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Abstract

We consider the problem of constructing nonparametric undirected graphical models for high-

dimensional functional data. Most existing statistical methods in this context assume either a Gaus-

sian distribution on the vertices or linear conditional means. In this article we provide a more flexible

model which relaxes the linearity assumption by replacing it by an arbitrary additive form. The use

of functional principal components offers an estimation strategy that uses a group lasso penalty to

estimate the relevant edges of the graph. We establish statistical guarantees for the resulting estima-

tors, which can be used to prove consistency if the dimension and the number of functional principal

components diverge to infinity with the sample size. We also investigate the empirical performance of

our method through simulation studies and a real data application.

Keywords: undirected graphical models; functional data; additive models; lasso; EEG data; brain

networks.

1 Introduction

In recent years, there has been a large amount of work on estimating undirected graphical models

that describe the conditional dependencies among the components of a p-dimensional random vector

X = (X1, . . . , Xp)T. Let V = {1, . . . , p}, and E denote a subset of {(i, j) ∈ V × V : i 6= j}, which

satisfies (i, j) ∈ E if and only if (j, i) ∈ E. The pair G = (V,E) constitutes an undirected graph, with

V representing the set of vertices and E the set of edges. The vector X follows a graphical model if

(i, j) /∈ E ⇔ X
i

X
j|X−(i,j)

, (1.1)

where X−(i,j) represents the vector X with its ith and jth components removed, and for random

elements A, B, and C, A B|C means that A and B are conditionally independent given C. The

goal is to estimate the edge set E based on a random sample from X.

If X is assumed to follow a p-dimensional Gaussian distribution with expectation 0 ∈ Rd and

positive definite covariance matrix Σ ∈ Rp×p, the model is called Gaussian Graphical Model (GGM)

and has become very popular. For a Gaussian random vector X = (X1, . . . , Xp)T, the structure of

the precision matrix Θ = Σ−1 characterizes the conditional independence relationships among the

variables X1, . . . , Xp (Lauritzen, 1996). Specifically,

X
i

X
j|X−(i,j) ⇔ θij = 0, (1.2)
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where θij is the (i, j)th entry of the precision matrix Θ. Because of the relation (1.2), the estimation

of the edge set E reduces to estimating the sparsity pattern of the precision matrix Θ. Hence, there

exists a large amount of literature, which has its focus on estimating high-dimensional Gaussian

graphical models. For example, Meinshausen and Bühlmann (2006) introduced a neighbourhood-

based approach by solving p lasso linear regression problems for each node of the graph. Yuan and

Lin (2007) and Friedman et al. (2008) considered a penalized maximum likelihood approach with

the lasso penalty imposed on the off-diagonal entries of the precision matrix Θ. Based on a relation

between partial correlation and regression coefficient, Peng et al. (2009) proposed to estimate a sparse

GGM by imposing the lasso penalty on the partial correlations. Other developments on GGM include

the SCAD and the adaptive lasso penalty (Lam and Fan, 2009), the Dantzig selector (Cai et al., 2011)

and hard-thresholding (Bickel and Levina, 2008).

Despite of its simplicity, the Gaussian assumption can be very restrictive in practice and statisti-

cal inference based on the Gaussian distribution might be misleading if this assumption is violated.

Therefore, more recent work has its focus on considering graphical models under less restrictive as-

sumptions. For example, Liu et al. (2009, 2012) and Xue et al. (2012) relaxed the marginal Gaussian

assumption on the vertices of the graph using copula transformations, and Voorman et al. (2013)

allowed the conditional means of the variables to take an additive form. Li et al. (2014) and Lee et al.

(2016a) proposed a non-Gaussian graphical model based on additive conditional independence (ACI),

a three-way statistical relation that captures the spirit of conditional independence.

Most of the literature discussed so far has its focus on graphical models for finite dimensional data.

However, many recent applications involve functional data, such as electroencephalogram (EEG) and

functional magnetic resonance imaging (fMRI) data, where each sampling unit is modelled as a realiza-

tion of a stochastic process varying over a time interval. In this paper, we are interested in estimating

a nonparametric and high-dimensional undirected graphical model for multivariate functional data.

In contrast to the finite dimensional case, less literature can be found on graphical models for

multivariate functional data. Qiao et al. (2018) proposed the Functional Gaussian Graphical Model

(FGGM) assuming that X is a multivariate Gaussian random process. Roughly speaking, they used a

truncated Karhunen-Loève expansion, say of order mn, to reduce the infinite dimensional problem to

a pmn-dimensional problem for the principal component scores. The conditional independencies of the

graph define a block sparsity structure, such that the properties of the precision matrix of the scores can

be used to identify the edge set using a group lasso penalty. They called this method functional glasso,

or simply fglasso, and the authors showed that, when mn approaches infinity, consistent estimation

of the edge set is possible. Zhu et al. (2016) proposed a Bayesian framework under the Gaussian

assumption on the random functions for the analysis of functional graphical models, while Li and

Solea (2018) relaxed this assumption by extending the concept of ACI to the functional setting.

In this paper, we introduce an alternative approach to relax the Gaussian assumption in the

functional graphical model. Our research is motivated by the fact that in many applications the

relation between the functional principal scores is rarely linear as implied by the assumption of the

FGGM. To illustrate this observation, we consider an electroencephalography (EEG) dataset that
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Figure 1: Pairwise scatterplots for the control group between channels AF1 and P8 (left) and channels O1

and X (right).

consists of two groups of subjects: 77 subjects in the alcoholic group, and 45 in the control group

(Zhang et al., 1995; Ingber, 1997). For each subject, an EEG activity was recorded at 256 time

points over a one second time interval using 64 electrodes placed on the subject’s scalp. The goal

is to construct a functional graphical model to characterize brain network connectivity for the two

groups of subjects based on the functional data collected by the electrodes. In Figure 1, we display

the pairwise scatterplots between channels using the first two principal components for the random

functions of the control group. Clearly, this figure indicates that the conditional relationships among

the scores corresponding to different vertices of the graph are nonlinear. Therefore, the Gaussian

assumption of the FGGM is difficult to justify for the analysis of this type of data.

As an alternative, we propose a new nonparametric functional graphical model that allows the

conditional relationships among the principal scores to take an additive structure. Our approach

uses the traditional probabilistic concept of conditional independence, and then applies the additive

structure to the scores of the Karhunen-Loéve expansion of each random function. We approximate

each nonparametric additive component by a linear combination of B-splines basis functions. This

enables us to estimate the edge set of the graph by imposing the group lasso penalty on a matrix

formed by the coefficients in the spline approximation. We derive statistical guarantees for the result-

ing estimates, which can be used to prove consistency if the dimension p and the number of scores

diverge to infinity with the sample size. This provides a useful methodology for general nonparametric

analysis of high-dimensional functional graphical models. Our approach differs from related work on

nonparametric functional graphical models by Lee et al. (2020) and Li and Solea (2018), who used

additive conditional independence and reproducing kernel Hilbert spaces for neighbourhood selection

via a functional additive regression operator.

The remainder of the article is organized as follows. Section 2 describes the methodology and

proposes the nonparametric functional graphical model. Section 3 presents the estimation procedure.

In Section 4 we study the theoretical properties of the resulting estimator. In Section 5 we conduct
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simulation studies to evaluate the finite sample properties of the proposed methodology, and in Section

6 we apply the new model to the motivating EGG dataset. We conclude with some final remarks in

Section 7, while all proofs of the theoretical results are deferred to the Appendix.

2 Additive functional graphical models

We first provide a formal definition of an additive function-on-function regression model which will be

used to define the functional graphical model considered in this paper. We begin by introducing some

basic concepts from functional data analysis.

Throughout this paper L2([0, 1]) denotes the space of all square-integrable functions defined on the

interval [0, 1] ⊂ R. We denote by 〈f, g〉 =
∫
[0,1]

f(t)g(t)dt the common inner product in L2([0, 1]) and

by ‖f‖ = 〈f, f〉1/2 the corresponding norm. Let X = (X1, . . . , Xp)T denote a p-dimensional random

element with mean 0 whose ith component X i is an element of L2([0, 1]) such that E‖X i‖2 <∞. For

each Xi, we define the corresponding covariance operator

Σ
X
i
X
i(f)(t) =

∫
T

f(s)σ
X
i
X
i(s, t)ds, f ∈ L2

([0, 1]), (2.1)

where σ
X
i
X
i(s, t) = cov(X i(s), X i(t)) = E(X i(s)X i(t)) is the covariance function of the random

element X i. The operator Σ
X
i
X
i is a compact Hilbert-Schmidt operator (see, for example, Hsing and

Eubank, 2015), and there exists a spectral decomposition of the covariance function of the form

σ
X
i
X
i(s, t) =

∞∑
r=1

λ
i

rφ
i

r(s)φ
i

r(t), (2.2)

where λi1 ≥ λ
i

2 ≥ . . . are the eigenvalues and {φik}k∈N are orthonormal eigenfunctions satisfying∫
T

σ
X
i
X
i(s, t)φ

i

r(s)ds = λ
i

rφ
i

r(t).

Consequently, each X i ∈ L2([0, 1]) can be represented by its Karhunen-Loéve expansion

X
i

=

∞∑
r=1

√
λirξ

i

r φ
i

r i = 1, . . . , p, (2.3)

where the random variables ξir = 〈X i, φir〉/
√
λir are called the functional principal component scores

and satisfy E(ξir) = 0, var(ξir) = 1, E(ξiqξ
i

r) = 0 for q 6= r.

We next give our formal definition of the functional graphical model. Suppose G = (V,E) is an

undirected graph, where V denotes the finite set {1, . . . , p}, and E denotes a subset of {(i, j) ∈ V×V :

i 6= j}, which satisfies (i, j) ∈ E if and only if (j, i) ∈ E.

Definition 2.1 A vector of random functions X = (X1, . . . Xp)> ∈ L2([0, 1])× . . . ,×L2([0, 1]) is said

to follow a functional graphical model with respect to an undirected graph G = (V,E) if and only if

X
i

X
j|X−(i,j)

, ∀ (i, j) /∈ E.
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Example 2.1 Qiao et al. (2018) assumed thatX = (X1, . . . , Xp)> is a Gaussian process on L2([0, 1])×
. . .× L2([0, 1]) and define a Functional Gaussian Graphical model (FGGM) by the condition

(i, j) /∈ E ⇔ cov[X
i
(s), X

j
(t)|X−(i,j)

] = 0 ∀ s, t ∈ [0, 1]. (2.4)

They proposed to approximate each X i by the first mn coefficients from the Karhunen-Loéve ex-

pansion (2.3). Thus for each X i, one obtains a pmn-dimensional Gaussian random vector ξ> =

((ξ1)>, . . . , (ξp)>) of scores, where ξi = (ξi1, . . . , ξ
i

mn
)> is the vector of the first mn functional principal

component scores in the Karhunen-Loève expansion (2.3) of each X i. Using the mn-truncation Qiao

et al. (2018) also showed that the FGGM can be represented as a conditional multivariate linear

regression model with respect to the scores. Indeed, each ξiq can be expressed as

ξ
i

q =

p∑
j 6=i

mn∑
r=1

B
ij

qrξ
j

r + ε
i

q, i ∈ V, q = 1, . . . ,mn, (2.5)

such that (εiq)1≤q≤mn is uncorrelated with (ξjr)1≤r≤mn , i 6= j if and only if

B
ij

n = (B
ij

qr)1≤q,r≤mn = −(Θ
ii

n)
−1

Θ
ij

n , (i, j) ∈ V × V, i 6= j,

where Θij

n ∈ Rmn×mn is the (i, j)th element of the block precision matrix Θn = (Θij

n )1≤i,j≤p ∈ Rpmn×pmn

of the pmn-dimensional vector ξ. Hence, under the Gaussian assumption the conditional relationships

between nodes i and j are linear, and the network structure of the FGGM can also be recovered by the

sparsity structure of the regression coefficient matrix Bij

n . They used group-lasso penalized maximum

likelihood estimation to address the blockwise sparsity of the precision matrix and showed that the

precision matrix is a consistent estimate of the set E, when p and mn approach infinity with increasing

sample size. Note that the FGGM is the extension of the Gaussian graphical model of Yuan and Lin

(2007) to the functional setting.

We use a generalization of the representation (2.5) to give a formal definition of the additive

function-on-function model for multivariate functional data.

Definition 2.2 Consider a vector of random functions X = (X1, . . . Xp)> ∈ L2([0, 1])×. . . ,×L2([0, 1])

and suppose that each X i has a Karhunen-Loéve expansion of the form (2.3). The vector X follows

the function-on-function additive model if for each pair (i, j) ∈ V×V there exists a sequence of smooth

functions f ij = {f ijqr : q, r ∈ N} defined on R with E[f ijqr(ξ
j

r)] = 0, q, r ∈ N, such that

E[ξ
i

q|{ξ
j

r , j 6= i}] =

p∑
j 6=i

∞∑
r=1

f
ij

qr(ξ
j

r) (2.6)

Similar to the functional additive regression model of Han et al. (2018), model (2.6) relaxes the

linearity assumption in FGGM by imposing an additive structure on the scores in the Karhunen-

Loéve expansion, giving rise to a more flexible model than the FGGM. By definition, the scores ξir are

uncorrelated, but we also require them to be independent in the following discussion as also postulated
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in Han et al. (2018). Furthermore, we assume that they take values in a closed and bounded interval

[−1, 1]. For example, this can be achieved by taking a monotone transformation Ψ : R→ [−1, 1] (see

Zhu et al., 2014; Wong et al., 2019).

We now define a new nonparametric functional graphical model which we call the Additive Func-

tional Graphical Model (AFGM).

Definition 2.3 Suppose X = (X1, . . . Xp)> ∈ L2([0, 1]) × . . . ,×L2([0, 1]) is associated with a func-

tional graphical model G = (V,E). If X is additionally a function-on-function additive model of the

form (2.6), then we say that X follows an additive functional graphical model, and write this statement

as X ∼ AFGM(G).

The definition implies that the independence structure of X can be recovered by the sparse struc-

ture of the additive components f ijqr in the representation (2.6). Since each random function is infinite-

dimensional, some type of regularization is needed by truncating the Karhunen-Loéve expansion (2.3)

at a finite number of principal components, say mn, where (mn)n∈N is a sequence converging to infinity

with increasing sample size. Thus, we obtain a truncated version of model (2.6), that is

E[ξiq|{ξ
j

r , j 6= i; r = 1, . . . ,mn}] =

p∑
j 6=i

mn∑
r=1

f
ij

qr(ξ
j

r), q = 1, . . . ,mn, i ∈ V. (2.7)

Then, our goal is to estimate the “truncated” edge set

En = {(i, j) ∈ V × V : i 6= j, f
ij

qr 6= 0 for some q, r = 1, . . . ,mn} (2.8)

Note that we aim to recover the edge set when each X i is approximated by a finite sum of mn terms

rather than an infinite sum. Our theoretical results in Section 4 show that the edge set can be identified

with probability converging to 1 as mn →∞, p→∞ and n→∞.

Remark 2.1

(1) Note that it is not necessary to fix the sign of the eigenfunctions in the definition of scores

ξir = 〈X i, φir〉/
√
λr used in the representation (2.6) or (2.7), because a sign change can always be

compensated by choosing the function f ijqr(−x) instead of f ijqr(x).

(2) Model (2.7) can be regarded as the nonparametric and additive version of the FGGM (2.5), and

the generalization of the model of Voorman et al. (2013) to the functional setting where they

propose a semi-parametric method which allows the conditional means of the random variables

to take on an arbitrary additive structure.

3 Estimation and computation

In this section, we develop an estimation procedure for fully observed functional data to estimate the

scores ξi for each X i, which is used afterwards for the estimation of the edge set En.
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To be precise, let X1, . . . , Xn be an independent sample from X, such that for each u = 1, . . . , n,

Xu = (X1

u, . . . , X
p

u)> is a vector in L2([0, 1])×. . .×L2([0, 1]). Then, for each i = 1, . . . , p, the covariance

operator Σ
X
i
X
i can be estimated by

Σ̂
X
i
X
i(f)(t) =

∫
[0,1]

f(s)σ̂
X
i
X
i(s, t)ds, f ∈ L2

([0, 1]),

where

σ̂
X
i
X
i(s, t) =

1

n

n∑
u=1

X
i

u(s)X
i

u(t)

is the common estimator of the covariance function (note that the X i are centered). Let λ̂ir and φ̂ir be

the sample eigenvalues and eigenfunctions obtained by solving the equation∫ 1

0

σ̂
X
i
X
i(s, t)φ

i

r(s)ds = λ
i

rφ
i

r(t), r = 1, . . . ,mn,

subject to the constraints 〈φiq, φ
i

r〉 = 0, for q 6= r, q, r = 1, . . . ,mn and ‖φir‖ = 1. Then, the estimated

scores ξ̂iur are given by

ξ̂
i

ur = (λ̂
i

r)
−1/2〈X i

u, φ̂
i

r〉, u = 1, . . . , n, r = 1, . . . ,mn, i ∈ V.

For each i ∈ V, let ξ̂iu = (ξ̂iu1, . . . , ξ̂
i

umn
)> be the mn-dimensional vector of the estimated scaled

scores corresponding to the observation Xu, u = 1, . . . , n. Following Huang et al. (2010) we use

B-spline functions to approximate the additive components f ijqr in model (2.7). To be precise, let

−1 = τ0 < τ1 < . . . < τLn < τLn+1 = 1 be an equidistant partition of the interval [−1, 1] into Ln + 1

subintervals Ib = [τb, τb+1), b = 0, . . . , Ln − 1, and ILn = [τLn , τLn+1].

For the number of knots we make the following assumption. Define S`Ln as the space of polynomial

splines of degree ` ≥ 1 consisting of functions s satisfying: (i) the restriction of s to the interval Ib

is a polynomial of degree ` for 1 ≤ b ≤ Ln; (ii) for ` ≥ 2 and 1 ≤ `′ ≤ ` − 2, s is a `′ times

continuously differentiable on the interval [−1, 1]. Then, there exists a basis of normalized B-splines

functions (hk)1≤k≤kn for the space S`Ln , where kn = Ln + `+ 1, such that every function s ∈ S`Ln can

be represented as

s(x) =

kn∑
k=1

βkhk(x)

(see Schumaker (2007)). Under some smoothness conditions, the additive functions f ijqr can be repre-

sented by linear combinations of B-splines functions

f
ij

qr(x) =

∞∑
k=1

β
ij

qrkhk(x) q, r = 1, 2, . . . , (3.1)

where the sum of squared coefficients is summable, that is

∞∑
k=1

(β
ij

qrk)
2
<∞. (3.2)
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By truncation of this series, we obtain the following approximation

f
ij

qr(x) ≈
kn∑
k=1

hk(x)β
ij

qrk, q, r = 1, 2, . . . , (3.3)

where the sequence (kn)n∈N diverges to infinity as n → ∞ (note that this can always be achieved by

increasing the number of knots in the partition). Hence, the corresponding function f ijqr will be zero

approximately if and only if ‖βijqr‖
2

2 = 0, where ‖ ·‖2 denotes the Euclidean norm of the kn-dimensional

vector βijqr = (βijqr1, . . . , β
ij

qrkn
)>, q, r = 1, . . . ,mn. Thus, to encourage sparsity we propose to minimize

the criterion

PLi(β, ξ̂) =
1

2n

mn∑
q=1

n∑
u=1

(
ξ̂
i

ur −
p∑
j 6=i

mn∑
r=1

hT(ξ̂
j

ur)β
ij

qr

)2

+ λn

p∑
j 6=i

{ mn∑
q=1

mn∑
r=1

‖βijqr‖
2

2

}1/2

,

subject to the constraint

n∑
u=1

hT(ξ̂
j

ur)β
ij

qr = 0, q, r = 1, . . . ,mn, j ∈ V, (3.4)

where hT(x) = (h1(x), . . . , hkn(x)) is the kn-dimensional vector of the B-splines basis functions and

λn is a tuning parameter. The group lasso penalty
∑p

j 6=i{
∑mn

q=1

∑mn

r=1
‖βijqr‖

2

2}
1/2 enforces all regression

coefficients βijqr1, . . . , β
ij

qrkn
to either be all 0 or all nonzero, q, r = 1, . . . ,mn. Note that the centering

constraint (3.4) accounts for the fact that the function f ijqr in model (2.7) satisfies E(f ijqr(ξ
j

r)) = 0, for

q, r = 1, . . . ,mn.

This problem can be converted to an unconstrained optimisation problem by centering the basis

functions. More precisely, defining

h̃nk(ξ̂
j

ur) = hk(ξ̂
j

ur)−
1

n

n∑
u=1

hk(ξ̂
j

ur), k = 1, . . . , kn, r = 1, . . . ,mn, j ∈ V, (3.5)

we consider the unconstrained optimization problem

P̂Li(β, ξ̂) =
1

2n

mn∑
q=1

n∑
u=1

(
ξ̂
i

ur −
p∑
j 6=i

mn∑
r=1

h̃T
n(ξ̂

j

ur)β
ij

qr

)2

+ λn

p∑
j 6=i

{ mn∑
q=1

mn∑
r=1

‖βijqr‖
2

2

}1/2

, (3.6)

where

h̃n(ξ̂
j

ur) = (h̃n1(ξ̂
j

ur), . . . , h̃nkn(ξ̂
j

ur))
T, (3.7)

is the kn-dimensional vector of the centered B-splines evaluated at the estimated scores.

Now let ξ̂i = (ξ̂iur)1≤u≤n,1≤r≤mn be the n×mn matrix of the estimated scores, and define

H̃T
n(ξ̂
−i

) = (H̃n(ξ̂
1
), . . . , H̃n(ξ̂

i−1
), H̃n(ξ̂

i+1
), . . . , H̃n(ξ̂

p
)) ∈ Rn×(p−1)knmn (3.8)

as the vector of matrices H̃n(ξ̂j) = (h̃T
n(ξ̂jur))1≤u≤n,1≤r≤mn ∈ Rn×knmn . Similarly, let

B
i

= (B
ij
, j ∈ V \ {i}) ∈ R(p−1)knmn×mn ,
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be the vector of matrices Bij = (βijqr)1≤q≤mn,1≤r≤mn ∈ Rknmn×mn , j 6= i. Then, following some algebraic

manipulations, the objective function in (3.6) can be rewritten as

P̂Li(B, ξ̂) =
1

2n
‖ξ̂i − H̃T

n(ξ̂
−i

)B
i‖2F + λn

p∑
j 6=i

‖Bij‖F , (3.9)

where ‖ · ‖F denotes the Frobenius norm. Finally, we define B̂i

n as the solution of

B̂
i

n = argmin{P̂Li(B, ξ̂) : B ∈ R(p−1)knmn×mn},

and propose to estimate the set En in (2.8) by

Ên = {(i, j) ∈ V × V : i 6= j, ‖B̂ij

n ‖F > 0 or ‖B̂ji

n ‖F > 0}.

We summarize the algorithm below

(1) Implement FPCA to obtain the estimated scores ξ̂iur of each observation X i

u and then transform

the scores into the range [−1, 1] using a monotone transformation. Choose mn such that 90% of

the total variation is explained.

(2) For a given λn and for each i ∈ V solve the optimisation problem (3.9) using, for example,

distance convex programming techniques, to find a sparse estimate of Bi.

(3) Declare that there is an edge between node i and node j if and only if either ‖B̂ij

n ‖
2

F or ‖B̂ji

n ‖
2

F

are not zero.

4 Statistical guarantees

In this section we study the theoretical properties of the proposed estimator of the graph structure of

the AFGM where we allow the number of nodes p to diverge to infinity with increasing sample size. A

particular technical challenge in deriving the asymptotic theory consists in the fact that the additive

structure is applied to the unobserved variables ξiur, and the estimator B̂i

n obtained from minimizing

(3.9) is based on the estimated scores. Thus, the error in these estimated coefficients must be taken

into account for the analysis of the procedure.

We begin by introducing some notation. For any two positive sequences of real numbers (an)n∈N

and (bn)n∈N, we write an . bn if an ≤ K1bn for some constant 0 < K1 <∞ which does not depend on

n. We use the notation an � bn representing the property A ≤ infn|anbn | ≤ supn|anbn | ≤ B, for positive

constants A and B. Moreover, given a matrix A = (aij)1≤i≤M1,1≤j≤M2
∈ RM1×M2 , we use ‖A‖F for the

Frobenious norm and ‖A‖2 for the operator norm. Finally, for any two symmetric matrices A and B,

we use the notation A � B to denote the property that the matrix B −A is nonnegative definite.

Let

B
∗i
mn

= (B
∗ij
mn
, j ∈ V \ {i}), (4.1)

9



with B∗ijmn = {β∗ijqrk : 1 ≤ q, r ≤ mn, k ∈ N} be the true population matrix of parameters for the optimal

prediction, defined by

B
∗i
mn

= argmin
β
ij
qrk

mn∑
q=1

E
[
ξ
i

q −
p∑
j 6=i

mn∑
r=1

∞∑
k=1

(hk(ξ
j

r)− E(hk(ξ
j

r)))β
ij

qrk

]2
,

where hk(·)k≥1 are the B-splines functions used in the representation (3.1). We define the truncated

neighbourhood Ni

n of each node i ∈ V by

N
i

n = {j ∈ V \ {i} : ‖B∗ijmn‖F > 0}

(note that ‖B∗ijmn‖F <∞ by assumption (3.2)). Using this representation and observing the expansion

(3.1) of f ijqr, the edge set En defined in (2.8) can be rewritten as

En = {(i, j) ∈ V × V : i 6= j, i ∈ N
j

n or j ∈ N
i

n}. (4.2)

Let

f
ij

qr(ξ
j

r) =

∞∑
k=1

β
∗ij
qrkhk(ξ

j

r) =

∞∑
k=1

β
∗ij
qrkh̃k(ξ

j

r)

(for the second equality we use the fact that E[f ∗ijqr (ξjr)] = 0), where the functions h̃k are defined by

h̃k(ξ
j

r) = hk(ξ
j

r)− E(hk(ξ
j

r)). (4.3)

We obtain from (2.7) the representation

ξ
i

q =
∑
j∈Nin

mn∑
r=1

f
ij

qr(ξ
j

r) + ε
i

q, q = 1, . . . ,mn, i = 1, . . . , p, (4.4)

where εq = ξiq − E[ξiq|{ξ
j

r , j 6= i; r = 1, . . . ,mn}]. Thus, the best predictor of ξiq is an additive function

of the scores in the set of neighbours Ni

n of the node i only.

Let h̃(ξjr) = (h̃1(ξ
j

r), . . . , h̃kn(ξjr))
T ∈ Rkn be the vector of the centered kn B-splines evaluated at the

unobserved scaled scores ξjr , r = 1, . . . ,mn, j ∈ V, and define the 1× knmn and 1× niknmn vectors

H̃(ξ
j
) = (h̃T(ξ

j

r))1≤r≤mn ,

H̃T(ξ
N
i
n) = (H̃(ξ

j
), j ∈ N

i

n), (4.5)

where 1 ≤ ni ≤ p is the cardinality of the set Ni

n. Finally, we introduce the matrices

Σ
∗

N
i
nN
i
n

= E
(
H̃(ξ

N
i
n)H̃T(ξ

N
i
n)
)
∈ Rn

i
knmn×n

i
knmn (4.6)

and

Σ
∗

ξ
j
N
i
n

= E
(
H̃T(ξ

j
)H̃T(ξ

N
i
n)
)
∈ Rknmn×n

i
knmn . (4.7)

Let

B
∗i
n = (B

∗ij
mnkn

, j ∈ V \ {i}) ∈ R(p−1)knmn×mn

10



denote the truncated version of the population matrix defined in (4.1), where

B
∗ij
mnkn

= {β∗ijqrk : 1 ≤ q, r ≤ mn, 1 ≤ k ≤ kn}, (4.8)

and define

B
∗Nin
n = (B

∗ij
mnkn

, j ∈ N
i

n) ∈ Rn
i
knmn×mn . (4.9)

Recalling that B̂i

n = (B̂ij, j ∈ V \ {i}) ∈ R(p−1)knmn×mn is the solution to the minimization problem

(3.9). The estimated neighbourhood for each node i ∈ V is defined

N̂
i

n = {j ∈ V \ {i} : ‖B̂ij

n ‖F > 0},

which yields an alternative representation of the estimated edge set

Ên = {(i, j) ∈ V × V : i ∈ N̂
j

n or j ∈ N̂
i

n}. (4.10)

For the statement of our theoretical results we require several assumptions. Assumption 4.1 is

a similar assumption as made by Qiao et al. (2018) and refers to the eigensystem of the covariance

operator defined in (2.1).

Assumption 4.1 .

(i) There exist positive constants d0, d1 and d2 such that

d0r
−β ≤ λir ≤ d1r

−β
, λ

i

r − λ
i

r+1 ≥ d−1
2 r

−1−β
for r ≥ 1,

and for some β > 1.

(ii) The number of principal component scores mn satisfies mn � nα for some constant α ∈ [0, 1
2+3β ).

(iii) The eigenfunctions φir of the covariance operator defined in (2.2) are continuous and satisfy

max
j∈V

sup
s∈[0,1]

sup
r∈N
|φjr(s)| ≤ C <∞.

The next two conditions refer to the smoothness of the functions f ijqr in model (2.6). To be precise,

let κ be a nonnegative integer and let ρ ∈ (0, 1]. We define F κ,ρ as the Hölder space of functions

f : [0, 1]→ R whose κth derivative exists and satisfies a Lipschitz condition of order ρ, and additionally

satisfy the condition

‖f‖∞ = supx∈[0,1]|f(x)| ≤ F (4.11)

for some F > 0.

Assumption 4.2 Let d = κ + ρ > 0.5 and assume f ijqr ∈ F κ,ρ and E[f ijqr(ξ
j

ur)] = 0, for all q, r =

1, . . . ,mn and (i, j) ∈ V × V.

Assumption 4.3 The joint density function, say pj, of the random vector ξj = (ξj1, . . . , ξ
j

mn
)T is

bounded away from zero and infinity on [0, 1]mn for every j = 1, . . . , p.

11



In order to derive graph estimation consistency, we make the following assumption about the errors

εi1, . . . , ε
i
mn in model (2.7). A similar condition was also postulated by Voorman et al. (2013) for joint

additive models in the multivariate setting.

Assumption 4.4 There exists a constant C > 0 such that P (|εiq| > x) ≤ 2 exp(−Cx2) for all x ≥ 0

and q = 1, . . . ,mn, i ∈ V.

Assumption 4.5 kn = O(nν) for some ν > 0, where ν ≤ α(2+3β)
2d−4 if d ≥ 2.

Assumption 4.6 (Sparsity) There exists a constant θ > 0 such that for all i ∈ V∑
j∈Nin

‖B∗ijmnkn‖F < θ.

Assumption 4.7 (Bounded eigenspectrum) The minimum eigenvalue Λmin(Σ∗
N
i
nN
i
n

) of the matrix Σ∗
N
i
N
i

defined in (4.6) satisfies

Λmin(Σ
∗

N
i
nN
i
n
) > Cmin

for some constant Cmin > 0.

Assumption 4.8 (Irrepresentable condition) There exists a constant 0 < η ≤ 1 such that

max
j /∈Nin

‖Σ∗
ξ
j
N
i
n
(Σ
∗

N
i
nN
i
n
)
−1‖F ≤

1− η√
ni
. (4.12)

Assumption 4.7 states that the minimum eigenvalue of the population matrix Σ
N
i
nN
i
n

is bounded away

from 0. Assumption 4.8 is the classical irrepresentable condition which is necessary and sufficient to

show model selection consistency of the group lasso (Yuan and Lin, 2006; Bach, 2008). According

to Meinshausen et al. (2009) if the irrepresentable condition is relaxed, the lasso selects the correct

non-zero coefficients but it may select some additional zero components. Ravikumar et al. (2009) and

Obozinski et al. (2011) considered similar assumptions for sparse additive and for high-dimensional

models, respectively. We now state our main theoretical result for the estimator N̂i

n of the neighbour-

hood corresponding to the node i ∈ V.

Theorem 4.1 Suppose that Assumptions 4.1 - 4.8 are satisfied and the regularization parameter λn

satisfies for all i

nim3/2

n

kdn
∑

j∈Nin
‖B∗ijmnkn‖F

. λn . (n
i
)
−3/2

(b
∗i
n )

3
(
∑
j∈Nin

‖B∗ijmnkn‖F )
−2
, (4.13)

where b∗in = min
j∈Nin
‖B∗ijmnkn‖F . Then,

P
(
N̂
i

n 6= N
i

n

)
. exp

(
− C1

n1−α(2+3β)(λn
∑

j∈Nin
‖B∗ijmnkn‖F )2

nim2
nk

4
n

+ 2 log(pmnkn)
)
,

where C1 > 0.
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The proof of Theorem 4.1 is complicated and given in the Appendix. A major difficulty consists in

the fact that the objective function (3.9) is based on the estimated scores and one has to establish

concentration bounds in the estimation of the sample design matrix Σn

N
i
nN
i
n

using the estimated scores,

rather than the true scores (stated as Theorem 8.1 in the Appendix).

Recalling the representations (4.2) and (4.10) for the edge set En and its estimate Ên respectively.

Using the union bound of probability and Theorem 4.1 we obtain the following result.

Corollary 4.1 If the assumptions of Theorem 4.1 are satisfied, we have for a positive constant C1 > 0

P (Ên 6= En) . exp
(
− C1

n1−α(2+3β)(λn minpi=1

∑
j∈Nin
‖B∗ijmnkn‖F )2

pm2
nk

4
n

+ 2 log(pmnkn)
)
.

Remark 4.1

(a) Under the assumptions of Theorem 4.1 it follows that

P (Ên 6= En)→ 0,

if n→∞, p→∞ and

n1−α(2+3β)(λn minpi=1 b
∗i
n )

nim2
nk

4
n

→∞ and
nim2

nk
4

n log(pmnkn)

λ2
n

= o
( p

min
i=1

b
∗i
n

)
. (4.14)

For example, if mn = O(nα) with α ∈ [0, 1
2+3β ), kn = O(nν) and maxi∈V n

i = O(nθ) with 0 ≤ θ < 1,

then, (4.14) reduces to

log(pmnkn)

n1−(α(4+3β)+θ+4ν)λn
= o
( p

min
i=1

b
∗i
n

)
.

(b) In the case of scalar data (α = 0), the conditions of Theorem 4.1 will be implied by

ni

kdn
. λnb

∗i
n , λn(n

i
)
3/2 . (b

∗i
n )

3
and

√
nik4

n log(pkn)

nλ2
n

= o(b
∗i
n ) ,

which are similar to the assumptions made in Ravikumar et al. (2009) and Voorman et al. (2013) for

the analysis of scalar data by sparse additive models.

5 Finite sample properties

5.1 Simulated data

In this section we investigate the finite sample performance of the proposed model (AFGM) by means

of a simulation study. We also compare the new methodology with the functional additive precision

operator (FAPO) of Li and Solea (2018) and the FGGM of Qiao et al. (2018), where we consider two

scenarios: nonlinear dependence and linear dependence.

13



Given an edge set E of a directed acyclic graph, we generate functional data by the model

X
i

u(ts) =
∑

(i,j)∈E

5∑
q=1

5∑
r=1

f
ij

qr(ξ
j

ur)φq(ts) + ε
i

us, u = 1, . . . , n, (5.1)

where φi1, . . . , φ
i

5 are the first 5 functions of the orthonormal Fourier basis, and the errors εius form an

i.i.d. sample from a N (0, 0.52) distribution. In all simulation experiments in this section, this data

is smoothed to obtain continuous functions X i

u using 10 B-spline basis functions of order 4; that is,

piecewise polynomials of degree 3. As a consequence the scores satisfy a structural equation of the

form

ξ
i

uq =
∑

(i,j)∈E

5∑
r=1

f
ij

qr(ξ
j

ur) + ε̃
i

uq, u = 1, . . . , n, q = 1, . . . , 5 (5.2)

(see Pearl, 2002), where the errors ε̃iuq form an i.i.d. sample a centred normal distribution. For

simplicity we assume f ijqr(x) = f(x) for all q, r = 1, . . . and for all (i, j) ∈ E. In all examples, we center

f(ξjur) to have 0 mean, and we generated n = 100 functions observed at 100 equally spaced time points

0 = t1, . . . , t100 = 1.

We consider directed acyclic graphs with p = 100 nodes so that 1% of pairs of vertices are randomly

selected as edges. Then, we moralized the directed graph in order to obtain the undirected graph.

We choose mn = 5 functional principal components scores so that at least 90% of the total variation

is explained. Furthermore, we approximate each additive function using B-splines of order 4. For

simplicity we choose the same spline functions for all j = 1, . . . , p and for all r = 1, . . . ,mn. For the

choice of kn, we follow Meier et al. (2009) and take kn = 4 + d
√
ne.

For each scenario, we produce the average ROC curves (over 50 replications) for a range of 50

tuning parameters for the 3 functional graphical models estimators. To draw the curves, we compute

for different regularization parameters λ the positive rate (sensitivity) and false positive rate (1-

specificity) which are defined as

TP =

∑
1≤j<i≤p I{(i, j) ∈ En, (i, j) ∈ Ên}∑

1≤j<i≤p I{(i, j) ∈ En}
, FP =

∑
1≤j<i≤p I{(i, j) /∈ En, (i, j) ∈ Ên}∑

1≤j<i≤p I{(i, j) /∈ En}
.

5.1.1 Scenario 1: nonlinear models

We use the following nonlinear models, where the linearity assumption (2.5) does not hold. We first

consider the following model, Model I, used in Zhu et al. (2014)

Model I: f(x) = 1.4 + 3x− 1

2
+ sin(2π(x− 1

2
)) + 8(x− 1

3
)
2 − 8

9
.

For the choice of scores in (5.2), we simulate ξiur independently from the uniform distribution U [−1, 1]

for all r = 1, . . . ,mn, i ∈ V, u = 1, . . . , n. Furthermore, the errors εiuq in (5.2) form an i.i.d. sample

from the normal distribution with variance 0.1, that is N (0, 0.52).

The second example was considered in Meier et al. (2009)

Model II: f(x) = − sin(2x) + x
2 − 25/12 + x+ exp(−x)− 2/5 · sinh(5/2).
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The scores ξiur were simulated independently from the uniform distribution U [−2.5, 2.5] for all r =

1, . . . ,mn, i ∈ V, u = 1, . . . , n, and the errors εiuq in (5.2) were simulated from the normal distribution

N (0, 1).

The left and middle panel of Figure 1 show the averaged ROC curves over 40 replications corre-

sponding to the two models. In first two lines Table 1, we report the means and standard deviations

(in parentheses) of the associated area-under-curve (AUC) values. An AUC close to 1 means a better

performance for the estimator. We observe from the plots in Figure 1 and from Table 1, that for

the AFGM estimator the areas under the ROC are substantially larger than for the FGGM, indicat-

ing that our new method AFGM dominates the FGGM. Similarly, the AFGM performs better than

FAPO, indicating the benefit of a sparse and high-dimensional scheme.
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Figure 1. ROC curves ((AFGM (−), FAPO (−−−), FGGM (· · ·))
for Model I (left) and Model II (middle) and Model III (right).

p Models
Methods

AFGM FAPO FGGM

100

I 0.73 (0.02) 0.67 (0.02) 0.59 (0.01)

II 0.76 (0.01) 0.70 (0.02) 0.69 (0.02)

III 0.89 (0.01) 0.82 (0.01) 0.90 (0.01)

Table 1. Means and standard errors (in parentheses) for AUC

for models I and II.

5.1.2 Scenario 2: linear model.

Next, we consider a model, where the linearity assumption is satisfied, to see how much efficiency

might be lost by employing a nonparametric model under the Gaussian assumption. The model is

generated by (5.2) and (5.1) with

Model III: f(x) = x
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The scores ξiur were simulated independently from the standard Gaussian distribution. To implement

the AFGM we truncate the scores such that they are located in the interval [−1, 1]. The right panel

in Figure 1 presents the averaged ROC curves for Model III. The lower part of Table 1 reports the

means and standard deviations of AUC. We can see that under the linearity assumption the AFGM

is comparable with the FGGM and both methods show an improvement compared to FAPO.

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

 

 

 

 X T7 C5 C3 C1 Cz C2 C4 C6 T8 Y

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6 TP8

F7 F5 F3 F1 Fz F2 F4 F6 F8

P7 P5 P3 P1 Pz P2 P4 P6 P8

AF7

FP1 FPZ Fp2

AF8

PO7

O1 OZ O2

PO8

AF1 AFZ AF2

PO1 POZ PO2

nd

Figure 2. Estimated brain networks by AFGM (upper panels), FAPO (middle

panels) and FGGM (lower panels) for the alcoholic group (left), the

control group (middle) and differential brain networks (right).

6 Real data application

In this section we apply the new method to the EEG data set available at UCI Machine Learning

Repository. The data involve 77 subjects in the alcoholic group and 45 subjects in the control group.
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Each subject was exposed to a stimulus while brain activities were recorded from the 64 electrodes

placed on the subject’s scalp, over a one-second period in which 256 time points were sampled. See

Zhang et al. (1995) and Ingber (1997) for more backgrounds of this data. The goal is to characterize

functional connectivity among the 64 nodes for the two groups, based on the functional data collected

from the electrodes.

We choose kn = 4 + d
√
ne B-spline functions of order 4 and number of scores equal to mn = 5.

Since our goal is to capture outstanding differences in brain connectivity between the alcoholic and

control groups, we take the tuning constant λn to be such that 5% of the
(
64
2

)
pairs of vertices are

retained as edges.

Figure 2 shows the estimated brain networks constructed by the three methods for the alcoholic

group (left), control group (middle). The right plots in Figure 2 represent the differential brain

networks, where the red lines indicate the edges that are in the alcoholic network but not in the

control network, and the blue lines indicate the edges that are in the control network but not in the

alcoholic network.

We observe that the brain networks have different patterns for the two groups. For example, we

observe for all methods, that there is increased functional connectivity in the left frontal area for the

alcoholic group relative to the control.

7 Conclusions

In this paper, we utilise the idea of generalized additive models to develop a new nonparametric

graphical model for multivariate functional data which does not require the assumption of a Gaus-

sian distribution. The conditional relationships among the principal scores in the Karhunen-Loéve

expansion of a random function are allowed to take an arbitrary additive rather than a linear form as

imposed by the assumption of Gaussianity. The additive functions are then approximated by linear

combinations of B-splines. This approximation allows us to develop a group lasso algorithm to esti-

mate the graph that encourages blockwise sparsity to a matrix formed by the coefficients in the spline

approximation. We have established consistency of the procedure while both the number of principal

components and the number of nodes diverge to infinity with increasing sample size. By simulation

study and an analysis of a data example we demonstrate the applicability of the new methodology.

The proposed model and methodology suggests many directions for future research. First, the

asymptotic results here are developed under the framework where the order mn in the expansion (2.7)

tends to infinity with the sample size, and it is of interest if similar statistical guarantees can be

obtained in model (2.6) with the infinite representation. Second, the theory is developed under the

assumption that the random functions are fully observed. Therefore, an interesting and important

question for future research is the extension of the methodology to smooth functions that are observed

on a dense time grid such that the covariance operators and the functions are consistently estimated.

Another important direction is the consideration of the sparse setting, where the functions are observed

on a relatively small number of time points and are contaminated with noise. In this case, alternative

17



approaches such as Yao et al. (2005), Xiao et al. (2018) and Petrovich et al. (2018) might be useful

and will be further investigated in the future.
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8 Appendix: Proofs

8.1 Auxiliary results

In this section we state some auxiliary results, which will be used in the proof of the Theorem 4.1. The

next Lemma provides a concentration inequality for the norm ‖Σ̂
X
i
X
i−Σ

X
i
X
i‖HS. It can be proved by

similar arguments as given in the proof of Lemma 6 in Qiao et al. (2018) observing the independence

of the random variables ξiur. The details are omitted for the sake of brevity.

Lemma 8.1 Suppose that Assumption 4.1 is satisfied. Then, there exists a constant C1 such that for

all 0 < ε ≤ C1 and for each i = 1, . . . , p

P
(
‖Σ̂

X
i
X
i − Σ

X
i
X
i‖HS ≥ ε

)
. exp(−C1nε

2
).

Let ξi = (ξiur)
1≤r≤mn
1≤u≤n ∈ Rn×mn be the matrix of unobserved scores, and define

h̃n(ξ
j

ur) = (h̃n1(ξ
j

ur), . . . , h̃nkn(ξ
j

ur))
T

as the vector of the centered kn B-splines functions evaluated at the score ξjur, where

h̃nk(ξ
j

ur) = hk(ξ
j

ur)−
1

n

n∑
u=1

hk(ξ
j

ur), k = 1, . . . kn. (8.1)

Note that this definition corresponds to (4.3), where the expectation has been replaced by its empirical

counterpart, and to (3.5), where the estimated scores ξ̂jur have been replaced by the unobserved scores

ξjur. Let

H̃n(ξ
j
) = (h̃T

n(ξ
j

ur))1≤u≤n,1≤r≤mn ∈ Rn×knmn , (8.2)

H̃T
n(ξ

N
i
n) = (H̃n(ξ

j
), j ∈ N

i

n) ∈ Rn×niknmn , (8.3)

and define

Σ
n

N
i
nN
i
n

=
1

n
H̃n(ξ

N
i
n)H̃T

n(ξ
N
i
n) ∈ Rn

i
knmn×n

i
knmn , (8.4)

which is the sample analog of the matrix Σ∗
N
i
nN
i
n

defined in (4.6). Similarly, let ξ̂i = (ξ̂iur)1≤u≤n,1≤r≤mn

be the n×mn matrix of the estimated scores, and

H̃T
n(ξ̂

N
i
n) = (H̃n(ξ̂

j
), j ∈ N

i

n) ∈ Rn×niknmn , (8.5)

where

H̃n(ξ̂
j
) = (h̃T

n(ξ̂
j

ur))1≤u≤n,1≤r≤mn ∈ Rn×knmn , (8.6)
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and h̃n(ξ̂jur) is defined in (3.7). Then,

Σ̂
n

N
i
nN
i
n

=
1

n
H̃n(ξ̂

N
i
n)H̃T

n(ξ̂
N
i
n) ∈ Rn

i
knmn×n

i
knmn (8.7)

is the estimated version of the sample design matrix Σn

N
i
nN
i
n

in (8.4). The next result provides tail

bounds for all entries of the matrix Σ̂n

N
i
nN
i
n

− Σn

N
i
nN
i
n

.

Theorem 8.1 Suppose that Assumption 4.1 holds. Then, there exists a positive constant C1 such

that for any δ > 0 satisfying 0 < δ ≤ C1 and for all (i, j) ∈ V × V, i 6= j, r, q = 1, . . . ,mn and

k, ` = 1, . . . , kn, we have

P
(∣∣∣ 1
n

n∑
u=1

(
h̃nk(ξ̂

i

ur)h̃n`(ξ̂
j

uq)− h̃nk(ξ
i

ur)h̃n`(ξ
j

uq)
) ∣∣∣ ≥ δ) . exp

(
−C1n

1−α(2+3β)
k
−2

n δ
2
)
.

Proof. First, we have

∣∣ n∑
u=1

(
h̃nk(ξ̂

i

ur)h̃n`(ξ̂
j

uq)− h̃nk(ξ
i

ur)h̃n`(ξ
j

uq)
)∣∣ ≤ T1 + T2,

where the terms T1 and T2 are defined as

T1 =
∣∣∣ n∑
u=1

h̃n`(ξ
j

uq)
(
h̃nk(ξ̂

i

ur)− h̃nk(ξ
i

ur)
)∣∣∣, T2 =

∣∣∣ n∑
u=1

h̃nk(ξ̂
i

ur)
(
h̃n`(ξ̂

j

uq)− h̃n`(ξ
j

uq)
) ∣∣∣.

Consequently, for any δ > 0,

P
(∣∣∣ n∑

u=1

(
h̃nk(ξ̂

i

ur)h̃n`(ξ̂
j

uq)− h̃nk(ξ
i

ur)h̃n`(ξ
j

uq)
) ∣∣∣ ≥ 2nδ

)
≤ P (T1 ≥ nδ) + P (T2 ≥ nδ), (8.8)

and therefore it is sufficient to derive inequalities for the two probabilities on the right-hand side of

(8.8).

(a) We start with the probability P (T1 ≥ nδ). By the definition of h̃nk(ξ̂
i

ur) and h̃nk(ξ
i

ur) in (3.5) and

(8.1), respectively, and some elementary calculations, we obtain for any δ > 0

P (T1 ≥ nδ) ≤ P
(
T11 ≥

nδ

2

)
+ P

(
T12 ≥

nδ

2

)
,

where

T11 =
∣∣∣ n∑
u=1

h`(ξ
j

uq)(hk(ξ̂
i

ur)− hk(ξ
i

ur))
∣∣∣,

T12 =
∣∣∣n−1

n∑
v=1

h`(ξ
j

vq)

n∑
u=1

(hk(ξ̂
i

ur)− hk(ξ
i

ur))
∣∣∣.
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We now derive a concentration inequality for T11. By Cauchy-Schwarz inequality and using the fact

that |h`(ξjuq)| ≤ 1 we have

P
(
T11 ≥

nδ

2

)
≤ P

( n∑
u=1

|hk(ξ̂
i

ur)− hk(ξ
i

ur)|
2 ≥ nδ2

4

)
,

and Taylor’s expansion gives ∣∣∣hk(ξ̂iur)− hk(ξiur)∣∣∣ =
∣∣∣∂hk(ξ∗)
∂ξiur

(
ξ̂
i

ur − ξ
i

ur

) ∣∣∣, (8.9)

where ξ∗ lies in the line segment between ξ̂iur and ξiur. From the derivative formula of the B-splines (see

De Boor (1978), Ch.10) there exists a constant M > 0, independent of n, such that for all k = 1, . . . , kn

and x ∈ [−1, 1], ∣∣∣∂hk(x)

∂x

∣∣∣ ≤MLn, (8.10)

where Ln is the number of knots. As a result, using (8.9) and (8.10) we obtain

P (T11 ≥ nδ) ≤ P
( n∑
u=1

|hk(ξ̂
i

ur)− hk(ξ
i

ur)|
2 ≥ nδ2

4

)
≤ P

( n∑
u=1

|ξ̂iur − ξ
i

ur|
2 ≥ nδ2

4M 2L2
n

)
.

Recall that ξ̂iur = (λ̂ir)
−1/2〈X i

u, φ̂
i

r〉 and ξiur = (λir)
−1/2〈X i

u, φ
i

r〉. Then,

ξ̂
i

ur − ξ
i

ur =(λ̂
i

r)
−1/2〈X i

u, φ̂
i

r〉 − (λ
i

r)
−1/2〈X i

u, φ
i

r〉

≤((λ̂
i

r)
−1/2 − (λ

i

r)
−1/2

)〈X i

u, φ̂
i

r〉+ (λ
i

r)
−1/2〈X i

u, φ̂
i

r − φ
i

r〉.

By the Cauchy-Schwarz inequality and using the fact that ‖φ̂ir‖ = 1 we obtain,

|ξ̂iur − ξ
i

ur| ≤ |(λ̂
i

r)
−1/2 − (λ

i

r)
−1/2|‖X i

u‖+ (λ
i

r)
−1/2‖X i

u‖‖φ̂
i

r − φ
i

r‖

≤ |(λ̂ir)
−1/2 − (λ

i

r)
−1/2|‖X i

u‖+ (λ
i

r)
−1/2

d
i

r‖X
i

u‖‖Σ̂X
i
X
i − Σ

X
i
X
i‖HS,

where we have used the inequality ‖φ̂ir − φ
i

r‖ ≤ dir‖Σ̂X
i
X
i − Σ

X
i
X
i‖HS (see Lemma 4.3 in Bosq, 2012)

and assume w.l.o.g. that φ̂ir can be chosen to satisfy sgn〈φ̂ir, φ
i

r〉 = 1 (see the discussion in Remark

2.1). Using the inequality (a+ b)2 ≤ 2(a2 + b2), a, b ∈ R, this implies

P (T11 ≥ nδ) ≤ P
(
|(λ̂ir)

−1/2 − (λ
i

r)
−1/2|2

n∑
u=1

‖X i

u‖
2 ≥ nδ2

16M 2L2
n

)
+ P

(
(λ

i

r)
−1

(d
i

r)
2‖Σ̂

X
i
X
i − Σ

X
i
X
i‖2HS

n∑
u=1

‖X i

u‖
2 ≥ nδ2

16M 2L2
n

)
.

(8.11)

We now consider the first term at the right-hand side of (8.11). Observe that
∑n

u=1
‖X i

u‖
2 =∑∞

r=1
λir
∑n

u=1
(ξiur)

2, and recall that ξiur ∈ [−1, 1] with E(ξiur) = 1, E((ξiur)
2) = 1. Thus |(ξiur)

2−1| ≤ 2,
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which implies that for each r = 1, . . . ,mn,
∑n

u=1
((ξiur)

2 − 1) is a sub-Gaussian random variable with

parameter proxy σ2 = 4n. Consequently, we obtain by Theorem 2.1 of Boucheron et al. (2013)

E
{ n∑

u=1

((ξ
i

um)
2 − 1)

}2k

≤ k!(16n)
k
, k ≥ 1.

Using the convexity of the function x 7→ x2k and Jensen’s inequality, it follows

E
∣∣∣ n∑
u=1

(‖X i

u‖
2 − E‖X i

u‖
2
)
∣∣∣2k = E

{ ∞∑
r=1

λ
i

r

n∑
u=1

((ξ
i

um)
2 − 1)

}2k

≤
∞∑
r=1

λ
i

rE
{ n∑

u=1

((ξ
i

um)
2 − 1)

}2k

(

∞∑
r=1

λ
i

r)
2k−1

≤ k!(16λ
2

0n)
k
, k ≥ 1,

where λ0 = supi≤p
∑∞

r=1
λir < ∞ (due to Assumption 4.1). Hence, from Theorem 2.1 of Boucheron

et al. (2013), we obtain for all ε > 0,

P
( n∑
u=1

(‖X i

u‖
2 − E‖X i

u‖
2
) ≥ ε

)
≤ exp

(
− ε2

128λ2
0n

)
.

Furthermore, E(
∑n

u=1
‖X i

u‖
2) ≤ nλ0. Thus, for all ε/2 ≥ nλ0,

P
( n∑
u=1

‖X i

u‖
2 ≥ ε

)
≤ P

( n∑
u=1

(‖X i

u‖
2 − E‖X i

u‖
2
) ≥ ε

)
≤ exp

(
− ε2

128λ2
0n

)
. (8.12)

Now, we obtain for the first probability on the right-hand side of (8.11)

P
(
|(λ̂ir)

−1/2 − (λ
i

r)
−1/2|2

n∑
u=1

‖X i

u‖
2 ≥ nδ2

16M 2L2
n

)
≤ P

(
|(λ̂ir)

−1/2 − (λ
i

r)
−1/2| ≥ δ

2M 1/2Ln

)
+ P

( n∑
u=1

‖X i

u‖
2 ≥ n

4M

)
. (8.13)

Define the event Ωi

mn
= {‖Σ̂

X
i
X
i − Σ

X
i
X
i‖HS < 2−1δimn}, where δimn = min1≤r≤mn{λ

i

r − λir+1}.

Assumption 4.1(i) implies δimn ≥ d
−1
2 m−(1+β)

n leading to

P ((Ω
i

mn
)
{
) ≤ P (‖Σ̂

X
i
X
i − Σ

X
i
X
i‖HS ≥ 2−1d−1

2 m
−(1+β)

n ) . exp(−C1nm
−2(1+β)

n ), (8.14)

for some C1 > 0, where we have used Lemma 8.1 with δ = 2−1d−1
2 m−(1+β)

n . Furthermore, from Lemma

4.43 of Bosq (2012) we have on the event Ωi

mn

sup
r≥1

|λ̂ir − λ
i

r| ≤ ‖Σ̂X
i
X
i − Σ

X
i
X
i‖HS ≤ 2−1δ

i

mn
≤ 2−1λ

i

mn
.

This implies λ̂ir ≥
λ
i
r
2 , λ̂ir ≤ 2λir and

|(λ̂ir)
−1/2 − (λ

i

r)
−1/2| ≤ (λ̂ir)

−1|λ̂ir − λ
i

r|(λ
i

r)
−1

(λ̂ir)
−1/2 + (λir)

−1/2
≤ 2(λ

i

r)
−3/2|λ̂ir − λ

i

r|.
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This together with (8.14) imply that

P
(
|(λ̂ir)

−1/2 − (λ
i

r)
−1/2| ≥ δ

2M 1/2Ln

)
≤P
((
|(λ̂ir)

−1/2 − (λ
i

r)
−1/2| ≥ δ

2M 1/2Ln

)
∩ Ω

i

mn

)
+ P ((Ω

i

mn
)
{
)

≤P
((
|λ̂ir − λ

i

r| ≥
δ(λir)

3/2

4M 1/2Ln

)
+ P ((Ω

i

mn
)
{
)

≤P
(

(‖Σ̂
X
i
X
i − Σ

X
i
X
i‖HS ≥

δ(λir)
3/2

4M 1/2Ln

)
+ P ((Ω

i

mn
)
{
),

where we used Lemma 4.43 of Bosq (2012) for the third inequality. Therefore, from this, Lemma 8.1,

(8.12) with ε = n
4M and the fact that d0r

−β ≤ λir, the right-hand side of (8.13) can be upper-bounded

by

P
(

(‖Σ̂
X
i
X
i − Σ

X
i
X
i‖HS ≥

δ(λir)
3/2

4M 1/2Ln

)
+ P

( n∑
u=1

‖X i

u‖
2 ≥ n

4M

)
+ P ((Ω

i

mn
)
{
) (8.15)

. exp(−C1nL
−2

n m
−3β

n δ
2
) + exp(−C2n) + exp(−C3nm

−2(β+1)

n ),

for all 0 < δL−1

n m
−3β/2

n ≤ C1 and some positive constants C1, C2 and C3.

For the second term on the right-hand side of the inequality (8.11) we use Lemma 8.1, (8.12) and

the fact that (dir)
−1 ≥ d2

2
√
2
m−1−β
n , to obtain,

P
(

(λ
i

r)
−1

(d
i

r)
2‖Σ̂

X
i
X
i − Σ

X
i
X
i‖2HS

n∑
u=1

‖X i

u‖
2 ≥ nδ2

16M 2L2
n

)
≤ P

(
‖Σ̂

X
i
X
i − Σ

X
i
X
i‖HS ≥

δ(λir)
1/2(dir)

−1

2M 1/2Ln

)
+ P

( n∑
u=1

‖X i

u‖
2 ≥ n

4M

)
(8.16)

. exp(−C4n) + exp(−C5nL
−2

n m
−(2+3β)

n δ
2
),

for 0 < δL−1

n m
−(2+3β)/2

n ≤ C5 and C4 > 0, C5 > 0.

Combining (8.15) and (8.16) we obtain for all 0 < δL−1

n m
−3β/2

n ≤ C3 the inequality

P (T11 ≥ nδ) . exp(−C1n) + exp(−C2nm
−2(β+1)

n ) + exp(−C3nL
−2

n m
−(2+3β)

n δ
2
). (8.17)

We now consider the probability P (T12 ≥ nδ). Using the fact that |h`(ξjuq)| ≤ 1 and Taylor’s expansion

(8.9) yield

P (T12 ≥ nδ) ≤ P
(∣∣∣ n∑

u=1

(ξ̂
i

ur − ξ
i

ur)
∣∣∣ ≥ nδ

2MLn

)
≤ P

( n∑
u=1

|ξ̂iur − ξ
i

ur|
2 ≥ nδ2

4M 2L2
n

)
,

where we have used the Cauchy-Schwarz inequality. Therefore, by similar arguments as used in the

derivation of the bound for P (T11 ≥ nδ), there exist positive constants C4, C5 and C6 such that for

all 0 < δL−1

n m
−3β/2

n ≤ C6

P (T12 ≥ nδ) . exp(−C4n) + exp(−C5nm
−2(β+1)

n ) + exp(−C6nL
−2

n m
−(2+3β)

n δ
2
). (8.18)
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Combining (8.17) and (8.18) and choosing suitable constants, we obtain for 0 < δL−1

n m
−3β/2

n ≤ C1,

P (T1 ≥ nδ) . exp(−C1nL
−2

n m
−(2+3β)

n δ
2
). (8.19)

(b) To derive a bound for the term P (T2 ≥ nδ) in (8.8) we use the decomposition

P (T2 ≥ nδ) ≤P
(∣∣∣ n∑

u=1

(
h̃nk(ξ̂

i

ur)− h̃nk(ξ
i

ur)
)(

h̃n`(ξ̂
j

uq)− h̃n`(ξ
j

uq)
) ∣∣∣ ≥ nδ

2

)
+ P

(∣∣∣ n∑
u=1

h̃k(ξ
i

ur)
(
h̃n`(ξ̂

j

uq)− h̃`(ξ
j

uq)
) ∣∣∣ ≥ nδ

2

)
=P
(
T21 ≥

nδ

2

)
+ P

(
T22 ≥

nδ

2

)
,

where the last inequality defines the terms T21 and T22 in an obvious manner. For the second term,

we obtain by the same arguments as used to estimate P (T1 ≥ nδ) for any 0 < δL−1

n m
−3β/2

n ≤ C2,

P
(
T22 ≥

nδ

2

)
. exp(−C2nL

−2

n m
−(2+3β)

n δ
2
). (8.20)

For the first term, we use the definition of the centred B-splines in (3.5) and (8.1) to obtain for any

δ > 0

P
(
T21 ≥

nδ

2

)
≤ P

(
T211 ≥

nδ

4

)
+ P

(
T212 ≥

nδ

4

)
,

where

T211 =
∣∣∣ n∑
u=1

(
hk(ξ̂

i

ur)− hk(ξ
i

ur)
)(

h`(ξ̂
j

uq)− h`(ξ
j

uq)
) ∣∣∣,

T212 = n−1

∣∣∣ n∑
u=1

(
hk(ξ̂

i

ur)− hk(ξ
i

ur)
) ∣∣∣∣∣∣ n∑

u=1

(
h`(ξ̂

j

uq)− h`(ξ
j

uq)
) ∣∣∣.

To derive a concentration bound for the first term, we use (8.9), (8.10) and the Cauchy-Schwarz

inequality to obtain

P
(
T211 ≥

nδ

4

)
≤ P

( n∑
u=1

|ξ̂iur − ξ
i

ur||ξ̂
j

uq − ξ
j

uq| ≥
nδ

4M 2L2
n

)
≤ 2P

( n∑
u=1

|ξ̂iur − ξ
i

ur|
2 ≥ nδ

4M 2L2
n

)
. exp(−C3nL

−2

n m
−(2+3β)

n δ),

for a positive constant C3 such that for 0 < δ1/2L−1

n m
−3β/2

n ≤ C3. Here the last inequality follows by

the same arguments as used for the bound of P (T11 ≥ nδ). Finally, for the term P
(
T212 ≥ nδ

4

)
we

have

P
(
T212 ≥

nδ

4

)
= P

(∣∣∣ n∑
u=1

(
hk(ξ̂

i

ur)− hk(ξ
i

ur)
) ∣∣∣∣∣∣ n∑

u=1

(
h`(ξ̂

j

uq)− h`(ξ
j

uq)
) ∣∣∣ ≥ n2δ

4

)
.
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Thus, we can apply similar techniques as used in the derivation of the bound (8.17) with nδ
2 replaced

by nδ
1/2

2 leading to

P
(
T212 ≥

nδ

4

)
. exp(−C4nL

−2

n m
−(2+3β)

n δ), (8.21)

for 0 < δ1/2L−1

n m
−3β/2

n ≤ C4. Combining these results with (8.8) and (8.19) and using the fact that

mn � nα and kn > Ln, we obtain the assertion of the Theorem. 2

Theorem 8.1 states that the elements of the matrix Σ̂
N
i
nN
i
n
−Σn

N
i
nN
i
n

exhibit exponential-type probability

tails. We also observe that the decay rate β of the eigenvalues appears in the tail behaviour. A similar

condition of exponential tails is imposed on the elements of the sample covariance matrix of scalar

and functional Gaussian data for the analysis of high-dimensional Gaussian graphical models (see, for

example, Ravikumar et al., 2011; Qiao et al., 2018).

Proposition 8.1 Suppose that Assumptions 4.2, 4.3 and condition (4.11) are satisfied. Then, there

exist functions f̃ ijnqr =
∑kn

k=1
βijqrkh̃nk and positive constants c1, C1, such that

P
(
Ω{) ≤ 2 exp

(
− C1

nk−2d

n

nim2
n

+ log(n
i
m

2

n)
)
,

where

Ω =
{

max
j∈Nin

max
1≤q,r≤mn

1√
n
‖f ijqr − f̃

ij

qr‖2 < c1k
−d
n

}
, (8.22)

and f ijqr =
(
f ijqr(ξ

j

1r), . . . , f
ij

qr(ξ
j

nr)
)>

, f̃ ijqr =
(
f̃ ijqr(ξ

j

1r), . . . , f̃
ij

qr(ξ
j

nr)
)>

.

Proof. By Assumptions 4.2 and 4.3 for any f ijqr ∈ F κ,ρ there exists a B-spline gijqr =
∑kn

k=1
βijqrkhk ∈

S`Ln and a positive constant c1 such that

‖f ijqr − g
ij

qr‖∞ ≤ c1k
−d
n ,

(see Lemma 5 in Stone et al. (1985)). Let f̃ ijqr(ξ
j
ur) = gijqr(ξ

j
ur) − 1

n

∑n

u=1
gijqr(ξ

j

ur). Then recalling the

notation (8.14) we have f̃ ijqr(ξ
j
ur) =

∑kn

k=1
βijqrkh̃nk(ξ

j
ur), and we obtain

1

n
‖f ijqr − f̃

ij

qr‖
2

2 ≤ 2c
2

1k
−2d

n + 2
( 1

n

n∑
u=1

g
ij

qr(ξ
j

ur)
)2

≤ 2c
2

1k
−2d

n + 4
( 1

n

n∑
u=1

(g
ij

qr(ξ
j

ur)− f
ij

qr(ξ
j

ur))
)2

+ 4
( 1

n

n∑
u=1

f
ij

qr(ξ
j

ur)
)2

≤ 6c
2

1k
−2d

n + 4
( 1

n

n∑
u=1

f
ij

qr(ξ
j

ur)
)2

.
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From this, condition (4.11), Hoeffding’s inequality and the union bound, it follows with an appropriate

constant c2 > 0

P
(

max
j∈Nin

max
1≤q,r≤mn

1

n
‖f ijqr(ξ

j

r)− f̃
ij

nqr(ξ
j

r)‖
2

2 ≥ c
2

1k
−2d

n

)
≤ P

(
max
j∈Nin

max
1≤q,r≤mn

∣∣∣ 1
n

n∑
u=1

f
ij

qr(ξ
ij

ur)
∣∣∣ ≥ c2k−dn )

≤ 2 exp
(
− nk−2d

n

2M 2nim2
n

+ log(n
i
m

2

n)
)
,

which completes the proof. 2

8.2 Rates of convergence for sample design matrices

In this section we show that if Assumptions 4.7 and 4.8 hold, then with high probability, the assump-

tions hold also for the corresponding sample matrices

Σ
n

N
i
nN
i
n

=
1

n
H̃n(ξ

N
i
n)H̃T

n(ξ
N
i
n) ∈ Rn

iknmn×niknmn , Σ
n

ξ
j
N
i
n

=
1

n
H̃T
n(ξ

j
)H̃T

n(ξ
N
i
n) ∈ Rknmn×knmnn

i
, (8.23)

where H̃n(ξj) and H̃n(ξN
i
n) are defined in (8.2) and (8.3), respectively. Note that the matrices in (8.23)

are based on the unobserved scores and are the sample analogs of the matrices Σ∗
N
i
nN
i
n

and Σ∗
ξ
j
N
i
n

in (4.6)

and (4.7), respectively.

Lemma 8.2 Suppose that Assumption 4.7 holds. Then, there exists a constant C1 > 0 such that for

any δ > 0,

P
(
‖Σn

N
i
nN
i
n
− Σ

∗

N
i
nN
i
n
‖F ≥ δ

)
≤ 2 exp

(
− C1

nδ2

(nimnkn)2
+ 2 log(n

i
mnkn)

)
. (8.24)

P
(

Λmin(Σ
n

N
i
nN
i
n
) ≤ Cmin − δ

)
≤ 2 exp

(
− C1

nδ2

(nimnkn)2
+ 2 log(n

i
mnkn)

)
. (8.25)

Proof. Weyl’s Lemma yields

Λmin(Σ
∗

N
i
nN
i
n
)− Λmin(Σ

n

N
i
nN
i
n
) ≤ ‖Σn

N
i
nN
i
n
− Σ

∗

N
i
nN
i
n
‖2 ≤ ‖Σ

n

N
i
nN
i
n
− Σ

∗

N
i
nN
i
n
‖F ,

and by Assumption 4.7 we have,

P
(

Λmin(Σ
n

N
i
nN
i
n
) ≤ Cmin − δ

)
≤ P

(
‖Σn

N
i
nN
i
n
− Σ

∗

N
i
nN
i
n
‖F ≥ δ

)
. (8.26)

By definition the nimnkn × nimnkn matrix Σn

N
i
nN
i
n

− Σ∗
N
i
nN
i
n

contains elements of the form

W
j1,j2
k`,rq =

1

n

n∑
u=1

h̃nk(ξ
j1
uq)h̃n`(ξ

j2
ur)− E(h̃k(ξ

j1
q )h̃`(ξ

j2
r )),
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which can be rewritten (recalling the notation (8.1)) as A1 −A2, where

A1 =
1

n

n∑
u=1

hk(ξ
j1
uq)h`(ξ

j2
ur)− E(hk(ξ

j1
q )h`(ξ

j2
r )),

A2 =
1

n2

n∑
u1=1

n∑
u2=1

hk(ξ
j1
u1q

)h`(ξ
j2
u2r

)− E(hk(ξ
j1
q ))E(h`(ξ

j2
r )).

Next, observe that the summands of A1 have expectation 0 and are bounded in absolute value by 2.

Therefore, by Hoeffding’s inequality, we have P (|A1| ≥ ε) ≤ 2 exp(−nε
2

128) for any ε > 0. Moreover, the

term A2 can be written as n−1
n A21 +A22, where

A21 =
1

n(n− 1)

n∑
u1 6=u2

hk(ξ
j1
u1q

)h`(ξ
j2
u2r

)− E(hk(ξ
j1
u1q

)h`(ξ
j2
u2r

),

is a U -statistic and A22 = 1
n2

∑n

u1=1
hk(ξ

j1
u1q

)h`(ξ
j2
u1r

)−E(hk(ξ
j1
u1q

)h`(ξ
j2
u1r

)). Consequently, by Hoeffding’s

inequality for U -statistics (Hoeffding, 1963) P (|A21| ≥ ε) ≤ 2 exp(−nε
2

128) for any ε > 0, and it is easy

to see (due to the additional factor 1/n) that A22 satisfies an even stronger concentration inequality.

Therefore, it follows that for any ε > 0

P
(
|W j1,j2

k`,rq | ≥ ε
)
≤ 2 exp

(
−C1nε

2)
, (8.27)

for some constant C1 > 0. Thus, the union bound over the (nimnkn)2 indices and the choice of

ε = δ
nimnkn

in (8.27) yields (8.24). Finally, the assertion (8.25) follows from relation (8.26) at the

beginning of the proof. 2

The next Lemma guarantees that the matrices defined in (8.23) satisfy the irrepresentable condition

in Assumption 4.8 with high probability.

Lemma 8.3 If Assumption 4.7 and 4.8 are satisfied for some 0 < η ≤ 1, then

P
(

max
j /∈Nin

‖Σn

ξ
j
N
i
n
(Σ

n

N
i
nN
i
n
)
−1‖F ≥

1− η
2√

ni

)
. exp

(
− C1

n

((ni)5/4mnkn)2
+ 2 log(pmnkn)

)
,

where C1 is a positive constant that depends only on Cmin and η.

Proof. First, we decompose

max
j /∈Nin

‖Σn

ξ
j
N
i
n
(Σ

n

N
i
nN
i
n
)
−1‖F ≤ max

j /∈Nin

‖Σn

ξ
j
N
i
n
(Σ

n

N
i
nN
i
n
)
−1 − Σ

∗

ξ
j
N
i
n
(Σ
∗

N
i
nN
i
n
)
−1‖F + max

j /∈Nin

‖Σ∗
ξ
j
N
i
n
(Σ
∗

N
i
nN
i
n
)
−1‖F .

By Assumption 4.8 we have max
j /∈Nin
‖Σ∗

ξ
j
N
i
n

(Σ∗
N
i
nN
i
n

)−1‖F ≤ 1−η√
ni

and it suffices to consider

P
(

max
j /∈Nin

‖Σn

ξ
j
N
i
n
(Σ

n

N
i
nN
i
n
)
−1 − Σ

∗

ξ
j
N
i
n
(Σ
∗

N
i
nN
i
n
)
−1‖F ≥

η

2
√
ni

)
.
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For this purpose we use the decomposition Σn

ξ
j
N
i
n

(Σn

N
i
nN
i
n

)−1 − Σ∗
ξ
j
N
i
n

(Σ∗
N
i
nN
i
n

)−1 = T j1 + T j2 + T j3 where

T
j

1 = Σ
∗

ξ
j
N
i
n

(
(Σ

n

N
i
nN
i
n
)
−1 − (Σ

∗

N
i
nN
i
n
)
−1
)
, T

j

2 =
(

Σ
n

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n

)
(Σ
∗

N
i
nN
i
n
)
−1
,

T
j

3 =
(

Σ
n

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n

)(
(Σ

n

N
i
nN
i
n
)
−1 − (Σ

∗

N
i
nN
i
n
)
−1
)
,

and control the probabilities P
(

max
j /∈Nin
‖T jh‖F ≥

η

6
√
ni

)
separately.

(a) For the first term T j1 , we use the identity A−1−B−1 = A−1(B−A)B−1 and obtain from Assumption

4.8

max
j /∈Nin

‖T j1 ‖F ≤ max
j /∈Nin

‖Σ∗
ξ
j
N
i
n
(Σ
∗

N
i
nN
i
n
)−1‖F‖(Σ

n

N
i
nN
i
n
− Σ

∗

N
i
nN
i
n
)(Σ

n

N
i
nN
i
n
)−1‖F

≤ (1− η)√
ni
‖Σn

N
i
nN
i
n
− Σ

∗

N
i
nN
i
n
‖F‖(Σ

n

N
i
nN
i
n
)−1‖2.

Thus, defining the event T = {‖(Σn

N
i
nN
i
n

)−1‖2 ≤ 2
Cmin
} we obtain

P
(

max
j /∈Nin

‖T j1 ‖F ≥
η

6
√
ni

)
≤ P

(
‖Σn

N
i
nN
i
n
− Σ

∗

N
i
nN
i
n
‖F‖(Σ

n

N
i
nN
i
n
)−1‖2 ≥

η

6(1− η)

)
≤ P

(
‖Σn

N
i
nN
i
n
− Σ

∗

N
i
nN
i
n
‖F ≥

ηCmin

12(1− η)

)
+ P

(
T {
)

≤ 4 exp
(
− C1

n

(nimnkn)2
+ 2 log(n

i
mnkn)

)
,

(8.28)

where we used Lemma 8.2 with δ = ηCmin

12(1−η) and δ = Cmin
2 for the last inequality.

(b) For the second term T j2 , we have

max
j /∈Nin

‖T j2 ‖F ≤ ‖(Σ
∗

N
i
nN
i
n
)
−1‖2 max

j /∈Nin

‖Σn

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n
‖F ≤ C−1

min max
j /∈Nin

‖Σn

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n
‖F ,

where we used Assumption 4.7 in the second inequality. Thus,

P
(

max
j /∈Nin

‖T j2 ‖F ≥
η

6
√
ni

)
≤ P

(
max
j /∈Nin

‖Σn

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n
‖F ≥

ηCmin

6
√
ni

)
.

Now, using similar arguments as in the proof of (8.24) in Lemma 8.2, we can show

P
(
‖Σn

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n
‖F ≥ δ

)
≤ 2 exp

(
− C1

nδ2

nim2
nk

2
n

+ log(n
i
m

2

nk
2

n)
)
, (8.29)

for some positive constant C1 > 0. This bound with δ = ηCmin

6
√
ni

and the union bound yield

P
(

max
j /∈Nin

‖T j2 ‖F ≥
η

6
√
ni

)
≤ (p− ni)P

(
‖Σn

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n
‖F ≥

ηCmin

6
√
ni

)
≤ 2 exp

(
− C1

n

(nimnkn)2
+ log(n

i
m

2

nk
2

n) + log(p− ni)
)
. (8.30)
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(c) For the third term T j3 , we have

P
(

max
j /∈Nin

‖T j3 ‖F ≥
η

6
√
ni

)
≤ P

(
max
j /∈Nin

‖Σn

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n
‖F ≥

√
η

6
√
ni

)
+ P

(
‖(Σn

N
i
nN
i
n
)
−1 − (Σ

∗

N
i
nN
i
n
)
−1‖F ≥

√
η

6
√
ni

)
. (8.31)

Using (8.29) with δ =
√

η

6
√
ni

we obtain for the first term on the right-hand side of (8.31)

P
(

max
j /∈Nin

‖Σn

ξ
j
N
i
n
− Σ

∗

ξ
j
N
i
n
‖F ≥

√
η

6
√
ni

)
. exp

(
− C1

n

(ni)3/2m2
nk

2
n

+ log(n
i
m

2

nk
2

n) + log((p− ni)m2

nk
2

n)
)
.

(8.32)

To derive a bound for the second term in (8.31) we apply the same arguments as used for the term T j1

P
(
‖(Σn

N
i
nN
i
n
)
−1 − (Σ

∗

N
i
nN
i
n
)
−1‖F ≥

√
η

6
√
ni

)
. exp

(
− C1

n

(ni)5/2m2
nk

2
n

2 log(n
i
mnkn)

)
+ exp

(
− C1

n

(nimnkn)2
+ 2 log(n

i
mnkn)

)
. (8.33)

Thus, from (8.31), (8.32) and (8.33) we obtain

P
(

max
j /∈Nin

‖T j3 ‖F ≥
η

6
√
ni

)
. exp

(
− C1

n

(ni)3/2(mnkn)2
+ log(n

i
m

2

nk
2

n) + log((p− ni)m2

nk
2

n)
)

+ 2 exp
(
− C1

n

(ni)5/2m2
nk

2
n

+ 2 log(n
i
mnkn)

)
(8.34)

+ 2 exp
(
− C1

n

(nimnkn)2
+ 2 log(n

i
mnkn)

)
.

Putting together (8.28), (8.30) and (8.34) and using the fact log ni ≤ log(p−ni) ≤ log p (since ni ≤ p)

we conclude

P
(

max
j /∈Nin

‖Σn

ξ
j
N
i
n
(Σ

n

N
i
nN
i
n
)
−1‖F ≥

1− η
2√

ni

)
≤ 2 exp

(
− C1

n

(ni)5/2m2
nk

2
n

+ 2 log(pmnkn)
)
,

for some positive constant C1 that depends on Cmin and η. This completes the proof. 2

8.3 Proof of Theorem 4.1

We begin establishing the model selection consistency given that Assumptions 4.7 and 4.8 are satisfied

by the sample matrices defined in (8.23). In particular we define the event

N = {Σn

N
i
nN
i
n
,Σ

n

ξ
j
N
i
n

satisfy Assumptions 4.7 and 4.8} (8.35)

and state the following result, which is the essential step in the proof of Theorem 4.1 and will be

proved in Section 8.4 below.
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Proposition 8.2 If the assumptions of Theorem 4.1 are satisfied. Then,

P (N̂
i

n 6= N
i

n ∩N ) . exp
(
− C1

n1−α(2+3β)(λn
∑

j∈Nin
‖B∗ijmnkn‖F )2

nim2
nk

4
n

+ 2 log(n
i
mnkn)

)
, (8.36)

where C1 is a positive constant.

We have

P (N̂i
n 6= N

i

n) ≤ P(N̂i
n 6= N

i

n and N ) + P(N {
) ,

where the first probability on the right hand side can be estimated by (8.36). Moreover, by Lemmas

8.2 and 8.3,

P (N {
) . exp

(
− C1

n

((ni)5/4mnkn)2
+ 2 log(pmnkn)

)
+ exp

(
− C1

n

(ni)2mnkn)2
+ 2 log(pmnkn)

)
,

and this proves Theorem 4.1.

8.4 Proof of Proposition 8.2

We follow a similar strategy as in Bach (2008) and Lee et al. (2016b), who showed consistency of

the group lasso in a reproducing kernel Hilbert space framework. First, we consider the following

alternative form of the group lasso problem (3.9)

P̂Li(B
i
, ξ̂) =

1

2n
‖ξ̂i − H̃T

n(ξ̂
−i

)B
i‖2F +

λn
2

(

p∑
j 6=i

‖Bij‖F )
2
. (8.37)

Because the function x→ x2, x ≥ 0 is monotone, problem (8.37) leads to the same regularisation paths

as problem (3.9) (see Bach, 2008, , page 1187 for more details). To derive the Karush-Kuhn-Tucker

(KKT) conditions, we recall the notations (8.3), (8.4) and define the matrices

Σ̂
n

N
i
nξ
j =

1

n
H̃n(ξ̂

N
i
n)H̃n(ξ̂

j
) ∈ Rn

i
knmn×knmn , (8.38)

Σ̂
n

ξ
j
ξ
i =

1

n
H̃T
n(ξ̂

j
)ξ̂
i ∈ Rknmn×mn (8.39)

when j 6= i and

Σ̂
n

N
i
nξ
i =

1

n
H̃n(ξ̂

N
i
n)ξ̂

i ∈ Rn
i
knmn×mn , (8.40)

where the matrices H̃n(ξ̂j) and H̃n(ξ̂N
i
n) have been defined in (8.6) and (8.5) respectively. We also

denote by Σn

N
i
nξ
j , Σn

ξ
j
ξ
i , Σn

N
i
nξ
i the versions of (8.38), (8.39), (8.40) that use the true scores ξiur instead

of the estimated ξ̂iur (see also equation (8.7)).
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Lemma 8.4 (KKT conditions) A matrix Bi = (Bij, j ∈ V \ {i}) ∈ R(p−1)knmn×mn with support Ni

n is

optimal for problem (8.37) if and only if

(Σ̂
n

N
i
nN
i
n

+ λnD̂N
i
n
)B

N
i
n − Σ̂

n

N
i
nξ
i = 0, for all j ∈ N

i

n, (8.41a)

‖Σ̂n

ξ
j
N
i
n
B

N
i
n − Σ̂

n

ξ
j
ξ
i‖F ≤ λn

p∑
j 6=i

‖Bij‖F , for all j /∈ N
i

n (8.41b)

where Σ̂n

N
i
nN
i
n

is defined in (8.7), BN
i
n = (Bij, j ∈ Ni

n) ∈ Rniknmn×mn, B = (βijqrk : 1 ≤ q, r ≤ mn, 1 ≤ k ≤

kn) and

D̂
N
i
n

= diag
(
(D̂

N
i
n
)jj : j ∈ N̂i

n)
)

is a block diagonal matrix with ni elements (D̂
N
i
n
)jj =

∑p
` 6=i ‖B̂

i`‖F
‖B̂ij‖F

Iknmn ∈ Rknmn×knmn .

The idea of the proof is to first construct an estimator B̂N
i
n

n by minimizing the following restricted

problem given the true support Ni

n. That is,

B̂
N
i
n

n = argmin
{
P̂L

N
i
n
(B, ξ̂) : B ∈ Rniknmn×mn}, (8.42)

where

P̂L
N
i
n
(B, ξ̂) =

1

2n
‖ξ̂i − H̃T

n(ξ̂
N
i
n)B‖2F +

λn
2

( p∑
j∈Nin

‖Bij‖F
)2

, (8.43)

(note that P̂L
N
i
n
(B, ξ̂) corresponds to the function (8.37), where we put Bij = 0 whenever j /∈ Ni).

and to show that the minimizer in (8.42) is “close” to the true matrix B∗N
i
n

n defined in (4.9). To achieve

this we use similar arguments as in Bach (2008) and construct another auxiliary estimator B̃N
i
n

n that

minimizes the restricted penalized function, where the group lasso penalty in (8.42) is replaced by an

`2-type penalty. More precisely, B̃N
i
n

n is defined by

B̃
N
i
n

n = argmin
{
P̃L

N
i
n
(B, ξ̂) : B ∈ Rniknmn×mn}, (8.44)

where

P̃L
N
i
n
(B, ξ̂) =

1

2n
‖ξ̂i − H̃T

n(ξ̂
−i

)B‖2F +
λn
2

(∑
`∈Nin

‖B∗i`mnkn‖F
)(∑

j∈Nin

‖Bij‖2F
‖B∗ijmnkn‖F

)
.

We now proceed in the following steps:

(1) In Proposition 8.3 we show that the distance ‖B̃N
i
n

n −B
∗Nin
n ‖F is small with high probability.

(2) In Proposition 8.4 we show that B̂N
i
n

n is close to B̃N
i
n

n with high probability.
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(3) In Proposition 8.5 we use this result to derive a concentration bound for ‖B̂N
i
n

n −B
∗Nin‖F .

(4) We then construct the oracle minimiser (B̂N
i
n ,0), where B̂N

i
n is the minimiser of (8.42) and 0

consists of (p− 1− ni) zero knmn ×mn matrices.

(5) Finally, in Proposition 8.6 we show that the oracle minimiser is optimal for the restricted problem

(8.42) given the true support Ni

n; that is, it satisfies (8.41b).

The minimisation problem (8.42) is convex; however, for p > n, it need not to be strictly convex, so

that there may not be a unique solution. Nevertheless, the next lemma shows that the matrix Σ̂n

N
i
nN
i
n

defined in (8.7) is strictly positive definite with high probability, and hence the objective function

(8.42) is strictly convex, and thus B̂N
i
n is the unique optimal solution.

Lemma 8.5 There exists a constant C1 > 0 such that

P
(

Λmin(Σ̂
n

N
i
nN
i
n
) ≥ Cmin

4

)
& 1− exp

(
− C1

n1−α(2+3β)

(ni)2m2
nk

4
n

+ 2 log(n
i
mnkn)

)
.

Proof. By Weyl’s Lemma, we have Λmin(Σn

N
i
nN
i
n

) ≤ Λmin(Σ̂n

N
i
nN
i
n

) + ‖Σ̂n

N
i
nN
i
n

− Σn

N
i
nN
i
n

‖2, and we get

P
(

Λmin(Σ̂
n

N
i
nN
i
n
) ≤ Cmin

4
and Λmin(Σ

n

N
i
nN
i
n
) >

Cmin

2

)
≤P
(
‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖2 ≥

Cmin

4

)
.

Furthermore, using δ2 = 1
(nimnkn)

2
Cmin
4 in Theorem 8.1 with the union bound over the (nimnkn)2 index

pairs of the matrix Σ̂n

N
i
nN
i
n

− Σn

N
i
nN
i
n

, yields for some positive constant C1

P
(
‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F ≥

Cmin

4

)
. exp

(
− C1

n1−α(2+3β)

(ni)2m2
nk

4
n

+ 2 log(n
i
mnkn)

)
.

The assertion now follows by the same arguments as given in the proof of Lemma 8.2. 2

Proposition 8.3 Suppose Assumptions 4.1-4.7 hold and the regularization parameter λn satisfies

nim3/2

n

kdn
.

√
2

Cmin

λn
∑
j∈Nin

‖B∗ijmnkn‖F . (8.45)

Then, there exists a constant c2 ∈ (0, 1/2) such that, for any δ > 0 satisfying

2

Cmin

√
niλn

∑
j∈Nin

‖B∗ijmnkn‖F ≤ c2δ, (8.46)

we have for the minimizer of (8.44)

P
(
‖B̃N

i
n

n −B
∗Nin
n ‖F ≥ δ

)
. exp

(
− C1

n1−α(2+3β)δ2

(ni)2m2
nk

4
n

+ 2 log(n
i
mnkn)

)
,

where B∗N
i
n

n is defined in (4.9) and the constant C1 satisfies 0 < δ ≤ C1.
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Proof. Before we start with the proof we note that condition (8.45) refers to the spline approximation

error from including only kn terms and the second condition (8.46) represents the bias due to ridge

penalisation.

For the proof we use similar arguments as given in the proof of Proposition 2 of Lee et al. (2020).

The main change that we need to consider is the approximation error of the additive regression

functions by splines. First, the minimizer B̃N
i

n defined in (8.44) is of the form

B̃
N
i
n

n =
(
Σ̂
n

N
i
nN
i
n

+ λnD
∗

N
i
n

)−1

Σ̂
n

N
i
nξ
i .

where D∗
N
i
n

is a block diagonal matrix with (D∗
N
i
n

)jj =
∑p

` 6=i ‖B
∗i`
mnkn
‖F/‖B∗ijmnkn‖F Iknmn , j ∈ Ni

n as

diagonal blocks, and the matrices Σ̂n

N
i
nN
i
n

and Σ̂n

N
i
nξ
i are defined in (8.7) and (8.38), respectively.

A simple calculation shows that

‖B̃N
i
n

n −B
∗Nin
n ‖F ≤ T1 + T2 + T3,

where the terms T1, T2 and T3 are defined by

T1 =
∥∥(Σ̂

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1

(Σ̂
n

N
i
nξ
i − Σ

n

N
i
nξ
i)
∥∥
F
,

T2 =
∥∥{(Σ̂n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1 − (Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1}Σn

N
i
nξ
i

∥∥
F
,

T3 =
∥∥(Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1

Σ
n

N
i
nξ
i −B∗N

i
n

n

∥∥
F
.

Thus, P
(
‖B̃N

i
n

n − B
∗Nin
n ‖F ≥ 3δ

)
≤
∑3

i=1
P (Ti ≥ δ), and it is sufficient to derive bounds for the three

probabilities corresponding to the random variables T1, T2 and T3. Starting with T1 we have

T1 ≤ ‖(Σ̂
n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1‖2‖Σ̂

n

N
i
nξ
i − Σ

n

N
i
nξ
i‖F ≤

2

Cmin

‖Σ̂n

N
i
nξ
i − Σ

n

N
i
nξ
i‖F ,

where we use the fact that

‖Σ̂
N
i
nN
i
n
‖2 ≥

Cmin

2

on the event N and that (Σ̂n

N
i
nN
i
n

+ λnD
∗

N
i
n

)−1 �
(
Σ̂n

N
i
nN
i
n

)−1
. Therefore, using Lemma 8.2, similar argu-

ments as given in the proof of Theorem 8.1 and applying the union bound over the nim2

nkn pairs, we

obtain

P (T1 ≥ δ) ≤ P
(
‖Σ̂n

N
i
nξ
i − Σ

n

N
i
nξ
i‖F ≥

Cminδ

2

)
. exp

(
− C1

n1−α(2+3β)δ2

nim2
nk

3
n

+ log(n
i
m

2

nkn)
)
, (8.47)

for 0 < δ
nim2

nkn
≤ C1 with C1 > 0 depending on Cmin. To derive the bound for the probability

P (T2 ≥ δ) we use the identity A−1 −B−1 = A−1(B −A)B−1 to obtain (on the event N )

T2 ≤ ‖(Σ̂
n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1‖2‖(Σ

n

N
i
nN
i
n
− Σ̂

n

N
i
nN
i
n
)(Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1

Σ
n

N
i
nξ
i‖F

≤ 2

Cmin

‖Σn

N
i
nN
i
n
− Σ̂

n

N
i
nN
i
n
‖F‖(Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1

Σ
n

N
i
nξ
i‖2. (8.48)
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Recall the relation (4.4), the notation f ijqr =
∑∞

k=1
β∗ijqrkhk ∈ F κ,ρ, and let

w
i

uq =
∑
j∈Nin

mn∑
r=1

(f
ij

qr(ξ
j

ur)− f̃
ij

nqr(ξ
j

ur)), q = 1, . . . ,mn, u = 1, . . . , n, (8.49)

where f̃ ijqr denotes the function from Proposition 8.1. Then, we can rewrite relation (4.4) in the form

ξ
i

= H̃T
n(ξ

N
i
n)B

∗Nin
n + w

i
+ ε

i ∈ Rn×mn ,

where wi = (wi

uq)1≤u≤n,1≤q≤mn , εi = (εiuq)1≤u≤n,1≤q≤mn ∈ Rn×mn and H̃>n (ξN
i
n) is defined in (8.3). Fur-

thermore, by multiplying from the left the above equation with H̃n(ξ
N
i

)
n we obtain

Σ
n

N
i
nξ
i = Σ

n

N
i
nN
i
n
B
∗Nin
n +

H̃n(ξN
i
n)

n
w
i
+

H̃n(ξN
i
n)

n
ε
i
, (8.50)

Σ
n

ξjξ
i = Σ

n

ξjN
i
n
B
∗Nin
n − H̃T

n(ξj)

n
w
i − H̃T

n(ξj)

n
ε
i
. (8.51)

where the matrix Σn

N
i
nξ
i is defined in Section 8.4 and Σn

ξjN
i
n

= (Σn

N
i
nξ
j )

T. Using this representation and

the triangle inequality we get

‖(Σn

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1

Σ
n

N
i
nξ
i‖2 ≤‖(Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1

Σ
n

N
i
nN
i
n
B
∗Nin
n ‖2 + ‖(Σn

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1 H̃n(ξN

i
n)

n
w
i‖2

+ ‖(Σn

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1 H̃n(ξN

i
n)

n
ε
i‖2.

As a result from this and (8.48), it follows that for all δ > 0 (on the event N )

P (T2 ≥ δ) ≤ P
(
T21 ≥

δ

3

)
+ P

(
T22 ≥

δ

3

)
+ P

(
T23 ≥

δ

3

)
, (8.52)

where

T21 =
2

Cmin

‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F‖(Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1

Σ
n

N
i
nN
i
n
B
∗Nin
n ‖2,

T22 =
2

Cmin

‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F‖(Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1 H̃n(ξN

i
n)

n
w
i‖2,

T23 =
2

Cmin

‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F‖(Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1 H̃n(ξN

i
n)

n
ε
i‖2.

Next we derive upper bounds for the probabilities in (8.52). For T21 observe that

T21 ≤
2

Cmin

‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F‖‖(Σ

n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1

Σ
n

N
i
nN
i
n
‖2‖B

∗Nin
n ‖F ≤

2

Cmin

‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F ,

where the second inequality uses the fact that ‖B∗N
i
n

n ‖F < ∞ by assumption (3.2) and that the norm

‖(Σn

N
i
nN
i
n

+λnD
∗

N
i
n

)−1Σn

N
i
nN
i
n

‖2 is bounded by one. Therefore, it follows from Theorem 8.1 with δ replaced

by Cminδ

6nimnkn
and the union bound over the (nimnkn)2 pairs that

P
(
T21 ≥

δ

3

)
≤ P

(
‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F ≥

δCmin

6

)
. exp

(
− C2

n1−α(2+3β)δ2

(ni)2m2
nk

4
n

+ 2 log(n
i
mnkn)

)
, (8.53)
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for 0 < δ
nimnkn

≤ C2.

For the term T22 note that

‖(Σn

N
i
nN
i
n

+ λnD
∗

N
i
n
)
−1 H̃n(ξN

i
n)√

n
‖2 ≤ ‖(Σ

n

N
i
nN
i
n
)
−1 H̃n(ξN

i
n)√

n
‖2 = Λmin(Σ

n

N
i
nN
i
n
)
−1/2

, (8.54)

where we used Lemma 8.2 for the last inequality with δ = Cmin
2 . Thus, (on the event N ) the term T22

can be bounded by

T22 ≤
( 2

Cmin

)3/2

‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F‖

wi

√
n
‖F .

Recall the notation of wiuq in (8.49) and the definition of the event Ω in Proposition 8.1. Then, if the

event Ω holds, we have,

‖ 1√
n
w
i‖2F =

1

n

n∑
u=1

mn∑
q=1

(w
i

uq)
2

=
1

n

n∑
u=1

mn∑
q=1

(∑
j∈Ni

mn∑
r=1

(f
ij

qr(ξ
j

ur)− f̃
ij

nqr(ξ
j

ur))
)2

,

≤ nimn

n

∑
j∈Ni

mn∑
q=1

mn∑
r=1

n∑
u=1

(f
ij

qr(ξ
j

ur)− f̃
ij

nqr(ξ
j

ur))
2

≤ nimn

n

∑
j∈Ni

mn∑
q=1

mn∑
r=1

max
j∈Ni

max
1≤q,r≤mn

‖f ijqr − f̃
ij

qr‖2 ≤ c1(n
i
)
2
m

3

nk
−2d

n ,

(8.55)

and by assumption (8.45) it follows that on the event Ω

‖ 1√
n
w
i‖F .

√
2

Cmin

λn
∑
j∈Nin

‖B∗ijmnkn‖F . (8.56)

As a result,

P
(
T22 ≥

δ

3

)
≤ P

(( 2

Cmin

)2

c1λn
∑
j∈Nin

‖B∗ijmnkn‖F‖Σ̂
n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F ≥

δ

3

)
+ P (Ω

{
)

. exp
(
− C3

n1−α(2+3β)(λn
∑

j∈Nin
‖B∗ijmnkn‖F )−2δ2

(ni)2m2
nk

4
n

+ 2 log(n
i
mnkn)

)
(8.57)

+ exp
(
− C3

n

nim2
nk

2d
n

+ log(n
i
m

2

n)
)

for 0 < δ(λn
∑

j∈Nin
‖B∗ijn ‖F )−1 ≤ C3, where we have used Theorem 8.1 and Proposition 8.1.

We next derive an upper bound for the probability corresponding to the term T23 in (8.52) noting

that (on the event N )

T23 ≤
(

2

Cmin

)2

‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F‖

H̃n(ξN
i
n)

n
ε
i‖F . (8.58)

37



The (i, j) element of the matrix H̃n(ξ
N
i
n )

n εi can be written as an i.i.d sum of the form 1
n

∑n

u=1
h̃nk(ξ

j

ur)ε
i

uq.

Thus, by Assumption 4.4 it follows that

P
(∣∣∣ 1
n

n∑
u=1

h̃nk(ξ
j

ur)ε
i

uq

∣∣∣ ≥ ε) ≤ 2 exp(−C5nε
2
),

for any ε > 0. Therefore, by applying the union bound over the nim2

nkn gives

P
(
‖H̃n(ξN

i
n)

n
ε
i‖F ≥ ε

)
≤ 2 exp

(
− C5

nε2

nim2
nkn

+ log(n
i
m

2

nkn)
)
. (8.59)

Using this inequality with ε = Cmin/6, (8.53) and (8.58) gives

P
(
T23 ≥

δ

3

)
. exp

(
− C4

n1−α(2+3β)δ2

(ni)2m2
nk

4
n

+ 2 log(n
i
mnkn)

)
+ exp

(
− C5

n

nim2
nkn

+ log(n
i
m

2

nkn)
)
,

(8.60)

for 0 < δ
nimnkn

≤ C4. Therefore from (8.53), (8.57) and (8.60) it follows that

P (T2 ≥ δ) . exp
(
− C2

n1−α(2+3β)δ2

(ni)2m2
nk

4
n

+ 2 log(n
i
mnkn)

)
+ 2 exp

(
− C3

n

nim2
nk

2d
n

+ log(n
i
m

2

n)
)
, (8.61)

for 0 < δ
nimnkn

≤ C2, where the first term dominates the second one because of Assumption 4.5.

Finally, we derive an upper bound for the probability involving T3. Using representation (8.50) we

obtain

T3 ≤T31 + T32 + T33 , (8.62)

where

T31 =‖(Σn

N
i
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i
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i
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N
i
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i
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N
i
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)
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i
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n
w
i‖F ,
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N
i
nN
i
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N
i
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)
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i
n)

n
ε
i‖F .

For the first term on the right-hand side of the above inequality we have (on the event N )

T31 = λn‖(Σ
n

N
i
nN
i
n

+ λnD
∗

N
i
n
)
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D
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N
i
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B
∗Nin
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2
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λn(n
i
)
1/2
∑
j∈Nin

‖B∗ijmnkn‖F ≤
δ

2(1 + c1)
,

where we used condition (8.46) with c1 = 1
2c2
− 1 and the fact that ‖diag(

B
∗ij
mnkn

‖B∗ijmnkn‖F
: j ∈ Ni

n)‖F =

(ni)1/2. Moreover, by applying the same arguments for deriving the bound of T22 and by using (8.54),

conditions (8.45) and (8.46) it follows that on the event Ω

T32 ≤ c1
(

2
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n

kdn
≤ c1

2
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Therefore, inequalities (8.62) and (8.59) imply that for all δ > 0

P (T3 ≥ δ) ≤ P
( 2
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n
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)
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(8.63)

Thus, by (8.47), (8.61) and (8.63), we have shown, for any δ > such that 0 < δ ≤ C1 and 0 < δ ≤ C2

P (‖B̃N
i
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.

Since the second term dominates the first and the third, the assertion in Proposition 8.3 follows. 2

The next proposition brings B̂N
i
n

n = (B̂ij

n , j ∈ Ni

n) close to B̃N
i
n

n = (B̃ij

n , j ∈ Ni

n), from which we can

establish the concentration inequality for B̂N
i
n

n .

Proposition 8.4 Let B̂N
i
n

n be the minimiser of (8.42) and B̃N
i
n

n be the minimiser of (8.44). If Λmin(Σ̂n

N
i
nN
i
n

) ≥
Cmin
4 then,

‖B̂N
i
n

n − B̃
N
i
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i
(b
∗i
n )
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i
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∑
j∈Nin

‖B∗ijmnkn‖F ,

where b∗in = min
j∈Nin
‖B∗ijmnkn‖F .

Proof. The idea of the proof is similar as in the proof of Proposition 3 in Lee et al. (2020). Consider

the sphere Sn(δn) = {B ∈ Rn
i
knmn×mn : ‖B− B̃N

i
n

n ‖F = δn}, where (δn)n∈N is a positive sequence of real

numbers. For ε ∈ [0, 1] let

f(ε) = P̂L
N
i
n
(B̃

N
i
n

n + εA, ξ̂
i
),

where the function P̂L
N
i
n

is defined in (8.43) and A = B − B̃N
i
n

n . A straightforward calculation gives
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for the first and the second derivatives of the function f(ε)
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where 〈·, ·〉F denotes the Frobenious inner product and Σ̂n

N
i
nξ
i , Σ̂n

N
i
nN
i
n

are defined in (8.40) and (8.7)

respectively. By construction, f(0) = P̂L
N
i
n
(B̃N

i
n

n , ξ̂
i), f(1) = P̂L

N
i
n
(B, ξ̂i) and by Taylor’s theorem, we
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N
i
n
(B, ξ̂

i
)− P̂L

N
i
n
(B̃

N
i
n

n , ξ̂
i
) = f(1)− f(0) = ḟ(0) +
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2
. (8.64)

The Cauchy-Schwarz inequality yields for any B ∈ Sn(δn) and ε ∈ [0, 1]

f̈(ε) ≥ 〈A, Σ̂n

N
i
nN
i
n
A〉F + λn

(∑
j∈Nin
‖B̃ij

n + εA
j‖−1

F 〈B̃
ij

n + εA
j
, A

j〉F
)2

≥ Cmin

2
δ
2

n. (8.65)

On the other hand, by Lemma A7 in Lee et al. (2016b) it follows that

|ḟ(0)| ≤ λn
∑
j∈Nin

∑
k∈Nin

[
‖B̃ij

n −B
∗ij
mnkn
‖F‖B̃

ik

n −B
k‖F

+ ‖B∗ijmnkn‖F‖B
∗ik
mnkn
‖−1

F ‖B̃
ij

n −B
∗ij
mnkn
‖F‖B̃

ik

n −B
k‖F
]
.

A further application of the Cauchy-Schwarz inequality gives
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Using the fact b∗in ≤ ‖B
∗Nin
n ‖F ≤

∑
j∈Nin
‖B∗ijmnkn‖F we obtain
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Hence, combining (8.64), (8.65) and (8.66), we obtain
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Since the function P̂L
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i
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(B, ξ̂i) is convex, the minimizer B̂N

i
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n of P̂L
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i
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(B, ξ̂i) is going be inside the

sphere defined by Sn(δn), that is,
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2

Using the Propositions 8.3 and 8.4, we now can establish the concentration bounds for ‖B̂N
i
n

n −B
∗Nin
n ‖F .

Proposition 8.5 Suppose Assumptions of Proposition 8.3 are satisfied and that δ satisfies
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for some constant c2 > 0. Then,
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where C1 > 0 such that 0 < δ ≤ C1.

Proof. By Proposition 8.4 and the triangle inequality,

‖B̂N
i
n

n −B
∗Nin
n ‖F ≤ ‖B̂

N
i
n

n − B̃
N
i
n

n ‖F + ‖B∗N
i
n

n − B̃N
i
n

n ‖F

≤ (b
∗i
n )
−1‖B∗N

i
n

n − B̃N
i
n

n ‖F
( 10

Cmin

λnn
i
∑
j∈Nin

‖B∗ijmnkn‖F + b
∗i
n

)
. n

i
(b
∗i
n )
−1‖B∗N

i
n

n − B̃N
i
n

n ‖F
∑
j∈Nin

‖B∗ijmnkn‖F ,

41



where we have used the fact that b∗in ≤
∑

j∈Nin
‖B∗ijmnkn‖F and λn . 1. The assertion now follows

from Proposition 8.3 with δ replaced by b∗in δ
(
ni
∑

j∈Nin
‖B∗ijmnkn‖F

)−1
. 2

Let B̂N
i
n

n be the minimizer of the restricted problem (8.42). By construction, the estimator (B̂N
i
n

n ,0)

obtained from B̂N
i
n

n by adding blocks with 0 elements whenever j /∈ Ni

n, satisfies the first KKT-condition

(8.41a). To prove that (B̂N
i
n

n ,0) is, with high probability, optimal for problem (8.42), it is therefore

sufficient to show that the second KKT-condition (8.41b) is satisfied. This is the statement of the

following proposition.

Proposition 8.6 The matrix (B̂N
i
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n ,0) satisfies (8.41b) with high probability, in the sense that
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where C1 is a positive constant.

Proof. The idea of the proof is similar as in the proof of Proposition 4 in Lee et al. (2020). By the

first optimality condition (8.41a), we have for all j ∈ Ni
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is defined in Lemma 8.4. Using (8.68) in the expression at the left-hand side of condition
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In the following we derive bounds for the probabilities

P
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(r = 1, . . . , 7). For this purpose we proceed in two steps.

Step 1: First, we define the event, that there exists a constant 0 < c0 < 1, such that
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for some constant C1 > 0.

Now, on the event A0, it follows by the Cauchy-Schwarz inequality that∣∣∣∑
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where Rj
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j

12, R
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13 are defined in an obvious manner satisfying
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where we used the fact that Σ̂n

N
i
nN
i
n

� Σ̂n

N
i
nN
i
n

+ λnINin
� Σ̂n

N
i
nN
i
n

+ λnD̂N
i
n
. From this, it follows that

max
j /∈Nin

‖Rj

11‖F . max
j /∈Nin

{‖Σ̂n

ξ
j
N
i
n
− Σ

n

ξ
j
N
i
n
‖F}
( 4

Cmin

‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F + 1

)
,

where we use the fact that ‖B∗N
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n ‖2 is bounded. Consider the event

A1 = {max
j /∈Nin

{‖Σ̂n

ξ
j
N
i
n
− Σ

n

ξ
j
N
i
n
‖F} ≤

c1λn
∑

l∈Nin
‖B∗ilmnkn‖F

6
}.

Then,

P
(

max
j /∈Nin

‖Rj

11‖F ≥
c1λn

3

∑
j∈Nin

‖B∗ijmnkn‖F
)
≤ P

(
‖Σ̂n

N
i
nN
i
n
− Σ

n

N
i
nN
i
n
‖F ≥

Cmin

4

)
+ P

(
A{

1

)
,

. exp
(
− C2

n1−α(2+3β)

(ni)2m2
nk

4
n

+ 2 log(n
i
mnkn)

)
+ exp

(
− C2

n1−α(2+3β)(λn
∑

l∈Nin
‖B∗ilmnkn‖F )2

nim2
nk

4
n

+ log(n
i
m

2

nk
2

n) + log((p− ni)m2

nk
2

n)
)
,

where we have used Theorem 8.1 and the union bound.

For the term Rj

12, we use the same arguments as for the term T2 in the proof of Proposition 8.3.

Specifically, recall the definition of the event Ω in (8.22) and the calculation in (8.49) to obtain on the
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for some constant c2 > 0, where we used condition (4.13) for the last inequality.
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where we used Theorem 8.1 and (8.59). Combining together the results for the terms ‖Rj
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2. First we write
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where we used (8.72) and the second inequality holds with high probability by Lemma 8.3. As a

result, it follows that
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where
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and we used Theorem 8.1 and the union bound for the last inequality.

Term Rj

3. Using the identity A−1 − B−1 = A−1(B − A)B−1 and following similar arguments used
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which implies (using the same arguments as before)
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for some positive constant C4 that depends on η and Cmin. Similarly, for the term ‖Rj
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Hence, recalling the definition of the set Ω in (8.22) and using conditions (4.13) and (8.56), Proposition
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where we used (8.59) and Theorem 8.1. Combining the results of ‖Rj
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for some positive constant C5, where the estimates follow from Theorem 8.1.
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Now, using the same computations as in the proof of Proposition 4 in Lee et al. (2020), we obtain
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where we used the Cauchy-Schwarz inequality. Consequently,
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Now, we apply Proposition 8.5 with δ = c1
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where we used 2
Cmin

λn(ni)3/2(
∑

j∈Nin
‖B∗ijmnkn‖F )2 ≤ c2(b∗in )s (s = 2, 3) for the last inequality (see condi-

tion (8.67)).

By the same arguments and using (8.54), (8.55) and Assumption (4.13), we can show the existence
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of a constant C8 > 0 such that
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where the probability P (Ω{) can be estimated by Proposition 8.1 and is dominated by the first term

because of Assumption4.5. Similarly, using (8.59), we obtain
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Combining these results, we can conclude that
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and (8.69) holds for r = 6 (note that this argument requires condition (4.13)).

Term Rj
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Turning to ‖Rj
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Finally, combining the result (8.70) from Step 1 with the estimates for R1, . . . , R7, we conclude that
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and this completes the proof of Proposition 8.2. 2
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