arXiv:2210.17439v1 [math.ST] 31 Oct 2022

INDEPENDENCE TESTING IN HIGH DIMENSIONS
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This paper takes a different look on the problem of testing the mutual in-
dependence of the components of a high-dimensional vector. Instead of test-
ing if all pairwise associations (e.g. all pairwise Kendall’s 7) between the
components vanish, we are interested in the (null)-hypothesis that all pair-
wise associations do not exceed a certain threshold in absolute value. The
consideration of these hypotheses is motivated by the observation that in the
high-dimensional regime, it is rare, and perhaps impossible, to have a null
hypothesis that can be exactly modeled by assuming that all pairwise associ-
ations are precisely equal to zero.

The formulation of the null hypothesis as a composite hypothesis makes
the problem of constructing tests non-standard and in this paper we provide
a solution for a broad class of dependence measures, which can be estimated
by U-statistics. In particular we develop an asymptotic and a bootstrap level
a-test for the new hypotheses in the high-dimensional regime. We also prove
that the new tests are minimax-optimal and demonstrate good finite sample
properties by means of a small simulation study.

1. Introduction. Measuring dependence and testing for independence are fundamental
problems in statistics and since the early work of Pearson (1920), Kendall (1938), Hoeffding
(1948b) and Blum et al. (1961) numerous authors have worked in this area (for some more re-
cent references, see Gretton et al., 2008; Székely et al., 2007; Heller et al., 2012; Dette et al.,
2012; Bergsma and Dassios, 2014; Albert et al., 2015; Geenens and Lafaye de Micheaux,
2020; Chatterjee, 2021, among many others). Similarly, testing for mutual independence of
the components of a vector has found considerable attention in the literature and exemplary
we refer to Narain (1950), Roy (1957), Lee (1971), Nagao (1973), and Chapter 9 in the book
of Anderson (1984). However, it is well known that the last-named tests do not perform well
if the dimension, say p, is comparable to or even larger than the sample size, say n, and in re-
cent years many authors have worked on testing for mutual independence of the components
in the high-dimensional regime, where the dimension p converges with the sample size n to
infinity.

Independence testing of high-dimensional (mostly) Gaussian data has been considered by
Bai et al. (2009), Jiang and Yang (2013), Jiang and Qi (2015), Chen and Kato (2017), Bodnar
et al. (2019) and Dette and Dornemann (2020), among others, who investigated the asymp-
totic properties of likelihood ratio tests. Other authors consider more general distributions,
where the dependence between two components of the vectors is estimated by different co-
variance/correlation statistics such as Pearson’s r, Spearman’s p, and Kendall’s 7, and dif-
ferent functions are used to aggregate these estimates of the pairwise dependencies. For ex-
ample, Bao et al. (2015) and Li et al. (2021) use linear spectral statistics of the matrix of
estimates, while Schott (2005); Qiu and Chen (2012); Yao et al. (2018) and Leung and Drton
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(2018) propose tests based on the Frobenius norm. Further very popular methods of aggre-
gating estimates of the pairwise dependencies are maximum-type tests, which have good
power properties against sparse alternatives and have been investigated for various covari-
ance/correlation statistics in Jiang (2004); Zhou (2007); Liu et al. (2008); Li et al. (2010);
Cai and Jiang (2012); Shao and Zhou (2014); Han et al. (2017); Drton et al. (2020); Heiny
et al. (2021) and He et al. (2021) among others.

These tests differ in the distributional assumptions, the way of aggregation and in the con-
sidered measures to quantify the dependence between two components. However, a common
feature of all cited references consists in the fact that statistical tests are proposed for the
hypotheses

(L1) HS*: di;=0 foralll<i<j<p,
' H{%: d;; %0 for at least one pair (i,7) with 1 <i < j <p,

where d;; = d(X1;, X 1j) is a (population) measure of dependence between the two compo-
nents Xy; and X, of the p-dimensional random vector X; = (X1q,..., X 1p)T, such as the
covariance Cov(X1;, X1;).
In the present paper we take a different point of view on the problem of testing the mutual
independence of the components of a high-dimensional vector. Our work is motivated by the
paper of Berger and Delampady (1987) who argue that it is rare, and perhaps impossible, to
have a null hypothesis that can be exactly modeled by a parameter being exactly 0. In the
context of independence testing this means, that in many applications, in particular in the
high-dimensional regime, it is often unlikely that all p(p — 1)/2 associations (measured by
d;;) satisfy d;; =0 (1 <14 < j <p). As a consequence one uses a formulation of the null
hypothesis in (1.1), which is believed to be not true, and for sufficiently large sample size any
consistent test will detect an arbitrary small deviation from the null hypothesis, which might
not be scientifically of interest. Problems of this type are particularly relevant in the big-data
era, where the sample size and dimension are usually large.
As an alternative we propose to investigate if all associations (measured by the quantities d; ;)
are in some sense “small”. For this purpose we consider the hypotheses

2 Hy: |dij| <A foralll1<i<j<p,
(12) Hi: |dij| > A for at least one pair (4,7) with 1 <i<j <p,
where A > 0 is a given threshold. Note that (1.1) is obtained from (1.2) for A = 0, but in the
present paper we are not interested in this case, because we are aiming to detect only depen-
dencies exceeding a given positive threshold. The rejection of Hy in (1.2) allows to decide at
a controlled type I error that at least one association is larger than the given threshold A. On
the other hand, interchanging the null hypothesis in (1.2) and developing an appropriate test
allows to decide at a controlled type I error that all measures |d;;| are smaller than A (note
that interchanging the null-hypothesis and alternative does not make sense for the hypotheses
in (1.1)). We also note that hypotheses of the form (1.2) are frequently used in biostatistics
for inference on one-dimensional parameters (see, for example, the monographs of Chow and
Liu, 1992; Wellek, 2010).
The purpose of the present paper is the development of statistical tests for hypotheses of
the form (1.2) in the high-dimensional regime, where the dependence measures d;; can
be estimated by U-statistics. Typical examples include the classical covariance, Kendall’s
7, Hoeffding’s D, Blum-Kiefer-Rosenblatt’s R, Bergsma—Dassios—Yanagimoto’s 7* and a
dominating term of Spearman’s rank correlation p. As Jiang (2004); Zhou (2007); Liu et al.
(2008); Han et al. (2017) and Drton et al. (2020) we consider maximum-type tests, and al-
low the dimension p to grow exponentially with n. We develop a new asymptotic and a new
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bootstrap test for the hypotheses in (1.2) and investigate their statistical properties. Com-
pared to the “classical” hypotheses in (1.1) the composite structure of the hypotheses in
(1.2) makes both tasks non-standard. On the one hand, the asymptotic analysis of estimators
of maxi<;<j<p|d;j| by Poisson approximation techniques (see, for example, Arratia et al.,
1989) is very demanding due to the additional dependencies under the null hypothesis in
(1.2). On the other hand, further challenges arise in the development of bootstrap procedures,
since “generating data under the null Hy : maxi<i<j<p |d;;| < A” is not straightforward for
the composite hypotheses in (1.2).

In Section 2 we consider testing problems of the form (1.2) in a more general context and
propose an asymptotic level « test, which is (uniformly) consistent against local alterna-
tives, where the maximum deviation is at least A + ¢v/logd/+/n for some constant ¢ > 0
(here d = p(p — 1)/2 is the number of terms over which the maximum is taken). The proof
of these properties is based on the weak convergence of an appropriately normalized maxi-
mum statistic to a Gumbel distribution under suitable assumptions on the dependence struc-
ture, sample size and dimension. As such assumptions are often hard to justify in statistical
practice and the convergence rates in extreme value theory are usually very slow, we de-
velop in Section 2.2 a non-standard bootstrap test for the hypotheses of the form (1.2) and
prove its validity. In Section 3 we specialize these results to the problem of testing hypothe-
ses of the form (1.2), where the associations d;; are given by the covariances, Kendall’s
7, a dominating term of Spearman’s p, Hoeffding’s D, Blum-Kiefer-Rosenblatt’s R and
Bergsma—Dassios—Yanagimoto’s 7*. In particular, we prove that for many dependence mea-
sures the tests proposed in this paper are minimax-optimal against local alternatives of the
form maxi<j<j<p |dij| = A+ cy/log p/+/n. Note that these rates coincide with the minimax-
optimal rates for testing the classical hypotheses (1.1), that is A = 0, if dependencies are
measured by Spearman’s p and Kendall’s 7 correlations, see, for example, Han et al. (2017).
In Section 4 we demonstrate by means of a simulation study that the developed methodology
has good finite sample properties. Finally, all technical proofs and details are deferred to an
online supplement (see Sections A and B).

2. Testing for relevant deviations. In this section we consider the testing problems in a
slightly more general but notationally simpler form as described in the introduction. The case
of testing for relevant deviations of the entries in a matrix of pairwise dependence measures is
a special case of the following discussion (see Example 2.1) and will be addressed in Section
3 in more detail. To be precise, let X1, ..., X,, denote independent identically distributed p-
dimensional random vectors with distribution function F'. Note that formally F' depends on
the dimension p, which varies with n, but we will not reflect this dependence in our notation
throughout this paper. For some positive integer m let

(2.1) h=(hi,...,hq)" : (RP)" = R4
denote a measurable symmetric function with finite expectation
(2.2) 0 = (01,...,00) " =Ep[h(X1,...,Xm)] €R?,

which defines our parameter of interest. In order to estimate the parameter 0 we consider
the U-statistic of order m

-1
(2.3) U:(Ul,...,Ud)T:(;Z) S WXy X).

1<l <..<lm<n

In the high-dimensional regime U-statistics have recently found considerable interest in the
literature and we refer to Chen and Kato (2017); Chen (2018); Song et al. (2019); Kim (2020);
Wang et al. (2021); Cheng et al. (2022) among others.
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EXAMPLE 2.1. We briefly illustrate the notation for dependence measures between the
components of high-dimensional vectors as introduced in Section 1. In particular, such U-
statistics have been investigated by Han et al. (2017); Chen and Jiang (2018); Zhou et al.
(2019); Drton et al. (2020) and He et al. (2021) in the context of independence testing by
means of the classical hypotheses (1.1).

To be precise, for 1 <i < j <plet

(24) dij = d(X15, X1j) = Ep[R(X1i, X1, -, Xonis Xomj)]

denote a dependence measure between the ith and jth components of the random vector
Xy = (X11,...,X1p) ", which can be expressed as the expectation of a kernel i : R*™ — R
of order m evaluated at (Xi;, X1j,..., Xmi, Xim;). In this case the function h in (2.1) is
defined by

= VeCh((fL(Xlia X1j, s Xomir Xmj))ii=1,0) »

where the second equality defines the functions /;; : RP™ — R in an obvious manner and
vech(-) is the operator that stacks the columns above the diagonal of a symmetric p X p matrix
as a vector with d = p(p — 1)/2 components. Note that the index (4, j) in the definition of
the function h;; is only used to emphasize that each h;; acts on different components of the
vectors X1, ..., X,,. Similarly, the vector f is defined by 0p = Vech((dij)i7j:1’..,,p), and
the components of the vector U = vech((UZ-j)i7j:17,,,7p) in (2.3) are given by

-1
n
U = <m> S hi(Xy, 0 X,)

1<h<..<l,<n

—1
n ~
= <m> Z h(Xlli?th?"'7leialej)-
1<hi<..<lm<n

A more detailed discussion of specific dependence measures is postponed to Section 3.

Recall that, in this paper, we are not interested in testing the “classical” hypotheses Hy : 0 =
0 versus Hj : O # 0, but want to investigate if at least one of the components 6; of the vector
Or = (01,...,04) " exceeds a given threshold A > 0, that is

(2.5) Hy: m(élx|0i| < A versus Hj: m%f{\ﬁi\ > A,
1= 1=

where A denotes the largest deviation that is still considered as negligible. Hypotheses of
this form are often called relevant hypotheses. In the case d = 1 these hypotheses (more pre-
cisely the interchanged hypotheses Hy : max?_, |6;| > A versus Hy : maxZ_ |0;| < A) have
found considerable attention in the biostatistics literature (see, for example the monographs
by Chow and Liu, 1992; Wellek, 2010), but - despite their importance - they have not been
studied intensively in the high-dimensional regime. In what follows, we will construct tests
for hypotheses of the form (2.5) based on asymptotic theory of a (standardized) estimator
of 1fnax§l:1 |6;| and also develop (under substantially weaker assumptions) a non-standard
bootstrap test in the high-dimensional regime, where we allow the dimension d to grow ex-
ponentially with n.
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2.1. An asymptotic level o test. Recall the definition of the parameter 0 = Ep[U] =
Er[h(X1,...,Xn)] € RYin (2.2), where X1, ..., X,, ~ F are independent p-dimensional
random vectors with distribution F' (the dependence on p is omitted here for simplicity). In
Example 2.1 and in most cases of practical interest, d is given as a function of p, but our
theoretical results are more generally stated in a U-statistics framework that only depends on
the dimension of the vector . We denote by F the class of all distribution functions on R”
for which E (U] exists, and we set 0; = 0; = Ep[h;(X1, ..., X,,)] to be the ith component
of O, where h;, the ¢th component of the vector A in (2.1), is a symmetric kernel of order
m. Define by

-1

n
2.6 U; = hi( Xy, ..., X1 ), i=1,....d,
(2.6) (m) > (X, )i

1< <..<l<n

the corresponding estimate of #;. Under standard assumptions the statistics U; are unbiased
and consistent estimators of the parameters 8; (i =1, ... ,d), and therefore it is reasonable to
reject the null hypothesis in (2.5) for large values of max{_, |U;|. For technical reasons we
consider the quantities U? instead of |U;| and compare their maximum with A%, Correspond-
ing results for |U;|, which estimates |6;|, are briefly mentioned in Remark 2.8 (b).

We note that

2.7 Ui2 —A?= (Ul — (91)2 + 201([]1 — 91) — (AQ — 912)
and introduce the notations
(28) Cl,i:VarF(hu(Xl)) and hl,i(x) :EF[hZ(Xl,,Xm”Xl :l‘} .

If 1,5 > 0, the kernel h; of the statistic U; is called non-degenerate. Note that this property de-
pends on the kernel h; and on the distribution F'. In particular, for composite null hypotheses
of the form (2.5), there may exist different distributions, say F}, F» € F, both corresponding
to parameters 6, and 0, in the null hypothesis such that the kernel is degenerate under F
and non-degenerate under F5, that is 0 = Varg, (h1,;(X1)) < Varg,(h1,:(X1)). In the latter
case the statistic U; is asymptotically normal distributed with mean 6; and variance m? Cii/n.
Therefore, it is reasonable to standardize the differences U? — A? appropriately before taking
the maximum. We propose to use the test statistic

U2 — A?
(2.9) T i= max, ==

for testing the hypotheses in (2.5), where

n

2
2 me(n—1) 2
(2.10) O )2 kE_I(Qk,z Ui)

is a Jackknife based estimator of the variance of U; and g, ; is defined by

n—1\""
ki = < ) > hi(Xg, Xiy, - X0, )

m—1
1§l1 <..<l7”71§n,lj #k’

(see Zhou et al., 2019, for details). The null hypothesis in (2.5) is rejected, whenever

@2.11) Toa > B
ag

+bd7

where ¢1_o = —log(log(1X)) is the (1 — «)-quantile of the standard Gumbel distribution
with distribution function exp(—exp(—z)),z € R, and

log(log d) + log(4
ag=+/2logd and bg=ag— og(log 2>a—Z og( W).
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In the following discussion we will show that this test has asymptotic level ae. An important
step in these arguments is a proof of the weak convergence

(2.12) li_}rn P(aq(Tn,a — ba) < @) = exp(—exp(—x)), reR,

in the case 01| = |02 = ... = |64] = A > 0. Note that this choice corresponds to the most
extreme case in the null hypothesis (1.2) which means that the probabilities of rejection by the
test (2.11) for all other parameter constellations under the null hypothesis Hy : maxglzl 10;] <
A are bounded by this scenario and in many cases substantially smaller.

Under additional assumptions on the kernels h; we can also prove that the test (2.11) is min-
imax optimal, see Section 3.5 for a discussion of this property in the context of dependence
measures. Interestingly, it turns out that for deriving these properties it is not necessary to
assume that the kernels h; are non-degenerate for all distributions F' corresponding to the
null hypothesis (see the discussion below, in particular Assumption (A2)).

In what follows, we will need the function ¥3(x) = exp(z”) — 1 and the corresponding
Orlicz norm

2.13) 1Z1l,,, = inf{v > 0: E[$)5(|2|/v)] < 1}

of a real-valued random variable Z. We continue by spelling out several regularity assump-
tions that are required for proving the weak convergence in (2.12).

(A1) For some constant /3 € (0, 2] there exist a non-negative sequence (B, )ncn and a con-
stant D > 0 such that for all d = d(n),n € N,

max ”hz(Xlame) _HiHi[Jg < Bn,

1<i<d
max (1; <D,
1<i<d
max EF[(hl,z(Xl) — 91)4] S DB?L .

1<i<d
(A2) There exist constants b > 0 and ¢ € (0, A) such that

min  (;>b
1<i<d,|0;|>c
forall d=d(n),n € N.
(A3) Let r;; = Corrp(hi,;(X1),h1,j(X1)) € (—=1,1) denote the correlation between
h1,;(X1) and hq j(X1). There exist a constant € > 0 and a sequence 7, = o(1) such that
foralld=d(n),neN

Z |Ki ;| exp (_ (2e)logd> <o
2 1+ [ri |

1<izj<d \/ 1 = K

Assumption (A1) is a technical condition that captures a uniform tail probability decay from
which we will deduce concentration inequalities for the the components of the U-statistic
defined in (2.3). Note that this condition is always satisfied if the kernel A is bounded. As-
sumption (A2) is a uniform non-degeneracy requirement which is a standard condition for
deriving Gaussian approximation results, see for instance Chen (2018); Chernozhukov et al.
(2019) among others. We emphasize that this assumption is only required here for the param-
eters 0; which are (uniformly) bounded away from 0. This covers most cases of practical in-
terest, where a degenerate kernel appears in the case 6; = 0, but the kernel is non-degenerate,
whenever 6; # 0. Roughly speaking, for the problem of testing composite hypotheses of the
form (2.5) the distinction between the degenerate and non-degenerate case is basically not
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necessary if Assumption (A2) is satisfied (see Section 3.4 for a more detailed discussion
in the context of dependence measures). Finally, Assumption (A3) ensures that we can ap-
proximate the maximum of dependent normal distributed random variables by the maximum
of independent ones. We already emphasize at this point that this assumption will not be
required for the bootstrap test, which will be developed in Section 2.2 later on.

Our first result shows that the test defined in (2.11) has asymptotic level « (uniformly over
a given class of distributions). For a precise statement consider the set of all distribution
functions on R satisfying Assumptions (A1) - (A3), and define

. = = T d i < }
(2.14) Vo {z (21, z0) T € R | max ] < A

as the parameter space corresponding to the null hypothesis in (2.5). Note that these sets
depend on n (through the dimension d = d(n)). We define

(2.15) Ho(A):={F € F|0p €V, F satisfies Assumptions (A1), (A2), (A3) }

as the set of distribution functions satisfying the null hypothesis (and the basic assumptions)
with existing expectation Er[U]. Note that Ho(A) depends on the constants b, D and on
n (through the dimension d = d(n) and sequence (B),)nen) Which is not reflected in our
notation.

THEOREM 2.2. If Assumptions (Al), (A2), (A3) are satisfied, logd = o(n”) with 0 <~ <
1
W and
B2 (log(nd)) " **/°

(2.16) =o0(1), n— oo,
n

then for any « € (0,1)

d1—a +bd) <a.
Qg

2.17) limsup sup P<E7A>
n—o0 FeHo(A)

REMARK 2.3.

(1) For the proof of Theorem 2.2 we proceed in two steps: first we use Gaussian approx-
imation techniques (see Chen, 2018; Chernozhukov et al., 2019, for example) and then
compare the resulting Gaussian vector with a Gaussian vector with i.i.d components under
the additional assumption (A3) on the dependence structure of the vector X;. The maxi-
mum of the latter Gaussian vector then converges to a Gumbel distribution under suitable
assumptions on the dependence structure, sample size and dimension.

(2) Note that the statement (2.17) addresses the worst case under the null hypotheses Hy :
maxgl:1 |0;] < A (uniformly over the class of distributions defined by (2.15)), and that
there exist also vectors 0 such that equality holds in (2.17). For example, it follows from
the proofs in Section A that equality holds in the case, where 6; = A for all 1 <4 <d.
Moreover, an inspection of the arguments given in the proof of Theorem 2.2 further shows
that

limsup sup ]P’<7;L7A>

fiza + bd) < a,
n—00 FcHo(A) ad

whenever the proportion of indices ¢ € {1,...,d} with 6; = A is asymptotically strictly
smaller than 1. In particular, we have

lim sup ]P’(’];%A > fi-a —l—bd) =0,
=00 ety (A) aq



whenever supyeymax?_; |0;] < A. Thus for many parameter constellations in the null
hypothesis the type I error of the test (2.11) will be much smaller than «, which is an
appealing property of the test.

Next we turn to the consistency of the test (2.11) and define

Vic)= {z eR? | max |2 > A+ cBn((logd)/n)l/Q}

1<i<d

as a set of alternatives (note that for a bounded kernel h the sequence B,, can be chosen as a
constant sequence). We will study the power of the test (2.11) against alternatives in the set

(2.18) Hi(c) = {F € F|0peV(c); F satisfies Assumption (Al)} .

THEOREM 2.4. [Iflogd = o(nY) with 0 <~ < Wﬁ then there exists a constant ¢ > 0,
only depending on ~y and (3, such that

lim inf (7>

fiza + bd) =1.

n—00 FeH,(c) aq

The choice of the sequence (B))n,en depends on the tail behavior of the random vari-
ables h;(Xi,...,X;,) and hy;(X}) and the condition (2.16) puts a further restriction on
the growth rate of the dimension. For example, if the sequence (B, )ncn is bounded, Theo-
rem 2.2 is applicable with an exponentially growing dimension d, i.e. logd = o(n!/(4+2/5))
which results in the rate logd = o(n'/?) if hy(X1,...,Xm),...,ha(X1,..., Xm) are sub-
Gaussian random variables. Note that this property implies that the random variables
h11(X1),...,h1,4(X1) are Sub-Gaussian as well. Under additional assumptions on the ker-
nel A it can also be proved that the rate /log(d)/n in Theorem 2.4 is in fact minimax optimal
and cannot be improved by other tests. We discuss this optimality property in the context of
bivariate dependence measures in Section 3.5.

2.2. Bootstrap. The use of the asymptotic quantiles in the decision rule (2.11) is attractive
from a computational point of view. On the other hand the basic statement of weak con-
vergence (2.12) used to establish its validity requires additional assumptions regarding the
dependence structure of the components of the random vectors X; as formulated in Assump-
tion (A3). Moreover, it is well-known that the rate of convergence in results of this type is
typically rather slow and the nominal level of the test (2.11) will not be well approximated.
In this section we discuss a bootstrap approach to solve these problems. As usual in ap-
plications of the bootstrap in testing hypotheses this requires simulating the distribution
of the statistic 7, A in (2.9) under an appropriate configuration of the null hypothesis
Hj : maxj<;<q|0;| < A. While this task is relatively easy in the case of the “classical” null
hypothesis corresponding to the case A = 0 it is significantly more difficult for the compos-
ite hypotheses corresponding to A > 0 as considered in this paper. The approach proposed
here is based on bootstrap data generated at the “boundary” of the hypotheses in (2.5), that is
maxj<;<q|0;| = A.

To be precise, let X7,..., X, be drawn with replacement from Xj,...,X,, and define for
1=1,...,dby

n\
(2.19) Ur = <m> Z hi(Xi . X[

1<l <..<l,m<n
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a bootstrap analogue of the statistic introduced in (2.6). Note that the conditional expectation
of U given X1,..., X, is given by the V -statistic

(2.20) Vi=Ep[UfX1,..., X, > hi(Xy,.,X0,)
lm=1

Lyeees

1
==
l
(see, for example, Chen, 2018). Next we define a truncated version of V;, that is

g i | <
2.21) vm:{vl it [Vi[ <A

)

. i=1,...,d
A, otherwise

and note that ‘]E[UZ* —Vi+VialXy,... ,XnH < A a.s. We finally define

. (UF = Vit Via)* = Vil
(2.22) T = max, 56. A

as the bootstrap analogue of the statistic 7, A defined in (2.9) and denote by ¢j_, the (1 —a)-
quantile of the distribution of 7,*. We propose to reject the null hypothesis in (2.5), whenever

(2.23) Tos > G-

The next result shows that this procedure defines a (uniformly) consistent and asymptotic
level « test for the hypotheses (2.5). We emphasize that we do not require Assumption (A3)
for this statement and that in this sense the bootstrap test is valid under more general as-
sumptions than the asymptotic test (2.11). This comes at the cost of a slight loss of sensitivity
as the bootstrap data might have a larger conditional vg-Orlicz norm than the original data.
Additionally, we need some conditions on the entries h;(X1,..., X1, Xpp—k,..., X;n) for
all 1 < k < m, which are known as von-Mises conditions in the literature (see Bickel and
Freedman, 1981, for example). More precisely, we make the following assumption.

(A1) Let Assumption (A1) hold and assume that the constant 3 € (0,2] and the sequence
(Bn)nen satisfy additionally

mase [ha(X;,.. 0. X ), < Bo

forall ji,...,5m € {1,...,n}.

THEOREM 2.5. Let Assumptions (Al’) and (A2) be satisfied, assume that logd = o(n")

: 1
with 0 <~ < 27351 and that

B (log(nd))**/7  Bj(log(nd))'*2/7

2.24 =o(1 — 00.
(1) Forany a € (0,1) it follows that
(2.25) limsup  sup IP’(’E,A > qf_a> <a,
=00 FEHq poot (A)

where
(2.26) Hoboot(A) :={F € F | Op € Vo; F satisfies Assumptions (Al’), (A2)}
and Vy is defined in (2.14).
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(2) For a sufficiently large constant ¢, which only depends on ~ and B, it follows that

2.27 li inf P(Tona>d_,) =1,
2:27) n 00 Fet, (c(log(nd)) /) ( A~ )
where the set H1(c) is defined in (2.18). Moreover, if the kernel h in (2.3) is bounded, then
the set H1(c(log(nd))'/P) in (2.27) can be replaced by H1(c).

REMARK 2.6.

(1) Note that the sets Ho(A) and Ho poot (A) defined in (2.15) and (2.26), respectively,
satisfy Ho(A) C Hopoot (A). This means part (1) of Theorem 2.5 holds under weaker
assumptions than Theorem 2.2.

(2) Comparing the statement (2.27) for the power of the bootstrap test (2.23) with Theorem
2.4 about the power of the asymptotic test (2.11), we observe that for unbounded kernels
there is an additional factor (log(nd))l/ A in the definition of the set of alternatives 7{1.
This factor is a consequence of an inflation in the tails of the conditional distribution of
the bootstrap data for unbounded kernels. As a consequence the bootstrap test can detect
local alternatives converging to the null at the rate (log(nd))'/#y/(logd)/n and this rate

improves to 4/ (logd)/n in the case of bounded kernels.

(3) We emphasize that the test (2.23) has similar properties as described in Remark 2.3 for
the test (2.11), which uses the quantiles of the Gumbel distribution. In particular, under
the null hypothesis (1.2) the rejection probability is asymptotically « if |6;| = A for all
1 <i <d, and, by Theorem 2.5, this is an upper bound for the rejection probability under
the null. Consequently, the type I error can be much smaller than « if |6;] is substantially
smaller than A for many indices 1 < i < d, where the extreme case appears if 6; = 0 for
all 1 <4 <d.

(4) Under additional assumptions on the kernel h it can also be proved that the test (2.23)
is optimal in the sense that no other test can detect alternatives converging with a faster
rate than B,,+/log(d)/n to the null hypotheses. We give more details and illustrate this
property in Section 3.5 for the bivariate dependence measures considered in Example 2.1.

(5) Naive algorithms for calculating higher order U statistics result in prohibitive run times
of order n'™ already when considering the case d = 2. Fortunately there are software
packages providing optimized algorithms that calculate rank based U-Statistics in time
nlog(n), see for instance the R package “independence” from Even-Zohar (2020). Similar
techniques can be used to shorten the computation times of the quantities V; and &; for
rank based statistics.

REMARK 2.7. As mentioned in the introduction the theory can be extended for testing the
interchanged hypotheses

(2.28) Hg)“t:m‘é1:><|9i| > A versus Hilnt:m%fc|0i| <A
1= 1=

For the sake of brevity we restrict ourselves to a bootstrap test, which rejects the null hypoth-
esis in (2.28), whenever

(2.29) Ton <4y,

where the statistic 7, A is defined in (2.9) and the bootstrap quantile ¢* is obtained as fol-

lows. Let X7, ..., X be drawn with replacement from X7, .., X,,, recall the definitions (2.19)

and (2.20) and replace the definition of V; A in (2.21), by
Viam {V if Vi > A

_ i=1,....d.
A, otherwise
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Then we define the statistic

T*,int :— max (Ui* -Vi+ V%yA)Q - ‘/;,?A
T 1<i<d 26;A

and denote by ¢}* its corresponding c-quantile. Using similar arguments as given in the proof
of Theorem 2.5 we can show that the decision rule (2.29) defines a (uniformly) consistent and
asymptotic level « test for the hypotheses (2.28).

REMARK 2.8 (Alternative tests).
(a) A careful inspection of the proofs in the online supplement shows that it is possible to
construct a bootstrap procedure without normalizing the variance of each component. To be
precise we consider the test statistic
2.30 Yy = UZ — A
(2.30) na = Vnmax U )
which is obtained from (2.9) by omitting the normalizing factors &;. This statistic does not
converge weakly to a Gumbel distribution. However, a Gaussian approximation and corre-
sponding construction of a bootstrap procedure is still possible.
For this purpose let X7, ..., X, be drawn with replacement from X1, ..., X,, and define U,
Vi and V; A by (2.19), (2.20) and (2.21), respectively. We then obtain a bootstrap analogue of
the statistic (2.30) by
£ 391} * 2 2
T = \/ﬁfg?é‘d (Ui =Vi+Via)" = Via}
and denote by ¢;"™, the corresponding (1 — «)-quantile. The null hypothesis in (2.5) is re-
jected, whenever

(2.31) T > g™

l—a-
For this test an analogue of Theorem 2.5 can be proved which even allows us to relax con-
dition (2.24) slightly as we do not need to take into account errors that are incurred by ap-
proximating the variances anymore. However condition (A2) is still required as the result still
relies crucially on Gaussian approximations. The details are omitted for the sake of brevity.

(b) The consideration of the squared U -statistics in (2.9) and (2.30) was made for technical
reasons. In fact, similar results can be shown, if UZ-2 is replaced by |U;| (i =1,...,d). To be
precise note that an essential step in the proof of Theorem 2.2 - 2.5 is the decomposition (2.7).
Under the null hypothesis and the alternative the properties of the tests are determined by the
parameter vectors, for which all components do not vanish, thatis §; 20 foralli=1,...,d.
Whenever 6; # 0, the quadratic term in (2.7) is negligible and the linear term is dominating,
which is analyzed using Gaussian approximation techniques (see Appendix A for details).
Now, if we consider the non-normalized case and define the test statistic by

bs .__ 1
ﬁ-—ﬁ@ﬁﬁ&!A,
one observes a property similar to (2.7) that facilitates the application of a Gaussian approx-
imation. More precisely, whenever 6; # 0, we have
(2.32) |U;| — A =sign(U;)U; — A = sign(6;)(U; — 60;) + (sign(6;)6; — A)

with high probability. Therefore a valid bootstrap procedure is obtained as follows. Let
X7,..., X, be drawn with replacement from X7, ..., X,, and recall definitions (2.19), (2.20)
and (2.21). We then define the bootstrap statistic as

TR = v max {|Uf — Vi + Vi al — [Vial}
' 1<i<d
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*,abs
-«

(2.33) T > grahs

For this test one can obtain an analog of Theorem 2.5 using similar arguments as in the
quadratic case, where (2.7) is replaced by (2.32) to linearize the test statistic. The details
are omitted for the sake of brevity. As for the test (2.31) the condition (2.24) can be slightly
relaxed, because no approximation of the variances is required.

and denote by ¢ its (1 — «) quantile. The null hypothesis (2.5) is rejected, whenever

REMARK 2.9 (Classical hypotheses). With the choice A = 0 the non-normalized bootstrap
tests (2.31) and (2.33) can also be used for testing the classical hypotheses in (1.1), provided
that the representation (2.2) for the parameter of interest holds with a U -statistic which is non-
degenerate under the null hypothesis. This follows by a careful inspection of the arguments
given in the proofs of Theorem 2.5 in the online supplement. In such cases these tests provide
an interesting alternative to the tests constructed by asymptotic arguments, see for instance
Han et al. (2017); Zhou et al. (2019) and Drton et al. (2020).

3. Relevant dependencies in high-dimension. In this section we apply the methodol-
ogy in the context of bivariate dependence measures between the components of high-
dimensional vectors as considered in the introduction. The relation between this problem
and the general formulation in Section 2 is described in Example 2.1. Recall the definition
of the dependence measure in (2.4) for the kernel h, the notation X3 = (Xg1,..., X kp)T and
write

-1
(3.1) Uij = <:L> Z hii(Xi,, . X1,)

1<h<..<lm<n

-1
n ~
- <m) Z h<Xlli7Xl1j7"'7lei7lej)

1§l1<...<lm§n

for the corresponding U-statistic, where the second equality defines the functions h;; :
RP™ — R in an obvious manner. We now discuss several dependence measures separately.
For the sake of brevity we restrict ourselves to the bootstrap test introduced in Section 2.2,
which is defined by

(3.2) Toa > G- s
where T, A = maxlSKjSp(UiZj —A?%)/(26;;A) and g;_,, denotes the (1 — «)-quantile of the

corresponding bootstrap distribution.

3.1. Covariance. The sample covariance matrix

n

~ 1 _ _ T

k=1
where X,, = %Zzzl X}, denotes the sample mean of X;,..., X, is the commonly used
unbiased estimate for the covariance matrix ¥ = Covp(X;) = Ep [(Xl —Ep[X1])(X1 —

Er[X1]))"].

The covariance is a special case of (3.1) choosing h(z1,22) = (z1 —22) (21 —22) | /2, and we
refer to Bai et al. (2009); Chen and Kato (2017), among others, who considered independence
testing of the classical hypotheses in (1.1) for covariances. We now consider the problem
of testing the relevant hypotheses (1.2), where d;; = Cov(XM,le), 1 <9< 3 <p. For
the problem of testing relevant hypotheses of the form (1.2) an application of the results of
Section 2.2 yields the following result.
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COROLLARY 3.1. Iflogp = o(n?) with 0 <~y < (5+4/8)"L A (2+8/8)) 7L, then the
bootstrap test (3.2) with U;; = ﬁ]ij is (uniformly) consistent and has (uniform) asymptotic
level o over the classes of distributions H1(c(log(nd))*/?) and Ho poot (A) defined in (2.18)
and (2.26) respectively, where the conditions (Al’) and (A2) have to be replaced (and are
implied) by

(C1) There exist constants (3 € (0,2] and C > 0 such that for all p=p(n),n € N

P . <(C.
g%HXz ElXi]ly, =C

(C2) For some constant b > 0 and c € (0, A) we have

min  Varp[(X1; — Ep[X1]) (X1, — Er[Xy;])] > 0
1<i<j<p, |8y [>e

forallp=p(n),neN.
Note that for a normal distribution Assumption (C2) holds whenever there exists a uniform

positive lower bound for the diagonal elements of ..

3.2. Kendall’s 7. A very popular measure of (monotonic) dependence between the :th and

jth component of the vector X1 = (X31,..., X 11,)T is Kendall’s 7 coefficient given by 7;; =
Ep[sign(X1; — Xo;)sign(X1; — Xo;)] with empirical version

. 2 . .

Tij = Z sign(Xy; — Xp;) sign( Xy — Xi5)

n(n — )1§kz<l§n

Here the kernel is given by

hij(x1,22) = (@15, 21, 224, T2j) = sign(x1; — T2;)sign(z; — T2;)

and the vector U is defined by U = vech((ﬁj)i,jzl,,wp). The classical testing problem (1.1)
with d;; = Ep[sign(X1; — Xo;)sign(X;; — X2;)] was considered by Han et al. (2017); Leung
and Drton (2018); Zhou et al. (2019) and Li et al. (2021) in the high dimensional regime. For
the problem of testing relevant hypotheses of the form (1.2) an application of the results of
Section 2.2 yields the following result.

COROLLARY 3.2. Iflogp=o(n") holds with 0 <~ < %, then the bootstrap test (3.2) with
Uij = 7ij is (uniformly) consistent and has (uniform) asymptotic level o over the classes of
distributions H1(c) and Ho poot (D) defined in (2.18) and (2.26) respectively, where condition
(Al’) can be omitted (because the kernel is bounded) and condition (A2) is replaced by

(T1) There exist constants b > 0 and c € (0, A) such that

min  Varg [Ep[sign(X1; — Xo;)sign(X1; — Xoj)| X1]] > b.
1<i<j<p,|1ij|>c

forallp=p(n),neN.

3.3. The dominating term of Spearman’s p. Let Qim be the rank of Xj; among X, ..., Xp;
and consider Spearman’s rank correlation coefficient

pij = > o1 (@ — (n+1)/2)( ik—(n+1)/2)
V(@i — (04 1)/2)2 0, Q1 — (n+1)/2)?

)
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which defines another popular measure of dependence between the ith and jth component of
the vector X7 = (X11,...,X 1p)T. While p;; ist not a U-statistic, it was shown by Hoeffding
(1948a) that it can be decomposed as follows

n—2 . 3 .
pij:n+1pij+n+17ijv
where the dominating term
6
Pij n(n — 1)(n — 2) Z Slgn( ki kQZ)SIgn( kij kS])
1§k1<k2<k3§n

is a U-statistic of degree 3 with bounded kernel

hij (21, @2, 23) = h(1i, 215, T2, T2j, T3s, T3;) = sign(w1; — x2;)sign(w1; — 35).
The classical testing problem for this statistic and continuous data was considered by Han
et al. (2017) and Leung and Drton (2018). For the problem of testing relevant hypotheses of
the form (1.2) an application of the results of Section 2.2 yields the following result.

COROLLARY 3.3. Iflogp=o(n") holds with 0 <~ < %, then the bootstrap test (3.2) with
Uij = pij is (uniformly) consistent and has (uniform) asymptotic level o over the classes of
distributions H1(c) and Ho poot(A) defined in (2.18) and (2.26) respectively, where condition
(Al’) can be omitted (because the kernel is bounded) and condition (A2) is replaced by

(S1) There exist constants b > 0 and c € (0, A) such that

~ min_ Varp [Ep([sign(X1; — Xo;)sign(X1; — X35)| X1]] > b.
1<i<j<p,|pi;j|>c

forallp=p(n),neN.

3.4. Dependence measures with degenerate kernel . While Kendall’s 7 and Spearman’s p
only capture monotonic dependencies between two random variables there are a number of
higher order U-statistics that are able to capture any form of dependency between two ran-
dom vectors. Exemplary, we mention here Hoeffding’s D (Hoeffding, 1948b), Blum-Kiefer-
Rosenblatt’s R (Blum et al., 1961) and Bergsma—Dassios—Yanagimoto’s 7* (Bergsma and
Dassios, 2014). Note that in the case of independence (reflecting the classical null hypothesis
in (1.1)) the kernels corresponding to these U-statistics are degenerate. On the other hand,
if the components are dependent (which corresponds to the classical alternative), all three
statistics are non-degenerate for a large class of distributions. In such cases the general the-
ory developed in Section 3 is applicable as well. Before going into details we emphasize
that similar results as presented below can be derived for other types of dependence measure
which can be estimated by U -statistics with a degenerate kernel under independence such as
the distance correlation introduced by Székely et al. (2007), see Theorem 4.1 in Edelmann
et al. (2021).

To be precise we recall the definition of the U-statistics considered in Hoeffding (1948b);
Blum et al. (1961); Bergsma and Dassios (2014). Let 21, ..., 26 be p-dimensional vectors of
the form z; = (Zﬂ, e ,Zip)—r, define

k
17 sods = H2zik < 2jn} — Hzjok < 2jai}

E D ] 7k
L2 o= Mzge < Zjk L zjun < 2506 120k < 250k} 1{2j2k < Zjik}
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and consider the kernels

D o i ] ) J J
hy; (21,...,25) 1= 16 § : L5, ja.gs Lissiais L o Lisjards *
<1 A5 <5

R L i 1 % J J
hij(zh""zﬁ) 39 § : ]1]1732795 1]373440 ﬂ]h]zds ]ljs,JMe ’
1<G1 7. #J6 <6

T R J2504, J1,J35t J2,J3,% o J15J45
hij (Zl’ ey 24) = 16 Z (ﬂjl,js - ]ljz »Ja 1]1»14 ]ljmjs )

IS #ja<4

J2:JasJ J1,J3:J J2,J3:32 J1:Jasd
(]ljl 2J3 + ]lJ2 2Ja ]1]17]4 ﬂj2713 ) :

Note that hD, hR and hT define symmetric kernels of orders 5,6 and 4 respectively.
ij y p y

The correspondlng matrlces of empirical dependence measures calculated from the sample
Xi,...,X,, € R? are then given by

-1
A A n
D = (Dijh<i<j<p = <<5> > (X X5)

Y
. . )1<i< i<

R=(Rij)i<icj<p= ((g) h > hik aw--joe))

1< <...<je<n

-1
A~k A~k n
T = (Tij)1§i<j§p = <<4> Z hT ( J17"‘7Xj4)) 1<7j<_7'<p.

1Sj1<...<j4§ﬂ

1<i<j<p

The classical testing problem (1.1), where the dependence measure dzy is either given by
Dij = EF[hZ(Xla e ,X5)], Rij == Ep[hg(Xl, e ,Xﬁ)] or 7' Ep[h (Xl, e ,X4)] was
considered by Drton et al. (2020) in the high dimensional reglme For the problem of testing
relevant hypotheses of the form (1.2) an application of the results of Section 2.2 yields the
following result.

COROLLARY 3.4. Iflogp=o(n") holds with 0 <~ < < , then the bootstrap test (3.2) with

Ui; given by either D”, R” or 7,5 is (uniformly) conszstem and has (uniform) asymptotic
level o over the classes of distributions H1(c) and Ho poot(A) defined in (2.18) and (2.26)
respectively, where condition (Al’) can be omitted (because the kernels are bounded) and
condition (A2) is replaced by

(D1) There exist constants b> 0 and c € (0, A) such that

min Varp [Ep[h (Xl, X5)‘X1H Zb
1<i<j<p,|Di;|>c

forallp=p(n),neN.
in the case of Hoeffding’s D, by
(R1) There exist constants b > 0 and c € (0, A) such that

min Vargp [Ep[h (X1, ... XG)\Xl]] >b.
1<i<j<p,| Rij| >

forallp=p(n),neN.
in the case of Blum-Kiefer-Rosenblatt’s R, and by
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(TA1) There exist constants b > 0 and c € (0, A) such that

' Varp [Ep[h7; (X1, ..., X4)|X1]] > b.
1§i<3r2110{\17'?j\>c arF[ Pl ”( 1 a) 1H =2

forallp=p(n),neN.

for Bergsma—Dassios—Yanagimoto’s T*.

3.5. Minimax optimality. Recall that, by Theorems 2.4 and 2.5, both the asymptotic test and
the bootstrap test (under the additional assumption of a bounded kernel) correctly reject the
null hypothesis in (2.5) if at least one entry of the vector € is larger than A+ C B, /log(d) /n.
In this section we will show that in many situations, where the sequence (B, )nen is bounded
this rate cannot be improved. These cases include all dependence measures discussed in Sec-
tions 3.1 — 3.4. To be precise, we define

To, = {Ta | SUp pepgy(a)P(To does not reject Hp) < a}

as the set of all tests with (uniform) level a.

We begin with a result for the covariances, that is d;; = Covp(Xi, X15) (1 <i<j <p.
For the sake of simplicity, we assume without loss of generality that d;; = Var(Xy;) =1
(1=1,...,p), the general case is obtained by a scaling argument. Note that in this case only
values A € (0, 1) are useful thresholds for the hypotheses (2.5). We then obtain the following
result.

THEOREM 3.5. Assume that the dependence measure d;;j in (2.4) is given by d;; =
Covp(X1i, X1j) and di =1 (i,j =1,...,p); so we have d = p(p — 1)/2. Further let
co, v, B denote positive constants such that co < 1 — A and o+ § < 1. If log(p)/n — 0
and log(p)n/p? — 0, as n — oo, then we have for sufficiently large n and p

3.3) inf  sup P(7, does not reject Hy) >1—a — 3.
To€Ta FeH(co)

The proof of (3.3) uses the fact that the supremum of the probabilities with respect to the
distributions F' € H1(cp) can be bounded from below by the supremum taken over all cen-
tered multivariate normal distributions in H;(cp), where the covariance matrices have the
following form. All diagonal elements are 1, except of two off-diagonal elements all off-
diagonal elements are equal to A and the two remaining off-diagonal elements are given by
A + p. Because this argument does not depend on the specific dependence measure under
consideration, a careful inspection of the proof of Theorem 3.5 shows that statements of the
form (3.3) are also available for dependence measures, which, under the assumption of a
normal distribution, can be represented as a function of the correlation. More precisely, let
d;ij(F) = d(X14, X1;) denote a bivariate dependence measure, such that

(34 dij(N1,N2) = g(p)
for a normal distributed vector (N1, N2) " ~ N3 (0, (17) ), where g: (—1,1) — R is a differ-
entiable function with non-vanishing derivative at some p € g~ ({A}).

COROLLARY 3.6. The conclusion of Theorem 3.5 remains valid for any bivariate depen-
dence measure d;j, which satisfies (3.4) and for which there exists a constant a € (—1,1)
such that |g(a)| = A and sign(g'(a)) = sign(g(a)).

REMARK 3.7. We conclude this section with some examples of dependence measures,
where Corollary 3.6 is applicable. Note that Theorem 3.5 gives a lower bound for all tests.
Thus it also applicable for dependence measures, which can be estimated by U-statistics.
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(1) A prominent dependence measure that fulfills this assumption is Kendall’s 7 for which
it holds that 7;; = (2/7) arcsin(p). A similar result holds for Spearman’s p, here we have
pij = (6/m)arcsin(p/2). Another obvious choice is the Pearson correlation for which
g(p) = p is the identity function.

(2) For a centered normal distribution Hoeffding’s D, Blum-Kiefer-Rosenblatt’s R and
Bergsma-Dassios— Yanagimoto’s 7*s, which are considered in Section 3.4, can be ex-
pressed in terms of p, such that (3.4) holds. We expect that the assumptions of Corollary
3.6 are satisfied as well, but we do not work out the details here for the sake of brevity.

4. Finite sample properties. In this section we report the results of a small simulation
study conducted in order to investigate the finite sample properties of the proposed tests for
the relevant hypotheses (1.2). We focus on Kendall’s 7 and the bootstrap test (2.23), its non-
normalized version defined by (2.31) and the test (2.33), which uses the statistics |U;;| instead
of their squares U7

As distributions we consider the centered p-dimensional normal distribution with covariance
matrix X, that is

4.1) X1,..., X, ~ N, (0,%)

and the centered p-dimensional ¢-distribution with f = 3 degrees of freedom and scale matrix
Y, that is

(4.2) X1, X~ (0,5),

with density

L((f+p)/2) ( 1$T2x)*(f+p)/2.

930 = 1) g\ 7

We generate data from the models (4.1) and (4.2) for sample sizes n € {50,100} and dimen-
sion p € {100, 200,400}, where we investigate 3 choices for the covariance matrices > and
(f/(f —2))X in (4.1) and (4.2) respectively, that is

(M1) Diag,(1—p,...,1—=p)+pJp,

(M?2) Diag,(1,...,1) + 0D 1 <ici<|p/va) (eie;r +eje) ),

(M3) Diagp(l,...,l)+p(eiejT+ejeiT) .

Here Diagp(al, ...,ap) denotes a diagonal p x p matrix with diagonal entries a1, ..., ap, Jp

denotes the p x p matrix with all entries equal to 1, e; is the jth standard basis vector and pis a
constant that varies depending on whether or not on one wants generate data whose Kendall’s
T exceeds the threshold or not. In model (M 1) we have equal correlation between all compo-
nents of X7, whereas in model (M 3) only the :th and jth components of X; are correlated.
Model (M?2) defines an intermediate case with a block-diagonal correlation matrix, where
the first |p/v/2| components have the same correlation and the remaining components are
uncorrelated. All numerical results presented in the following discussion are based on 1000
simulation runs and 100 bootstrap replications.

We investigate the test for the hypothesis of a relevant deviation from independence between
the components of a high-dimensional vector, if the dependencies are measured by Kendall’s
7, as discussed in Section 3.2. Thus, the hypotheses are given by

4.3) Hy: max ’Tij‘ <A versus Hj;: max ‘Tij| > A s
1<i<j<p 1<i<j<p
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where we choose the threshold A = 0.1. Note that the distributions in (4.1) and (4.2) are
elliptical, which implies the relation

2
Tij = ; arcsin (COI‘I"(XM” le))

between Kendall’s 7 and the off-diagonal elements of the matrices ¥ and (f/(f —2))X in
(4.1) and (4.2) respectively (see Lindskog et al., 2003).

4.1. Test statistics involving Ufj We begin studying the type I error of the bootstrap test
(2.23), which is based on a maximum of normalized statistics involving squares of the U-
statistics U;;. As pointed out in Sections 2 and 3, the (asymptotic) level of the bootstrap test
is substantially smaller than the nominal level « if maxi<;<;<p |Tij| < 0.1 (we emphasize
again that this is a very desirable property). Therefore, we concentrate on the case where
at least one of the bivariate dependence measures satisfies |7;;| = 0.1, which corresponds to
the choice p = sin(7/20) in model (M 1) - (M 3). Note that the matrix in (M 1) represents
the situation, where |Tij| = A =0.1 for all 1 <14 < j < p, which corresponds to the “full
boundary” of the hypotheses (4.3). The matrix in () 3) represents a case which is closer to
the “interior” of the null hypothesis (only two off-diagonal elements have a Kendall’s 7 equal
to 0.1, but for all other entries Kendall’s 7 is equal to 0). For the matrix (1/2) about 50% of
the off-diagonal elements have a Kendall’s 7 equal to 0.1. Therefore, from the discussion in
Sections 2 and 3, we expect that for model (/1) the simulated level should be close to 0.1,
while it should be substantially smaller than 0.1 in the two other cases. Moreover, this effect
should be more visible for model (M 3) than for (M2).

(n,p) | (50,100) | (50,200) | (50,400) | (100,100) | (100,200) | (100,400)
(M1) | 0.081 0.054 0.043 0.164 0.103 0.112
(M2) | 0.026 0.011 0.009 0.100 0.078 0.067
(M3) | 0.000 0.000 0.000 0.000 0.000 0.000
ML) | o115 0.192 0.152 0.160 0.275 0.337
(M2) | 0.030 0.037 0.035 0.127 0.124 0.123
(M3) | 0.000 0.000 0.000 0.000 0.000 0.000
TABLE 1

Simulated rejection probabilities of the test (2.23) under the null hypothesis in (4.3) (nominal level o = 0.1).
Upper part: multivariate normal distribution; lower part: multivariate t-distribution with 3 degrees of freedom.

The corresponding rejection probabilities under the null hypothesis of the test (2.23) are
shown in Table 1 and confirm the asymptotic theory. For normal data we observe that the test
keeps its nominal level o = 0.1 in almost all cases under consideration. More precisely, for
the matrix > in (M 1) the simulated level is close to the nominal level oo = 0.1 for all pairs
(n,p) except in the case (n,p) = (100, 100). For the matrix in () 3) (only two off-diagonal
elements have a Kendall’s 7 equal to 0.1, but for all other entries Kendall’s 7 is 0) the type
I error is approximately 0. On the other hand, for the matrix (1/2) (about 50% of the off-
diagonal elements have a Kendall’s 7 equal to 0.1, but for all other entries Kendall’s 7 is
0) the type I error is larger than for the matrix (M 3) but still smaller than the nominal level
a = 0.1. We note that these properties are desirable for composite hypotheses of the form
(4.3). For some parameter constellations under the null hypothesis the rejection probabilities
of the test have to approximate the nominal level o = 0.1. This reflects the “worst case” under
the null hypothesis (corresponding to the situation 7;; = A =0.1forall 1 <i < j <p). On
the other hand most scenarios under the null-hypothesis yield a much smaller type I error.
We also emphasise that the observed numerical results confirm the theoretical properties
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(n,p) | (50,100) | (50,200) | (50,400) | (100,100) | (100,200) | (100,400)
(M1) 0.062 0.042 0.050 0.130 0.113 0.098
(M?2) 0.016 0.007 0.009 0.074 0.045 0.034
(M3) 0.000 0.000 0.000 0.000 0.000 0.000
(M1) 0.102 0.084 0.075 0.154 0.180 0.149
(M2) 0.026 0.018 0.008 0.061 0.059 0.060
(M3) 0.000 0.000 0.000 0.000 0.000 0.000
TABLE 2

Simulated rejection probabilities of the test (2.31) under the null hypothesis in (4.3) (nominal level o =0.1).
Upper part: multivariate normal distribution; lower part: multivariate t-distribution with 3 degrees of freedom.

mentioned in Section 2 and 3. For data generated from the multivariate ¢ distribution the
picture is slightly different. In model (1/2) and (M 3) the test keeps its nominal level in most
cases. This is also the case in scenario (M1) for dimension p = 100. On the other hand,
for dimension p = 200,400 the test significantly exceeds the desired significance level in
model (M1). The deviations become smaller if one is testing the hypotheses (1.2) with a
smaller threshold than A = 0.1 such as A = 0.05 (these results are not displayed for the
sake of brevity). A potential explanation of the observed exceedance in these cases is that
the normalization by the variance estimators (2.10) may yield to some instabilities for more
heavy tailed data.

Therefore, we next investigate the approximation of the nominal level by the non-normalized
version of the test (2.5), which is defined in equation (2.31) in Remark 2.8. The corresponding
empirical type I error rates are displayed in Table 2. Compared to the test (2.5) we observe
an improvement of the approximation of the nominal level in scenario ()/1). While this is
satisfactory in the case of a normal distribution, the rejection probabilities are still a little
to large for ¢-distributed data if the sample sizes is n = 100 (again the deviations become
smaller if the threshold A = 0.05 is used in the hypotheses (1.2)). However, the test (2.31)
keeps the nominal level well for the two other models (A 2) and (M 3) and all combination
of n and p.

The power curves of the tests (2.23) and (2.31) are displayed in Figures 1 and 2, respectively,
where we show the rejection probabilities of the test (2.23) as a function of Kendall’s 7 =
2 arcsin p for sample size and dimension given by (n, p) = (50,100) and (n, p) = (100, 100).
The results reflect our theoretical findings. The rejection rates increase with the distance to
the null-hypothesis and the sample size for all three covariance structures. Moreover, the
largest power is obtained for the covariance matrix (M 1) followed by (M2) and (M3). A
comparison of the upper and lower parts in the figures shows that the tests have lower power
for ¢-distributed data. Comparing Figures 1 and 2 we observe that the results of the tests
(2.23) and (2.31) under the alternative are comparable in most cases (with slight advantages
of the test (2.23)). Only for model (M 3) with (p,n) = (100,100) we observe that the test
(2.23) has a substantially larger power.
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FIG 1. Simulated rejection probabilities of the test (2.23) for the hypotheses (1.2) with A = 0.1. The dimension is
p = 100, and the sample sizes are n = 50 (left panels) and n = 100 (right panels). Upper part: normal distributed
data; Lower part: t3-distributed data.
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FIG 2. Simulated rejection probabilities of the test (2.31) for the hypotheses (1.2) with A = 0.1. The dimension is
p = 100, and the sample sizes are n = 50 (left panels) and n = 100 (right panels). Upper part: normal distributed
data; Lower part: t3-distributed data.

4.2. Test statistics involving |U;;| . In this section we investigate the bootstrap test (2.33)
that uses the absolute value |U;;| instead of Ufj in the defintion of the test statistic (see
Remark 2.8(b)). For the sake of comparison we consider the same scenarios as in Section 4.1
and study the properties of the test for the hypotheses (1.2) with A = 0.1. The empirical type
I error rates are shown in Table 3 and we observe that the test (2.33) keeps the nominal level
in all cases under consideration (in particular also in the “worst case” scenario (M 1), where
all (pairwise) Kendall’s taus satisfy 7;; = 0.1, and the data is heavy tailed). Again we observe
in the two other scenarios (M2) and (M 3) a smaller type I error rate than for the scenario
(M 1), which agrees with our theoretical findings in Section 2 and 3.

(n,p) | (50,100) | (50,200) | (50,400) | (100,100) | (100,200) | (100,400)
(M1) 0.026 0.013 0.015 0.048 0.047 0.029
(M?2) 0.005 0.008 0.003 0.017 0.017 0.009
(M3) 0.000 0.000 0.000 0.000 0.000 0.000
(M1) 0.052 0.025 0.014 0.081 0.066 0.044
(M2) 0.014 0.010 0.009 0.027 0.019 0.023
(M3) 0.000 0.000 0.000 0.000 0.000 0.000
TABLE 3

Simulated rejection probabilities of the test (2.33) under the null hypothesis in (4.3) (nominal level o =0.1).
Upper part: multivariate normal distribution; lower part: multivariate t-distribution with 3 degrees of freedom.

In Figure 3 we display the empirical rejection probabilities as a function of Kendall’s 7 =
2 arcsin p where the sample size and dimension are given by (n, p) = (50, 100) and (n,p)

™
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(100,100). We consider again the covariance structures (M 1) - (M3) and a multivariate
normal and t3-distribution.

Once again, the results are in line with our theoretical findings. The rejection rates increase
with the distance to the null-hypothesis and the sample size for all three covariance struc-
tures. Moreover, the largest power is obtained for the covariance matrix (M 1) followed by
(M?2) and (M 3). Comparing the upper and the lower parts we observe a loss in power for
t-distributed data. It is also of interest to compare these results with the non-normalized test
(2.31) in Figure 2. While the differences are small in the case (p,n) = (50, 100), they are
more visible for (p,n) = (50,100). In other words: the test (2.33) keeps the nominal level in
all cases under consideration, but compared to the test (2.31) this advantage comes with the

price of a slight loss in power in the case (p,n) = (50, 100).
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FIG 3. Simulated rejection probabilities of the test (2.33) for the hypotheses (1.2) with A = 0.1. The dimension is
p =100, and the sample sizes are n = 50 (left panels) and n = 100 (right panels). Upper part: normal distributed

data; Lower part: t3-distributed data.
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APPENDIX A: ONLINE SUPPLEMENT: PROOFS

In this section we provide proofs of our theoretical results. These are rather involved and we
proceed in several steps. In Section A.1, we begin with the analysis of the variance estimators
&? defined in (2.10). These results are used in the proofs of Theorems 2.2 and 2.4, which are
provided in Section A.2. The proof of the consistency of the bootstrap test can be found in
Section A.3. Several arguments given in this section rely on sophisticated technical results,
which will be provided in Section B.

Notation: Throughout this section we use the symbol a,, < by, to denote a,, < C'b,, for some
generic positive constant C' not depending on n whose concrete value may change from line
to line. We also introduce 1 — o (1) as a shorthand for any term of the form

1—C1/(nd) — Ca(log(nd))/**/7 /v/n — Cs(log(nd)) /7,

where the non-negative constants C7,Cs and C'3 may only depend on « and 5. We remark
that in many cases some of the factors in the summands will be 0.

Moreover ||z||,, = maxZ ; |z;| denotes the maximum norm of a d-dimensional vector, where
the dimension of x will always be clear from the context. We also note that many bounds
could be stated with log(d) in place of log(nd) at the cost of slight changes to terms involving
1 — o0k (1). The only places where we pay close attention to the difference between the two is
when we inspect the consistency properties of the two tests. Also note that we write £ instead
of Er for the sake of notational convenience.

A.1. Variance Estimation. From (2.10), recall the definition of the variance estimator 2.
The following theorem characterizes the uniform convergence rate of the differences {né? —
m2Cy; | i=1,...,d} with (1 ; defined in (2.8).

THEOREM A.1. [If Assumption (A1) is satisfied and log d = o(n”) for v < 4//3%’ we have
log(nd)
52 —m2¢ | < B2y ———2
lrgg(d]nal m=C,i| S B;, -

with probability at least 1 — ok (1), where the hidden constant in the inequality depends only

on p.

PROOF. We will use similar arguments as given in the proof of Lemma A.1 in Zhou et al.
(2019). Some difficulties arise as in contrast to this work we consider U -statistics with un-
bounded kernels. First, we define a centralized version of the U-statistics in (2.6) and the
leave one out estimator below (2.10),

-1
_ n—1
UZ‘ = Ui—gi and Qk,i = (m_ > Z gi(Xk,Xll,...,leil),
1<l <...<lp_1<n,l;%k
respectively, where ¢;(X;,,..., X, ) = hi(X;,,...,X;, ) —0; and 1 <17 < d. A simple cal-
culation shows that

n

m2 n— " m2 n— —
o7 = H Y lari—Ui)* = (712 > (Gri — Ui
P

n m) — n(n —m)
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Setting g1,i(z) =E[gi(X1,..., Xn)| X1 =2], §1, = £ > j=191,:(X;) and using the triangle
inequality then yields

A m2n—1) o7, _ _ )
|7”L(7i2 - mQCLi‘ < (TL(—TTL)Q) Z [(Qk,i _ Ui>2 . (gl,i(Xk) _ gl,i)z} ‘
k=1
mQ(n — 1) n o ) o o
+ WZ(QLi(Xk) —G14)" —m G| = M; " + M,
k=1

for 1 < i < d. Therefore, the claim of Theorem A.1 is a consequence of the following two
Lemmas A.2 and A.3. O

LEMMA A.2. Under the conditions of Theorem A.l we have with probability at least 1 —
ok (1) that

maXM-(l)<B2 log(nd)
1<i<d ¢ ~" n

PROOF. Recalling that 37 (g1.4(X%) — g1.:)%> =Y 7, ¢° (X)) — ng? , and using the tri-
k=1 ) ) k=191, 1,2
angle inequality yields
2 n
1 _ B m=(n—1) .
(A.1) Mi( ) < U2 — 1] + |(n—2)2 Z (qu - 9%,10@:)) ‘ :

For the first term we use Lemma B.18 from the online supplement, as we will use it repeatedly
throughout the remaining proofs we will explain its application in detail one time. We apply
it separately to the U-Statistics U; and g1 ; which fulfill the required conditions by the first
equation in assumption (A1) and the assumption that v < Wﬁ’ note that we will always use
the version of the bound containing log(nd) except when considering consistency properties.
- - - log(nd)
2_52 | = g gy < g2t/
max |U7 — g1, = max |(Ui = 91) (Ui + 910 S Bo—
with probability at least 1 — ok (1). For the second term in (A.1) a more sophisticated analysis
is necessary which we facilitate by decomposing

> 9i( Xk, Xy -, X1, 1) = Apmg1,i(Xk) + BomSi + T

1§l1 <...<l7n71 STL,ZJ#IC

where A, ,, = (n_l) — (n_Q), Bnm = (;;__22)’ Si =11 91,i(X)) and

m—1 m—2
m—1
Dri= Z <gi(Xk7Xl1 v Xp, ) = 1i(Xk) — Z gl,i(XlJ)> :
1<l <<l <nil; 7k =

By the definition of g, ;, we then have

_ An,mgl,i(Xk) + Bn,msz + sz,i
qk,i = (n—l) )

m—1

which leaves us with the task to bound

n

m2(” —1) ) 2
h—272 Z @i — 97.4(X1)] | :

k=1

J := max
1<i<d
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Setting V> = >0, 97 (X)), Do = (- Vand A2 =37, Fk ., we have

qu i {A2 Vi + A+ (nB’rQL,m +2A0,m Bnm) S}

n n
+24nm Y 91(Xk) Tk + 2BnmSi > Fk,i}
k=1 k=1

which together with the Cauchy-Schwarz inequality (for J, and J5) yields
JSTh+J+Js+ i+ Js5,

where
A2 D2 V? 2
Jl — max ( n,m - n,m) b < max 7127
1<i<d nDg ., 1<i<dn
2
T = 1lgza<anD2 ’
(nB2 ., + 24, mBn.m)S? S2
J3 = max : < max —,
1<i<d nD2 ,, ™~ 1<i<dn?
J . 24, n Vil < ma Vil
= max ———5—— max
4T di<a nDZ, ~ ~i<i<d n?’
Js = max 2B, m|Silv/nA; <'m VAZ-‘
1<i<d nD2 1<z<d n?
In the remainder of this proof, we will bound the terms J1, .. ., J5 separately. For J; we have
by Lemma B.11 that H gii(X k)’ . < B2 50 that Lemma B.18 in the online supplement
B/2
yields that
V2 Xk ; 1 d
(A2)  Ji S max-L = max i 19“(2 )~ C“ﬁigng Og(?>
1<i<dn 1<i<d n n n

with probability at least 1 — 3/(nd) — C(log(nd))Y/?>+1/8 /\/n.
Regarding the term Jo, we define the set

A :{ ( (Xi, Xiy oo X0 ) — g1a(X
" 112%}{(1 9i(Xp X, -, X0, 1) = 91,i(Xk)
1§k7l17~--7l7n71§n

m—1
- Z gl,i(le)> < Can(log(nd))l/B} ,

where the constant C'z is chosen such that P(4,) > 1 — %. Indeed, using the union bound
and Lemma B.8 in the online supplement it is easy to see that by choosing Cz appropriately
(this can be done universally with only dependence on ) we obtain P(A,) > 1 — %.

Conditional on X}, we now apply Lemma B.18 in the online supplement to I'; ; on the set

A, with K = B,,(log(nd))'/? to obtain

) < 1/8 log( d)
P<{1g§£{?§kgnr’“ /Dy < Bn(log(nd)) } nA, )
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n

P({fgaé(rk’/DnmN n(log(nd,))l/ﬂ\/M}
_kz [P({fgafdr’”/D”mSB (log(nd))l/ﬁ\/m}mx

1 — 0 K(l)
where we used that I'y ; and I'; ; have the same distribution to obtain the second line and

define B; as the event that max [y ;/Dym= maxI';/Dy, . Using the definition of
1<i<d,1<k<n ’ 1<i<d ’

o

A; and recalling that v < 4/6%’ this yields
A? o log(nd) 2/8 log(nd)
oV < B2,/
(A3) o= max 5y S B = (log(nd))*! S By [ ==

with probability at least 1 — -1, — C'(log(d))/*+1/8 //n.
For J3 we have by Lemma B.13 in the online supplement that
2 1 d
(A4) Js < max 52 < B,%M
1<z<d n n

with probability at least 1 — %. Finally, regarding J4 and .J5 we have by the calculations for

Jo
V2A2 1 d
(A.5) 7 < = max /L ,%/M, 1=4,5,
1<i<d n?  1<i<d
with probability at least 1 — -2 — C(log(d )1/ 2+1/8 /. /n provided that v < 5 T ﬁ —- Combining
(A.2), (A.3), (A4) and (A.S) shows that J < B2./(log(nd))/n with probability at least
1 —og(1). O

LEMMA A.3. Under the conditions of Theorem A.1, we have with probability at least 1 —
ok (1) that

max M(Q) <32 M.
1<i<d n

PROOF. Recalling that ZZ:l(gl,i(Xk) — §17Z‘)2 = ZZ:1 gl,i(Xk)2 — ngil as well as glji =
Elgf,;(X1)] yields that

m?(n—1) <

<
(n—m)? ~

1 n
- > 91i(Xk)® = G

k=1

> (91.4(Xk) = ga)> —mCra +3i,-

k=1

Note that v < ﬁ. We then apply Lemma B.13, Lemma B.11 and Lemma B.9 in the online
supplement to obtain that with probability at least 1 — C'/(nd),

1<i<d |n £~ Lilk L))~ Pn n
and
_ log(nd)
2 < 2
max g1 S B;, .
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A.2. Proof of the results in Section 2.1.

A.2.1. Preliminaries. The main step in the proofs of Theorem 2.2 and 2.4 is a weak con-
vergence result for the statistic

U2 —0?
= max —-
1<i<d 26;|6;]

in the case where ||y := min;<;<q|6;| > ¢ for some constant ¢ > 0. To prepare its proof
we first replace the variance estimates 62-2 by the population variances using Lemma A.4 and
then apply the Gaussian approximation in Lemma A.5 to the linearized statistic 7,, assuming
that log d and the constants B,, in Assumption (A1) do not grow too fast. To this end, we
recall the notation (2.8) and define

LY hualXi) =6,
k=111 k i . )
(A.6) Sp = flrgaécd oF sign(6;).
LEMMA A4. If Assumptions (Al) and (A2) are satisfied and |0|,i, > c for some positive
constant c, then it holds

U? — 67 log(nd) log(nd)
i <R3
12724 2610 ] ~5n| S Bn vn +B"nl/2—'r/6

with probability at least 1 — o (1). Here the constants hidden in < only depend on the
quantities c,7y, 3, b, and therefore the estimate is uniform for the subsets of the classes Ho(A)
and H defined in (2.15) and (2.18), respectively, for which 0| > c.

PROOF. By Theorem A.1, we have

|TL&-2 — MQCLZ'}

< B2 log(nd)
1<1<d Vo +ma/Ci n

wax [vid; —my/Ci| =

1<1<d

up to a constant depending only on 3 and b, and therefore,

v/n ma: ’ 0 —+v/nm Ui o
X
1<i<d 2v/né6;|0;] 12724 2m\/E|9 \
02
< g —
o 112?22 ‘\/ﬁal " Cl ' fln<lz<d 2m\/ (1 ’L\/>O-Z’9 ’
2
< B log( d) U? — 0
~on 1<z<d Qm«/CuUzW\

By the same arguments, the triangle inequality and writing

. U; — 0, (Ui—6)*
Th1= and Tn
1= 1<z<d 'rn1 /q 102‘9 ‘ 2= 1<l<d 2ma/C1 ZJZ‘Q ‘
we obtain that
(A7) Uz — 6 <T + T2 < Bp/lo (nd)
' 1<z<d 2m+/C1 zaz|9 |~ 2o 8 ’
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with probability at least 1 — ox (1), where the last inequality in (A.7) follows from Lemma
B.18 in the online supplement. Therefore, the constant in this inequality only depends on the
constants 7, ¢ and 5. Combining the two estimates we conclude

U? — 67 _ Jam U? — 6? 3log(nd)
12524 24/n6:10; 12724 2m+/C140; | B Vn

We then observe that

(A.8) Vvnm

— 0, U2 - 0?2
0;——— <
VR S VA 1<z<d2m¢me |
(A.9) < v/nmax 6; 0 ++vnm —8).
: 1<i<d m\/E\G \ 1<z<d2m\/§?|9 |
< Viimaxg Ui 0; 10g(nd)

1<i<d m\/CTzW! N

where the last inequality follows by Lemma B.18 with probability at least 1 — ox (1)
and the hidden constant depends only on v and (. Using the estimate (B.17) (with ¢ =
B, (log(nd))/(nl_Wﬁ)) in the proof of Lemma B.18, we get

— i LS 1(hi(Xg) — 60;) — (Ui — 6;)

vVnmax f;———— —8

v/ max

1255y m\/CTzW | — 7 1<i<d C1,i
log(nd)
(A.10) n 12—/

with probability at least 1 — C'(log(nd))?n~=7/8, where the constants in both inequalities
depend only on 3 and . Combining (A.8), (A.9) and (A.10) yields the desired result. ]

We will now provide a Gaussian approximation for .S,,, which is a consequence of Lemma
B.3 in the online supplement. Note that the conditions of Lemma B.3 are satisfied because of
Assumption (A1), (A2) and Jensen’s inequality.

LEMMA A.5. Under the assumptions of Theorem 2.2 and |0|yin > ¢ we have, up to some
constant C depending only on 5, D, b, c, that

B2 (log(nd))**+2/5 > 14

sup‘P(Sngx)—P(Sggx)‘§C< -

z€R
where SS is defined as in (A.6) with the difference that the vectors X1, ..., X are replaced

by independent centered Gaussian vectors with covariance matrix I' = (I';j)1<; j<q defined
by

(Al 1) Fij == COI“I‘(hLi(Xl), hlyj(Xl))sign(QiHj) .
Note that the sole dependence on 5, D, b, c of the bound implies that it is valid uniformly for
the subsets of the classes Ho,H1 in (2.15) and (2.18) for which |0|min > c.

By the Schur product theorem, I' is a positive semidefinite matrix as it is the Hadamard
product of a correlation matrix and the rank one matrix (sign(0;6;))1<; j<4 Which are both
positive semidefinite.
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A.2.2. Proof of Theorem 2.2.. We recall |0;| < A for all 1 <i <d. Fix some 0 < ¢y < A
and consider the following decomposition of {1,...,d}:

L={1<i<d: 10;>co},

L={1<i<d: 0<]|b;]<co},

Is={1<i<d: |0;)=0}.
Using the definition of 7,, A in (2.9), we note that

U? — A2 U? — A? U? — A?
= L v D —
s = mas {mps e e )
First, we show that the second and third terms in the right-hand maximum are negligible for
our purposes. For the third term we use Lemma B.18 and §; = 0 for all ¢ € I3 to obtain
2 A2 B21 d — /nA?
(A.12) maxZi — 2 < pax On og(nd)/v/n = yn
i€l;  20;A iels 26;/n

with probability at least 1 — ox(1). Due to the assumption (;; < D and the fact that
B2log(nd)//n < /nA? this diverges to —oo with rate at least \/n. Note that all constants
in these inequalities depend only on v, 3 and D.
For the second term we use that

LUEA L UP 07+ (67 - AY)
Il%IZ{ 20;A _rz%[z{ 26;A
2 A2
(A.13) < max By IOg(d)/\/?}Jr V(62 — A )7
i€l 26\/n

where the last inequality holds with probability at least 1 — ox (1) by the same calculation
as in (A.12) and the decomposition of UZ? — 92-2 into a linear and quadratic part as in (A.9).
For the same reasons as in (A.12) we conclude that the right-hand side of (A.13) converges
to —oo with rate at least \/n (note that |6;| < ¢y < A for all i € I). We again stress the fact
that all constants in these inequalities depend only on ~y, 3, D and co.

We hence obtain uniformly for all distributions in Hq(A)

U? — A?
P(aq (Tn,a —ba) > q1—a) =P (ad <\/ﬁlgéf}f<m - bd) > Q1—a) +o(1),
and it remains to show that the probability on the right hand side is asymptotically bounded
by a uniformly in Ho(A). As |6;| < A we obtain the bound

U? — A? U? - 6?
1) = —r < L L
Tallh) i=max— = S max—

Let C denote the constants hidden in < in Lemma A.4 and let C denote the hidden constants
in Lemma A.5 (these constants depend only on v, 3, cg, b, D). Defining

A ._ o Ballog(nd)) | By(log(nd))
V.8 1 vn nl/2—/8
(2) B (log(nd))*+2/%\ '/*

Cy,51=C2 ’

’ n

! )5 = 0(717)5 log(nd) + cfi)ﬁ
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and using Lemma A .4, Lemma A.5 and Nazarovs Inequality (see ?) we obtain that

P(aq(Tn(I1) — ba) > q1—a) < P(%E}X(Sn)i > q1—a/0d — Cgl)ﬁ + ba)

1 2
< P(%%?(SS)Z > q1-a/aq — C(%)ﬁ + bd) + Cg,)ﬁ
< P(max(S): > oo /o + ba) + L)

. ®3)
P(I}é&}iizl > q1—a/04 + bd) +c 5+

IN

‘ 3)
P( max, Zi > qi-a/aa+ba) + 5+

IN

where Z is a d-dimensional random vector with independent standard normal components,
S,? is defined in Lemma A.5, v, — 0 is the sequence in Assumption (A3) and the second to
last line is obtained by the normal comparison Lemma from Leadbetter et al. (1983) (The-
orem 4.2.1) . Note that these estimates are uniform with respect the distribution in Hy(A)
(as the constants C1,Cs depend only on ~, 3,¢,b, D,~,) and that last probability does not
depend on Ho(A). Therefore, taking the limsup and the supremum with respect to Ho(A)
yields

limsup sup P(aq(Tna —bd) > qi—q) =limsup sup P(ad(’ﬂ(h) — bd) > Lh—a)
n—00  FeHy(A) n—00 FeHq(A)

< lim P(||Z]| > q1-a/aa+ba) =c,
which proves the assertion of Theorem 2.2.

A.2.3. Proof of Theorem 2.4. Let i( be an index such that |6; | = max;<;<4 |0;| > A; note

that 79 can depend on n, which is not reflected by our notation. Then we have
2 2 2 2
T oA> Ui —0; +0iO—A
e = Q&iOA 25'7;0A

By the same arguments as for (A.7) we obtain that with probability 1 — o (1)

U2 — 62
—— | S Bn/log(d)

io

26, A

1
\/ﬁ&io
while the second term converges to co at rate Vnén with &, = 60? — A? by the same ar-
V/néi, 10

guments as in (A.12). These bounds depend only on the constants v, 3 and B,, in the As-
sumption (A1) and therefore hold uniformly over the class 71 defined in (2.18). This yields

the desired conclusion whenever &, > CB, % for some large enough constant C as

(q;i;“ +b4)A ~ +/logd and \/ng;, < By, by Lemma A.1. Here a ~ b denotes c1a < b < caa
for some constants ¢y, co that do not depend on n.

A.3. Proof of the results in Section 2.2. Let { = (&1, ... ,f;m)T, 1 < k < n, be inde-
pendent identically multinomial M (1; %, ce %) distributed random vectors independent of
X1,...,Xp, that is P(&1 = y1,...,&kn = yn) = 1/n for (y1,...,yn) € {0,1}" such that
y1+ -+ yp = 1. Then a sample X7, ..., X} drawn with replacement from Xj,..., X,, can

be represented as

n
Xip=X& =) &;X;,
j=1
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where X = (X1,...,X,) € RP*™ We denote by P* and [E* the probabilities and expectations
conditional on X1,. .., X,,. We also recall the definition of the statistic U;" in (2.19) and note
that E*[U] = V; (see (2.20)), so that conditional on Xj,..., X, the quantity U* — V =
Uy —=W,....U; — Vy) " is a U-Statistic of the random variables &1,...,&,. We start with
several auxiliary results, which are required for the proof of Theorem 2.5 in Section A.3.1.

A.3.1. Some preparations. We first observe that the conditional mean of the Bootstrap
statistic is close to the mean of the original statistic, this will be used multiple times in some
of the following approximations when terms involving ||V — Va ||, appear, where we used
the definition VAo = (Vi A, ..., Vg a).

LEMMA A.6. Under the assumptions of Theorem 2.5 we have that

IV =]l < Boy/ 020
n

with P-probability at least 1 — o (1) where all constants involved depend only on ~ and
which implies that the bound holds uniformly for the classes Ho(A) and Ho poot(A) defined
in (2.15) and (2.26) , respectively.

PROOF. We first decompose V' (see (2.20) for its definition) into its diagonal and non-
diagonal parts

1 & 1
V=— h(Xg,...,X — h(X;,,..., X
nm; (X -, k)+nm Z (Xi,--, X0,,)

(A.14) 1<l Aly=...=l,<n

1
++7m Z h(Xlla---ale)
1<h#Aln<n

Applying Lemma B.13 to the diagonal part yields, up to some constant depending only on (3
and v,

<3, log(nd)

~ n2m71

1 n
n
k=1

[e.9]

with P-probability at least 1 — o (1), where we also used Lemma B.8 to uniformly bound the
mean of h(Xy,..., Xx) by a multiple of B,, that depends only on /3. Next, we will exemplary
inspect the term

1
— > Xy X, Xy
1<l #l2<n

in detail, all other terms (except the very last) in the decomposition of V; can be treated analo-
gously. Note that H (z1,x2) = h(z1,z2,...,x2) defines a non-symmetric kernel of order two
whose associated U -statistic is given by the preceding equation, which can be symmetrized
without changing the value of the associated U-statistic. Applying Lemma B.18 then yields

nim Z h‘(Xlla s 7Xl2) S By, log(nd) + n_(m_Q)

n2m—3
1<l #l.<n o

with probability at least 1 — ox (1) for some constant C' that depends only on /3 (note that the
mean is negligible by the same arguments as for the first term). The same arguments show
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that all terms in (A.14) (except the last one) are of smaller order than B, +/(log(nd))/n.
Finally, for the remaining term in (A.14), we have by Lemma B.18 that

1 log(nd)
— D MXy,.. X)) =0 SBuy =
1<bi#. #lm<n )
with P-probability at least 1 — o (1), which proves the assertion of the lemma. O
Next, we set
(A.15) Sy —fmax@

1<i<d My /C1 zA

which is a linearized version of 7.* (see (2.22) for its definition). We will show that 7" is
well approximated by S}. This will allow us to apply Gaussian approximation results to
approximate the distribution of 7,

LEMMA A.7. If the assumptions of Theorem 2.5 are satisfied, mini<;<q4C1,; > b >0 and
max?_, |6;| < A, we have that
(log(nd))'+2/° 4B (log(nd))'*+1/5
vn " vn
holds with P* probability at least 1 — ok (1) on a set of P-probability at least 1 — o (1).

Here the constant in inequality (A.16) depends only on 5,,b. This implies that (A.16) holds
uniformly for the subset of the class Mo poot (A) in (2.26) for which minj<;<q i > b > 0.

(A.16) T — Sk < B

PROOF. We start by noting that an analogue of Lemma B.12 in the online supplement (which
considers the maximum with respect to two indices) and Assumption (A1’) show that up to
some universal constant

max 1hi(X&us -, XEj) oo S Br(log(dn))/?

1<i<d 1< <. <jm <
with P-probability at least 1 — o (1). Part iii) of Lemma B.8 then yields

A7 hi(X&,,. ., XE) — Vill%, < Bu(log(dn))Y/?

( ) 1<i<d lgjlfg“qm@\\ i(XE&s -5 X&) 1H¢2 < Bn(log(dn))

up to some universal constant, where HZHw =inf{v > 0:E*[¢3(|Z]|/v)] < 1} denotes the
Orlicz-Norm (of a real-valued random variable 2) with respect to the conditional expectation
E*.

Next we observe by the triangle inequality that

% *| <L
(A18) |7 = 7| | max Via =52 @2%‘” m@A

— S*.

" /Cl,zA "

. U;
* ‘7;1 B 1H<1?<de e O‘ZA

For the second summand we have

ur-Vv; (Ur — VZ-)2
. < - 1 S L ~
(A.19) 0<7; mflg{dv’A o; A\ 112?;{(1 26; A
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and, provided that |0;| < A for all 4, we claim

* 1 1+1/8
(A.20) max Via U — /nmax V - Vi < Bf’l( og(nd)) ’
1<i< l<z<d My /C1 AN NG
*—V;)? R VAP 1 3/2+2/8
(A.21) max u _ /nmax Ui = Vi) < Bi( og(nd))
1<i<d  20;A 1<i<d2my /(1A n

with [P-probability at least 1 — ox (1), where the constants in the inequalities depend only on
B,~ and b. This will help bounding the right hand term in (A.19) while simultaneously taking
care of the first summand in (A.18). In view of (A.17), an application of Lemma B.18 yields
for the vector U* = (U7,...,U:)T, that

(log(nd))"/>+1/7
\/ﬁ

with P* probability at least 1 — o (1) with the bound depending only on 3 and ~y. Since by
Assumption ~ min  (y; > b this gives

(A.22) \U*=V|.SB

1§’L§d,‘9L|>C
* f 1 d 142/
1<z<c12m1 [GaA ™ Vn

with P* probability at least 1 — o (1). Combining (A.21) and (A.23) yields

Ui — Vi (log(nd))+2/° (log(nd))3/>+2/5
* Va2t 't < BQ— B4
!7% maxVia=sx N n
1 d))1+2/8
(A.24) < B?%M )
vn
The estimate (A.20) is obtained as follows. First, we use the inequality
-V ur-Vv;
Vi Vi ey st A
< _ . [vn6i —mGui|
SV = Vall 07 = V] oo, 22T
Secondly, we use (A.22) and Theorem A.1 to bound the terms involving U* and &;. Recalling
(2.21), we get
0 if |[Vi| <A
V= Vial = il =
|V; — A| otherwise.

As long as [6;| < A and when (A.22) holds we can bound the latter quantity uniformly by
|V — 0], so that Lemma A.6 is applicable to derive (A.20) with the hidden constants de-
pending only on /3, and b. The bound (A.21) is obtained similarly.

For the last term on the right-hand side of (A.18) we observe that

fmaxV - Sy

1<i<d My /Cl zA

(A.25) < B2

SVrllV =0l IU" =V

(log(nd))!+1/7

B
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with P-probability at least 1 — o (1) by virtue of Lemma A.6.
Combining (A.20), (A.24) and (A.25) yields, up to some constant depending only on ~, 3, b,
that

i vy U=V | < o (o) 7 (log(nd) 1
12 m\@A Vi U

with P* probability at least 1 — ok (1) on a set of P-probability at least 1 — ox (1).

< B,

O]

In the next step we decompose the statistic U* into a linear and a non-linear part. The linear
part of the Hoeffding decomposition (for more details see Hoeffding (1948b)) of U* condi-
tional on X1,..., X, is given by
. 1 -
B (&) =E h(X&r,.. Xém)61] = — = D h(X€, Xy, X, ).

ll 7---7l7n—1:1

To proceed we need the notation

LEMMA A.8. Under the assumptions of Theorem 2.5 we have for the statistic S, in (A.15)
that

(log(nd))"+1/7

‘Sn - n,l’ 5 By, nl/2—~/B

with P*-probability at least 1 — n~"/? whenever (A.17) holds. Here the constant in the in-
equality depends only on B, and therefore the inequality holds uniformly over the classes

Mo poot (A) and H defined in (2.26) and (2.18).

PROOF. By Theorem 5.1 in Song et al. (2019) and Markov’s inequality the non-linear part of
the Hoeffding decomposition is bounded by some multiple of Bn(logr(ﬁ‘f# that depends

only on 8 with P*-probability at least 1 — n~?/# whenever (A.17) holds. O

The final result of this section provides a Gaussian approximation for the statistic S, ;. Note

that h% (&;) is not the bootstrap version of h1(X;) and therefore Lemma B.3 is not applicable.
Instead we will utilize a Gaussian approximation together with a bound on the distance of two
Gaussian random vectors by the difference of their covariance matrices and their dimension.
Recalling the definition of I' from (A.11), we define the d x d diagonal matrix B =

Diag(¢; 1/2, e 1/2) and put

I := BCov*(hi*(&1))B

_B( L 3 h(Xl,Xll,...,lefl)h(Xl,le,...,lefz)T—VVT>B,

n?m 1
Llyyelom 2

where Cov* is the covariance operator with respect to the conditional expectation E*. [ is
a rescaled version of the (conditional) covariance matrix of the vector hy‘ (¢1). Further, we
introduce the matrices A and A with entries

Aij :fUHlGJ and Aij :Fijﬂiej, i,j: 1,...,d.
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In the following discussion the symbol a < b for vectors a,b € R? means coordinate-wise
inequality.

LEMMA A9. Let Z ~ N(0,A) and ZX ~ N(0,A) conditional on X1,...,X,. Suppose
that the assumptions of Theorem 2.5 hold and that |0|yin > ¢ > 0 for some constant c. Then
we have

/
sup [P(Z <x) —P*(Z* <x)| S <W>l ’

xERY n

with P-probability at least 1 — o (1). Additionally, whenever (A.17) holds, we have

2 1/4
*k X T * * B'rQL (log(nd))5+§ /
PH(ZX < (2,.,2) ) — PH(ASE, g@]g .

(A.26) sup
zeR

n

The constants in both inequalities depend only on 5 and ~y. Therefore, both inequalities hold
uniformly in the subsets of the classes Ho poot (A) and H,, defined in (2.26) and (2.18), for
which |0|min > ¢ > 0.

PROOF. We employ a decomposition into U -statistics of orders up to 2m — 1

n

1
> XXy, Xy, VWXL X X, )T

n2m—1
l7l17"'al2'm,72

n

1
Z h(Xla Xl17~ .- ’le_l)h(lelev e 7Xl2m_2)T + Ry,

~ p2m-1
I Flam 2
where the term R,, contains all sums, where at least two of the indices /; and [; (i # j)
coincide (compare with the the proof of Lemma A.6). We then apply Lemma B.18 to each
U -statistic appearing in the above decomposition to obtain, up to some constant depending
only on « and §3, that

max |[i; = Tij| S By og(nd)

1<i,5<d n
with probability at least 1 — ox (1). Finally, we use the Gaussian to Gaussian comparison
from Lemma C.1 from Chen (2018) to establish the desired result.
The second bound (A.26) is an immediate consequence of Lemma B.3 in the online sup-
plement. Note that conditions (A) and (W), which are required for Lemma B.3, are satisfied
with B, (log(nd))*/? instead of B,, with P-probability at least 1 — ox (1), which follows

from similar arguments as for the first bound and the fact that Hh{fZ -V H is bounded by
’ 00

By, (log(nd))'/? with P-probability at least 1 — 1/(nd).
U

A.3.2. Proof of Theorem 2.5. We start with the proof of (2.25). First assume that |0|pin >
¢ > 0. A combination of Lemmas A.7 and A.8 yields that under the null hypothesis

(log(nd))"*1/% B} (log(nd))' /% + Bj (log(nd)) " +2/°
nl/2=/B Jn

with P*-probability at least 1 — ox (1) on a set of P-probability at least 1 — o (1), where all
involved constants depend only on (3,7, c and b. We hence obtain

(A27) P*(S51 >t+cne) —or (1) SPY(T,) >1) <P*(S;, 1 >t —cne) +or(1).

‘S:;,l -Ta S Cn,e = By
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Nazarov’s inequality (see for example ?) combined with the second part of Lemma A.9 then
yields, up to some constant depending only on (3., b, ¢, that

2\ 1/4
B2(log(nd))”*
sup |[P* (S >t cne) —P*(Spq > )| S < il og(: ) ﬁ) + cpe/logd.
teR

In conjunction with (A.27) and the first part of Lemma A.9, we obtain

sup

P77 <) = P(Z/A < (b 0t) )| S dll)
teR

~ 'n,e

with P-probability at least 1 — ox (1), where Z ~ N (0, A) and

9 542\ 1/4 521 1/6
0 (Bnaog(nd)) ) +<<1og<nd>> Bn> N
’ n

n

We now derive a similar Gaussian approximation for the quantity

U? — 92
T, A= max ———%.
’ 1<i<d  20;A

Using Lemma A.4 as well as the same arguments as above (with Lemma B.4 replacing
Nazarov’s inequality), we get

sup |P(Tpa <t) —P(Z/A< (t,...t) | <dP)
teR

where

2\ 1/4
o ((Baosud) AN Bl o)) B, log(na)) 2
n.e n \/ﬁ nl/2—/8 ’

2

where all constants involved depend only on 3., b and c. Since d;, 2 < df&l, we deduce

)

sup|P(Tn,a < t) = P*(T; < 1) S di))
teR
with P-probability at least 1 — ox (1). Because 7, o < T}, A this yields (2.25) in the case
|0|min > c.
We conclude the proof considering the case where |6|iy is not bounded away from zero. In
this case we define for some sufficiently small ¢ > 0 the set  := {1 <i <d: |0;| > c}. By
the arguments in the proof of Theorem 2.2 we observe that

U? — A?
Ton =TI =max—t ——
v A iel  26;A\

with high probability uniformly with respect to the class Hg. Let 7,* denote the analogue
of the statistic 7, defined in (2.22), where the maximum is only taken over the set I, and

denote by ¢;* , the corresponding (1 — «)-quantile. Observing that ¢f_,, > ¢i* ,, we have

by the arguments given in the above paragraph and the first part of this proof that
limsup sup P(T,a >d;_,)=limsup sup P(T,) A >di )
n—=00 FeHo(A) n—00  FeHo(A) ’
<limsup sup P(T,/A>q*,)<a,
n—00 FeHo(A) ’

which yields (2.25) and completes the proof under the null hypothesis.
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Finally, we turn to the consistency part of Theorem 2.5. We have already seen in the proof of

Theorem 2.4 that there exists some constant C' > 0 such that for { = max;<;<q4 (9? — A% =
62 — A2
(2

1 > n C&/n
\/ﬁé—io \/ﬁa—io '
uniformly over H;. Note that for £ | 0 we have £ ~ max;<;<q|0;| — A. On the other hand,
the arguments used in the proof of Lemma A.7 show that

77 < Bu(logd)'/?(log(nd)"/?

Tn.a > Op <Bn log(d)

with [P*-probability at least 1 — ox (1) on a set of P-probability at least 1 — ox (1) which
implies that any fixed quantile of 7} is eventually bounded (up to some constant that does
not change with n) by B, (log d)'/?(log(nd)/# with P-probability at least 1 — o (1). More-
over, if the kernel h in (2.3) is bounded we can obtain (A.16) without the additional factor
(log(nd))'/#, which yields

7% < Ba(logd)'/?

and hence establishes the improved rate in Theorem 2.5 for bounded kernels.

A.3.3. Proof of Theorem 3.5. Let I}, be the p-dimensional identity matrix and J,, ; the a X b
matrix filled with ones and J, := Jp,,. Let Uy, be the p x 2 matrix with entries Uy, 11 =
Uk,k2 = 1 and Uy, ;; = 0 otherwise and write e1, ..., e, for the canonical basis vectors of R?.
We then define ), , = (1 — a)I, + aJ, and C' = Jo — I5. Set My =¥, A and

My = (1—A)I, + AJ, + pereg + pere] =X +pUpCU/S, 2<k<p,

where p = co(log(p)/n)"'/? for some small constant ¢g = co(A), which will be specified later.
Note that for sufficiently small p, the matrices M}, are correlation matrices.

Let p, be the uniform measure on the set F(p) = {Mo,...,Mp}. We denote by Py, =
N,(0,2) ®...®N,(0,X) the product probability measure induced by n i.i.d. p-dimensional
random vectors Zi,..., Z, ~ Np(0,%) and define P, = [Psdu,(X). Let Py denote the
n-fold product probability measure of N,(0, My). By the same arguments as in the proof of
Theorem 5 in Han et al. (2017), we obtain

1
(A28) inf sup Py(T, doesnotreject Ho) >1— o — = (B, [L2 (V)] — 1)1/2 :
To€7a SeF(p) 2 ’
where

n

dp 1 & My|'?
L) = ) = 5 Y [T

| -1
eXp(—*?/i (Mk _Mo )?/z)}
_ 1/2
Pl b MY 2

with | M| being the determinant of M. Squaring and taking expectations yields
|M()‘1/2 ’M[)‘l/Q

1 P =
Ep, [£2 (V)] = —— Ep,
[0, ()] (p—1)2 3222 [11;[1 MM |y

1
xexp (= ¥ (Mg + M 20y |

where Y = (Y1, ..., Y,,) and the random vectors Y7,...,Y,, are independent with distribution
Py = Np(O, My). By definition, the matrix M}, is a rank two perturbation of M and thus we
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can obtain its inverse by the Woodbury matrix identity. Lengthy but straightforward calcula-
tions then yield

Mo—l_Mk—l:M[(u—u)UHva,ﬂ((a+2b)12—bJ2) (u =) UL + 0],
where
1 A “A
= 1—A(1_ 1+(p—1)A>’ VT -A) 1+ (p-DA)’
o 1 1 o 1 A
“‘TfZ‘E’ T =AM+ (-1A)

Denoting T+ = M, 1y M, —2My ! we have by standard results on the moment generating
function of a Gau551an quadratlc form that
1 -1/2
E [exp (QYZ»TT“YZ-H = fa+ 745, 4]

We will show below that these determinants attain only two values depending on whether
k=1 or k # l. Hence, observing that | M| = | Ms| for k =2, ..., d we obtain

1 M _
Epo[gzp(y)]zi :Mz‘ ’[ T222p7A’ 1/2
(A.29) +p QH}%()' |1, + 725, a| 72 = Ay + Ay .
2

We now investigate the different terms separately. First we consider the ratio |Mp|/|Ma|
which appears in both terms in (A.29). Using the fact that the eigenvalues of an equicorrela-
tion matrix ¥, , are 1 — a with multiplicity p — 1 and 1 + (p — 1)a with multiplicity 1 we
have

[Mo| = (1= AP~ 1+ (p-1)4).

For Ms we have the block decomposition

Yo At+p Adap_2
M — ) P P
2 <AJp—2,2 Yp—2,A

from which we deduce that

[ M| = [Soatp| [Sp-2.a — A%y o35 8, Jp-22|

A+p
=221, ‘HA_F)JP—2 +(1- A)IP—Q‘
_ A(l—A+p)
=1-A-p)(1+A 1-AP 3 (p—2)—————Z +1-A].
(1= A= )1+ A+ p)(1= AP (p=2) = o +1 - A
Hence, we get
—A)? —

Next we consider the determinant involving the matrix 7**. We start by observing that

TS, A = 2[(u — v)Uy, +vJp2) MU,
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where M := =55 +2b) ((a+2b)Iy — bJ3). An application of the Weinstein—Aronszajn identity
Akritas et al. (1996) then yields

L+ TS, Al = 11 + 2MU] [(u— 0)Uy + vy
= ’Ig + QM[(U — 'U)IQ + 'UJQ”

- amizb)[(“ 1+ 20) (1 — )T + ((a + 2b)0 — b(u + v)).Ja]
(A.31) =lql2 + g2 ol = (202 + q1)q1
where
—2v  2b(u+wv) p(1—A2((p—1)A+1)
Q2= + =

a ala+2b) (p—1+A)(—p+1)A2+((p—3)p+d—2)A+p+1)
Combining (A.30) and (A.31) then yields

M, 1/2
log A1 =log [ — H :Mz‘ TQQZ ’ / }

=—log(p—1)+ 5 [4log(1 —A)+2log(1+ (p—1)A)

—log((1—A)* = p*) —log((1+ (p—2)A(1 - A) = A?*)* — ((p — 3)A +1)*p?)
2p2
TEFNE

where we used a Taylor expansion for log(1 + z) in the last step (assuming that p — 0) and
C is some positive constant. Therefore we obtain

(A.32) A = o(1)

R n—oo,

B nr—C 1
——log(p—1)+2[p +o(p™) +

if we choose p? = c2log(p)/n, where the constant cy satisfies co < 1 — A.
For the determinant involving 7% in the Ao term in (A.29) we obtain by straightforward
calculations that

I, + TH'Sq | = I, + THE, A
2[u(a +b) —vb]v(a+b) —ubv(a+0b) —ub

1
=3 ——F | v(ia+b)—ub u(a+b)—vb av
a(a +2b) v(a+b) —ub av u(a+b) —vb
Tedious but straightforward calculations yield
| Mo ) Kl a_f
L+ TS, A7 ==,
(pa) Vo # Tl ™ =

where
F=((=p+ DA+ ((p+p=3p=2)A+p+1)(1+ (p— DA (-1+A)*,

g= (1 +(p—1)2A%+ (=2p* + 6p — ) A% + (pPp+p® — 3p> —6p+6) A% + (0> +2p — 4)A)

X (1—A+p) (1+(p—1)A3—|—(—2p—|—2p—|—3)A2+(p2+p—2p—3)A) .
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Once again assuming p — 0, taking the logarithm of f/g and using the Taylor expansion of
log(1 + ) yields that log(f/g) = O(p~2 + pp~!) so that

_p-2 Hiﬁo} + 1725, 4| 7| = exp(0(1))(1 +0(1)) =1+ o(1),

where we used log(p)n/p? = o(1). Observing (A.29) and (A.32) we obtain
EIP’O [ﬁip (Y)] =A1+Ap =1+ 0(1)

and the assertion of the theorem follows from (A.28), completing the proof.

APPENDIX B: FURTHER TECHNICAL DETAILS

B.1. Randomized Lindeberg Method. In this section we state two important auxiliary
results (Lemmas B.3 and B.4), which will be used in the proofs of our main results in Section
A. They are a consequence of a general Gaussian approximation result (Theorem B.1), which
is proved in Section B.1.2 via the iterative randomized Lindeberg method.

B.1.1. A Gaussian approximation and its consequences. LetVy,... .V, Z,...,Z, denote
independent random vectors in R?, where V; = (Vi1,...,Viq) " and Z; = (Zi1,..., Zia) "
for i = 1,...,n. We also assume that the following conditions hold for the vectors
Viy...yVa, 21, ..., Zy,. There exists a sequence of constants B,, such that:

Condition V: There exists a constant C', > 0 such that for all j
—ZEV2+ZQ <C,, ZIE Vij+ 2] < B2C, .
Condition P: There exists a constant C), > 1 such that for all ¢
P (Wil V 121l > Gy (og(an))/7) < —.
Condition B: There exists a constant C > 0 such that for all ¢

E[|[VillS + Ell ZillS] < Cy By (log(dn))*/?.

Condition A: There exists a constant C,, > 0 such that for all (y,t) € R? x R, we have

1 <& 1 <&
Pl — Zi<y+t| —-P|—= Z; < < Cuty/logd.
<ﬁ§} ’ ) (fz y) Vieg

Here y + t means addition of ¢ to every component of y. The following result, which will be
proved in Section B.1.2, will be crucial for Lemmas B.3 - B.4. Its proof uses distributional
approximations via the Iterative Randomized Lindeberg Method and is structurally the same
as in Chernozhukov et al. (2019). However, we require a weaker decay in the tails at the cost
of a weaker bound.

THEOREM B.1 (Iterative Randomized Lindeberg Method). Suppose that conditions V,P,B
and A are satisfied. In addition, suppose that for some positive constant Cy,
n

1 > (B[V;;Vie] — E[Zi; Zin])| < Con Bn(log(dn))'/?

15k<a | Vi 2=
L 2 2/8
-V Vo] — 7.7 N < )
I | 75 DBV i) ~ By Z ) < Co B3 o)




INDEPENDENCE TESTING IN HIGH DIMENSIONS 41

Then it holds

P(\}ﬁ;%g) —P(%;Zis‘o

where C' > 0 is a constant depending only on C.,, C), Cy, Cq, Cp.

1/4

sup
yeR4

. (Bzaog<dn>>4+2/ﬁ>

n

Theorem B.1 has several important consequences, which are now stated in Lemma B.3 and
Lemma B.4 and used in the proofs in Section A. For a precise formulation we require the
following assumptions.

Let X1,..., X, € R? denote i.i.d. centred random vectors, X; = (Xi1,- - , Xiq) ", satisfying
the following Assumptions:

(A): There exists a sequence of constants (B,)nen such that for 1 < j < d we have
HXUHW < By, for some 0 < 5 < 2.
(W): There exist constants ¢,,,;, > 0 and D > 0 such that for all j

Omin < — ZE [X2]<D and ZE (X} <B2D
We begin with a result describing the deviation between the empirical moments of the cen-
tered vectors
Xp=Xntsoo o, Xpa) ' =X — X = (X1 — X1, ., Xoa— Xa) T,
where X; = 13" | X,;, and the covariance matrix E[X} X! ].
LEMMA B.2. Suppose that assumptions (A) and (W) hold. Then there exists a universal

constant ¢ > 0, constants C, D > 0 and ng € N depending only on B, 0., and B, such that
for all n > ngy the inequality

B2 (log(dn))**?/% < ¢n

implies that the inequalities

(B.1) U"”" < ZX2 <D,
(B.2) ZX4 <B2D
' | < 1/8
(B.3)  max kZ X Xij — E[ X X45])| < OB, (log(dn))Y?
(B.4) max izn:(fc XX — B[ XX Xu))| < CB2(log(dn))*?
. L Re, \/ﬁi:1 ik<\ij<\il k<N ij<ql = n

hold jointly with probability at least 1 — 1/n.

PROOF. Let A =5L(C; + C3) for some Cy,C5 to be specified later and denote by A the
event that the inequalities

1 n
ﬁ ;Xik. < Ay/log(dn),

max
1<k<d
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1
—— X Xii — B[ XX )| < AB,,(1 d 1/8
15k nk—l( k2] [ DI < (log(dn))™/"”,
1 n
1<kgi<d nk—l( ikrij <kl [ i Xul)| < ABj(log(dn))™”
1 n
1§1§§%§§d \/ﬁ ’;(XlkX’L]Xlezr E[Xqu]leer]) S ABn(log(dn))

hold jointly. Noting that

1 &Ko s
NG > (XX - E[XM-XM])|
=1
n

\/15 Z(XikXij — E[X;; X4j])

X— 2
Vo [ X

and

n
— Z(XikXinil — B[ X, Xi; Xu))

1 n
7 Z(XikXinil — B[ X, Xi; X))
k=1

< max
1<k,j,l<d

2 X3 X
+ \/ﬁfél;?;‘d’ k| +1§I]g%<§dl 1l

3 n
—= ZXikXij
\/ﬁ =1

yields the bounds (B.3) and (B.4) on A . Considering

1 ¢~ 22 2 I~ o o
= 2 - < - X X
max |- Eﬁ (Xip —E[XG])| < max |- EI(Xme E[XmeD‘
1/B .
< CBy,(log(dn)) < Tmin
= n =7

yields (B.1) on .4 , and (B.2) follows by similar considerations.

We now show that we can find C, Cy such that A has probability at least 1 — 1/n. Fix m €
{1,2,3,4} and let P = {1,...,d}™. We denote y" =y, ...y, foranyy = (y1,...,yq)' €
R¢ and h = (hy,...,hm)" € P. As X;; have ¢)s-norms uniformly bounded by B,, we obtain
by standard calculations and (W) that
n n
max— S E[(X! — B[X!])2) < max— S E[(X])?] < C2Bm=D log(dn)2m /50,
heP n, “ heP 1 “

=1 1=1

where the constant C; depends only on 3 and D. By Lemma B.11 and Lemma B.12 in
Section B.2 we obtain that

E X! —-E[XM)?| <C3B2™(1 2m/B
[19%%@( ¢ ~EX) } = By (log(nd) ’
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where the constant C depends only on 3, m and K. Therefore, it follows from Lemma B.16

that

m 1
<L <ClB,T1 tog(nd) (2517212 . Collognd)" T )

n

;ﬁ S (x! — E[x1)

i=1

E

max
heP

NG
< L(Cl + 02)3?_1(log(nd))(m—l)/5V1/2 '

Now applying Lemma B.16 with t = 3L(C + Co) B™ ! (log(nd))(™~D/8V1/2 1, = 1 and
8= 27’” we obtain for n > ngy (where ng depends only on 5, m, K and L) that

> 5L(Cl + CQ)BZL*I(log(nd))(mfl)/g\/l/Q

max
heP

7= > (! - EX])
=1

with probability at most

_ _ B/(2m)
VB (log(nd))(m—1/8V1/2 1 3
3 —C & < — <
i eXp( ( By (log(nd))?"/? = ndpp w3 =

1 1
(dn)? n’
Here C is a constant, which depends only on 3,m,K and L and we have used that
B2 (log(nd))**t2/# < n for the first inequality.

O]

We note that, using Lemma B.12, Assumptions (A) and (W) imply Conditions A,B, P and V
and therefore Theorem B.1 is applicable in the following discussion. We start with a prelim-
inary result regarding the quantities

1 « 1 < .
B.5 T.=—=) X; d T;)=— X, —X).
( ) n \/ﬁ; (2 an n \/ﬁ ; ek‘( 7 )
Here ey, ..., e,, which we will sometimes call multipliers, are independent random variables
(independent of X = (X7,..., X,,)) such that e; = e; 1 +¢; 2, Where ¢; 1 and ¢; 2 are indepen-

dent, e; 1 ~ N(0,0%) and e; » has a two point distribution with E[e;] = 0, E[e?] = E[e3] = 1
(see Lemma 7.3 in Chernozhukov et al. (2019) for more details and note that o can be chosen
universally).

LEMMA B.3. Suppose that Conditions (A) and (W) hold, then, with probability at least
1 —2/n, we have

(B.6) sup [P(T, <z) —P(T, <z|X)|<C

z€R n

<B%(log(nd))4+2/ﬁ > 1/4 |

where the constant C' only depends on op;n, B.

Further, let Tf denote the analogue of the statistic T, in (B.5), where the random variables
X have been replaced by independent zero mean Gaussian vectors with the same covariance
structure. Then

(B.7) sup|P(T,, <z) —P(TY <z)| <C

z€R n

<B%(log(nd))4+2/ﬁ> v
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PROOF. First assume that Y7, ...,Y,, are vectors in R such that

max [[Vio < KBy (5log(dn)!/?

n
Omin 1 2
2 SﬁZYi’“SD’

Z 1 <B2D

1<k’,]<d

IZ YirYij — E[XixXij])| < ConBn(log(dn))/?,

max
1<k,j,l<d

1 n
s D (Yik¥igYie = BXiy Xiy Xa)| < Con B ((dm))?/*.
1=1

Recall the definition of the multipliers in the paragraph following equation (B.5). We will
apply Theorem B.1 with Z; = ¢;Y; and V; = X;. The Conditions V, P and B follow immedi-
ately from the properties of Y with C,,, C,,, C}, only depending on 0, and B,,. Condition A
follows from the Gaussianity of e; 1 with C, depending only on 04,,;, and o (first condition
on e; o and then use Lemma 8.3 from Chernozhukov et al. (2019)). The remaining conditions
in Theorem B.1 follow easily from the properties of e; and Y;. We hence obtain

2 av2/8\ V4
- Kz(Bnaog(nd)) ) |

1 & 1«

Where_ K5 depends only on 0. By Lemma B.12 and Lemma B.2 the random vectors
X; — X satisfy the assumptions stated for the vectors Y; (with probability close to 1), and we
obtain

sup
yeR

BZ(log(nd))‘H?/B) 1/4

sup|P(T,, <z) —P(T, <z|X)| < K> ( p

zeR

with probability at least 1 — 2/n, establishing (B.6). For the second inequality (B.7) we define

—;ﬁzéxxi—X),
=1

where the multipliers €1, ..., €, are now chosen as in Corollary 5.2 of Chernozhukov et al.
(2019), with v =0, = 1/2 and § = 3/2. More precisely, we sample ¢&; independently from
the distribution that is given by 4v — 1 where v ~ Beta(1/2,3/2). Note that E[¢;] = 0 and
E[¢?] = 1. We then obtain by similar arguments as above that

B%(log<nd>>4+2/ﬁ>” !

n

suplP(T,, < z) — P(R} < 2] X)| < C (
zeR

with probability at least 1 — 2/n. We let A, be the event that the first three inequalities
in Lemma B.2 hold. Then P(A,) > 1 — 1/n. On A,, we may apply first Corollary 5.2 of
Chernozhukov et al. (2019) which gives

Bz<10g<nd>>5>”4

sup[P(TC < 2|X) — P(R;, <2 X)| < C ( :

zeR
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where Tné is defined analogously to TnG for a certain Gaussian process G. The Gaussian to
Gaussian comparison from Corollary 5.1 of Chernozhukov et al. (2019) then yields that on
A,, we further have

sup|P(TC < ] X) — P(TC <w)| < C
z€eR

as we can bound |[vech(X¢) — vech(X5)||o0 by Bp log(dn)'/# due to (B.3). O

<Bg<10g<nd>>4+w>1/ !

n

LEMMA B.4. Suppose that Conditions (A) and (W) hold. Then for any x € R and t > 0 we

have
B2(1 4+2/pN\ 1/4
P(T,<z+t)—P(T,<z)<C (t logd+< n(og(zd)) ) |

PROOF. For some constant C' only depending on o,,,;, and B, we get
P(T,<z+t)—P(T,<2) < [P(T, <z +1t) —P(TF <z +1t)
+[P(T, <) —P(TF <2)| + [P(TS <z +1) —P(TS < z)|

B2( d))4+2/8 1/4

§20< n(log(nd)) > + Ct+/logd,
n

where for the last line we used (B.7) and the Gaussian anti-concentration property from

(Chernozhukov et al., 2019, Lemma 8.3). O

B.1.2. Proof of Theorem B.1. We will establish Theorem B.1 via the Iterative Randomized
Lindeberg Method. The proof is structurally the same as in Chernozhukov et al. (2019) but
asks for weaker decay in the tails at the cost of a weaker bound. We begin by introducing
some notation which we will be used in this section.

For e € {0,1}" we set

1 — 1 &
Sr‘z/e: E (62‘/1+(1_€z)zz) and 55:7 E Z; .
Vn P Vn —

Let = (1,...,1), D = [log(n)] + 1 and define random vectors €',...,e” € {0,1}" such
that i) f = 0 if ¢§ ' = 0 and ii) for I;_y = {i=1,...,n: ¢ = 1}, the random variables
{€f}icr._, are exchangeable conditional on €5~ 1 and satisfy

1
P S—kle | = ———— k=0,... |Is_1].
Zel | € [T seees [ sl

1€l

As remarked in Chernozhukov et al. (2019), these properties uniquely determine the joint
distribution of €', ..., e” which we also assume independent of Vy,...,V,,, Z3,..., Z,. For
positive constants B,, 1 5, B, 2 s and

& =EBlViiVal, & =EViVaieVi,

&l =ElZi;Za), EFm=ElZiyZinZa),

we denote by A the event

1 & v z 1 & v Z
e e C A A TS - DS AR
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We also fix a five times continuously differentiable and decreasing function gg : R — R such
that

) go(t) >0, i) go(t)=0whent>1, andiii) go(t) =1whent<0.

Clearly we can bound the first five derivatives of this function uniformly by some constant
Cy. The bounds in the following proofs and results depend on the particular choice of go, but
as we may choose some go that works universally we suppress that dependence.

Next we let ¢ > 0, 8 = ¢logd, set g(t) = go(¢t) and define for w € R? the softmax function

d
F(w)=8""log | Y exp(fuw)

=1

It is easy to check that

o= [ ir=o
TW=V0 ift> ¢t
and max; <j<qw;j < F(w) < maxj<j<qw;j + ¢~ 1. For y € R% we now define the function
m¥(w)=g(F(w—y)), weR’,
and its partial derivatives up to fifth order, for instance we write
9PmY (w)
Ow; Owgdwdw,dwy,’

mgklrh(w): gk, ,r,h=1,....d.

From Chernozhukov et al. (2019) we know that there exist functions U, ik Uy, k> U, Tkl U;’klrh :
R? — R with the following 3 properties.

i) |mY(w)| < UY(w) where I is any of the index sets jk, jkl, jklr or jklrh.
ii) For any w1, ws € RY such that 3 ||wsl|,, < 1 we have

(B.8) Ujey (w1 +w2) S U, (wn), - Ul (w1 + w2) S Ujpyp (wr).
iii) For the same [ as in i) we have uniformly in w
(B.9) Z UY(w) < ¢l (logd)l!1=1.

Lastly we define

T im ¥ (SY,.) — m(S2),

hW(Y;z):=1{— Y, —y;) < 0

(Viz):=1{—o < max (V; —y;) <o}, >0,
0c = sup [P(S,, <y) —P(S; <y)l.
yERY

We now state and prove three auxiliary results, which be essential for the proof of Theorem
B.1.
LEMMA B.5. Suppose that conditions V,PB and A are satisfied. Then for any d =
0,...,D —1and any ¢ > 0 such that

(B.10) C,Bné(log(dn)) /% < /n
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on the event A,, we have

<Viogd B2¢*(log(dn))>+%/#

QG gb TL2
Viogd Bni1s¢?logd  Bpost*(logd)?  B2g*(logd)?
+ 0og —|—E[Q€s+1|€s] ,1, ¢ og + ,2, ¢ (Og ) + nqb (Og )
5 N 0 n

up to a constant depending only on C,,,Cp,Cy, C,.

PROOF. Fix s =0,...,D — 1 and e® € {0,1}" such that if ¢¥ = e, then A, holds. All fol-
lowing arguments will be conditional on €* = e®, for the sake of brevity we will make this
conditioning implicit and write P(-) and E[-] instead of P(:|e® = €®) and E[-|e® = e°]. We
denote

W=(Wi,...,We) = jﬁ S (EHV (- z,)
=1

We will split the proof into two steps and three auxiliary calculations where we prove bounds
that are used in the first two steps. In the first step we establish the bound

B2 4 1 d 3+2/8
sup |E[Iy” S n¢ ( Og(2 TL))
yeRd mn
Vlogd B 2logd  Bays¢(logd)?  BZ¢*(logd)®
+ Og + E[Q€s+1 |€s] TL,].,8¢ Og + 2,n,5¢ ( Og ) + ’I’L¢ ( Og )
o Vn n n
and in the second step we show that
Vlogd
(B.11) 0e S Y288 4 sup [E[ZY))
¢ yER
which then yields the desired claim.
Step 1. Let S,, be the set of permutations on {1,...,|Is|} and let o be a random variable
that is distributed uniformly on S,, and also independent of V4, ..., V,,, Z1,...,Z, and €511,
Writing
1 1 U 1
WP =—"23 Von+—= >, Zogy+—=»_ %, foralli=1,...,|L],
\/ﬁjil \/Hj:i-f—l \/ﬁjﬁs

it follows by Lemma B.14 that for any function m : R — R and any i € I,

(9] = [T (W + T2 )+ - 7y (g + 2]

Fixing some y € R? we observe that

IL|

P52 ) =+ 5)

and let

£(t) = ;IE <m (W;’ + ﬂ:}?) —m (W;’ + tf"fs)» , forte0,1].
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Clearly E[ZY] = f(1) and by Taylor’s expansion

3)( (D)
1= (1) A ) f
1) = 50 + 100 + 0 L0 T
for some ¢ € (0,1). Clearly f(0) =0 and because of E[Vj;] = E[Z;;] = 0 we also obtain

F(0) =0.
We defer the bounds of | £(2)(0)],|£)(0)| and | f*) ()| to the three auxiliary calculations.

Step 2. We observe that
P(S) e <y) SP(F(S) e —y—¢7") 0) <E[m#* (S} .)
<E[m?™ (S + | BTV <B(ST <y+2¢71) + BTV
<P(SY <y) +2Ca¢™" logd + |E[ZVH ]
Similarly, we obtain
P(SY.. <y) > P(SZ <y) — 2Cu0~"/logd — [E[TV7]|.

Combining these bounds yields (B.11).
Aucxiliary Calculation 1. We calculate a bound for | £(?)(0)| by utilizing the representation

|Is| d

1

@)= - D EmY (W) (Ve Votik = Zoti)j Zoti)]

i=1 j,k=1

1 d

~n Z Elm —1(i ))(Vngm ZijZik)]
i€l j,k=1

1 d

; Z E WU—l( ))](gz jk & ,]k)
i€l j,k=1

where we used the independence of Wg,l(z.) and V;; Vi, — Z;jZ;,, when conditioning on ¢ in
the third line. Denoting

o _ Y o g (Z) y o Vi a (Z) y o Z;
B =mieWor) = [y ™om (Walm * \/ﬁ> O e

we obtain the decomposition f(2) (0) =731 + I3,2, where

d
Ioy = %Z Z E[m?k(W)] Vi =€)

i€l jk=1
Iop=— Z ZE ikl (€ — E5k) -
el jh=1
We first bound Z5 1 by
d 1 & Bpis ©
Zoq| < Z E[jmf, (W) 1%12}32]) EZG Ve — E0n)| < \/ﬁ Z E[jmf, (W)]].

Gk=1 i=1
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Recalling the definition of m? and A¥, we see that mY (W) = h¥(W;¢~")m¥ (W). Thus,
since

- 1< 2C, \/log
(B.12) 73._1@( b <1r£?2<p\/ﬁ;(z —y) <o~ )

by Condition A, the basic properties of Uj; and the definitions of the quantities involved
imply (note that my < Uji, and (B.9), (B.12))

d d
Y Elm (W)l =Y E[RY(W;¢~ml (W)]]

J,k=1 J,k=1
d

Z WY (W56~ Uz (W)]]

§¢>210gd]P’< o7l < maé{d(wj ) §¢1)

< ¢?logd (2E[ges+1] + P)

(B.12) < ¢?logd (E[gﬁsﬂ] + Vl;gd> :

and therefore,

By, 1.q490%logd logd
<——" = [ E[ges+ .
§ Puldf OB (g + Y

To bound Z3 5 we use the same Taylor expansion as above and get

d _
tVi\ VauVir
BIRT < Y E [, (We + )
l,r=1 \/ﬁ "
d 12\ ZaZ;
#3 8 [, (W7 + ) 2
jklr o—1(t) )
l,r=1 \/ﬁ n
which yields ’IQ 2‘ <1221+1222,where
v s
1-27271 22 Z E m]le 01(1)4‘% zlvzr ’ gi,jk|7
i€l j,klr=1
tZ;
wa= Y 3 |y, (W +2) zzzw]r o=l
i€l j,k,1,r=1

Next, we will bound Zs 2 1. Setting = = C,, By, (log(dn))"/8 /\/n+ ¢~ and V; = 1{||Vj||, <
C, By, (log(dn))/#}, we have
tVi

d —
_ tV;
E IE[V- mY < Sy +Z) VaVi
L gkl o~1(4) wVar
l,r=1 \/ﬁ
) o ¢ 1/
Mikir < o1(0) T \/ﬁ> VitVir

d
Y E [why (Wg,l(i);x)
lr=1

|
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< lﬂ:lE [Vihy (ngl(i);x> ijkh, < ;’71(1) fﬁ) |‘/zl‘/;7”|]
(B.13) < Ed: E|Vih? (Wesyi) Uy, (W) VaViel |
Lr=1

where the first equality follows by the definitions of the involved quantities and the second
inequality follows by (B.8). Setting Z; = 1{||Z;||., < C,Bn(log(dn))'/#} we bound the
above expectation by

E [Vihy (Wg—l(i)§$) ijk:lr (ngl(i)) |V;ler|]
[VZh (Wa—1(1)7 )ijklr( -1 1))] E[|ViiVirl]
(B.14) SE [0 (Wi2e) Ulyy, (W)| E[[VaVirl).

where the inequalities follow by Condition P, the definitions of AY, W and Wg_l @) and (B.8)
tV;

as well as (B.10).
My < o-1(i) + \/ﬁ> ViVir ] ik — 7]

Hence we obtain, by the same arguments as for (B.12),
1
= 3 E B (W320) Uy, (W) EVaVir €85 — €]

1 d _
S > el
i€l j.k,lr=1

icl, gkl r=1

2 4 3
B ¢*(logd) <E[ges+1] n vlogd) 7

d
S OE [hy (W;22)UY, (W)] g = ;

n
7.k,lr=1

where we used that by Condition V

Z |2
1§§%%§<dzﬂz |Vl‘/zr| | 1,k 7]k| S 1<§I}i},§<dZE ‘VZVYZT| ” + | 1,5k gi,jk:|

< Bin

Additionally we have

d _

1 - tV; 7
e} Z Z E [(1 - m?klr < o-1() T \/ﬁ> ViiVir ] ik — Enl

i€l jklr=1

4
I
5 Plosdy ZE V) Vil
Bnqs‘*(log(nd))?’“/ﬂ
n2 ’

where the first inequality follows by mzj < Uy for appropriate index sets I as well as Condi-
tion V, and the second inequality follows from Holder’s inequality and Condition P as well
as B.
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Combining these two inequalities we obtain

B2¢*(logd)3 logd B244(loe(nd 34+2/8
Too1 < B¢ (logd)” (E[Qgs-H] N W) L Bid ( g(2 ) '
n ¢ n
Similar arguments as for Z5 o 1 also establish the same bound for Z5 22 and therefore we
conclude

@) Bn,1,s¢%logd | Bag*(logd)® Viogd\ | B¢ (log(nd))***/7
|f (0)§< NG + " Elogs+1] + 5 + > .

Auxiliary Calculation 2.
Just as in the beginning of the previous calculations we obtain

3/2 Z Z E jkl O' 1(1))](gljkl S%kl) :

i€l 5.k,1=1

Writing

o o O-_l(i) Yy o ‘/Z
RS i = ]kl( (z)) - 7|Is| n 1mjkl < o-1() T \/ﬁ>

o i)\ " Z;
B (1 TR +1)mjkl ( o) T \/ﬁ)

we have (just as above for £(2)(0)) that £ (0) = Z3 | + 3.2, where

L31= 3/22 Z E[my W) EL i — L) »

i€l g k,l=1

§ : § : \%4 Z
372 3/2 ’ijl (gi,jkl - gi,jkl) :

i€l 5,k,l=1

By the same arguments that we used to bound Z5 1, we obtain

T % Bn,zsqi(logdy <E[ges+1} + YRS I;g d) .

We also get by the same arguments as before that |Z3 5| <7321 + Z3 22 where

t;
Yy (o)
T2 = 5/22 Z Hmjmrh( o) \f> VirVin

i€l j,k,l,r,h=1

L~

Vv A
} €~ €2l

. iz
L322 = 5/2 Z Z ngklrh (Wcr—l(i) + f) ZirZin

i€l 3.k,l,r,h=1

} € — &7,

Moreover, we have

1€Y1l < E[VigVaVall = E[Vil Vi Vi Var|] + E[(1 = Vi) Vi Vir V]
(B.15) < By(log(dn))/PE[|Vi;Vikl] + B3 (log(dn))*/? /n?
and similarly

(B.16) 12,11 S Bn(log(dn))YPE[| Vi Vig|] + B3 (log(dn))*? /n? .
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Just as in the previous auxiliary calculation we get

- tv;
5/2 Z E [ My <WJ—1(i) + \/%) VitVir

i€l j,k,l,r,h=1
SaEY 3 E [ (W322) Ul W) BV Vin 110 — €25
i€l j,k,0,r,h=1

< <Bz¢5<log<dn>>4+1/ﬂ . Bz¢5<log<dn>>4+2/ﬂ> (eloc+ YEE2)

Z
] €Y~

n3/2 /2 7
B35 (log(dn))*+1/8 Viogd
< P n§/2 ) (E[QEMH 6 )

and

X > E[u-n

i€l j,k,l,r,h=1

o tVi v z
M ( o—1(3) f) VirVin } \Eiljkt — il

B¢°(log(dn)) B3¢ (log(dn))*2/%
< n
32 ZE[ V) IVil| < 572 !

where we used that by Condition V and Holder’s inequality

|5,sz’NBn” and ‘52]kl|m ntl.

Thus,

B345(1 4+1/8 I B (1 112/8
I321 S n®"(log(dn)) <E[Qﬁs+1] i @) n > $° (log(dn))

n3/2 o nd/2

and since the same bound holds for Z3 » » we have that

B3¢° (log(dn))**1/5 (E[QESH] N ,flogd> . Bag®(log(dn))+2/7

T39S

e~ n3/2 P nb/2 ’
which finally yields
B3¢5(log(dn))**Y/8 B, 2,43 (logd)? Viogd
|f(3)(0)|§( ¢°( gg/Q NP L Buzsd®(logd) ) <E[Qes+1]—|— g )
n n ¢
Bjj¢° (log(dn))*+2/7
nb/2 :

Auxiliary Calculation 3. We decompose f 4) (t) =T41 — Ly 2, where

tV;
41= g Z Z [ jk‘lr( o1(0) f) Vz;Vszlezr] ,

i€l j,k,lr=1
tZ;
4,2 2 Z Z ]E|: jklr( o~1(4) \/*) lezlkZlezr:| .
i€l j,klr=1

Again denoting = = C,, B,,(log(dn))'/? /\/n 4+ ¢! we have, by the same arguments leading

to (B.13),
2> X E[um }

1€l g,k,l,r=1

i ar
jk’l’f‘ o=1(4) + \F

) Vii Vi Vit Vir
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S%Z S B[R0 Uy, (W) )| BOVis VikVaVi ).
i€l j

ikl r=1

We also obtain
E[RY (Wi iy ) U, (Woa )] S E[RY (W 22) U, (W]
by the same arguments as those leading to (B.14). Hence,

2Y X B[N
S E[wi2a)ul, 7)) max_ E[|Vi; Vi VatVir

, tv;
jle‘ (Wal( i) \F) ‘/;j‘/;k‘/zl‘/;r

i€l gk, lr=1

Gl P 1<,k l,r<p
B2¢*(logd)? logd
< a0 LB (g4 YEC)

where the second inequality follows from the properties of UY and the arguments leading up
to (B.12). Moreover, we have

Y tv;

w2 Z Z [ My (Wa 10 f) ViiVik Vit Vir ]
il j,k,lr=1

¢4 logd )3 & < Ba¢*(logd)* (log(nd /B

B[ - ) vl g Zad-tosd) foend)
n
=1
B} ¢* (log(nd))'T2/P

S 2
n

by Condition B and mY < U}. Clearly the same bounds also hold for Z4 5 which finally
establishes

2 14 1+2/8 2 44 3
0@ g BN 7 | Buolond) (g ) YOET)

O]

LEMMA B.6. Suppose that the conditions of Lemma B.5 are satisfied. Then there exists a
constant K > 0 depending only on C,,, C,, Cy, such that for all s =0,...,D, if B, 1541 >
Bnis + KB, (log(nd))Y? and By as+1 > Bpa,s + KB2(log(dn))/>t%/5, then for any
constant ¢ > 0 satsifying (B.10) we have

4 3+2/8
AL (i )

2 3 2 2 14 3
% n,l,s¢ 1Ogd + BZ,n,s¢ (IOgd) + Bn¢ (log d)
Jr z "

up to a constant only depending on C,,,C),, Cy, C,.

Eloe: 1{As}] <

PROOF. Fix s =0,...,D — 1 and ¢ > 0 such that (B.10) holds. By Lemma B.5 we have

2 44 3+2/8
Bloc 1A s YR 4 PaC OB (VIR g1

Bp1s$*logd  Ba, 3¢3(log d)2 B3¢4(log d)3
x [ = - -
N4 n n
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up to a constant only depending on C,,, C},, C, C,. Hence the claim of the lemma follows if
we can show that

Efoer11{A}] < Elpen L{Auir}] + —
We have

Elge 1{As}] = Elget L{A} 1{Ass1 }] + Eloerss T{AI(1 — 1{Ass1})]
<Efoer 1{Ass1 ] + E[1{A3(1 - 1{As11})]
< Efgen L{Asi1}] + 1~ B(Ayp 1] Ay)
where we used that 0 < g.s+: <1 for the first inequality. Now Lemma B.15 yields

(> )

<9 ni? <9 ( t2 )
S z€exXp SZL€eXP | — =5+ s
32y (€Y, — €2 ,)? 128B2C,

where the last inequality is due to Condition V. Setting ¢t = 8 B,,,/6C,, log(dn) and recalling
that

S+1 5

2]k zgk +1le

zgk z]k)

ZE zyk z]k)

on A, we obtain by the tower property of conditional probabilities that for any B, 1 541 >
Bn,l,s +t

P
1<] k<d

We recall (B.15) and (B.16) which follow by Conditions P and B. Hence we find that

< Bn,l,d

1<] k<d

2p
\[Z uk’ Z]k) >Bn1d+1‘¢4>

32

n
=1

(5 gkl — &

7

]kl) < CB;(log(dn))*/”

for some constant C' only depending on C,, C,, and C},. We hence obtain by the same argu-
ments as above
nt?

s+1
(‘ \/’ Z 81 Jkl z jkl
42
<2exp| — - <2exp (— > .
32 Zizl(%kl — Sfjkl)2 128C(log(dn))*/8

Applying this inequality with t = v/3C B2 (log(dn))*/>*2?/ yields that for any B, 9+ 11 >
B2, +t, we have

+1 Z
P<1<]kl<d \fz € 5wkl 5i,jkl)

Thus 1 — P(A,11|As) <4/n which completes the proof. O

+tle

1gkl zgkl)

2p° 2
> Bn,Q,s—f—l ‘-As> S P < -
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LEMMA B.7. For any constant ¢ > 0 such that (B.10) holds we have

Eloe1{Ap}] <

PROOF. Recall that D = [log(n)] + 1 and note that g.» = 0 if ¢” = (0, ...,0). Moreover, by
Markov’s Inequality,

P(eP #(0,...,0)) =P (Zn:GiDZ 1) SE[ZH:EZD]
i=1 1

=

It follows that

PROOF OF THEOREM B.1. Throughout the proof we will assume that
CgBTQL(log(dn))‘lH/B <n

since otherwise the claim follows immediately.

Let K be the constant from Lemma B.6 and for all s =0,..., D define B, ; s = C1 By (s +
1)(log(nd))*# and By, 2 = C1B2(s 4 1)(log(nd))'/?*?/5 where C; = K + Cj so that
both Aj and the requirements for Lemma B.6 hold. Now we define for s =0,..., D

Bzaogwn»‘*”/ﬁ)” }

n

fs=inf {x > 1:Efoe 1{As}] <z <

and for all s=0,..., D we apply Lemma B.6 with

nl/4

= B M log(dn) /T (A4 1) foan) 1P

¢:¢s

Noting that
Bj¢* (log(dn))***/% _log(dn) _ BiCp(log(dn))'/* _ Cyv/logd

n? n - nl/4 0]
B2(1 44+2/8 1/4
< Cp((S + 1)fs+1)1/3 < n( Og(";d)) )
and
Bn71’s¢210gd < Cl(S—l—l)
Vn T (s 1) fs41)?3

By2,s¢°(logd)? N Bi¢*(log(dn))® _ C1+1

n n fst1



56

we getfor s=0,...D

Bzaog<dn>>4+2/ﬂ>” !

n

Lo 1A £ Col2] + 6+ 074 1)
for some constant C'y depending only on C,,, Cp,, Cy, C,, Cyy,. Hence we obtain

fs <Co(f25 + (s + )PP+ 1)).

Clearly fp =1 due to the previous lemma. A simple induction then shows that

fs < C(S —+ 1)
for some constant C' > 1 depending only on C'>. We then finally obtain
B2 (log(dn))*+2/6\ /*
00 1{Ap} =E[p01{Ap}] SC( a g(n ) )

O]

B.2. Sub-Weibull Random Variables. In this section we collect some results on sub-
Weibull random variables, which are mainly taken from Kuchibhotla and Chakrabortty
(2020). Recalling the definition of the Orlicz norm in (2.13), a random variable X is called
sub-Weibull of order /3, denoted sub-Weibull(53), if

X1y, <oo,

where 3(x) = exp(z?) — 1. We also occasionally call || X | y, its B-parameter. This def-
inition includes the important sub-exponential (8 = 1) and sub-Gaussian (8 = 2) cases.
Clearly sub-Weibull(3) random variables possess exponential tail decay rates, more pre-

cisely P(|X| > t) < 2exp(—tﬁ/||X||ﬁﬁ). The following result is a slight refinement of this
statement, which for instance can be found in Kuchibhotla and Chakrabortty (2020).

LEMMA B.8.  For any random variable X and constant 8 > 0 the following are equivalent:
D Xy, =K,
i) P(|X]>t) < 2exp (—;(i)
X
1) sup,>; ”pl# = K3,

where we have K1 < Ko < K3 < Ky up to constants only depending on 3. Note that the
third formulation yields a quasi-triangle inequality for the B-parameter of sums of finitely
many random variables.

PROOF. Ifi) holds, ii) follows from Markov’s inequality.
If i1) holds, it follows that

E[|X[P] = /000 P(IXP > t)dt = /OOO P(|X| > £V/7)dt

<2 [ exp(—7 Kt - 2557 (0/8).
0
I X1|

Taking the p—th root and recalling I'(z) < z'/% then yields DI < CUgK3, which implies
iii).
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If iii) holds, we have for some K >0

,Bn OO ﬁn > Bn
Blexp((X1?/K7) - 1] = 3 EIAI] <> 00" ity < (A (%)

n=1 n=1 n=1

Now there exists a constant C'g only depending on 3 such that K’ = Cz K3 yields that the last
term is bounded by 1. This implies i).
O

LEMMA B.9.  Let X be a random variable with || X||,,, < oc. Then for any sigma algebra

B we have that |E[X|B]|,,, < Cs | X[,

PROOF. This follows immediately from Lemma B.8 and the fact that conditional expecta-

tions are £,, contractions. O

LEMMA B.10. Let X,, =137 | X} be the average of sub-Weibull(2) random variables
with 2-parameter o. Then X, is sub-Weibull(2) with 2-parameter at least Z N C and at most

f/—% for some universal constants C,C > 0.

LEMMA B.11.  Let Xi,..., Xy be random variables with || Xy, <oo (k=1,...,n).
k
Then for % = Z[le we have

n n
[T < IT1%ll,
k=1 Pg k=1
LEMMA B.12.  Assume that X; = (X;1,... ,Xid)T, 1 <i <mn, are random vectors whose

components X;;, 1 < j < d, are sub-Weibull(f) random variables with HXinw[j < K. Then
for d > 2 we have

< 1/8
max 1, < K (5log(dn))

with probability at least 1 — 1/(2n*)

PROOF. Using the union bound and Lemma B.§, we obtain for any = > 0,

8
T
P Xij < P(] X4 <2 —— .
(19%23%@' ’J|>x)—dn1gzéﬂfal§j§d (Xl >2) < dneXp( Kﬁ>

Taking z = K (5log(dn))"/? yields the desired claim. O
LEMMA B.13 (Kuchibhotla and Chakrabortty (2020), Theorem 3.4). Let Xi,...,X,, be

independent d-dimensional random vectors with mean zero and components satisfying
HXUHW < K,, for some 3 < 2. Setting

= — Y E[X
Toi= s Z
we have for t > 0, with probability at least 1 — 3¢,

= 1/ 1/8*
lin < [Tult+logd) . (log(2n))/*(t +logd)
n

=1

~ n

n n

o
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up to some constant depending only on [3 and where 5* = min(1,3). In particular, not-
ing that T, < K2 up to a constant depending only on B, we have for t = logd and
1 < (log d)'=2%/5" thar

<K, logd

1 n
n

holds with probability at least 1 — 3/d. When logd < n” this holds as long as v <

n

2/ﬂ -1

B.3. Further technical details. All results in this section are taken from Chernozhukov
et al. (2019), but we will list them here for sake of completeness.

LEMMA B.14. (Chernozhukov et al., 2019, Lemma 7.2) Let S, be the set of all permutations
of {1,...,n}. Let X1,...,Xn, Y1,...,Y, be sequences of vectors in R%. Let U be a random
variable with uniform distribution on [0,1] and o be uniformly distributed on S,, and also
independent from U. For k =1,... n denote

k—1
Wy Z ) T Z Yo i)
j=1 j=k+1

and

o —(k)
Wk_{Wa_l(k)+Xk’ ifU< 53

o k
VV¢7—1(1§)+Y/’€7 ifu> n—i-(l)’

Then the distribution of Wy, does not depend on k and there exists a random vector € =
(€1,...,€n) with values in {0,1}" such that the distribution of Wy, is equal to that of
n
Z (6Xi +(1—€)Y;)
i=1
In particular, the random variables €; are exchangeable and their sum is uniformly distributed
on {0,...,n}.

LEMMA B.15. (Chernozhukov et al., 2019, Lemma7.1) Let a1, . . . ,a, be some constants in
R and let X1, ..., X, be exchangeable random variables such that | X;| < 1 almost surely.
Then

> e =[S

=1

t2
( ”) <er(“grsra)
1= 2

LEMMA B.16. (Chernozhukov et al., 2017, Lemma7.1) Let Xi,...,X, be indepen-
dent centered random vectors in R? with d > 2. Deﬁne Z =maxi<j<q|d iy Xij|, M =
maxi<i<n1<j<d | Xijl and o2 =maxi<j<q g E[X; ] Then

forallt > 0.

E[Z]) < L(o+\/logd + /E[M?] log d)

for some universal constant L. Moreover, for every v > 0, 3 € (0,1] and t > 0 we have

P(Z>(1+v)E[Z] +1) < exp(—tQ/(302)) + 3exp (‘KHtj\ZHfJ)
s

for some universal constant K that depends only on v and (.



INDEPENDENCE TESTING IN HIGH DIMENSIONS 59

B.4. Concentration Inequalities for U-Statistics.

DEFINITION B.17. Consider a symmetric and measurable function h = (hy,..., hg)" :
(RP)™ — RY together with a collection of iid random variables X1,..., X, € RP. We de-
fine the associated U-statistic U, of order m by

o\ L
Uy, <m> 1§l1<Z.<lm§nh<Xll’ X))
For x € RY we write
hi(z) =E[h(Xq,...,Xm)|X1=2], 1<i<d,
and set h(yy(x) = (h11(x),. .., hyq(z)) "

LEMMA B.18. Consider a mean zero U-Statistic Uy, of order m as defined above. Provided
that max1<i<d 1hi(X1, ..., Xm)lly, < K for some 2> >0 and that logd = o(n") for

v < 2/5“ it holds

logd

1Unlloo S
with probability at least 1 — 3/d — C(logd)Y/?>T1/8 /\/n for some universal constant C >
0. Note that the same bound with log(nd) instead of logd holds with probability at least
1—3/(nd) — C(logd)"/>*Y/8 ) \/n

PROOF. By Theorem 5.1 from Song et al. (2019) we obtain that
n
m log d)1+1/8
E Un_n;h(l)(Xk §K<(g)>

n
up to some universal constant that depends only on m and . Using Markov’s inequality we

deduce that
1+1/8
> t) S — (UOgd) ) .
t n

(B.17) ( U, —7211 Xi)

For the linear part of U,, we obtain by Lemmas B.13 and B.9 that

n
m logd
_ <
- g h(l)(Xk) SK ”
k=1
with probability at least 1 — 3/d as long as logd = o(n”) where 7 < 5 YRS /B* 7. Setting t =

K /%% in (B.17) then yields

logd

1Unll

with probability at least 1 — 3 /d — C(log d)'/>*1/# //n up to some universal constant C that
depends only on m and 3. The second bound is obtained by the same arguments but with a
different choice of ¢. O
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