1 , . . . ,Bt|T |

)
for some finite

sets S = {s1, . . . , S|S|},T = {t1, . . . , t|T |}. Then, by Theorem 2.3.1 (ii) and (iv) in Brillinger
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(1975), with SC := {1, . . . , l}\S , we have

cum
(
Kn(λ1, τ

(1)
1 , τ

(1)
2 ), . . . ,Kn(λl, τ

(l)
1 , τ

(l)
2 )
)

=
∑

S⊆{1,...,l}

cum
(
Gn,U (λp, τ

(p)
1 , τ

(p)
2 ),
√
n

2∑
j=1

(τ
(q)
j − F̂n,U (τ

(q)
j ))

Gj(λq, τ
(q)
1 , τ

(q)
2 );p ∈ S, q ∈ SC

)
=

∑
S⊆{1,...,l}

cum
(√

n
2π

n

n−1∑
s=1

I{0≤ 2πs/n≤ λp}
1

2πn
d
τ
(p)
1

n,U (2πs/n)d
τ
(p)
2

n,U (−2πs/n),

√
n

2∑
j=1

(τ
(q)
j − F̂n,U (τ

(q)
j ))Gj(λq, τ

(q)
1 , τ

(q)
2 );p ∈ S, q ∈ SC

)

= nl/2
∑

S⊆{1,...,l}
S:={ξ1,...,ξm}
SC :={ξm+1,...,ξl}

(−1)l−mn−2m
n−1∑

sξ1 ,...,sξm=1

(∏
p∈S

I{0≤ 2πsp/n≤ λp}
∏
q∈SC

n−(l−m)

×
2∑

jq=1

Gjq(λq, τ
(q)
1 , τ

(q)
2 )cum

(
d
τ
(p)
1

n,U (2πsp/n)d
τ
(p)
2

n,U (−2πsp/n), d
τ
(q)
jq

n,U (0);p ∈ S, q ∈ SC
)
,

where we have used the convention that
∏
p∈∅ ap := 1.

Hence, since sup
j=1,2

sup
λ∈[0,π],τ1,τ2∈[0,1]

|Gj(λ; τ1, τ2)|<∞ by Assumption (D),

∣∣∣cum
(
Kn(λ1, τ

(1)
1 , τ

(1)
2 ), . . . ,Kn(λl, τ

(l)
1 , τ

(l)
2 )
)∣∣∣≤Kn−l/2

(69)

∑
S⊆{1,...,l}
S:={ξ1,...,ξm}
SC :={ξm+1,...,ξl}

n−m
n−1∑

sξ1 ,...,sξm=1

∣∣∣cum
(
d
τ
(p)
1

n,U (2πsp/n)d
τ
(p)
2

n,U (−2πsp/n), d
τ
(q)
jq

n,U (0);p ∈ S, q ∈ SC
)∣∣∣,

for some constant K . Put

ωk,u :=


2πsu/n k = 1, u ∈ S,
−2πsu/n k = 2, u ∈ S,
0 u ∈ SC .

Then, by Theorem 2.3.2 in Brillinger (1975),

cum
(
d
τ
(p)
1

n,U (2πsp/n)d
τ
(p)
2

n,U (−2πsp/n), d
τ
(q)
jq

n,U (0);p ∈ S, q ∈ SC
)

=
∑

{ν1,...,νR}

R∏
r=1

cum
(
d
τ
(u)
k

n,U (ωk,u); (u,k) ∈ νr
)
,(70)

where the summation is over all indecomposable partitions of the table
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(ξ1,1) (ξ1,2)
...

...
(ξm,1) (ξm,2)

(ξm+1, jξm+1
)

...
(ξl, jξl)

However, all indecomposable partitions of the above table are obtained by adding in the
various possible ways the elements (ξm+1, jξm+1

), . . . , (ξl, jξl) to the indecomposable parti-
tions of the table

(ξ1,1) (ξ1,2)
...

...
(ξm,1) (ξm,2)

Therefore, and since IE[d
τ
(u)
k

n,U (ω)] = 0 for all ω 6≡ 0 mod 2π, the first-order cumulants in (70)
are zero. Furthermore, the maximum number of sets in an indecomposable decomposition of
the above table is m. Hence, neglecting, for notational convenience, the indices of f, by (67)
we obtain, with the convention

∏
i∈∅ ai := 1,

cum
(
d
τ
(p)
1

n,U (2πsp/n)d
τ
(p)
2

n,U (−2πsp/n), d
τ
(q)
jq

n,U (0);p ∈ S, q ∈ SC
)

=
∑

{ν1,...,νR}
|νr|≥2;r=1,...,R

R∏
r=1

cum
(
d
τ
(u)
k

n,U (ωk,u); (u,k) ∈ νr
)

=
∑

{ν1,...,νR}
|νr|≥2;r=1,...,R

R∏
r=1

[
(2π)|νr|−1∆n

( ∑
(u,k)∈νr

ωk,u

)
f
(
ωk,u; (u,k) ∈ νr

)
+O(1)

]

=
∑

{ν1,...,νR}
|νr|≥2;r=1,...,R

∑
I⊆{1,...,R}

∏
j∈I

∆n

( ∑
(u,k)∈νj

ωk,u

)
f
(
ωk,u; (u,k) ∈ νj

)
O(1)(71)

where

∆n

( ∑
(u,k)∈νj

ωk,u

)
= ∆n

(2π

n

∑
(u,k)∈νj

u∈{ξ1,...,ξm}

(−1)k+1su

)
=


0,

∑
(u,k)∈νj

u∈{ξ1,...,ξm}

(−1)k+1su 6∈ nZ

n,
∑

(u,k)∈νj
u∈{ξ1,...,ξm}

(−1)k+1su ∈ nZ.

That is, after substituting (71) into (69), the functions ∆n(·) impose linear restrictions on
the summation indices, whence

n−1∑
sξ1 ,...,sξm=1

∑
{ν1,...,νR}

|νr|≥2;r=1,...,R

∑
I⊆{1,...,R}

∏
j∈I

∆n

(2π

n

∑
(u,k)∈νj

u∈{ξ1,...,ξm}

(−1)k+1su

)
O(1)

=
∑

ν:={ν1,...,νR}
|νr|≥2;r=1,...,R

∑
I⊆{1,...,R}

∑
sξ1 ,...,sξm∈R(ν,I)

n|I|O(1)
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with

R(ν, I) :=
{

(sξ1 , . . . , sξm) ∈ {1, . . . , n− 1}m
∣∣∣ ∑

(u,k)∈νj
u∈{ξ1,...,ξm}

(−1)k+1su ∈ nZ,∀νj ∈ ν, j ∈ I
}
.

Note that there are |I| linear constraints on sξ1 , . . . , sξm if |I|<R and |I| − 1 linear con-
straints if |I| = R, i.e. there are |I| − b|I|/Rc linear constraints. This follows similarly as
in the proof of Lemma A.2 in Kley et al. (2016a). More precisely, if we define for ev-
ery νj ∈ {ν1, . . . , νR} a vector w(j) = (w

(j)
1 , . . . ,w

(j)
m ) with

w(j)
v := I{(v,1) ∈ νj} − I{(v,2) ∈ νj} ∈ {−1,0,1}m,

we can rewrite the condition
∑

(u,k)∈νj
u∈{ξ1,...,ξm}

(−1)k+1su ∈ nZ as (sξ1 , . . . , sξm)w(j) ∈ nZ. Note

that two at most of the vectors w(1), . . . ,w(R) have non-zero entries being one −1 and
the other 1 at each position v = 1, . . . ,m. Hence, the linear restrictions corresponding
to νj1 , . . . , νjk are linearly dependent if and only if

∑k
a=1w

(ja) = 0. However, in the case
of indecomposable partitions,

∑k
a=1w

(ja) = 0 if and only if {j1, . . . , jk}= {1, . . . ,R}.
Therefore,

∑
{ν1,...,νR}

|νr|≥2;r=1,...,R

∑
I⊆{1,...,R}

∑
sξ1 ,...,sξm∈R(ν,I) n

|I| is of order

max
|I|≤R≤m

nm−(|I|−b|I|/Rcn|I| = max
|I|≤R≤m

nm+b|I|/Rc = nm+1.

Thus, in (69), we obtain that, for some constant K ′,∣∣∣cum
(
Kn(λ1, τ

(1)
1 , τ

(1)
2 ), . . . ,Kn(λl, τ

(l)
1 , τ

(l)
2 )
)∣∣∣≤K ′n−l/2 max

m=1,...,l
n−mnm+1

=O(n−l/2+1). 2

C.3. Auxiliary results.

LEMMA C.1. Under the assumptions of Theorem 3.1,

F̂n,R(λ; τ1, τ2) = F̂n,U (λ, τ̂1, τ̂2) + oP(n−1/2).

PROOF. Let τ̂1 = F̂−1
n,U (τ1) and τ̂2 = F̂−1

n,U (τ2), where

F̂−1
n,U (τ) := inf{q ∈R : τ ≤ F̂n,U (q)}

is the generalized inverse of the empirical distribution function F̂n,U . Then, from (38), we
have

Fn,U (λ, τ̂1, τ̂2) =
1

2π

∑
|k|≤n−1

wn,λ(k)
n− |k|
n

γ̂Uk (τ̂1, τ̂2).

By the representation (37) of F̂n,R(λ; τ1, τ2), we obtain
√
n
(
F̂n,R(λ; τ1, τ2)− F̂n,U (λ, τ̂1, τ̂2)

)
=
√
n

1

2π

∑
|k|≤n−1

wn,λ(k)
n− |k|
n

(
γ̂Rk (τ1, τ2)− γ̂Uk (τ̂1, τ̂2)

)
,



THE INTEGRATED COPULA SPECTRUM 53

where∣∣γ̂Rk (τ1, τ2)− γ̂Uk (τ̂1, τ̂2)
∣∣

≤ 1

n− |k|
∑
t∈Tk

∣∣I{F̂n,U (Ut+k)≤ τ1}I{F̂n,U (Ut)≤ τ2}

− I{Ut+k ≤ F̂−1
n,U (τ1)}I{Ut ≤ F̂−1

n,U (τ2)}
∣∣

=
1

n− |k|
∑
t∈Tk

∣∣I{F̂n,U (Ut+k)≤ τ1}
(
I{F̂n,U (Ut)≤ τ2} − I{Ut ≤ F̂−1

n,U (τ2)}
)

+
(
I{F̂n,U (Ut+k)≤ τ1} − I{Ut+k ≤ F̂−1

n,U (τ1)}
)
I{Ut ≤ F̂−1

n,U (τ2)}
∣∣

≤ 1

n− |k|
∑
t∈Tk

[∣∣I{F̂n,U (Ut)≤ τ2} − I{Ut ≤ F̂−1
n,U (τ2)}

∣∣
+
∣∣I{F̂n,U (Ut+k)≤ τ1} − I{Ut+k ≤ F̂−1

n,U (τ1)}
∣∣].

Observing that

I{F̂n,U (Ut)< τ2}= I{Ut < F̂−1
n,U (τ2)}

since x < F−1(u) if and only if F (x)< u for any distribution function F and that, similarly,

I{F̂n,U (Ut+k)≤ τ1}= I{Ut+k ≤ F̂−1
n,U (τ1)},

we have∣∣I{F̂n,U (Ut)≤ τ2} − I{Ut ≤ F̂−1
n,U (τ2)}

∣∣= ∣∣I{Ut = F̂−1
n,U (τ2)} − I{F̂n,U (Ut) = τ2}

∣∣
and∣∣I{F̂n,U (Ut+k)≤ τ1} − I{Ut+k ≤ F̂−1

n,U (τ1)}
∣∣= ∣∣I{Ut+k = F̂−1

n,U (τ1)}

− I{F̂n,U (Ut+k) = τ1}
∣∣.

Furthermore,

Ut = F̂−1
n,U (τ2) if I{F̂n,U (Ut) = τ2}= 1

Ut+k = F̂−1
n,U (τ1) if I{F̂n,U (Ut+k) = τ1}= 1.

Hence, the second indicator is never greater than the first one, whence, for any l ∈N,

n− |k|
n

∣∣γ̂Rk (τ1, τ2)− γ̂Uk (τ̂1, τ̂2)
∣∣≤ 1

n

∑
t∈Tk

[
I{Ut = F̂−1

n,U (τ2)}+ I{Ut+k = F̂−1
n,U (τ1)}

]

≤ 1

n

n−1∑
t=0

[
I{Ut = F̂−1

n,U (τ2)}+ I{Ut+k = F̂−1
n,U (τ1)}

]
≤ 2 sup

τ∈[0,1]

∣∣F̂n,U (τ)− F̂n,U (τ−)
∣∣

=OP(n−1+1/(2l))

where F̂n,U (τ−) := limξ↓0 F̂n,U (τ − ξ) and the above OP-bound is a consequence of
Lemma 8.6 of Kley et al. (2016b).
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Moreover, by (79), ∑
|k|≤n−1

|wn,λ(k)|=O(log(n))

and thus, altogether, for any l ∈N,
√
n
(
F̂n,R(λ; τ1, τ2)− F̂n,U (λ; τ1, τ2)

)
=OP(n−1/2+1/(2l) log(n)).

This concludes the proof.

LEMMA C.2. Under the assumptions of Theorem 3.1,

Gn,R(λ; τ1, τ2) =
√
n
(
Gn,R(λ; τ1, τ2)−G(λ; τ1, τ2)

)
+ oP(1)(72)

Gn,U (λ; τ1, τ2) =
√
n
(
Gn,U (λ; τ1, τ2)−G(λ; τ1, τ2)

)
+ oP(1).(73)

PROOF. The result follows if we show that

1

2π

2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
γ̂R0 (τ1, τ2) =

λ

2π
(τ1 ∧ τ2 − τ1τ2) + oP(n−1/2).

As the indicator is of bounded variation, we have

1

2π

2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}

=
λ

2π
+O(n−1).

Furthermore, since F is assumed to be continuous, the ranks of X0, . . . ,Xn−1 are almost
surely the same as the ranks of F (X0), . . . , F (Xn−1), i.e. we can, without loss of generality,
assume the marginals to be uniformly distributed and, letting a := τ1, b := τ2 in (36), write

γ̂R0 (τ1, τ2) = n−1
n−1∑
t=0

(
I{F̂n(Xt)≤ τ1} − τ1

)(
I{F̂n(Xt)≤ τ2} − τ2

)
= n−1

n−1∑
t=0

(
I{F̂n,U (Ut)≤ τ1} − τ1

)(
I{F̂n,U (Ut)≤ τ2} − τ2

)
a.s.

= n−1
n−1∑
t=0

I{F̂n,U (Ut)≤ τ1 ∧ τ2} − n−1τ1

n−1∑
t=0

I{F̂n,U (Ut)≤ τ2}

− n−1τ2

n−1∑
t=0

I{F̂n,U (Ut)≤ τ1}+ τ1τ2.

Next, as in equation (A.4) in Kley et al. (2016a), for any l ∈N,

sup
τ∈[0,1]

∣∣n−1
n−1∑
t=0

I{F̂n,U (Ut)≤ τ} − n−1
n−1∑
t=0

I{Ut ≤ F̂−1
n,U (τ)}

∣∣
≤ sup

τ∈[0,1]

∣∣F̂n,U (τ)− F̂n,U (τ−)
∣∣=OP(n−1+1/(2l))(74)

where F̂n,U (τ−) := limξ↓0 F̂n,U (τ − ξ) and

∣∣n−1
n−1∑
t=0

I{Ut ≤ F̂−1
n,U (τ)} − τ

∣∣≤ ∣∣∣dnτe
n
− τ
∣∣∣∣≤ n−1.(75)
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The result now follows by applying properties (74) and (75) in

sup
τ1,τ2∈[0,1]

∣∣γ̂R0 (τ1, τ2)− (τ1 ∧ τ2 − τ1τ2)
∣∣

≤ sup
τ1,τ2∈[0,1]

{∣∣n−1
n−1∑
t=0

I{F̂n(Ut)≤ τ1 ∧ τ2} − n−1τ1

n−1∑
t=0

I{F̂n(Ut)≤ τ2}

− n−1τ2

n−1∑
t=0

I{F̂n(Ut)≤ τ1} −
[
n−1

n−1∑
t=0

I{Ut ≤ F̂−1
n,U (τ1 ∧ τ2)}

− n−1τ1

n−1∑
t=0

I{Ut ≤ F̂−1
n,U (τ2)} − n−1τ2

n−1∑
t=0

I{Ut ≤ F̂−1
n,U (τ1)}

]∣∣
+
∣∣n−1

n−1∑
t=0

I{Ut ≤ F̂−1
n,U (τ1 ∧ τ2)} − n−1τ1

n−1∑
t=0

I{Ut ≤ F̂−1
n,U (τ2)}+ τ1τ2

− n−1τ2

n−1∑
t=0

I{Ut ≤ F̂−1
n (τ1)} − (τ1 ∧ τ2 + τ1τ2 − τ1τ2 − τ1τ2)

∣∣},
whence, for any l ∈N,

1

2π

2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
γ̂R0 (τ1, τ2) =

λ

2π
(τ1 ∧ τ2 − τ1τ2) +OP(n−1+1/(lk)).

This concludes the proof of (72). Assertion (73) follows with similar arguments since

∣∣n−1
n−1∑
t=0

I{Ut ≤ τ} − τ
∣∣≤ ∣∣∣dnτe

n
− τ
∣∣∣∣≤ n−1

and hence

sup
τ1,τ2∈[0,1]

∣∣γ̂U0 (τ1, τ2)− (τ1 ∧ τ2 − τ1τ2)
∣∣=OP(n−1).

LEMMA C.3. Under Assumption (CS) with p= 2 and l≥ 1,

sup
τ1,τ2∈[0,1]
λ∈[0,π]

|IE[F̂n,U (λ; τ1, τ2)]−F(λ; τ1, τ2)|=O(n−1).

PROOF. First, for ωjn = 2πj
n , j ∈ Z,

|IE[F̂n,U (λ; τ1, τ2)]−F(λ; τ1, τ2)|

= |2π
n

n−1∑
j=1

I{0≤ ωjn ≤ λ}IE[Iτ1,τ2n,U (ωjn)]−F(λ; τ1, τ2)|.

By Lemma 1.4 (or the remark thereafter) in the online appendix of Kley et al. (2016a), we
have, for j 6= 0 mod n,

IE[Iτ1,τ2n,U (ωjn)] = f(ωjn; τ1, τ2) + ετ1,τ2n (ωjn)
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with supτ1,τ2∈[0,1],ω∈R |ε
τ1,τ2
n (ω)|=O(n−1). Therefore,

∣∣IE[F̂n,U (λ; τ1, τ2)]−F(λ; τ1, τ2)
∣∣= ∣∣∣2π

n

n−1∑
j=1

I{0≤ ωjn ≤ λ}f(ωjn; τ1, τ2)−F(λ; τ1, τ2)

+
2π

n

n−1∑
j=1

I{0≤ ωjn ≤ λ}ετ1,τ2n (ωjn)
∣∣∣.

Assumption (CS) implies that ω 7→ f(ω; τ1, τ2) has bounded and uniformly continuous
derivatives of order ≤ l, that is ω 7→ f(ω; τ1, τ2) is of finite total variation on the inter-
val [0,2π]. Moreover, the indicator function ω 7→ I{0≤ ω ≤ λ} is also of finite total varia-
tion. Then, their product ω 7→ I{0≤ ω ≤ λ}f(ω; τ1, τ2) is of finite total variation V , and we
obtain ∣∣∣ ∫ 2π

0
I{0≤ ω ≤ λ}f(ω; τ1, τ2)dω− 2π

n

n−1∑
j=1

I{0≤ ωjn ≤ λ}f(ωjn; τ1, τ2)

∣∣∣∣
≤
∫ 2π

n

0

n−1∑
j=1

∣∣∣I{0≤ ω+
2π(j − 1)

n
≤ λ
}
f

(
ω+

2π(j − 1)

n
; τ1, τ2

)

− I
{

0≤ 2πj

n
≤ λ
}
f

(
2πj

n
; τ1, τ2

)∣∣∣∣dω ≤ ∫ 2π

n

0
V dω =

2π

n
V.

Hence,

sup
τ1,τ2∈[0,1]
λ∈[0,π]

|IE[F̂n,U (λ; τ1, τ2)]−F(λ; τ1, τ2)| ≤ 2π

n
V +

2π(n− 1)

n
sup

τ1,τ2∈[0,1],ω∈R
|ετ1,τ2n (ω)|

=O(n−1),

which concludes the proof.

LEMMA C.4. Let X0, . . . ,Xn−1 be the finite realization of a strictly stationary process
with X0 ∼ U [0,1], and for x= (x1, x2) and y = (y1, y2) let

HU
n (x, y;β) :=

{
CβH

U
n (x, y;β), if β ∈ (0, π],

0, if β = 0,

where

HU
n (x, y;β) :=

√
nbβ(H̃U

n (x, y;β)− IE[H̃U
n (x, y;β)]),

with

H̃U
n (x, y;β) =

2π

n

n−1∑
s=1

Wn,β(aβ − 2πs/n)
{
Ix1,x2

n,U (2πs/n)−Iy1,y2n,U (2πs/n)

}
,

Wn,β(u) =

∞∑
j=−∞

b−1
β W (b−1

β (u+ 2πj)),

and the weight function W (·) bounded, real-valued and even, with support [−π,π].



THE INTEGRATED COPULA SPECTRUM 57

For any Borel set A, define

dAn (ω) :=

n−1∑
t=0

I{Xt ∈A}e−itω.

Assume that, for p = 1, . . . , P , there exist a constant C and a function g : R+→ R+, both
independent of ω1, . . . , ωp ∈R, n and A1, . . . ,Ap, such that

∣∣cum
(
dA1
n (ω1), . . . , dApn (ωp)

)∣∣≤C(∣∣∣∆n

( p∑
i=1

ωi

)∣∣∣∣+ 1
)
g(ε)

for any Borel sets A1, . . . ,Ap with minj P(X0 ∈Aj)≤ ε. Then, for β ∈ (0, π], there exists a
constant K (depending on C , L, and g only) such that

IE
∣∣HU

n (x, y;β)
∣∣2L ≤K1‖W‖2L∞C2L

β

L−1∑
l=0

gL−l(‖x− y‖1)

(nbβ)l

for all x, y with g(‖x− y‖1)< 1.

PROOF. First note that, for β 6= 0,

IE
∣∣HU

n (x, y;β)
∣∣2L =C2L

β IE
∣∣HU

n (x, y;β)
∣∣2L.

Repeating the arguments of the proof of Lemma A.2 in Kley et al. (2016a) yields the repre-
sentation

(76) IE
∣∣HU

n (x, y;β)
∣∣2L =

∑
{ν1,...,νR}

|νj |≥2,j=1,...,R

R∏
r=1

Dx,y(νr),

where the summation runs over all partitions {ν1, . . . , νR} of {1, . . . ,2L} such that each
set νj contains at least two elements, and

Dx,y(ξ) :=
∑

`ξ1 ,...,`ξq∈{1,2}

n−3q/2b
q/2
β

( ∏
m∈ξ

σ`m

)

×
n−1∑

sξ1 ,...,sξq=1

( ∏
m∈ξ

Wn,β(aβ − 2πsm/n)
)

cum(D`m,(−1)m−1sm :m ∈ ξ),

for any set ξ := {ξ1, . . . , ξq} ⊂ {1, . . . ,2L}, where q := |ξ| and

D`,s := dM1(`)
n (2πs/n)dM2(`)

n (−2πs/n), `= 1,2, s= 1, . . . , n− 1,

with the sets M1(1), M2(2), M2(1), M1(2) and the signs σ` ∈ {−1,1} defined by

σ1 := 2I{x1 > y1} − 1, σ2 := 2I{x2 > y2} − 1,

M1(1) := (x1 ∧ y1, x1 ∨ y1], M2(2) := (x2 ∧ y2, x2 ∨ y2],

M2(1) :=

{
[0, x2], y2 ≥ x2,

[0, y2], x2 > y2,
M1(2) :=

{
[0, y1], y2 ≥ x2,

[0, x1], x2 > y2.
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Then, we obtain, similarly as in the proof of Lemma A.2 in Kley (2014),∣∣Da,b(ξ)∣∣≤Kq,g,Cn
−3q/2b

q/2
β 2qg(ε)

∑
{µ1,...,µN}

∑
I⊂{1,...,N}

∑
(sξ1 ,...,sξq )∈Sn(µ,I)( ∏

m∈ξ

∣∣Wn,β(aβ − 2πsm/n)
∣∣)n|I|

≤Kq,g,Cn
−3q/2b

q/2
β 2qg(ε)Cq max

N≤q
max
|I|≤N

(
sup
u∈R
|Wn,β(u)|

)|I|−b|I|/Nc
n|I|

×
(n−1∑
s=1

∣∣Wn,β(aβ − 2πs/n)
∣∣)q−(|I|−b|I|/Nc)

,

where summation runs over all indecomposable partitions {µ1, . . . , µN} of the scheme

(ξ1,1) (ξ1,2)
...

...
(ξq,1) (ξq,2)

and

Sn(µ, I) :=
{

(sξ1 , . . . , sξq) ∈ {1, . . . , n− 1}q
∣∣∣ ∑

(m,k)∈µj

(−1)k+msm ∈ nZ,∀µj ∈ µ, j ∈ I
}
.

Furthermore, by assumption, the function W (·) has support [−π,π] and hence, there is at
most one j ∈ Z such that W

(
b−1
β (α+ 2πj)

)
6= 0. Denote this integer by jα,bβ . Therefore,

|Wn,β(α)|=
∣∣∣ ∞∑
j=−∞

b−1
β W

(
b−1
β (α+ 2πj)

)∣∣∣∣= b−1
β |W

(
b−1
β (α+ 2πjα,bβ)

)
| ≤ b−1

β ‖W‖∞

and, with similar arguments,

n−1∑
s=1

∣∣Wn,β(aβ − 2πs/n)
∣∣= n−1∑

s=1

∣∣∣ ∞∑
j=−∞

b−1
β W

(
b−1
β (aβ − 2πs/n+ 2πj)

)∣∣∣∣
= b−1

β

n−1∑
s=1

|W
(
b−1
β (αβ − 2πs/n+ 2πjα,bβ)

)
|

≤Cn‖W‖∞,

where we have used the fact that
n−1∑
s=1

|W
(
b−1
β (αβ − 2πs/n+ 2πjα,bβ)

)
|

≤ ‖W‖∞
n−1∑
s=1

I{−π ≤ b−1
β (αβ − 2πs/n+ 2πjα,bβ)≤ π}

and the fact that the number of summands that are equal to one is less than nbβ since

b−1
β (αβ − 2πs/n+ 2πjα,bβ)
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lies in the support of W for at most nbβ values of s ∈ {1, . . . , n− 1}.

Therefore,∣∣Dx,y(ξ)∣∣≤ K̃q,g,C‖W‖q∞n−3q/2b
q/2
β g(ε) max

N≤q
max
|I|≤N

nq+b|I|/Nc(b−1
β )|I|−b|I|/Ncn|I|

≤ K̃q,g,C‖W‖q∞(nbβ)1−q/2g(ε),

and hence ∣∣ R∏
r=1

Dx,y(νr)
∣∣≤ K̃L,g,C‖W‖2L∞ (nbβ)R−LgR(ε)(77)

as
∑R

r=1 |νr|= 2L. The proof is complete by combining the estimates (77) and (76).

LEMMA C.5. Under the assumptions of Theorem 8, let δn be a sequence of non-negative
real numbers. Assume that there exists γ ∈ (0,1) such that δn =O(n−1/γ). Then, as n→∞,

sup
(λ;τ1,τ2),(λ′,τ ′1,τ

′
2)∈[0,π]×[0,1]2

‖(λ;τ1,τ2)−(λ′,τ ′1,τ
′
2)‖1≤δn

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)|= oP(1).

PROOF. Note that

sup
(λ;τ1,τ2),(λ′,τ ′1,τ

′
2)∈[0,π]×[0,1]2

‖(λ;τ1,τ2)−(λ′,τ ′1,τ
′
2)‖1≤δn

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ ′1, τ
′
2)| ≤ S(1)

n + S(2)
n ,

where

S(1)
n = sup

λ,λ′∈[0,π]
|λ−λ′|≤δn

sup
τ1,τ2∈[0,1]2

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ1, τ2)| and

S(2)
n = sup

λ∈[0,π]
sup

(τ1,τ2),(τ ′1,τ
′
2)∈[0,1]2

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤δn

|Gn,U (λ; τ1, τ2)−Gn,U (λ, τ ′1, τ
′
2)|.

To bound S(1)
n , use (65) to obtain

Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ1, τ2)

=
√
n
(2π

n

n−1∑
s=1

(
I{0≤ 2πs/n≤ λ} − I{0≤ 2πs/n≤ λ′}

)(
Iτ1,τ2n,U (2πs/n)

− IE[Iτ1,τ2n,U (2πs/n)]
))

= n−3/2
n−1∑
s=1

sign(λ− λ′)I{λ∧ λ′ < 2πs/n≤ λ∨ λ′}
(
dτ1n,U (2πs/n)dτ2n,U (−2πs/n)

− IE[dτ1n,U (2πs/n)dτ2n,U (−2πs/n)]
))
.

From Lemmas A.6 and A.4 in Kley et al. (2016a), we know that, for any k ∈N,

sup
y∈[0,1]

sup
ω∈R
|dyn,U (ω)|=OP(n1/2+1/k)
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and that, for ε := min{τ1, τ2} and some constants C and d that do not depend on s, τ1, τ2,

|IE[dτ1n,U (2πs/n)dτ2n,U (−2πs/n)]|= |cum(dτ1n,U (2πs/n), dτ2n,U (−2πs/n))|

≤C
(∣∣∆n(0)

∣∣+ 1
)
ε(| log ε|+ 1)d

=C(n+ 1)ε(| log ε|+ 1)d

for s= 1, . . . , n− 1, i.e.

sup
τ1,τ2∈[0,1]2

sup
s=1,...,n−1

|IE[dτ1n,U (2πs/n)dτ2n,U (−2πs/n)]|=O(n).

Observing that the sum
n−1∑
s=1

I{λ∧ λ′ < 2πs/n≤ λ∨ λ′}

contains at most d|λ− λ′|n/(2π)e non-zero summands, we have, for any k ∈N,

sup
0<λ,λ′∈[0,π]
|λ−λ′|≤δn

sup
τ1,τ2∈[0,1]2

∣∣∣n−3/2
n−1∑
s=1

sign(λ− λ′)I{λ∧ λ′ < 2πs/n≤ λ∨ λ′}

× dτ1n,U (2πs/n)dτ2n,U (−2πs/n)
∣∣∣=OP(δnn

1/2+2/k)

and

sup
0<λ,λ′∈[0,π]
|λ−λ′|≤δn

sup
τ1,τ2∈[0,1]2

∣∣∣n−3/2
n−1∑
s=1

sign(λ− λ′)I{λ∧ λ′ < 2πs/n≤ λ∨ λ′}

IE
[
dτ1n,U (2πs/n)dτ2n,U (−2πs/n)

]∣∣∣=O(δnn
1/2).

Hence,

sup
λ,λ′∈[0,π]
|λ−λ′|≤δn

sup
τ1,τ2∈[0,1]2

|Gn,U (λ; τ1, τ2)−Gn,U (λ′, τ1, τ2)|=OP(δnn
1/2+2/k) = oP(1)(78)

for k sufficiently large.

Turning to S(2)
n , observe that for λ ∈ [0, π], we have

F̂n,U (λ; τ1, τ2) =
2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
Iτ1,τ2n,U

(2πs

n

)
=

2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
} 1

2πn
dτ1n,U

(2πs

n

)
dτ2n,U

(
− 2πs

n

)
=

1

n2

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
} n−1∑
t1=0

I{Ut1 ≤ τ1}e−it1
2πs

n

n−1∑
t2=0

I{Ut2 ≤ τ2}eit2
2πs

n

=
1

2π

∑
|k|≤n−1

2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}
e−ik

2πs

n
1

n

∑
t∈Tk

I{Ut+k ≤ τ1}I{Ut ≤ τ2}

=:
1

2π

∑
|k|≤n−1

wn,k(λ)
n− |k|
n

Cn,k(τ1, τ2),
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where Tk := {t ∈ {0, . . . , n − 1}|t, t + k ∈ {0, . . . , n − 1}}, k ∈ {−(n − 1), . . . , n − 1},
wn,λ(k) as defined in (35), and

Cn,k(τ1, τ2) :=
1

n− |k|
∑
t∈Tk

I{Ut+k ≤ τ1}I{Ut ≤ τ2}.

Note that Cn,k is equivalent to γUk defined in (36) with a, b := 0.
Furthermore,

wn,λ(0) =
2π

n

n−1∑
s=1

I
{

0≤ 2πs

n
≤ λ
}

=
2πM

n
≤ λ≤ π,

where M ∈ {1, . . . , bn2 c} is the integer such that 2πM
n ≤ λ < 2π(M+1)

n . With this notation, for
|k|= 1, . . . , n− 1,

wn,λ(k) =
2π

n

M∑
s=1

e−ik
2πs

n =
2π

n
e−i

π(M+1)k

n

sin
(
πkM
n

)
sin
(
πk
n

) .
Hence, for |k|= 1, . . . , bn2 c,

|wn,λ(k)|= 2π

n

∣∣ sin (πkMn ) ∣∣∣∣ sin (πkn ) ∣∣ =
2π

n

∣∣ sin (πkMn ) ∣∣
sin
(
π|k|
n

) ≤ 2π

n

∣∣ sin (πkMn ) ∣∣
|k|
n

≤ 2π

|k|

where we have used the fact that sup
ω∈R
| sin(ω)| ≤ 1 and sin(πx)≥ x for x ∈ [0,1/2]. Similarly,

for |k|= bn2 c+ 1, . . . , n− 1,

|wn,λ(k)| ≤ 2π

n

∣∣ sin (πkMn ) ∣∣
1− |k|n

≤ 2π

n− |k|

as supω∈R | sin(ω)| ≤ 1 and sin(πx)≥ 1− x for x ∈ [1/2,1].

Summing up,

|wn,λ(k)| ≤


π, if k = 0,
2π
|k| , if 0< |k| ≤ bn2 c,

2π
n−|k| , if bn2 c< |k| ≤ n− 1.

(79)

Next, note that, letting Ck := IE[I{Ut+k ≤ τ1,Ut ≤ τ2}], we have

sup
λ∈[0,π]

sup
(τ1,τ2),(τ ′1,τ

′
2)∈[0,1]2

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤δn

|Gn,U (λ; τ1, τ2)−Gn,U (λ, τ ′1, τ
′
2)|

=
√
n sup
λ∈[0,π]

sup
(τ1,τ2),(τ ′1,τ

′
2)∈[0,1]2

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤δn

∣∣F̂n,U (λ; τ1, τ2)− F̂n,U (λ, τ ′1, τ
′
2)

− (IE[F̂n,U (λ; τ1, τ2)]− IE[F̂n,U (λ, τ ′1, τ
′
2)])
∣∣

≤ n−1/2 1

2π

∑
|k|≤n−1

sup
λ∈[0,π]

|wn,λ(k)|(n− |k|) sup
(τ1,τ2),(τ ′1,τ

′
2)∈[0,1]2

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤δn

∣∣∣Cn,k(τ1, τ2)−Cn,k(τ ′1, τ ′2)

−
(
Ck(τ1, τ2)−Ck(τ ′1, τ ′2)

)∣∣∣.(80)
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In a first step, let us show that, for any L ∈N, there exists a constant dL such that

(n− |k|) sup
(τ1,τ2),(τ ′1,τ

′
2)∈[0,1]2

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤δn

∣∣∣Cn,k(τ1, τ2)−Cn,k(τ ′1, τ ′2)−
(
Ck(τ1, τ2)−Ck(τ ′1, τ ′2)

)∣∣∣

=OP
(
n2/L(log(n))dL/2

)
.

(81)

For this, for τ := (τ1, τ2), τ ′ := (τ ′1, τ
′
2) ∈ [0,1]2 and fixed k ∈ {−(n− 1), . . . , n− 1}, let

|Cn,k(τ1, τ2)−Cn,k(τ ′1, τ ′2)−
(
Ck(τ1, τ2)−Ck(τ ′1, τ ′2)

)
| ≤ T (1)

n + T (2)
n + T (3)

n ,

where

T (1)
n =

∣∣∣Cn,k(τ1, τ2)−Cn,k
(b(n− |k|)τ1c

n− |k|
,
b(n− |k|)τ2c
n− |k|

)
−
(
Ck(τ1, τ2)−Ck

(b(n− |k|)τ1c
n− |k|

,
b(n− |k|)τ2c
n− |k|

))∣∣∣
T (2)
n =

∣∣∣Cn,k(τ ′1, τ ′2)−Cn,k
(b(n− |k|)τ ′1c

n− |k|
,
b(n− |k|)τ ′2c
n− |k|

)
− (Ck(τ

′
1, τ
′
2)−Ck

(b(n− |k|)τ ′1c
n− |k|

,
b(n− |k|)τ ′2c
n− |k|

))∣∣∣
T (3)
n =

∣∣∣Cn,k(b(n− |k|)τ1c
n− |k|

,
b(n− |k|)τ2c
n− |k|

)
−Cn,k

(b(n− |k|)τ ′1c
n− |k|

,
b(n− |k|)τ ′2c
n− |k|

)
−
(
Ck

(b(n− |k|)τ1c
n− |k|

,
b(n− |k|)τ2c
n− |k|

)
−Ck

(b(n− |k|)τ ′1c
n− |k|

,
b(n− |k|)τ ′2c
n− |k|

))∣∣∣.
By Theorem 2.2.4 in Nelsen (2006) and since

∣∣∣τi − b(n−|k|)τicn−|k|

∣∣∣≤ 1
n−|k| ; i= 1,2, we have

T (1)
n ≤

∣∣∣Cn,k(τ1, τ2)−Cn,k
(b(n− |k|)τ1c

n− |k|
,
b(n− |k|)τ2c
n− |k|

)∣∣∣
+
∣∣∣τ1 −

b(n− |k|)τ1c
n− |k|

∣∣∣+ ∣∣∣τ2 −
b(n− |k|)τ2c
n− |k|

∣∣∣
≤
∣∣∣Cn,k(τ1, τ2)−Cn,k

(b(n− |k|)τ1c
n− |k|

,
b(n− |k|)τ2c
n− |k|

)∣∣∣+ 2

n− |k|
.

As, for a1 ≥ a2 and b1 ≥ b2,

Cn,k(a1, b1)−Cn,k(a2, b2) =
1

n− |k|
∑
t∈Tk

(I{Ut+k ∈ (a2, a1],Ut ∈ [0, b1]}

+ I{Ut+k ∈ [0, a2],Ut ∈ (b2, b1]})≥ 0,

we have, since b(n−|k|)τcn−|k| ≤ τ ≤
b(n−|k|)τc+1

n−|k ,

T (1)
n ≤

∣∣∣Cn,k(1 + b(n− |k|)τ1c
n− |k|

,
1 + b(n− |k|)τ2c

n− |k|

)
−Cn,k

(b(n− |k|)τ1c
n− |k|

,
b(n− |k|)τ2c
n− |k|

)∣∣∣
+

2

n− |k|
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≤
∣∣∣Cn,k(1 + b(n− |k|)τ1c

n− |k|
,
1 + b(n− |k|)τ2c

n− |k|

)
−Cn,k

(b(n− |k|)τ1c
n− |k|

,
b(n− |k|)τ2c
n− |k|

)
−
(
Ck

(1 + b(n− |k|)τ1c
n− |k|

,
1 + b(n− |k|)τ2c

n− |k|

)
−Ck

(b(n− |k|)τ1c
n− |k|

,
b(n− |k|)τ2c
n− |k|

))∣∣∣
+

4

n− |k|
.

Analogously,

T (2)
n ≤

∣∣∣Cn,k(1 + b(n− |k|)τ ′1c
n− |k|

,
1 + b(n− |k|)τ ′2c

n− |k|

)
−Cn,k

(b(n− |k|)τ ′1c
n− |k|

,
b(n− |k|)τ ′2c
n− |k|

)
−
(
Ck

(1 + b(n− |k|)τ ′1c
n− |k|

,
1 + b(n− |k|)τ ′2c

n− |k|

)
−Ck

(b(n− |k|)τ ′1c
n− |k|

,
b(n− |k|)τ ′2c
n− |k|

))∣∣∣
+

4

n− |k|
.

By bounding T (1)
n and T (2)

n , we have bounded the error made by evaluating the copulas on
the points of the grid

Mn,k :=
{( i

n− |k|
,

j

n− |k|

)
: i, j = 0, . . . , n− |k|

}
,

whereas the copulas in T (3)
n are already evaluated on the grid Mn,k and, thus, do not have to

be treated separately.

The cardinality of the set

Mn,k := {(τ1, τ2), (τ ′1, τ
′
2) ∈Mn,k : ‖(τ1, τ2)− (τ ′1, τ

′
2)‖1 ≤ δn +

4

n− |k|
}

is of the order O
(
(n−|k|)4(δn+ (n−|k|)−1)

)
. Hence, by Lemma 2.2.2 in van der Vaart and

Wellner (1996) using Ψ(x) = x2L and the upper bounds on T (1)
n and T (2)

n ,

IE
[
(n− |k|) sup

(τ1,τ2),(τ ′1,τ
′
2)∈[0,1]2

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤δn

∣∣Cn,k(τ1, τ2)−Cn,k(τ ′1, τ ′2)−
(
Ck(τ1, τ2)−Ck(τ ′1, τ ′2)

)∣∣]

≤ 3IE
[
(n− |k|)1/2 max

(τ1,τ2),(τ ′1,τ
′
2)∈Mn,k

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤ 4

n−|k|+δn

√
(n− |k|)

∣∣Cn,k(τ1, τ2)−Cn,k(τ ′1, τ ′2)

−
(
Ck(τ1, τ2)−Ck(τ ′1, τ ′2)

)∣∣]+ 8

≤ Λ(n− |k|)1/2
{

(n− |k|)4(δn + (n− |k|)−1)
}1/(2L)

max
(τ1,τ2),(τ ′1,τ

′
2)∈Mn,k

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤ 4

n−|k|+δn(
IE
[√

n− |k|
∣∣Cn,k(τ1, τ2)−Cn,k(τ ′1, τ ′2)−

(
Ck(τ1, τ2)−Ck(τ ′1, τ ′2)

)∣∣2L]) 1

2L

+ 8

where Λ<∞ is some adequate constant.
Then, from Lemma C.6, it follows that for any L ∈N there exist CL and dL such that

max
(τ1,τ2),(τ ′1,τ

′
2)∈Mn,k

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤ 4

n−|k|+δn

(
IE
[√

n− |k|
∣∣Cn,k(τ1, τ2)−Cn,k(τ ′1, τ ′2)



64

−
(
Ck(τ1, τ2)−Ck(τ ′1, τ ′2)

)∣∣2L])1/(2L)

≤CL
((

(δn + (n− |k|)−1)(1 + | log(δn + (n− |k|)−1)|)dL
)
∨ (n− |k|)−1

)1/2

and since, by assumption, δn =O(n−1/γ) = o(n−1) for γ ∈ (0,1),

(δn + (n− |k|)−1)(1 + | log(δn + (n− |k|)−1)|)dL ∨ (n− |k|)−1 ≤ cst(n− |k|)−1(log(n))dL ,

whence

max
|k|≤n−1

IE
[
(n− |k|) sup

(τ1,τ2),(τ ′1,τ
′
2)∈[0,1]2

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤δn

∣∣Cn,k(τ1, τ2)−Cn,k(τ ′1, τ ′2)

−
(
Ck(τ1, τ2)−Ck(τ ′1, τ ′2)

)∣∣]
≤ cstL max

|k|≤n−1
(n− |k|)1/2

{
(n− |k|)4(δn + (n− |k|)−1)

}1/(2L)
(n− |k|)−1/2(log(n))dL/2

≤ cstLn2/L(log(n))dL/2.

Thus, (81) holds for any L ∈ N. Next, observe that for a constant K that does not depend
on λ, ∑

|k|≤n−1

sup
λ∈[0,π]

|wn,λ(k)| ≤K
(

1 +
∑

0<|k|≤n−1

max
{ 1

|k|
,

1

n− |k|
})

=O
(

log(n)
)
.(82)

Finally, choose L= 5. Then, plugging (81) and (82) into (80) yields

sup
λ∈[0,π]

sup
(τ1,τ2),(τ ′1,τ

′
2)∈[0,1]2

‖(τ1,τ2)−(τ ′1,τ
′
2)‖1≤δn

|Gn,U (λ; τ1, τ2)−Gn,U (λ, τ ′1, τ
′
2)|=OP

(
n−1/10(log(n))1+d5/2

)
= oP(1).(83)

Equations (78) and (83) together yield the desired result.

LEMMA C.6. For any L ∈N there exist constants KL and dL such that

sup
(x1,x2)∈[0,1]2,
(y1,y2)∈[0,1]2

‖(x1,x2)−
(y1,y2)‖1≤δ

IE
[(√

n− |k|
∣∣Cn,k(x1, x2)−Cn,k(y1, y2)−

(
Ck(x1, x2)−Ck(y1, y2)

)∣∣

×
(
δ(1 + | log δ|)dL ∨ (n− |k|)−1

)−1/2
)2L]

≤KL.

PROOF. First note that

sup
(x1,x2),(y1,y2)∈[0,1]2

‖(x1,x2)−(y1,y2)‖1≤δ

IE[
√
n− |k|

∣∣Cn,k(x1, x2)−Cn,k(y1, y2)

−
(
Ck(x1, x2)−Ck(y1, y2)

)∣∣2L]

≤ 22L−1
(

sup
x1,y1∈[0,1]
|x1−y1|≤δ

sup
x2∈[0,1]

IE
[√

n− |k|
∣∣Cn,k(x1, x2)−Cn,k(y1, x2)
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−
(
Ck(x1, x2)−Ck(y1, x2)

)∣∣2L]
+ sup
x2,y2∈[0,1]
|x2−y2|≤δ

sup
y1∈[0,1]

IE
[√

n− |k|
∣∣Cn,k(y1, x2)−Cn,k(y1, y2)

−
(
Ck(y1, x2)−Ck(y1, y2)

)∣∣2L])
=: T1,n,k + T2,n,k,

where the terms T1,n,k and T2,n,k can be handled similarly. Concentrating on the first one, let
us prove that for any L ∈N there exist KL and dL depending only on L such that

sup
x1,y1∈[0,1]
|x1−y1|≤δ

sup
x2∈[0,1]

IE
[(√

n− |k|
∣∣Cn,k(x1, x2)−Cn,k(y1, x2)−

(
Ck(x1, x2)−Ck(y1, x2)

)

×
(
δ(1 + | log δ|)dL ∨ (n− |k|)−1

)−1/2
)2L
]
≤KL

Let Tk :=
{
t ∈ {0, . . . , n− 1}|t, t+ k ∈ {0, . . . , n− 1}

}
. Observe that with

σ := 2I{x1 > y1} − 1, M1 := (x1 ∧ y1, x1 ∨ y1], and M2 := [0, x2],

we have

Cn,k(x1, x2)−Cn,k(y1, x2)−
(
Ck(x1, x2)−Ck(y1, x2)

)
=

1

n− |k|
∑
t∈Tk

(
I{Ut+k ∈M1,Ut ∈M2} − IE[I{Ut+k ∈M1,Ut ∈M2}]

)
σ.

Since
(
I{Ut+k ∈ M1,Ut ∈ M2} − IE[I{Ut+k ∈ M1,Ut ∈ M2}]

)
are centered, Theo-

rem 2.3.2 of Brillinger (1975) yields

IE
[(
Cn,k(x1, x2)−Cn,k(y1, x2)−

(
Ck(x1, x2)−Ck(y1, x2)

)2L]
=

1

(n− |k|)2L

∑
{ν1,...,νR}

|νj |≥2; j=1,...,R

R∏
r=1

cum
( ∑
tξ∈Tk

I{Utξ+k ∈M1,Utξ ∈M2}; ξ ∈ νr
)
,

where the sum runs over all partitions {ν1, . . . , νR} of {1, . . . ,2L}.

Next, for any set νr with |νr|= q of a partition {ν1, . . . , νR}, we have by Theorems 2.3.1
and 2.3.2 of Brillinger (1975)

cum
( ∑
t1∈Tk

I{Ut1+k ∈M1,Ut1 ∈M2}, . . . ,
∑
tq∈Tk

I{Utq+k ∈M1,Utq ∈M2}
)

=
∑

t1,...,tq∈Tk

cum
(
I{Ut1+k ∈M1,Ut1 ∈M2}, . . . , I{Utq+k ∈M1,Utq ∈M2}

)

=
∑

t1,...,tq∈Tk

∑
{µ1,...,µN}

N∏
i=1

cum
(
I{Uu ∈Mv}; (u, v) ∈ µi

)
where the sum runs over all indecomposable partitions of the table
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(t1 + k,1) (t1,2)
...

...
(tq + k,1) (tq,2).

Note that in
∏N
i=1 cum

(
I{Uu ∈Mv}; (u, v) ∈ µi

)
there are at most q cumulants of order

one for which we have

cum(I{Uu ∈Mv}) = IE[I{Uu ∈Mv}] = λ(Mv),

where λ denotes the Lebesgue measure. Moreover, we will never encounter the case of the
first-order cumulants cum(I{Uts ∈M2}) and cum(I{Uts+k ∈M1}), for some s= 1, . . . , q,
both appear in the product since the partition then would be decomposable.

The other cumulants in
∏N
i=1 cum

(
I{Uu ∈Mv}; (u, v) ∈ µi

)
are at least of second-order

and, as can be seen from the definition of a cumulant and the triangle inequality,∣∣cum
(
I{Uu ∈Mv}; (u, v) ∈ µi : |µi| ≥ 2

)
| ≤Cmin{λ(Mv) : v ∈ µi}.

Furthermore, if we let µi := {(u1, v1), . . . , (up, vp)} and define

mµi := max{|uk − ul| : (uk, vk), (ul, vl) ∈ µi, k, l= 1, . . . , p},

by Assumtion (C), we have∣∣cum
(
I{Uu ∈Mv}; (u, v) ∈ µi : |µi| ≥ 2

)∣∣≤Kp(ρ
1/|µi|)mµi .

Hence, for all cumulants of order greater than two, we have the bound∣∣cum
(
I{Uu ∈Mv}; (u, v) ∈ µi : |µi| ≥ 2

)∣∣≤ (C +Kp)
(

min
v∈µi
{λ(Mv)} ∧ (ρ1/|µi|)mµi

)
.

Thus, for one partition {µ1, . . . , µN} we obtain∑
t1,...,tq∈Tk

N∏
i=1

cum
(
I{Uu ∈Mv}; (u, v) ∈ µi

)
≤Kq

∑
t1,...,tq∈Tk

∏
{i:|µi={(u,v)}|=1}

λ(Mv)
∏

{j:|µj |≥2}

(
min{λ(Mv); (u, v) ∈ µj} ∧ (ρ1/|µj |)mµj

)
.

Since λ(M1) = |x1 − y1| ≤ 1 and λ(M2) = x2 ≤ 1,∏
{i:|µi={(u,v)}|=1}

λ(Mv)≤min{λ(Mv); (u, v) ∈ µi, |µi|= 1};

since (a∧ b) · (c∧ d)≤ (ac∧ bd) for a, b, c, d > 0,∏
{j:|µj |≥2}

(
min{λ(Mv); (u, v) ∈ µj} ∧ (ρ1/|µj |)mµj

)
≤

∏
{j:|µj |≥2}

(
min{λ(Mv); (u, v) ∈ µj} ∧ (ρ1/|µj |)

∑
{j:|µj |≥2}

mµj )
;

and since ρ < 1,

(ρ1/|µj |)

∑
{j:|µj |≥2}

mµj

≤ (ρ1/(max{|µ1|,...,|µN |}))max{mµj
;|µj |≥2,j=1,...,N}.

Thus, if we let ρ̃ := ρ1/(max{|µ1|,...,|µN |}) and

mµ1,...,µN := max
j=1,...,N

{max{|ui − ui′ | : (ui, vi), (ui′ , vi′) ∈ µj , |µj | ≥ 2}},
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we have ∑
t1,...,tq∈Tk

N∏
i=1

cum
(
I{Uu ∈Mv}; (u, v) ∈ µi

)
≤Kq

∑
t1,...,tq∈Tk

(
min{λ(Mv); (u, v) ∈ µ1, . . . , µN} ∧ ρ̃mµ1,...,µN

)
≤Kq

∑
t1,...,tq∈Tk

(
|x1 − y1| ∧ ρ̃mµ1,...,µN

)
.

Next,

Kq

∑
t1,...,tq∈Tk

(
|x1 − y1| ∧ ρ̃mµ1,...,µN

)
≤

∞∑
m=0

∑
t1,...,tq∈Tk

mµ1,...,µN
=m

|x1 − y1| ∧ ρ̃m

≤
∞∑
m=0

#{t1, . . . , tq ∈ Tk :mµ1,...,µN =m}|x1 − y1| ∧ ρ̃m.

In order to estimate the cardinality of the set {t1, . . . , tq ∈ Tk : mµ1,...,µN = m}, consider
first the case N = 1. We have∣∣∣ ∑

t1,...,tq∈Tk

N∏
i=1

cum
(
I{Uu ∈Mv}; (u, v) ∈ µi

)∣∣∣
=
∣∣∣ ∑
t1,...,tq∈Tk

cum
(
I{Ut1+k ∈M1}, I{Ut1 ∈M2}, . . . , I{Utq+k ∈M1}, I{Utq ∈M2}

)∣∣∣
≤

∑
t1,...,tq∈Tk

K2q

(
ρ1/(2q)

)max{|a−b|:a,b∈{t1,t1+k,...,tq,tq+k}}

≤K2q

∞∑
m=0

#{t1, . . . , tq ∈ Tk max{|a− b| : a, b ∈ {t1, t1 + k, . . . , tq, tq + k}=m}ρ̃m

where (since there are n− |k| possibilities to fix one element tj0 of {t1, . . . , tq ∈ Tk} and at
most m possible values for the remaining tj , j = 1 . . . , q, j 6= j0)

#{t1, . . . , tq ∈ Tk max{|a− b| : a, b ∈ {t1, t1 + k, . . . , tq, tq + k}=m} ≤ cq(n− |k|)mq−1.

For the case N ≥ 2,∑
t1,...,tq∈Tk

N∏
i=1

cum|µi|
(
I{Uu ∈Mv}; (u, v) ∈ µi

)
≤

∞∑
m=0

#{t1, . . . , tq ∈ Tk max{mµj ; |µj | ≥ 2, j = 1, . . . ,N}=m}|x1 − y1| ∧ ρ̃m,

where

(84) #{t1, . . . , tq ∈ Tk : max
j:|µj |≥2

mµj =m} ≤ cq(n− |k|)mq−1.

In order to prove this, start by considering the set µi0 of one partition {µ1, . . . , µN} which
contains either t1 or t1 + k or both. By indecomposability of the partition there exists at
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least one other ts or ts + k in µi0 such that ts + k or ts are not contained in µi0 . Hence,
there are n − |k| possible values for t1 and at most m possible values for any other ts so
that either ts or exclusively ts + k is contained in µi0 since k is fixed. Next, observe that
by indecomposability of the partition, all sets µj hook [for a precise definition see page 20
in Brillinger (1975)] and thus there exists a µj0 such that ts is contained in µi0 and ts + k
in µj0 or vice versa. Again by indecomposability we find another tr or exclusively tr + k
in µj0 for which we have at most m choices so that max{mµj ; |µj | ≥ 2, j = 1, . . . ,N} =
m. Continuing this argumentation until the maximum over all sets µj have been taken into
consideration, we see that #{t1, . . . , tq ∈ Tk : max{mµj ; |µj | ≥ 2, j = 1, . . . ,N}=m} is at
most of the order (n− |k|)mq−1, since the indecomposable partitions {µ1, . . . , µN} yielding
the highest order are those where each set µj is of size 2 and contains ts or ts + k and tr
or tr + k.

Therefore, (84) follows and
∞∑
m=0

#{t1, . . . , tq ∈ Tk : max{mµj ; |µj | ≥ 2, j = 1, . . . ,N}=m}|x1 − y1| ∧ ρ̃m

≤ cq(n− |k|)
∞∑
m=0

mq−1|x1 − y1| ∧ ρ̃m.

Observe that for some constant K ,
∞∑
m=0

mq−1(ε∧ ρm)≤Kε(1 + | log ε|)q

because

(1) if ε≥ ρ̃, then
∑∞

m=0m
q−1(ε∧ ρ̃m) =

∑∞
m=0m

q−1ρ̃m <∞;
(2) if ε < ρ̃, setting mε := log ε/ log ρ̃ (so that mε is such that ρ̃m < ε for any m>mε),

then ρ̃mε = ε and
∞∑
m=0

mq−1(ε∧ ρ̃m)≤
∑
m≤mε

εmq−1 +
∑
m>mε

ρ̃mmq−1

≤mεm
q−1
ε ε+ ρ̃mε

∞∑
m=0

(m+mε)
q−1ρ̃m

≤mq
εε+ εmq

ε

∞∑
m=0

(m+ 1)q−1ρ̃m

≤C ′qε
(

1 +
∣∣∣ log ε

log ρ̃

∣∣∣q)≤Cq,ρ̃ε(1 + | log ε|)q.

Hence, in total, for an indecomposable decomposition {µ1, . . . , µN}, we have

∑
t1,...,tq∈Tk

N∏
i=1

cum
(
I{Uu ∈Mv}; (u, v) ∈ µi

)
≤Cq(n− |k|)|x1 − y1|(1 + | log |x1 − y1||)q

and therefore, for one set νr of q elements,

cum
(
I{Utξ+k ∈M1,Utξ ∈M2}; ξ ∈ νr

)
≤ C̃q(n− |k|)|x1 − y1|(1 + | log |x1 − y1||)q.
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Thus, for any partition {ν1, . . . , νR} with |νj | ≥ 2; j = 1, . . . ,R of {1, . . . ,2L},
R∏
r=1

cum
( ∑
tξ∈Tk

I{Utξ+k ∈M1,Utξ ∈M2}; ξ ∈ νr
)

≤ C̃R(n− |k|)R
(
|x1 − y1|(1 + | log |x1 − y1||)max{|νj |;j=1,...,R})R

and, if we let dR := max{|νj |; j = 1, . . . ,R} and d := max{d1, . . . , dL}, we obtain

IE
[(√

n− |k|
∣∣Cn,k(x1, x2)−Cn,k(y1, x2)−

(
Ck(x1, x2)−Ck(y1, x2)

∣∣)2L]
≤ K̃1,L

L∑
R=1

(n− |k|)R−L(|x1 − y1|(1 + | log |x1 − y1||)d)R

≤ LK̃1,L((n− |k|)−1 ∨ |x1 − y1|(1 + | log |x1 − y1||)d)L

≤K1,L((n− |k|)−1 ∨ |x1 − y1|(1 + | log |x1 − y1||)d)L,

that is,

sup
x1,y1∈[0,1]
|x1−y1|≤δ

sup
x2∈[0,1]

IE
[(√

n− |k|
∣∣Cn,k(x1, x2)−Cn,k(y1, x2)−

(
Ck(x1, x2)−Ck(y1, x2)

∣∣)2L]
≤K1,L((n− |k|)−1 ∨ δ(1 + | log δ|)d)L.

Analogously,

sup
x2,y2∈[0,1]
|x2−y2|≤δ

sup
y1∈[0,1]

IE
[√

n− |k|
∣∣Cn,k(y1, x2)−Cn,k(y1, y2)−

(
Ck(y1, x2)−Ck(y1, y2)

)∣∣2L])

≤K2,L((n− |k|)−1 ∨ δ(1 + | log δ|)dL)L,

and hence

sup
(x1,x2),(y1,y2)∈[0,1]2

‖(x1,x2)−(y1,y2)‖1≤δ

IE[
√
n− |k|

∣∣Cn,k(x1, x2)−Cn,k(y1, y2)−
(
Ck(x1, x2)−Ck(y1, y2)

)∣∣2L]

≤KL((n− |k|)−1 ∨ δ(1 + | log δ|)d)L,

which completes the proof.

D. Additional simulation results.

D.1. Additional simulation results for the test for time-reversibility. We show additional
simulation results for the test for time-reversibility introduced in Section 4.2. We set the
sample size n ∈ {100,128,150,200,256, 400,512,700,1024} and the block size, for a
given n, to b ∈B(n) := {24,25, . . . , n/2}, the range of maximum for frequency as {2π`/32;
`= 0,1, . . . ,16}, and the range of maxima for quantiles as {τ1, τ2 = k/8;k = 1, . . . ,7}. The
weight functions s1, . . . , s5 defined in the Appendix and the significance level as α = 0.05
are employed.

The simulation procedure is as follows: generate time series and calculate the p-values
based on T (n,b,t)

TR1 and T (n,b,t)
TR1_fpc, which is defined as T (n,b,t)

TR1_fpc := (1− b/n)−1/2T
(n,b,t)
TR1 . Then,

iterate R = 1000 times and compute empirical size or power. In the figures, b is chosen by
the rule of thumb defined by (29).
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Figures 10–13 illustrate tha fact that the power of the tests increases as the degree of time-
irreversibility increases and as the sample size increases. The weight functions s1, s2, and s4

provide better power among s1, . . . , s5 since the tests based on s3 and s5 have low power for
many models and M10, respectively.

Figures 14–15 display results with the same settings as Figures 4–5 in the main manuscript
but with weight functions s1, s2, s3, s5.
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FIG 10. Empirical size (top) and power (bottom) of the tests for time-reversibility based on T (n,b,t)
TR1 described in

Section 4.2. The upper plots and lower plots correspond to M8a–g and M9a–g, respectively. Columns correspond
to the weight functions s1, . . . , s5 from left to right, respectively. The horizontal axis of the plots corresponds to
the parameters of models (λi or γ−1

i ) and the vertical axis corresponds to empirical power.
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FIG 11. Empirical size (top) and power (bottom) of the tests for time-reversibility based on T (n,b,t)
TR1_fpc described in

Section 4.2. The upper plots and lower plots correspond to M8a–g and M9a–g, respectively. Columns correspond
to the weight functions s1, . . . , s5 from left to right, respectively. The horizontal axis of the plots corresponds to
the parameters of models (λi or γ−1

i ) and the vertical axis corresponds to empirical power.
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FIG 12. Empirical size (top) and power (bottom) of the tests for time-reversibility based on T (n,b,t)
TR1 described

in Section 4.2. The upper plots and lower plots correspond to M10a–g and M11a–g, respectively. Columns
correspond to the weight functions s1, . . . , s5 from left to right, respectively. The horizontal axis of the plots
corresponds to the parameters of models (λi or γ−1

i ) and the vertical axis corresponds to empirical power.



72

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M10a−g, s1, T1_fpc

M10a
M10b
M10c
M10d
M10e
M10f
M10g

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M10a−g, s2, T1_fpc

M10a
M10b
M10c
M10d
M10e
M10f
M10g

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M10a−g, s3, T1_fpc

M10a
M10b
M10c
M10d
M10e
M10f
M10g

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M10a−g, s4, T1_fpc

M10a
M10b
M10c
M10d
M10e
M10f
M10g

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M10a−g, s5, T1_fpc

M10a
M10b
M10c
M10d
M10e
M10f
M10g

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M11a−g, s1, T1_fpc

M11a
M11b
M11c
M11d
M11e
M11f
M11g

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M11a−g, s2, T1_fpc

M11a
M11b
M11c
M11d
M11e
M11f
M11g

200 400 600 800 1000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

M11a−g, s3, T1_fpc

M11a
M11b
M11c
M11d
M11e
M11f
M11g

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M11a−g, s4, T1_fpc

M11a
M11b
M11c
M11d
M11e
M11f
M11g

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M11a−g, s5, T1_fpc

M11a
M11b
M11c
M11d
M11e
M11f
M11g

FIG 13. Empirical size (top) and power (bottom) of the tests for time-reversibility based on T (n,b,t)
TR1_fpc described

in Section 4.2. The upper plots and lower plots correspond to M10a–g and M11a–g, respectively. Columns
correspond to the weight functions s1, . . . , s5 from left to right, respectively. The horizontal axis of the plots
corresponds to the parameters of models (λi or γ−1

i ) and the vertical axis corresponds to empirical power.
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FIG 14. Empirical sizes (top, time-reversible models M0, M2, and M6a-c) and powers (bottom, time-
irreversible models M1, M3, M4, M5, and M7a-c) as functions of n, of the tests for time-reversibility
based on T (n,b,t)

TR1_fpc (without finite-population correction). Columns correspond to weight functions
s1, s2, s3, s5, respectively.
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FIG 15. Empirical sizes (top, time-reversible models M0, M2, and M6a-c) and powers (bottom, time-
irreversible models M1, M3, M4, M5, and M7a-c) as functions of n, of the tests for time-reversibility
based on T

(n,b,t)
TR1_fpc (with finite-population correction). Columns correspond to weight functions

s1, s2, s3, s5, respectively.
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D.2. Additional simulation results for the test for asymmetry in tail dynamics. Here we
provide additional simulation results with the same settings as in Figures 8 – 9 in the main
manuscript but with weight functions s1, s2, s3, s5.
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FIG 16. Empirical sizes (top) and powers (bottom), as functions of n, of the tests for tail symmetry based
on T (n,b,t)

EQ under various models. Columns correspond to weight functions s1, s2, s3, s5, respectively.
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FIG 17. Empirical sizes (top) and powers (bottom), as functions of n, of the tests for tail symmetry
based on T (n,b,t)

EQ_fpc (with finite–population correction) under various models. Columns correspond to
weight functions s1, s2, s3, s5, respectively.
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