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Abstract

Let x1, . . . ,xn denote independent p-dimensional vectors with independent complex

or real valued entries such that E[xi] = 0, Var(xi) = Ip, i = 1, . . . , n, let Tn be a p × p

Hermitian nonnegative definite matrix and f be a given function. We prove that an appro-

riately standardized version of the stochastic process
(
tr(f(Bn,t))

)
t∈[t0,1] corresponding to

a linear spectral statistic of the sequential empirical covariance estimator

(
Bn,t)t∈[t0,1] =

( 1

n

bntc∑
i=1

T1/2
n xix

?
iT

1/2
n

)
t∈[t0,1]

converges weakly to a non-standard Gaussian process for n, p→∞. As an application we

use these results to develop a novel approach for monitoring the sphericity assumption in

a high-dimensional framework, even if the dimension of the underlying data is larger than

the sample size.

Keywords: linear spectral statistic, sequential sample covariance matrix, sequential process,

sphericity test, Stieltjes transform, monitoring spherictiy.

AMS subject classification: Primary 15A18, 60F17; Secondary 62H15

1 Introduction

Estimation and testing of a high-dimensional covariance matrix is a fundamental problem of

statistical inference with numerous applications in biostatistics, wireless communications and

finance (see, e.g., Fan and Li (2006), Johnstone (2006) and the references therein). Linear

spectral statistics are frequently used to construct tests for various hypotheses. For example,

Mauchly (1940) proposes a likelihood ratio test for the hypothesis of sphericity (of a normal
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distribution), which has been extended by Gupta and Xu (2006) to the non-normal case and by

Bai et al. (2009) and Wang and Yao (2013) to the high-dimensional case, where the dimension

p is of the same order as the sample size n, that is p/n → y ∈ (0, 1) as p, n → ∞ (see also

Theorem 9.12 in the monograph of Yao et al. (2015) for a further extension). Alternative

tests based on distances between the sample covariance matrix and a multiple of the identity

matrix have been considered in Ledoit and Wolf (2002) and Chen et al. (2010) among others.

Fisher et al. (2010) suggest a generalization of John’s test for sphericity, which is based on

a ratio of arithmetic means of the eigenvalues of different powers of the sample covariance

matrix. Among other testing problems such as sphericity, Jiang and Yang (2013) consider

some classical q-sample testing problems under normality in a high-dimensional setting, which

are further generalized in Dette and Dörnemann (2020) for an increasing number q of groups.

Other authors concentrate on linear spectral statistics of F -matrices (see, for example, Zheng,

2012; Zheng et al., 2017; Bodnar et al., 2019), auto-cross covariance (Jin et al., 2014), large-

dimensional matrices with bivariate dependence measures as entries (Bao et al., 2015a; Li et al.,

2019) or information-plus-noise matrices (Banna et al., 2020).

Because of its importance in statistics numerous authors have investigated the asymptotic

properties of linear spectral statistics from a more general perspective. An early reference is

Jonsson (1982) and in their pioneering paper, Bai and Silverstein (2004) proved a central limit

theorem for linear spectral statistics of the form

p∑
i=1

f(λi(Bn))

of the sample covariance matrices Bn = 1
n

∑n
i=1 T

1/2
n xix

?
iT

1/2
n under rather general conditions,

where x1, . . . ,xn are independent p-dimensional random vectors with independent real or com-

plex valued (centered) entries xij, Tn is a p× p (non-random) Hermitian nonnegative definite

matrix and λ1(Bn) ≤ . . . ≤ λp(Bn) are the ordered eigenvalues of the matrix Bn. Several au-

thors have followed this line of research and tried to relax the assumptions for such statements

(see Pan and Zhou, 2008; Lytova and Pastur, 2009; Pan, 2014; Zheng et al., 2015; Najim and

Yao, 2016, among others).

In this paper we will take a different point of view on linear spectral statistics and study these

objects from a sequential perspetive. More precisely, we consider a sequential version of the

empirical covariance estimator

Bn,t =
1

n

bntc∑
i=1

T1/2
n xix

?
iT

1/2
n , 0 ≤ t ≤ 1, (1.1)

and investigate the probabilistic properties of the stochastic process corresponding to linear
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spectral statistics of Bn,t, that is

St =
1

p

p∑
i=1

f(λi(Bn,t)) , 0 ≤ t ≤ 1, (1.2)

where λ1(Bn,t) ≤ . . . ≤ λp(Bn,t) are the ordered eigenvalues of the matrix Bn,t. In particular,

we prove that for any 0 < t0 < 1, an appropriately normalized and centered version of the

process (St)t∈[t0,1] converges weakly to non-standard Gaussian process.

Our interest in these processes is partially motivated by the fact that the sequential covariance

estimator plays a central role in the construction of methodology for the detection of structural

breaks in the covariance structure (see Aue et al., 2009; Dette and Gösmann, 2020, among

others). In this field various functionals of the process (Bn,t) 0≤t≤1 have been studied in the

case of fixed dimension, and we expect that results on the weak convergence of the process

(St)t∈[t0,1] will be useful in the context of change-point analysis for high-dimensional covariance

covariance matrices. In fact, we use the probabilistic results presented in this paper to develop

a procedure for monitoring deviations from sphericity, see Section 3 for more details.

Surprisingly, sequential processes of the form (1.2) have not found much attention in the liter-

ature. To our best knowledge we are only aware of the work of D’Aristotile (2000) and Nagel

(2020), who considered sequential aspects of large dimensional random matrices from a different

point of view. More precisely, D’Aristotile (2000) studied a sequential process generated from

the first bntc diagonal elements of a random matrix chosen according to the Haar measure on

the unitary group of n× n matrices and showed that this process converges weakly to a stan-

dard complex-valued Brownian motion (see also D’Aristotile et al., 2003, for similar results).

Recently, Nagel (2020) proved a functional central limit theorem for the sum of the first bntc
diagonal elements of an n × n matrix f(Z), where Z has an orthogonal or unitarily invariant

distribution such that tr
(
f(Z)

)
satisfies a CLT. Compared to these contributions the results of

the present paper are conceptually different, because - in contrast to the cited references - the

parameter t used in the definition of the process (1.1) also appears in the eigenvalues λi(Bn,t).

This “non-linearity” results in a substantially more complicated structure of the problem. In

particular, the limiting processes of (St)t∈[t0,1] are non-standard Gaussian processes (except in

the case f(x) = x), and the proofs of our results (in particular the proof of tightness) require

an extended machinery, which has so far not been considered in the literature on linear spectral

statistics. As a consequence we provide a substantial generalization of the classical CLT for

linear spectral statistics (see, for example, Bai and Silverstein, 2010), which is obtained from

the process convergence of (St)t∈[t0,1] (appropriately standardized) via continuous mapping.
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2 A sequential look at linear spectral statistics

Let x1, . . . ,xn be independent p-dimensional random vectors with real or complex entries and

covariance matrix given by the identity matrix I = Ip ∈ Rp×p . We use the notation xj =

(x1j, . . . , xpj)
> for the components of xj and assume that E[xij] = 0 and E[x2ij] = 1. When

considering asymptotics, the dimension p = pn of the data is allowed to increase with the

sample size n→∞ at same order, that is, p/n→ y ∈ (0,∞) as n→∞. Recall the notation of

the sequential covariance estimator Bn,t in (1.1) and consider the corresponding linear spectral

statistic (as a function of t)

St =
1

p
tr
(
f(Bn,t)

)
=

1

p

p∑
j=1

f (λi(Bn,t)) , t ∈ [0, 1],

where f is an appropriate function defined on a subset of the complex plane. For a given

t0 ∈ (0, 1], we are interested in the asymptotic properties of the process (St)t∈[t0,1] and will

prove a weak convergence result for an appropriately standardized version of this process in

the space `∞([t0, 1]) of bounded functions defined on the interval [t0, 1]. Note that the random

variable S1 has been studied intensively in the literature (see the discussion in Section 1).

For the statement of our main result we require some notation. Let

FA =
1

p

p∑
j=1

δλj(A),

be the empirical spectral distribution of a p× p Hermitian matrix A, where λ1(A), . . . , λp(A)

are the eigenvalues of A (often the dependence on A is omitted in the notation, because it is

clear from the context) and δa denotes the Dirac measure at a point a ∈ R. A useful tool in

random matrix theory is the Stieltjes transform

sF (z) =

∫
1

λ− z
dF (λ)

of a distribution function F on the real line, which is here defined for z ∈ C+ = {z ∈ C :

Im(z) > 0}. If F = FA is an empirical spectral distribution, then its Stieltjes transform has

the form

sFA(z) =
1

p
tr
{

(A− zI)−1
}
, z ∈ C+.

Standard results on linear spectral statistics (see, for example the monograph of Bai and Sil-

verstein, 2010) show that (for fixed t > 0) under certain conditions, with probability 1, the em-

pirical spectral distribution F (n/bntc)Bn,t of the (scaled) matrix (n/bntc)Bn,t converges weakly.

The limit, say F yt,H , is the so-called generalized Marčenko-Pastur distribution defined by its
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Stieltjes transform st = sF yt,H , which is the unique solution of the equation

st(z) =

∫
1

λ(1− yt − ytzst(z))− z
dH(λ) (2.1)

on the set {st ∈ C+ : 1−yt
z

+ ytst ∈ C+}. Here, H denotes the limiting spectral distribution

Hn = FTn of the Hermitian matrix Tn which will be assumed to exist throughout this paper

and yt = y/t. Hence, we have

F̃ yt,H(x) := lim
n→∞

FBn,t(x) = F yt,H(x/t). (2.2)

at all points, where F̃ yt,H is continuous.

For the following discussion, define for Bn,t the (bntc × bntc)-dimensional companion matrix

Bn,t =
1

n
X?
n,tTnXn,t (2.3)

and denote the limit (if it exists) of its spectral distribution FBn,t and its corresponding Stieltjes

transform by

F̃
yt,H

and s̃t(z) = s
F̃
yt,H (z), (2.4)

respectively. A straightforward calculation (using (2.1)) shows that this Stieltjes transform

satisfies the equation

z = − 1

s̃t(z)
+ y

∫
λ

1 + λts̃t(z)
dH(λ). (2.5)

Our main result provides the asymptotic properties of the process (Xn(f, t))t∈[t0,1], where t0 ∈
(0, 1], f is a given function,

Xn(f, t) =

∫
f(x)dGn,t(x), (2.6)

the process Gn,t is defined by

Gn,t(x) = p
(
FBn,t(x)− F̃ ybntc,Hn(x)

)
, t ∈ [t0, 1]

and

F̃ ybntc,Hn(x) = F ybntc,Hn

(
n

bntc
x

)
(2.7)

is a rescaled version of the generalized Marčenko-Pastur distribution defined by (2.1). The

proof is challenging and therefore deferred to Section 4 and the Appendix.

5



Theorem 2.1. Assume that p/bntc → yt = y/t ∈ (0,∞) and that the following additional

conditions are satisfied:

(a) For each n, the random variables xij = x
(n)
ij are independent with Exij = 0, E|xij|2 = 1,

max
i,j,n

E|xij|12 <∞. Moreover, the condition

1

np

p∑
i=1

n∑
j=1

E
[
|xij|4I(|xij| ≥

√
nη)
]
→ 0 (2.8)

holds for any η > 0.

(b) (Tn)n∈N is a sequence of p × p Hermitian non-negative definite matrices with bounded

spectral norm and the sequence of spectral distributions (FTn)n∈N converges to a proper

c.d.f. H.

(c) Let t0 ∈ (0, 1] and f1, f2 be functions, which are analytic on an open region containing

the interval[
lim inf
n→∞

λmin(Tn)I(0,1)(yt0)t0(1−
√
yt0)

2, lim sup
n→∞

λmax(Tn)(1 +
√
yt0)

2
]
. (2.9)

(1) If the random variables xij are real and Ex4ij = 3, then the process

(Xn(f1, t), Xn(f2, t))t∈[t0,1]

converges weakly to a Gaussian process (X(f1, t), X(f2, t))t∈[t0,1] in the space (`∞([t0, 1]))2

with means

E[X(fi, t)] = − 1

2πi

∫
C

fi(z)
ty
∫ s̃3t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)(

1− ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

)2dz , i = 1, 2,

and covariance kernel

cov(X(f1, t1), X(f2, t2)) =
1

2π2

∫
C1

∫
C2
f1(z1)f2(z2)σ

2
t1,t2

(z1, z2)dz2dz1,

where C, C1, C2 are arbitrary closed, positively orientated contours in the complex plane

enclosing the interval in (2.9), C1, C2 are non overlapping and the function σ2
t1,t2

(z1, z2) is

defined in (4.19).

(2) If the random variables xij are complex with Ex2ij = 0 and E|xij|4 = 2, then (1) also holds

with means E[X(fi, t)] = 0, i = 1, 2, and covariance structure

cov(X(f1, t1), X(f2, t2)) =
1

4π2

∫
C1

∫
C2
f1(z1)f2(z2)σ

2
t1,t2

(z1, z2)dz2dz1.
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Remark 2.1. While linear spectral statistics have been studied intensively for sample covari-

ance matrices (see, for example, Bai and Silverstein, 2004, 2010), very little effort has been

done in a sequential framework so far. In contrast to these “classical” CLTs the sequential

version in Theorem 2.1 reveals the asymptotic behaviour of the whole process of linear spectral

statistics corresponding to the sequential empirical covariance process (1.1) and thus provides

a substantial generalization of its one-dimensional versions. In particular, the limiting process

is not a standard Gaussian process and the proofs require an extended machinery and some

additional assumptions.

(1) While assumptions such as (2.8) and (2.9) are common even for a standard CLT of

non-sequential linear spectral statistics, we should have a closer look at the moment

assumptions. Among many other technical challenges, the most delicate part of the proof

of Theorem 2.1 lies in controlling the process (Xn(f, t))t of linear spectral statistics in

terms of (asymptotic) tightness, which enforces higher-order moment conditions in order

to find sharper bounds for the concentration of random quadratic forms of the type

x?jAxj − tr(A), (2.10)

where A denotes a random p× p matrix independent of xj, j ∈ {1, . . . , n}. In particular,

the existence of the 12th-moment in Theorem 2.1 is exclusively needed for the proof of

asymptotic tightness and is not used for the proof of convergence of the finite-dimensional

distributions (for details, see Section 4.3.3). Strengthening the moment conditions on the

underlying random variables appears to be a convienient tool for investigating linear spec-

tral statistics of non-standard random matrices. For example, in the work of Banna et al.

(2020), the authors consider linear spectral statistics of random information-plus-noise

matrices and assume the existence of the 16th-moment for deriving a non-sequential CLT

for linear spectral statistics corresponding to this type of random matrices. Consequently,

the higher-order moment condition implies stronger bounds for the moments of random

quadratic forms of the type (2.10) (see their Lemma A.2 for more details).

(2) In order to allow for non-centralized data (E[xij] 6= 0), Zheng et al. (2015) prove a

substitution principle for linear spectral statistics of recentered sample covariance matrices

and thus, weakening the conditions of Bai and Silverstein’s CLT. We expect that it is

possible to pursue such a generalization of Theorem 2.1 combining the tools developed in

this paper with methodology used in the proof of Theorem 2.1.

(3) Furthermore, it might be of interest to relax the Gaussian-type 4th moment condition.

When allowing for a general finite 4th moment, additional terms for the covariance struc-

ture and the bias arise whose convergence is not guaranteed under the assumptions of

Theorem 2.1. In fact, in this case those terms depend also on the eigenvectors of the

population covariance matrix Tn, which are not controlled under the conditions of The-

orem 2.1. For instance, in the non-sequential case, Najim and Yao (2016) show that the

LvyProhorov distance between the linear statistics distribution and a normal distribution,
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whose mean and variance may diverge, vanishes asymptotically, while Pan (2014) imposes

additional conditions on Tn in order to ensure convergence of the additional terms for

mean and covariance. For the sequential version considered in this paper, it seems to be

promising to derive the convergence of such additional terms under similar conditions on

Tn as used by Pan (2014) for a proof of a “classical” CLT.

In general, the calculation of the limiting parameters appearing in Theorem 2.1 might be in-

volved, since mean and covariance are given by contour integrals and rely on the Stieltjes trans-

form s̃t(z), which is defined implicitly by a equation involving the limiting spectral distribution

H and has in general no closed form. In the case Tn = I these integrals can be interpreted as

integrals over the unit circle (see Proposition C.1 in the Appendix), and for specific functions

f1 and f2 an explicit calculation of the asymptotic expectation and variance in Theorem 2.1 is

possible. In the following corollary we illustrate this for the sequential process corresponding to

the log-determinant of Bn,t. Note that the log-determinant log |Bn,1| of the sample covariance

matrix is a well-studied object in random matrix theory (see, e.g., Bao et al. (2015b), Cai et al.

(2015), Nguyen and Vu (2014), Wang et al. (2018)) and has many applications in statistics. A

proof can be found in Section C.2.

Corollary 2.1. Let t0 ∈ (0, 1], and assume that condition (a) of Theorem 2.1 is satisfied and

that p/n→ y ∈ (0, t0) as n→∞.

1. If the variables xij are real and Ex4ij = 3, then the process

(
Dn(t)

)
t∈[t0,1]

=
(

log |Bn,t|+ p+ bntc log(1− ybntc)− p log
(bntc

n
− yn

))
t∈[t0,1]

,

converges weakly to a Gaussian process (D(t))t∈[t0,1] in the space `∞([t0, 1]) with mean

E[D(t)] =
1

2
log(1− yt)

and covariance kernel

cov(D(t1),D(t2)) = −2 log(1− yt1 ∧ yt2 ).

2. If xij are complex with Ex2ij = 0 and E|xij|4 = 2, then (1) also holds with mean E[D(t)] = 0

and cov(D(t1),D(t2)) = − log(1− yt1 ∧ yt2).

3 Monitoring sphericity in large dimension

In many statistical problems an important assumption is sphericity, which means, that the

components of the random vectros are independent and have common variance. In the present
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context the corresponding test problem can be formulated as

H0 : Tn = σ2Ip for some σ2 > 0, vs. H1 : Tn 6= σ2Ip for all σ2 > 0. (3.1)

In general, it is well-known that the likelihood ratio test statistic for the hypotheses in (3.1)

is degenerated if p > n (see Anderson, 1984; Muirhead, 2009)). A test statistic which is also

applicable in the case p ≥ n has been proposed by John (1971) and is based on the statistic

1

p
tr
{( Bn,1

1
p

tr Bn,1

− I
)2}

+ 1 =

1
p

tr(B2
n,1)(

1
p

tr Bn,1

)2 .
The asymptotic properties of this statistic in the high-dimensional regime are investigated by

Ledoit and Wolf (2002) and Yao et al. (2015) in the case y ∈ (0,∞) and by Birke and Dette

(2005) in the ultra high dimensional case y = ∞. In the following discussion we will use

the results of Section 2 to develop a sequential monitoring procedure for the assumption of

sphericity.

To be precise, we consider random variables y1, . . . ,yn ∈ Rp, where

yi = Σ
1
2
i xi, 1 ≤ i ≤ n,

for symmetric non-negative definite matrices Σ1, . . . ,Σn ∈ Rp×p and random variables x1, . . . ,xn ∈
Rp satisfying the asssumptions stated in Section 2. We are interested in monitoring the spheric-

ity assumption

H0 : Σ1 = . . . = Σn = σ2Ip for some σ2 > 0

vs. H1 : Σ1 = . . . = Σbnt?1c = σ2Ip, Σbnt?1c+1 = . . . = Σn 6= σ2Ip, (3.2)

for some 0 < t?1 < 1. For the construction of a test we consider a sequential version of the

statistic proposed by John (1971), that is

Un,t =

1
p

tr(Σ̂2
n,t)(

1
p

tr Σ̂n,t

)2 , (3.3)

and investigate the asymptotic behaviour of the stochastic process Un = (Un,t)t∈[t0,1] under the

null hypothesis. Here, Σ̂n,t denotes the sequential sample covariance matrix corresponding to

the sample y1, . . . ,ybntc, that is,

Σ̂n,t =
1

n

bntc∑
i=1

yiy
>
i =

1

n

bntc∑
i=1

Σ
1
2
i xix

>
i Σ

1
2
i . (3.4)

Note that in contrast to tests based on the likelihood ratio principle the dimension may exceed

the sample size. Moreover, under the null hypothesis, we have Σi = σ2Ip (i = 1, . . . , n), and a
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simple calculation shows that the statistic Un,t is independent of the concrete proportionality

constant σ2. The following theorem deals with the weak convergence of (Un)n∈N considered as

a sequence in the space of bounded functions `∞([t0, 1]) and its proof is postponed to Section

5. In the following discussion the symbol  denotes weak convergence of processes and the

symbol
D→ weak convergences of a real-valued random variables.

Theorem 3.1. Let y ∈ (0,∞), t0 > 0 and define yt = y/t for t ∈ [t0, 1]. If the random

variables x1, . . . ,xn satisfy the assumptions (a) and (1) of Theorem 2.1, it follows under the

null hypothesis (3.2) that

p
(
Un,t − 1− ybntc

)
t∈[t0,1]

 (Ut)t∈[t0,1] in `∞([t0, 1]),

as n → ∞, where (Ut)t∈[t0,1] denotes a Gaussian process with mean function E[Ut] = yt and

covariance kernel

cov(Ut1 , Ut2) = 4y2max(t1,t2)
, t1, t2 ∈ [t0, 1].

Remark 3.1.

(1) To obtain a test for the hypotheses in (3.2) we note that the continuous mapping theorem

implies under the null hypothesis

sup
t∈[t0,1]

p
(
Un,t − 1− ybntc

) D→ sup
t∈[t0,1]

Ut, n→∞ . (3.5)

Therefore we propose to reject the null hypothesis in (3.2) whenever

sup
t∈[t0,1]

p
(
Un,t − 1− ybntc

)
> cα, (3.6)

where cα denotes the (1−α)-quantile of the statistic supt∈[t0,1] Ut. Thus, we have by (3.5)

lim
n→∞

PH0

(
sup
t∈[t0,1]

p
(
Un,t − 1− ybntc

)
> cα

)
= P

(
sup
t∈[t0,1]

Ut > cα

)
≤ α,

which means, that the test keeps a nominal level α (asymptotically).

(2) In order to investigate the consistency of the test (3.6) assume that the matrices Σi in

(3.2) satisfy

Σi =

{
σ2Ip if 0 ≤ i ≤ bnt?1c,
Σ if bnt?1c < i ≤ n,

where σ2 > 0 and Σ is a p × p nonnegative definite matrix. We also assume that 1
p
trΣ

and 1
p
tr(Σ2) converge to g > 0 and h > 0, respectively. Furthermore, for the matrix
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H = Σ
1
2 = (Hij)i,j=1,...,p we have

(1

p

p∑
j,l=1

H2
jl

)2
=
(1

p
trΣ
)2
→ g2.

A straightforward calculation then shows that for t ∈ (t?1, 1)

1

p
E
[
tr
(
Σ̂n,t

)]
P−→ t?1σ

2 + (t− t?1)g,

1

p
E
[
tr
(
Σ̂2
n,t

)]
P−→ (t?1)

2 σ4 + 2t?1σ
2(t− t?1)g + (t− t?1)2h+ yt?1σ

4 + y(t− t?1)g.

Using a martingale decomposition and the estimate (9.9.3) in Bai and Silverstein (2010),

one can show that for fixed t ∈ (t?1, 1)

E|s
F Σ̂n,t

(z)− E[s
F Σ̂n,t

(z)]|2 → 0,

if we assume that the spectral norm ||Σ|| is uniformly bounded with respect to n ∈ N.

Using (4.1), this implies

1

p
tr
(
f(Σ̂n,t)

)
− 1

p
E
[
tr
(
f(Σ̂n,t)

)]
P→ 0

for f(x) = x and f(x) = x2. Consequently,

Un,t
P−→(t?1)

2σ4 + 2t?1σ
2(t− t?1)g + (t− t?1)2h+ yt?1σ

4 + y(t− t?1)g2

(t?1)
2σ4 + ((t− t?1)g)2 + 2t?1σ

2(t− t?1)g
=1 + yt + ∆1,t + ∆2,t

where

∆1,t =
(t− t?1)2(h− g2)

(t?1)
2σ4 + ((t− t?1)g)2 + 2t?1σ

2(t− t?1)g
≥ 0

by construction, and

∆2,t =
yt?1σ

4 + y(t− t?1)g2

(t?1)
2σ4 + ((t− t?1)g)2 + 2t?1σ

2(t− t?1)g
− yt

=
yt?1σ

4 + y(t− t?1)g2 − yt
{

(t?1)
2σ4 +

(
(t− t?1)g

)2
+ 2t?1σ

2(t− t?1)g
}

(t?1)
2σ4 +

(
(t− t?1)g

)2
+ 2t?1σ

2(t− t?1)g

=
ytt

?
1(t− t?1) (σ2 − g)

2

(t?1)
2σ4 +

(
(t− t?1)g

)2
+ 2t?1σ

2(t− t?1)g
≥ 0.

Note that under the alternative in (3.2) two types of structural breaks in the covariance
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structure corresponding to the terms ∆1,t and ∆2,t may occur. On the one hand, the

diagonal elements in the matrices Σ1, . . . ,Σn might shift from σ2 to a different variance

while the matrices still remain spherical. This structural break is captured by the term

∆2,t. On the other hand, the change in the matrices could violate the sphericity assump-

tion, which corresponds to the term ∆1,t.

Consequently, whenever there exists a parameter t̃ ∈ (t?1, 1) such that ∆1,t̃ > 0 or ∆2,t̃ > 0,

it follows under the additional assumption y − yn = o (p−1) that

sup
t∈[t0,1]

p(Un,t − 1− ybntc) ≥ p(Un,t̃ − 1− ybnt̃c)
P−→ ∞,

and in this case the test (3.6) rejects the null hypothesis with a probability converging

to 1 as p, n → ∞, p/n → y ∈ (0,∞). This is in particular the case for the alternative

considered in (3.2).

Fisher et al. (2010) consider several generalizations of the classical test introduced by John

(1971). Motivated by this work an alternative test for the hypothesis (3.2) could be based on

the test statistic

U
(2)
n,t =

1
p

tr(Σ̂4
n,t)(

1
p

tr Σ̂2
n,t

)2 ,
where the matrix Σ̂n,t is defined in (3.4). For t = 1, the asymptotic properties of an ap-

propriately centered version of U
(2)
n,1 have been investigated by Fisher et al. (2010) assuming

that all arithmetic means of the eigenvalues of the sample covariance up to order 16 con-

verge to the corresponding arithmetic means of the eigenvalues of the population covariance.

The following results provides the weak convergence of the corresponding stochastic process

U
(2)
n = (U

(2)
n,t )t∈[t0,1] under the null hypothesis. A corresponding asymptotic level-α test and a

discussion of its power properties can be obtained by similar arguments as given for the process(
U

(1)
n,t

)
t∈[t0,1]

in Remark 3.1 and the details are omitted for the sake of brevity.

Theorem 3.2. Under the assumptions of Theorem 3.1 we have

p
(
U

(2)
n,t −

1 + 6ybntc + 6y2bntc + y3bntc
(1 + ybntc)2

)
t∈[t0,1]

 (U
(2)
t )t∈[t0,1] in `∞([t0, 1]),

where (U
(2)
t )t∈[t0,1] denotes a Gaussian process with mean function

E[U
(2)
t ] =

y(4t2 + 7ty + 4y2)

t(t+ y)2
, t ∈ [t0, 1],

12



and covariance kernel

cov(U
(2)
t1 , U

(2)
t2 ) =

8y2
{

4t21(2t
2
2 + 3t2y + 2y2) + 6t1y(4t22 + 5t2y + 2y2) + y2(21t22 + 24t2y + 8y2)

}
t21(t1 + y)2(t2 + y)2

for t0 ≤ t2 ≤ t1 ≤ 1.

Example 3.1. We conclude this section with a small simulation study illustrating the finite-

sample properties of the test (3.6). For this purpose, we generated centered p-dimensional

normally distributed data with various covariance structures. To be precise, we consider the

the alternatives

Σ1 = . . . = Σbnt?c = Ip, Σbnt?c+1 = . . . = Σn = Ip + diag(0, . . . , 0︸ ︷︷ ︸
p/2

, δ, . . . , δ︸ ︷︷ ︸
p/2

), (3.7)

Σ1 = . . . = Σbnt?c = Ip, Σbnt?c+1 = . . . = Σn = Ip + diag(0, . . . , 0︸ ︷︷ ︸
p/2

, δ, . . . , δ︸ ︷︷ ︸
p/2

) + S̃(δ), (3.8)

Σ1 = . . . = Σbnt?c = Ip, Σbnt?c+1 = . . . = Σn = (1 + ε)Ip, (3.9)

Σ1 = . . . = Σbnt?c = Ip, Σbnt?c+1 = . . . = Σn = (1 + ε)Ip + S(ε), (3.10)

where δ, ε ≥ 0 determine the ”deviation” from the null hypothesis (note that the choice δ = 0

and ε = 0 correspond to the null hypothesis (3.2)). Here, the entries of the p×p matrix S(ε) in

(3.10) are given by Sj,j−1(ε) = Sj−1,j(ε) = ε, 1 ≤ j ≤ p, and all other entries are 0. Similarly,

the p × p matrix S̃(ε) in (3.8) has the entries S̃j,j−1(δ) = S̃j−1,j(δ) = δ, p/2 < j ≤ p, and all

other entries are 0.

In Figure 1 and Figure 2, we display the the empirical rejection of the test (3.6) for the different

alternatives and different values of n and p, where the change point is given by t? = 0.6. For

the parameter t0, we always use t0 = 0.2, and all results are based on 2, 000 simulation runs.

The vertical grey line in each figure defines the nominal level α = 5%.

Note that the choices δ = 0 and ε = 0 correspond to the null hypothesis in (3.7), (3.8), (3.9)

and (3.10), respectively. We observe a good approximation of the nominal level in all cases

under consideration. Moreover, the test has power under all considered alternatives, even if the

dimension p is substantially larger than the sample size. Note that the test performs better for

alternatives of the form (3.8) compared to the alternatives in (3.7). This reflects the intuition

that the alternative in (3.7) is somehow closer to sphericity than the alternative (3.8). A similar

observation can be made for the alternatives (3.9) and (3.10).
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Figure 1: Simulated rejection probabilities of the test (3.6) under the null hypothesis (δ = 0)
and the different alternatives in (3.7) (left) and (3.8) (right) for δ > 0 . The circle indicates
n = 200, p = 300, the triangle n = 200, p = 120 and the square n = 150, p = 300.

Figure 2: Simulated rejection probabilities of the test (3.6) under the null hypothesis (ε = 0)
and the different alternatives in (3.9) (left) and (3.10) (right) for ε > 0. The circle indicates
n = 200, p = 300, the triangle n = 200, p = 120 and the square n = 150, p = 300.

4 Proof of Theorem 2.1

4.1 Outline of the proof of Theorem 2.1

A frequently used powerful tool in random matrix theory is the Stieltjes transform. This is

partially explained by the formula∫
f(x)dG(x) =

1

2πi

∫ ∫
C

f(z)

z − x
dzdG(x) = − 1

2πi

∫
C
f(z)sG(z)dz, (4.1)

14



where G is an arbitrary cumulative distribution function (c.d.f.) with a compact support, f

is an arbitrary analytic function on an open set, say O, containing the support of G, C is a

positively oriented contour in O enclosing the support of G and

sG(z) =

∫
1

x− z
dG(x)

denotes the Stieltjes transform of G. Note that (4.1) follows from Cauchys integral and Fu-

binis theorem. Thus invoking the continuous mapping theorem, it may suffice to prove weak

convergence for the sequence (Mn)n∈N, where

Mn(z, t) = p
(
sFBn,t (z)− s

F̃
ybntc,Hn (z)

)
, z ∈ C. (4.2)

Here, s
F̃
ybntc,Hn denotes the Stieltjes transform of F̃ ybntc,Hn given in (2.7) characterized through

the equation

s
F̃
ybntc,Hn (z) =

∫
1

λ bntc
n

(
1− ybntc − ybntczsF̃ ybntc,Hn (z)

)
− z

dHn(λ), (4.3)

and the contour C in (4.2) has to be constructed in such a way that it encloses the support of

F̃ ybntc,Hn and FBn,t with probability 1 for all n ∈ N, t ∈ [t0, 1]. This idea is formalized in the

proof of Theorem 2.1 in Section 4.2.

In order to prove the weak convergence of (4.2) define a contour C as follows. Let xr be any

number greater than the right endpoint of the interval (2.9) and v0 > 0 be arbitrary. Let xl be

any negative number if the left endpoint of the interval (2.9) is zero. Otherwise, choose

xl ∈
(

0, lim inf
n→∞

λmin(Tn)I(0,1)(yt0)t0(1−
√
yt0)

2
)
.

Let Cu = {x+ iv0 : x ∈ [xl, xr]} ,

C+ = {xl + iv : v ∈ [0, v0]} ∪ Cu ∪ {xr + iv : v ∈ [0, v0]}.

and define C = C+ ∪ C+, where C+ contains all elements of C+ complex conjugated. Next,

consider a sequence (εn)n∈N converging to zero such that for some α ∈ (0, 1)

εn ≥ n−α,

define

Cl = {xl + iv : v ∈ [n−1εn, v0]}
Cr = {xr + iv : v ∈ [n−1εn, v0]},

and consider the set Cn = Cl ∪ Cu ∪ Cr. We define an approximation M̂n of the process Mn for
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z = x+ iv ∈ C+, t ∈ [t0, 1] by

M̂n(z, t) =


Mn(z, t) if z ∈ Cn,
Mn(xr + in−1εn, t) if x = xr, v ∈ [0, n−1εn],

Mn(xl + in−1εn, t) if x = xl, v ∈ [0, n−1εn].

(4.4)

In Lemma A.2 in the Appendix, it is shown that (M̂n)n∈N approximates (Mn)n∈N appropriately

in the sense that the corresponding linear spectral statistics

− 1

2πi

∫
C
f(z)Mn(z, t)dz and − 1

2πi

∫
C
f(z)M̂n(z, t)dz

in (4.1) coincide asymptotically. As a consequence the weak convergence of the process (4.2)

follows from that of M̂n, which is established in the following theorem. The proof is given in

Section 4.3.

Theorem 4.1 (Weak convergence for the process of Stieltjes transforms). Under the assump-

tions of Theorem 2.1, the sequence (M̂n)n∈N defined in (4.4) converges weakly to a Gaussian

process (M(z, t))z∈C+,t∈[t0,1] in the space `∞(C+ × [t0, 1]).

The mean of the limiting process M is given by

EM(z, t) =


ty
∫ s̃3t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)(

1−ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

)2 for the real case,

0 for the complex case

(4.5)

(z ∈ C+, t ∈ [t0, 1]). In the complex case the covariance kernel of the limiting process M is

given by

cov(M(z1, t1),M(z2, t2)) = σ2
t1,t2

(z1, z2),

where σ2
t1,t2

(z1, z2) is defined in (4.19). In the real case, we have

cov(M(z1, t1),M(z2, t2)) = 2σ2
t1,t2

(z1, z2). (4.6)

4.2 Proof of Theorem 2.1 using Theorem 4.1

From (4.1) we obtain

− 1

2πi

∫
C

f(z)EsG(z)dz = − 1

2πi
E
∫
C

f(z)sG(z)dz = E
∫
f(x)dG(x). (4.7)
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We choose v0, xr, xl so that f1 and f2 given in Theorem 2.1 are analytic on and inside the

resulting contour C and define

Sn,t =
1

n
Xn,tX

?
n,t.

The almost sure convergence

lim
n→∞

λmin(Sn,t) = t(1−√yt)2I(0,1)(yt) = (
√
t−√y)2I(0,1)(yt),

lim
n→∞

λmax(Sn,t) = t(1 +
√
yt)

2 = (
√
t+
√
y)2

of the extreme eigenvalues (see, e.g., Theorem 1.1 in Bai and Zhou, 2008) and the inequalities

λmax(AB) ≤ λmax(A)λmax(B), λmin(AB) ≥ λmin(A)λmin(B)

(valid for quadratic Hermitian nonnegative definite matrices A and B) imply

lim sup
n→∞

λmax(Bn,t) ≤ lim sup
n→∞

λmax(Tn) · lim sup
n→∞

λmax(Sn,t) = lim sup
n→∞

λmax(Tn)t (1 +
√
yt)

2

≤ lim sup
n→∞

λmax(Tn)
(
1 +
√
yt0
)2
< xr

for each t ∈ [t0, 1] with probability 1. Similar calculations for xl show that it holds for all

t ∈ [t0, 1] with probability 1

lim inf
n→∞

min
(
xr − λmax(Bn,t), λmin(Bn,t)− xl

)
> 0, (4.8)

which implies that for sufficiently large n the contour C encloses the support of FBn,t , t ∈ [t0, 1],

with probability 1 for (note that the null set depends on n and t). For every n, there exist

only finitely many t1, t2 ∈ [t0, 1] such that bnt1c 6= bnt2c. Since the countable union of null

sets is again a null set, we may choose the above nullset in such a way that C encloses the

support of FBn,t for sufficiently large n with probability 1 (this null set independent of n and

t ∈ [t0, 1]). From Lemma A.1 in the Appendix, it follows that the support of F̃ ybntc,Hn , t ∈ [t0, 1],

is contained in the interval[bnt0c
n

λmin(Tn)I(0,1)(ybnt0c)(1−
√
ybnt0c)

2, λmax(Tn)(1 +
√
ybnt0c)

2
]
,

which is enclosed by the contour C for sufficiently large n. Therefore, using (4.1) and (4.7), we

have almost surely((
− 1

2πi

∫
C
fi(z)Mn(z, t)dz

)
i=1,2

)
t∈[t0,1]

=
(
(Xn(fi, t))i=1,2

)
t∈[t0,1]
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for sufficiently large n. Moreover, we have with probability 1 (see Lemma A.2 in the Appendix)∣∣∣ ∫
C

fi(z)(Mn(z, t)− M̂n(z, t))dz
∣∣∣ = o(1), i = 1, 2,

uniformly with respect to t ∈ [t0, 1]. Let C(C × [t0, 1]) and C([t0, 1]) denote the spaces of

continuous functions defined on C × [t0, 1] and [t0, 1], respectively, then the mapping

C(C × [t0, 1])→ (C([t0, 1]))2 , h 7→ (If1(h), If2(h))

is continuous, where

Ifi(h)(·) = − 1

2πi

∫
C
f(z)h(z, ·)dz ∈ C([t0, 1]), i = 1, 2.

By Corollary 4.1 stated in Section 4.3.3 below and (4.5), the limiting process M in Theorem

4.1 satisfies M ∈ C(C+× [t0, 1]). Invoking the continuous mapping theorem (see Theorem 1.3.6

in Van Der Vaart and Wellner, 1996) and noting that Mn(z, t) = Mn(z, t), we have

(
If1(M̂n), If2(M̂n)

)
 (If1(M), If2(M)) =

((
− 1

2πi

∫
C
fi(z)M(z, t)dz

)
i=1,2

)
t∈[t0,1]

.

The fact that this random variable is a Gaussian process follows from the observation that

the Riemann sums corresponding to these integrals are multivariate Gaussian and therefore

integral must be Gaussian as well. The limiting expression for the mean and the covariance

follow immediately from Theorem 4.1. For example, we have for the real case observing (4.6)

cov
(
− 1

2πi

∫
C
f1(z)M(z, t1)dz,−

1

2πi

∫
C
f2(z)M(z, t2)dz

)
=

1

4π2

∫
C1

∫
C2
f1(z1)f2(z2) cov (M(z1, t1),M(z2, t2)) dz2dz1

=
1

2π2

∫
C1

∫
C2
f1(z1)f2(z2)σ

2
t1,t2

(z1, z2)dz2dz1.

4.3 Proof of Theorem 4.1

We begin with the usual “truncation” and replace the entries of the matrix Xn = (xij)i=1,...,p,j=1,...,n

by truncated variables [see Section 9.7.1, Bai and Silverstein (2010)]. More precisely, without

loss of generality we assume that

|xij| < ηn
√
n, E[xij] = 0, E|xij|2 = 1, E|xij|4 <∞.
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Additionally, for the real case (part (1) of Theorem 2.1) we may assume that

E|xij|4 = 3 + o(1)

uniformly in i ∈ {1, . . . , p}, j ∈ {1, . . . , n}, and for the complex case (part (2) of Theorem 2.1)

Ex2ij = o
( 1

n

)
, E|xij|4 = 2 + o(1)

uniformly in i ∈ {1, . . . , p}, j ∈ {1, . . . , n}. Here, (ηn)n∈N denotes a sequence converging to zero

with the property

ηnn
1/5 →∞.

We now give a brief outline for the proof of Theorem 4.1 describing the important steps,

which are carried out in the following sections and the online appendix. We consider the

stochastic processes (Mn)n∈N and (M̂n)n∈N (which is defined in (4.4)) as sequences in the space

`∞(C+ × [t0, 1]) and use the decomposition

Mn = M1
n +M2

n , (4.9)

where the random part M1
n and the deterministic part M2

n are given by

M1
n(z, t) =p (sFBn,t (z)− E [sFBn,t (z)]) , (4.10)

M2
n(z, t) =p

(
E [sFBn,t (z)]− s

F̃
ybntc,Hn (z)

)
, (4.11)

the Stieltjes transform s
F̃
ybntc,Hn is defined in (4.3) and sFBn,t denotes the Stieltjes transform of

the empirical spectral distribution FBn,t .

Our first result provides the convergence of the finite-dimensional distributions of (M1
n)n∈N. Its

proof relies on a central limit theorem for martingale difference schemes and is carried out in

Section 4.3.2.

Theorem 4.2. Under the assumption (1) for the real case or assumption (2) for the complex

case from Theorem 2.1, it holds for all k ∈ N, t1, t2 ∈ [0, 1], z1, ..., zk ∈ C, Im(zi) 6= 0

(M1
n(z1, t1),M

1
n(z1, t2), ...,M

1
n(zk, t1),M

1
n(zk, t2))

>

D→ (M1(z1, t1),M
1(z1, t2), ...,M

1(zk, t1),M
1(zk, t2))

> , (4.12)

where M1(z, t) = M(z, t) − E[M(z, t)] is the centered version of the Gaussian process defined

in Theorem 4.1.

Next, we define the process M̂1
n in the same way as M̂n in (4.4) replacing Mn by M1

n and

show the following tightness result. The main argument in in its proof consists in establishing

delicate moment inequalities for the increments of the process (M̂1
n)n∈N, see Lemma 4.1 and its
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proof in Appendix B.1.

Theorem 4.3. Under the assumptions of Theorem 2.1, the sequence (M̂1
n)n∈N is asymptotically

tight in the space `∞(C+ × [t0, 1]).

The third step is an investigation of the deterministic part. In particular we show that the bias

(M2
n)n∈N converges in the space `∞(C+× [t0, 1]) to the limit given in (4.5). Note that the space

of bounded function is equipped with the sup-norm, which demands an uniform convergence of

the Stieltjes transform E[sFBn,t (z)] with respect to the arguments t ∈ [t0, 1], z ∈ C+. The latter

result is provided in Theorem 4.5 in Section 4.3.4.

Theorem 4.4. Under the assumptions of Theorem 2.1, it holds

lim
n→∞

sup
z∈Cn,
t∈[t0,1]

∣∣M2
n(z, t)− E[M(z, t)]

∣∣ = 0.

The proofs of Theorem 4.2, 4.3 and 4.4 are postponed to Section 4.3.2, 4.3.3 and 4.3.4, respec-

tively. Using these results, we are now in the position to prove Theorem 4.1.

4.3.1 Proof of Theorem 4.1

Theorem 4.2 yields the convergence of the finite-dimensional distributions of M1
n(z, t) for t ∈

[t0, 1] and z ∈ C with Im(z) 6= 0 towards the corresponding finite-dimensional distributions

of the centered process M1(z, t) = M(z, t) − E[M(z, t)]. By the definition in equation (4.4),

this implies the convergence of the finite-dimensional distributions of M̂1
n(z, t) for t ∈ [t0, 1]

and z ∈ C with Im(z) 6= 0 towards the corresponding finite-dimensional distributions of M1.

Since the limiting process (M1(z, t))z∈C+,t∈[t0,1] is continuous as proven later in this section (see

Corollary 4.1 in Section 4.3.3) and (C+ \ {xl, xr})× [t0, 1] is a dense subset of C+ × [t0, 1], this

is sufficient in order to ensure uniqueness of the limiting process. As Theorem 4.3 establishes

tightness, Theorem 4.1 follows from the decomposition (4.9), Theorem 1.5.6 in Van Der Vaart

and Wellner (1996) and Theorem 4.4.

4.3.2 Proof of Theorem 4.2

We start by performing some preparations and by introducing notations which will remain

crucial for the rest of this work. Using the CramrWold device, the convergence in (4.12) is

equivalent to the weak convergence

k∑
i=1

(
αi,1M

1
n(zi, t1) + αi,2(M

1
n(zi, t2)

) D→ k∑
i=1

(
αi,1M

1(zi, t1) + αi,2(M
1(zi, t2)

)
(4.13)

for all α1,1, . . . , αk,1, α1,2, . . . , αk,2 ∈ C. We want to show that the limiting random variable on

the right hand side of the display above follows a Gaussian distribution under the assumption

(1) or (2) of Theorem 2.1.
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Recalling assumption (b) in Theorem 2.1, we may assume ||Tn|| ≤ 1, n ∈ N. Define for

k, j = 1, .., bntc, k 6= j, t ∈ (0, 1], z ∈ C with Im(z) 6= 0

rj =
1√
n

T
1
2
nxj

Bn,t =

bntc∑
j=1

rjr
?
j ,

Dt(z) = Bn,t − zI,
Dj,t(z) = Dt(z)− rjr

?
j ,

Dk,j,t(z) = Dj,t(z)− rkr
?
k = Dt(z)− rkr

?
k − rjr

?
j ,

αj,t(z) = r?jD
−2
j,t (z)rj − n−1 tr(D−2j,t (z)Tn),

γj,t(z) = r?jD
−1
j,t (z)rj − n−1E tr(D−1j,t (z)Tn),

γk,j,t(z) = r?kD
−1
k,j,t(z)rk − n−1E

[
tr
(
TnD

−1
k,j,t(z)

)]
γ̂j,t(z) = r?jD

−1
j,t (z)rj − n−1 tr(D−1j,t (z)Tn),

βj,t(z) =
1

1 + r?jD
−1
j,t (z)rj

,

βk,j,t(z) =
1

1 + r?kD
−1
k,j,t(z)rk

,

βj,t(z) =
1

1 + n−1 tr(TnD
−1
j,t (z))

,

bj,t(z) =
1

1 + n−1E tr(TnD
−1
j,t (z))

,

bt(z) =
1

1 + n−1E tr(TnD
−1
t (z))

.

Note that the terms βj,t(z), βk,j,t(z), βj,t(z), bj,t(z) and bt(z) are bounded in absolute value by

|z|/v, where v = Im(z) is assumed to be positive (see (6.2.5) in Bai and Silverstein, 2010). By

the ShermanMorrison formula we obtain the representation

D−1t (z)−D−1j,t (z) = −D−1j,t (z)rjr
?
jD
−1
j,t (z)βj,t(z). (4.14)

In order to prove asymptotic normality of the random variable appearing in (4.13), we show that

it can be represented as a suitable martingale difference scheme plus some negligible remainder,

which allows us to apply a central limit theorem.

For j = 1 . . . , n let Ej denote the conditional expectation with respect to the filtration Fnj =

σ({r1, ..., rj}) (by E0 we denote the common expectation). Recalling the definition (4.10) and

using the martingale decomposition, we have

M1
n(z, t) = tr(D−1t (z)− ED−1t (z))
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=

bntc∑
j=1

(
trEjD−1t (z)− trEj−1D−1t (z)

)
=

bntc∑
j=1

(
trEj

[
D−1t (z)−D−1t,j (z)

]
− trEj−1

[
D−1t (z)−D−1j,t (z)

])
= −

bntc∑
j=1

(Ej − Ej−1)βj,t(z)r?jD
−2
j,t (z)rj. (4.15)

Since, from now on, the proof is similar in spirit to Section 9.9 in Bai and Silverstein (2010),

we restrict ourselves to an overview explaining the main steps and important differences. By

similar arguments as given in this monograph it can be shown, that it is sufficient to prove

asymptotic normality for the quantity

max(bnt1c,bnt2c)∑
j=1

Zt1,t2
nj ,

where

Zt1,t2
nj =

k∑
i=1

(αi,1Yj,t1(zi) + αi,2Yj,t2(zi)) ,

Yj,t(z) = −Ej
[
βj,t(z)αj,t(z)− β2

j,t(z)γ̂j,t(z)
1

n
tr(TnD

−2
j,t (z))

]
= −Ej

d

dz
βj,t(z)γ̂j,t(z)

if j ≤ bntc and Yj,t(z) = 0 if j > bntc.
For this purpose we verify conditions (5.29) - (5.31) of the central limit theorem for complex-

valued martingale difference schemes given in Lemma 5.6 of Najim and Yao (2016). It is

straightforward to show that Zt1,t2
nj forms a martingale difference scheme with respect to to

the filtration Fnj = σ({r1, ..., rj}) and we can prove that (5.31) in this reference holds true by

deriving bounds for the 4th moment of Yj,t(z). For a proof of condition (5.30), we note that

max(bnt1c,bnt2c)∑
j=1

Ej−1
[(
Zt1,t2
nj

)2]
=

k∑
i,l=1

( bnt1c∑
j=1

αi,1αl,1Ej−1[Yj,t1(zi)Yj,t1(zl)]

+

min(bnt1c,bnt2c)∑
j=1

αi,1αl,2Ej−1[Yj,t1(zi)Yj,t2(zl)]

+

min(bnt1c,bnt2c)∑
j=1

αi,2αl,1Ej−1[Yj,t2(zi)Yj,t1(zl)]

+

bnt2c∑
j=1

αi,2αl,2Ej−1[Yj,t2(zi)Yj,t2(zl)]
)
.
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As all terms have the same form, it is sufficient to show that for all z1, z2 ∈ C with Im(z1), Im(z2) 6=
0 and t1, t2 ∈ (0, 1]

Vn(z1, z2, t1, t2) =

min(bnt1c,bnt2c)∑
j=1

Ej−1 [Yj,t1(z1)Yj,t2(z2)]
P→ σ2

t1,t2
(z1, z2) (4.16)

for an appropriate function σ2
t1,t2

(z1, z2) (see equation (4.19) below for a precise definition).

Note that this convergence implies condition (5.29), since

min(bnt1c,bnt2c)∑
j=1

Ej−1
[
Yj,t1(z1)Yj,t2(z2)

]
=

min(bnt1c,bnt2c)∑
j=1

Ej−1 [Yj,t1(z1)Yj,t2(z2)]
P→ σ2

t1,t2
(z1, z2),

where the equality follows from the fact that the matrices Tn,Bn,t, rjr
?
j are Hermitian and

(D−1j,t (z))T = D−1j,t (z). Consequently, Lemma 5.6 in Najim and Yao (2016) combined with the

CramrWold device yields the weak convergence of the finite-dimensional distributions to a

multivariate normal distribution with covariance σ2
t1,t2

(z1, z2) = cov(M1(z1, t1),M
1(z2, t2)).

Hence, it is remains to show (4.16) in order to establish the convergence of the finite dimensional

distributions. For this purpose, we introduce the quantity

V (2)
n (z1, z2, t1, t2) =

1

n2

min(bnt1c,bnt2c)∑
j=1

bj,t1(z1)bj,t2(z2) tr
(
Ej
[
D−1j,t1(z1)

]
TnEj

[
D−1j,t2(z2)

]
Tn

)
,

and note that it can be shown by similar arguments as on p. 273 in Bai and Silverstein (2010)

that

∂2

∂z1∂z2
V (2)
n (z1, z2, t1, t2) = Vn(z1, z2, t1, t2) + oP(1) . (4.17)

Moreover, we can show

V (2)
n (z1, z2, t1, t2)

P→ a(z1, z2, t1, t2)

min(t1,t2)∫
0

1

1− λa(z1, z2, t1, t2)
dλ, n→∞, (4.18)

where

a(z1, z2, t1, t2) =
s̃t2(z2)− s̃t1(z1) + (z1 − z2)s̃t1(z1)s̃t2(z2)

t2s̃t2(z2)− t1s̃t1(z1)
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and the Stieltjes transform s̃t(z) is defined in (2.4). From (4.17) and (4.18) it follows that

σ2
t1,t2

(z1, z2) =
∂2

∂z1∂z2

min(t1,t2)a(z1,z2,t1,t2)∫
0

1

1− λ
dλ =

∂

∂z2

( min(t1, t2)
∂
∂z1
a(z1, z2, t1, t2)

1−min(t1, t2)a(z1, z2, t1, t2)

)
=

numerator

denominator
, (4.19)

where

numerator = min(t1, t2)
{
− t2(t2 −min(t1, t2))s̃

2
t2

(z2)s̃
′
t1

(z1)
[
t2s̃

2
t2

(z2) + (t1 − t2)s̃′t2(z2)
]}

− t21s̃4t1(z1)
{

min(t1, t2)s̃
2
t2

(z2) + (t1 −min(t1, t2)s̃
′
t2

(z2))
}

+ 2t1t2s̃
3
t1

(z1)s̃t2(z2)
{

min(t1, t2)s̃
2
t2

(z2) + (t1 −min(t1, t2))s̃
′
t2

(z2)
}

+ 2t1t2(t2 −min(t1, t2))s̃t1(z1)s̃
2
t2

(z2)s̃
′
t1

(z1)
{
s̃t2(z2) + (−z1 + z2)s̃

′
t2

(z2)
}

+ s̃2t1(z1)
{
− t22 min(t1, t2)s̃

4
t2

(z2) + t1(t1 − t2)(t1 −min(t1, t2))s̃
′
t1

(z1)s̃
′
t2

(z2)

+ 2t1t2(t1 −min(t1, t2))(z1 − z2)s̃t2(z2)s̃
′
t1

(z1)s̃
′
t2

(z2)

+ s̃2t2(z2)
[
t22(−t1 + min(t1, t2))s̃

′
t2

(z2)

+ t1s̃
′
t1

(z1)
(
t1(−t2 + min(t1, t2)) + t2 min(t1, t2)(z1 − z2)2s̃′t2(z2)

)]}
denominator =

(
t1s̃t1(z1)− t2st2(z2)

)2 {
(−t2 + min(t1, t2))s̃t2(z2)

+ s̃t1(z1)(t1 −min(t1, t2) + min(t1, t2)(z1 − z2)s̃t2(z2))
}2

.

The proofs of (4.17) and (4.18) are very similar to Bai and Silverstein (2010) and omitted for

the sake of brevity. Note also, that for the special case t1 = t2 = 1, this covariance structure

coincides with formula (9.8.4) in this monograph.

4.3.3 Proof of Theorem 4.3 and continuity of the limiting process

We will show that the assumptions of Corollary A.4 in Dette and Tomecki (2019) are satisfied,

where we identify the curve C+ with the compact interval [0, 1]. For this purpose, we define the

increments for the first and second coordinate of M̂1
n by

m1(z, t, z′, z′′) = min{|M̂1
n(z, t)− M̂1

n(z′, t)|, |M̂1
n(z, t)− M̂1

n(z′′, t)|}, (4.20)

m2(z, t, t′, t′′) = min{|M̂1
n(z, t)− M̂1

n(z, t′)|, |M̂1
n(z, t)− M̂1

n(z, t′′)|}, (4.21)

where t, t′, t′′ ∈ [t0, 1] and z, z′, z′′ ∈ C+. In order to find estimates for the tails of (4.20) and

(4.21), we establish in the following lemma estimates on the moments of the increments of

M̂1
n(z, t), which are proved in Appendix B.1. For this purpose note that it follows from (4.15)
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that

M̂1
n(z, t1)− M̂1

n(z, t2) = Ẑ1
n(z, t1, t2) + Ẑ2

n(z, t1, t2).

where Ẑ1
n and Ẑ1

n are the processes obtained from

Z1
n(z, t1, t2) =

bnt1c∑
j=1

(Ej − Ej−1)
(
βj,t2(z)r?jD

−2
j,t2

(z)rj − βj,t1(z)r?jD
−2
j,t1

(z)rj
)
, (4.22)

Z2
n(z, t1, t2) =

bnt2c∑
j=bnt1c+1

(Ej − Ej−1)βj,t2(z)r?jD
−2
j,t2

(z)rj (4.23)

using the definition (4.4).

Lemma 4.1. For t ∈ [t0, 1], z1, z2 ∈ C+, it holds for sufficiently large n ∈ N under the assump-

tions of Theorem 4.3

E|M̂1
n(z1, t)− M̂1

n(z2, t)|2+δ ≤ K|z1 − z2|2+δ, (4.24)

where K > 0 is some universal constant independent of n, t, z1, z2. We also have for t1, t2 ∈
[t0, 1], z ∈ C+

E|Ẑ1
n(z, t1, t2)|4 ≤ K

(bnt2c − bnt1c
n

)4
, (4.25)

E|Ẑ2
n(z, t1, t2)|4+δ ≤ K

(bnt2c − bnt1c
n

)2+δ/2
. (4.26)

In order to simplify notation, we write a . b for a ≤ Kb, where a, b ≥ 0 and K > 0 denote some

universal constant independent of n, t, t1, t2, z, z1, z2. We continue with the proof of Theorem

4.3 by using results from Lemma 4.1.

We observe that for t′ ≤ t ≤ t′′ and λ > 0

P
(
m2(z, t, t′, t′′) > λ

)
≤P
(
|M̂1

n(z, t)− M̂1
n(z, t′)||M̂1

n(z, t)− M̂1
n(z, t′′)| > λ2

)
=P
(
|Ẑ1

n(z, t′, t) + Ẑ2
n(z, t′, t)||Ẑ1

n(z, t, t′′) + Ẑ2
n(z, t, t′′)| > λ2

)
≤P
(
|Ẑ1

n(z, t′, t) + Ẑ2
n(z, t′, t)| > λ

)
+ P

(
|Ẑ1

n(z, t, t′′) + Ẑ2
n(z, t, t′′)| > λ

)
≤

2∑
k=1

{
P
(
|Ẑk

n(z, t′, t)| > λ/2
)

+ P
(
|Ẑk

n(z, t, t′′)| > λ/2
)}

≤
(2

λ

)4
E|Ẑ1

n(z, t′, t)|4 +
(2

λ

)4+δ
E|Ẑ2

n(z, t′, t)|4+δ +
(2

λ

)4
E|Ẑ1

n(z, t, t′′)|4

+
(2

λ

)4+δ
E|Ẑ2

n(z, t, t′′)|4+δ.
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In the case t′′ − t′ ≥ 1/n, we use Lemma 4.1 and obtain

E|Ẑ1
n(z, t′, t)|4 .

(bntc − bnt′c
n

)4
.
(
t− t′ + 1

n

)4
≤
(
t′′ − t′ + 1

n

)4
≤ 24(t′′ − t′)4

.(t′′ − t′)4,

E|Ẑ2
n(z, t, t′′)|4+δ .

(bnt′′c − bntc
n

)2+δ/2
.
(
t′′ − t+

1

n

)2+δ/2
≤
(
t′′ − t′ + 1

n

)2+δ/2
≤K22+δ/2(t′′ − t′)2+δ/2 . (t′′ − t′)2+δ/2.

The remaining terms can be treated similarly in this case, which gives

P
(
m2(z, t, t′, t′′) > λ

)
. max(λ−4, λ−(4+δ))(t′′ − t′)2+δ/2

for t′′ − t′ ≥ 1/n. In the other case t′′ − t′ < 1/n, we have bntc = bnt′′c or bntc = bnt′c and

consequently,

M̂1
n(z, t)− M̂1

n(z, t′) = 0 or M̂1
n(z, t′′)− M̂1

n(z, t) = 0.

Therefore we obtain for t′ ≤ t ≤ t′′ ≤ 1

P
(
m2(z, t, t′, t′′) > λ

)
. max(λ−4, λ−(4+δ))(t′′ − t′)2+δ/2.

In order to derive a similar estimate for the term m1, we note that it follows for z, z′, z′′ ∈ Cn

P
(
m1(z, t, z′, z′′) > λ

)
≤P
(
|M̂1

n(z, t)− M̂1
n(z′, t)||M̂1

n(z, t)− M̂1
n(z′′, t)| > λ2

)
≤λ−(2+δ)E[|M̂1

n(z, t)− M̂1
n(z′, t)||M̂1

n(z, t)− M̂1
n(z′′, t)|]1+δ/2

≤λ−(2+δ)
(
E|M̂1

n(z, t)− M̂1
n(z′, t)|2+δE|M̂1

n(z, t)− M̂1
n(z′′, t)|2+δ

)1/2
.λ−(2+δ)

(
|z − z′|2+δ|z − z′′|2+δ

)1/2 ≤ λ−(2+δ)|z′ − z′′|2+δ,

where we used Lemma 4.1 in the last line. Moreover, we have

P
(
|M̂1

n(z1, t1)− M̂1
n(z2, t2)| > λ

)
≤P
(
|M̂1

n(z1, t1)− M̂1
n(z2, t1)| >

λ

2

)
+ P

(
|M̂1

n(z2, t1)− M̂1
n(z2, t2)| >

λ

2

)
≤P
(
|M̂1

n(z1, t1)− M̂1
n(z2, t1)| >

λ

2

)
+

2∑
k=1

P
(
|Ẑk

n(z2, t1, t2)| >
λ

4

)
≤
(2

λ

)2+δ
E|M̂1

n(z1, t1)− M̂1
n(z2, t1)|2+δ +

(2

λ

)4
E|Ẑ1

n(z2, t1, t2)|4 +
(2

λ

)4+δ
E|Ẑ2

n(z2, t1, t2)|4+δ

.
(2

λ

)2+δ
|z1 − z2|2+δ +

(2

λ

)4(bnt2c − bnt1c
n

)4
+
(2

λ

)4+δ(bnt2c − bnt1c
n

)2+δ/2
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.C1,λ

[∣∣∣bnt2c − bnt1c
n

∣∣∣2+δ/2 + |z1 − z2|2+δ
]

≤C1,λ

[(
|t2 − t1|+

1

n

)2+δ/2
+ |z1 − z2|2+δ

]
≤C1,λ

(∥∥∥ (z1, t1)
> − (z2, t2)

>
∥∥∥
∞

+
1

n

)2+δ/2
,

where

C1,λ = max(λ−4, λ−(2+δ), λ−(4+δ)).

Let m ∈ N and define for j = (j1, j2) ∈ {1, . . . ,m}2 the set

Kj =
[j1 − 1

m
,
j1
m

]
×
[j2 − 1

m
∧ t0,

j2
m
∧ t0

]
.

Combining the three inequalities above, we are able to apply Corollary A.4 in Dette and Tomecki

(2019) with the parameters ε = 1/m, δ′ = 2 + δ/2 and get

P
(

sup
(z1,t1),(z2,t2)∈Kj

|M̂1
n(z1, t1)− M̂2

n(z2, t2)| > λ
)
. C2,λ

( 1

m

)2+δ/2
+ C1,λ

( 1

m
+

1

n

)2+δ/2
,

where C2,λ = max(λ−4, λ−(4+δ), λ−(2+δ)). This implies

lim sup
n→∞

P
(

sup
j∈{1,...,m}2

sup
(z1,t1),(z2,t2)∈Kj

|M̂1
n(z1, t1)− M̂2

n(z2, t2)| > λ
)

≤ lim sup
n→∞

∑
j∈{1,...,m}2

P
(

sup
(z1,t1),(z2,t2)∈Kj

|M̂1
n(z1, t1)− M̂2

n(z2, t2)| > λ
)

. lim sup
n→∞

m2
[
C2,λ

( 1

m

)2+δ/2
+ C1,λ

( 1

m
+

1

n

)2+δ/2]
.m2 1

m2+δ/2
→ 0, as m→∞.

Theorem 1.5.7 in Van Der Vaart and Wellner (1996) finally implies the asymptotic tightness of

the sequence (M̂1
n)n∈N, which completes the proof of Theorem 4.3.

Corollary 4.1. There exists a version of the process (M1(z, t))z∈C+,t∈[t0,1] with continuous sam-

ple paths.

Proof. By Addendum 1.5.8 in Van Der Vaart and Wellner (1996), almost all paths (z, t, ω) ∈
(C+\{xl, xr})×[t0, 1]×Ω 7→ M̂1(z, t)(ω) are continuous. Since (C+\{xl, xr})×[t0, 1] ⊂ C+×[t0, 1]

is a dense set, we conclude that almost all paths (z, t, ω) ∈ C+ × [t0, 1]× Ω 7→ M̂1(z, t)(ω) are

continuous.
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4.3.4 Proof of Theorem 4.4

Let

s̃n,t(z) = sFBn,t (z) = −
1− ybntc

z
+ ybntcs̃n,t(z)

be the Stieltjes transform of the empirical spectral distribution FBn,t of the matrix Bn,t defined

in (2.3), and let

s̃0n,t(z) = s
F̃
ybntc,Hn (z)

= −
1− ybntc

z
+ ybntcs̃

0
n,t(z)

be the Stieltjes transform of the distribution

F̃
ybntc,Hn

(·) = F ybntc,Hn
( n

bntc
·
)

with F ybntc,Hn − ybntcF ybntc,Hn = (1− ybntc)I[0,∞). Recalling the definition (4.11) we have

M2
n(z, t) = p

(
E[s̃n,t(z)]− s̃0n,t(z)

)
= bntc

(
E
[
s̃n,t(z)

]
− s̃0n,t(z)

)
. (4.27)

We begin with a lemma which can be used to derive an alternative representation of M2
n(z, t).

Note that this Lemma corrects an error in formula (9.11.1) in Bai and Silverstein (2010) and

is proved in Section B.2 of the online supplement.

Lemma 4.2.

(
E[s̃n,t(z)]− s̃0n,t(z)

)1−
yn
bntc
n

∫ λ2s̃0n,t(z)dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))

−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)


=
bntc
n

Rn,t(z)E[s̃n,t(z)]s̃0n,t(z),

where

Rn,t(z) = ybntcbntc−1
bntc∑
j=1

E[βj,t(z)dj,t(z)]
(
E[s̃n,t(z)]

)−1
= ybntcn

−1
bntc∑
j=1

E[βj,t(z)dj,t(z)]
(bntc

n
E[s̃n,t(z)]

)−1
,

dj,t(z) = −q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

+
1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
t (z)

]
,
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qj =
1
√
p
xj.

The next main step is the following result, which is proved in Section B.3.

Theorem 4.5. Under the assumptions of Theorem 2.1, we have

lim
n→∞

sup
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]− s̃t(z)| = 0,

where s̃t is defined in (2.4).

The third step in the proof of Theorem 4.4 is the following result, which is proved in Section

B.4 of the online supplement.

Theorem 4.6. Under the assumptions of Theorem 2.1, we have

sup
n∈N,
z∈Cn,
t∈[t0,1]

|M2
n(z, t)| ≤ K , lim

n→∞
sup
z∈Cn,
t∈[t0,1]

|s̃0n,t(z)− s̃t(z)| = 0.

With these preparations we show in Section B.5 that

bntcRn,t(z)E[s̃n,t(z)]→


y
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)

1−ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

for the real case,

0 for the complex case,

(4.28)

uniformly with respect to z ∈ Cn, t ∈ [t0, 1]. Combining this result with Theorem 4.5 and

Lemma B.8 yields

lim
n→∞

sup
z∈Cn
t∈[t0,1]

|Rn,t(z)| = 0 (4.29)

This result and Lemma B.8, Theorem 4.5, Theorem 4.6, Proposition B.1 and the equation (2.5)

show that

yn
bntc
n

∫ λ2s̃0n,t(z)dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))

−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

→ ty

∫
λ2s̃2t (z)dH(λ)

(1 + λts̃t(z))2
.

Observing the representation in (4.27), Lemma 4.2 and Theorem 4.6, this implies

M2
n(z, t)→


ty
∫ s̃3t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)(

1−ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

)2 for the real case,

0 for the complex case.
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uniformly with respect z ∈ Cn, t ∈ [t0, 1], which completes the proof of Theorem 4.4.

5 Proof of Theorem 3.1

Due to the invariance of Un,t underH0, we may assume w.l.o.g. that that Σ1 = . . .Σn = I, which

implies Σ̂n,t = Bn,t. We apply Theorem 2.1 for the special case f1(x) = x, f2(x) = x2,Tn = I,

that is

Xn(f1, t) = tr (Bn,t)− bntcyn,

Xn(f2, t) = tr
(
B2
n,t

)
− bntcyn

(bntc
n

+ yn

)
, t ∈ [t0, 1].

Note that all conditions from Theorem 2.1 are satisfied, and therefore(
(Xn(f1, t))t∈[t0,1], (Xn(f2, t))t∈[t0,1]

)
n∈N  

(
(X(f1, t))t∈[t0,1], (X(f2, t))t∈[t0,1]

)
in the space (`∞([t0, 1]))2, where

(
(X(f1, t))t∈[t0,1], (X(f2, t))t∈[t0,1]

)
is a Gaussian process. Thus,

it is left to calculate mean, covariance and the centering term appearing in Theorem 2.1. A

tedious calculation in Section C.2 shows

E[X(f1, t)] = 0, E[X(f2, t)] = ty, (5.1)

and

cov(X(f1, t1), X(f1, t2)) = 2ymin(t1, t2),

cov(X(f2, t1), X(f2, t2)) = 4 min(t1, t2)y
{

2t1t2 + [min(t1, t2) + 2(t1 + t2)] y + 2y2
}
, (5.2)

cov(X(f1, t1), X(f2, t2)) = 4 min(t1, t2)y(t2 + y).

In Section C.2, we also calculate the centering terms for Xn(f1, t) and Xn(f2, t). With the

definition φ(x, y) = y
x2
, we obtain the representation

Un,t = φ
(1

p
tr(Bn,t),

1

p
tr(B2

n,t)
)
.

for the process Un,t in (3.3). Consequently, the assertion can be proved by the functional delta

method.

To be precise, note that it follows from yn = p/n

p

(
1
p

tr(Bn,t)− bntcn
1
p

tr(B2
n,t)−

bntc
n

(
bntc
n

+ yn

))
t∈[t0,1]

 

(
X(f1, t)

X(f2, t)

)
t∈[t0,1]

(5.3)
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in (`∞([t0, 1]))2 . Let an(t) = bntc
n

and bn(t) = bntc
n

( bntc
n

+ yn
)
, such that

lim
n→∞

an(t) = t = a(t), lim
n→∞

bn(t) = t(t+ y) = b(t)

uniformly in t ∈ [t0, 1]. For a sequence (hn,1, hn,2)n∈N in (`∞([t0, 1]))2 converging to 0, a straight-

forward calculation shows that

p
{
φ
(
an + p−1hn,1, bn + p−1hn,2

)
− φ (an, bn)

}
→ h2

a2
− 2bh1

a3
= φ′(a,b)(h1, h2)

in l∞([t0, 1]), as n→∞. Moreover, we have

φ (an(t), bn(t)) =
bntc
n

( bntc
n

+ yn
)( bntc

n

)2 =
n

bntc

(bntc
n

+ yn

)
= 1 + ybntc.

Thus, it follows from (5.3) and Theorem 3.9.5 in Van Der Vaart and Wellner (1996) that

p
{
Un,t − 1− ybntc

}
t∈[t0,1]

= p
{
φ
(1

p
tr(Bn,t),

1

p
tr(B2

n,t)
)
− φ (an(t), bn(t))

}
t∈[t0,1]

 (Ut)t∈[t0,1]

in `∞([t0, 1]), where

Ut =
X(f2, t)− 2X(f1, t)(t+ y)

t2
, t ∈ [t0, 1]

is a Gaussian process. Recalling (5.1) and (5.2) we obtain for t, t1, t2 ∈ [t0, 1] with t2 ≤ t1 by

straightforward calculations

E[Ut] =
1

t2
(E[X(f2, t)]− 2(t+ y)E[X(f1, t)]) =

ty

t2
= yt,

cov(Ut1 , Ut2) =
1

t21t
2
2

cov (X(f2, t1)− 2(t1 + y)X(f1, t1), X(f2, t2)− 2(t2 + y)X(f1, t2))

=
1

t21t
2
2

{
4t2y

{
2t1t2 + [t2 + 2(t1 + t2)] y + 2y2

}
− 2(t2 + y)4 min(t1, t2)y(t1 + y)

− 2(t1 + y)4 min(t1, t2)y(t2 + y) + 4(t1 + y)(t2 + y)2ymin(t1, t2)
}

=
1

t21t
2
2

{
4t2y

{
2t1t2 + [t2 + 2(t1 + t2)] y + 2y2

}
− 8(t2 + y) min(t1, t2)y(t1 + y)

}
=4

y2

t21
= 4y2max(t1,t2)

.

which proves the assertion of Theorem 3.1.
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of the proof of formula (9.11.1) in Bai and Silverstein (2010).
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Online supplement: technical details

A Details for the arguments in Section 4.2

Lemma A.1. Let ΓF denote the support of a cdf F . Then it holds

Γ
F̃
ybntc,Hn ⊂

[bnt0c
n

λmin(Tn)I(0,1)(ybnt0c)(1−
√
ybnt0c)

2, λmax(Tn)(1 +
√
ybnt0c)

2
]
.

The proof of Lemma A.1 follows from Lemma 6.1, Bai and Silverstein (2010) or Proposition

2.17, Yao et al. (2015) and is therefore omitted.

The following lemma ensures that the process (M̂n(z, t))z∈C+,t∈[t0,1] defined in (4.4) provides an

appropriate approximation for the process (Mn(z, t))z∈C+,t∈[t0,1].

Lemma A.2. Let i ∈ {1, 2}. It holds for all large n and for all z ∈ C+, t ∈ [t0, 1] with probability

1 (uniformly in t ∈ [t0, 1])∣∣∣ ∫
C

fi(z)
(
Mn(z, t)− M̂n(z, t)

)
dz
∣∣∣ = o(1), as n→∞.

Proof of Lemma A.2. For convenience, we write fi = f. Since C = C+ ∪ C+ and Mn(z, t) =

Mn(z, t) for all z = x+ iv ∈ C+, we have (using also the definition of M̂n)∣∣∣ ∫
C

f(z)
(
Mn(z, t)− M̂n(z, t)

)
dz
∣∣∣−+∗ ≤ K

∫
[0,n−1εn]

{
|Mn(xr + iv, t)−Mn(xr + in−1εn, t)|

+ |Mn(xl + iv, t)−Mn(xl + in−1εn, t)|
}
dv.

Let ΓF denote the support of a c.d.f. F , then it follows by Proposition 2.4 in Yao et al. (2015)

that

|sF (z)| ≤ 1

dist(z,ΓF )
, (A.1)

where z ∈ C \ ΓF and sF is the Stieltjes transform of F . Using (4.8) and Lemma A.1, we have

for v ∈ [0, n−1εn] and sufficiently large n

dist (xr + iv,ΓFBn,t ) ≥
∣∣xr − λmax(Bn,t)

∣∣ ≥ ∣∣xr −max
(
λmax(Bn,t), λmax(Tn)(1 +

√
ybntc)

2
)∣∣,

dist
(
xl + iv,ΓF̃ ybntc ,Hn

)
≥
∣∣xl − bnt0c

n
λmin(Tn)I(0,1)(ybntc)(1−

√
ybntc)

2
∣∣

≥
∣∣xl −min

(
λmin(Bn,t),

bnt0c
n

λmin(Tn)I(0,1)(ybntc)(1−
√
ybntc)

2
)∣∣.
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Similarly, one can show that for sufficiently large n

dist
(
xr + iv,ΓF̃ ybntc ,Hn

)
≥
∣∣xr −max

(
λmax(Bn,t), λmax(Tn)(1 +

√
ybntc)

2
)∣∣ ,

dist (xl + iv,ΓFBn,t ) ≥
∣∣xl −min

(
λmin(Bn,t),

bnt0c
n

λmin(Tn)I(0,1)(ybntc)(1−
√
ybntc)

2
)∣∣.

Recall the definition of Mn, then (A.1) implies∣∣∣ ∫
C

f(z)
(
Mn(z, t)− M̂n(z, t)

)
dz
∣∣∣ ≤ 4Kεn

{ ∣∣xr −max
(
λmax(Bn,t), λmax(Tn)(1 +

√
ybntc)

2
)∣∣−1

+
∣∣xl −min

(
λmin(Bn,t), λmin(Tn)I(0,1)(ybntc)

bnt0c
n

(1−√ybntc)2
)∣∣−1}.

Due to (4.8), for every t ∈ [t0, 1], the denominators are bounded away from 0 for sufficiently

large n with probability 1 (nullset may depend on t). Note that for every n ∈ N, there are

only finitely many t1, t2 ∈ [t0, 1] such that bnt1c 6= bnt2c. That is, since the countable union of

nullsets is again a nullset, we find that with probability 1 (uniformly in t)

lim sup
n→∞

∣∣∣ ∫
C

f(z)
(
Mn(z, t)− M̂n(z, t)

)
dz
∣∣∣

≤ 4K lim
n→∞

εn

{(
xr − lim sup

n→∞
max

(
λmax(Bn,t), λmax(Tn)(1 +

√
ybntc)

2
) )−1

+
(

lim inf
n→∞

min
(
λmin(Bn,t), λmin(Tn)I(0,1)(ybntc)

bnt0c
n

(1−√ybntc)2
)
− xl

)−1}
≤ 4K lim

n→∞
εn

{(
xr − lim sup

n→∞
λmax(Tn)(1 +

√
ybnt0c)

2
)−1

+
(

lim inf
n→∞

λmin(Tn)I(0,1)(ybnt0c)
bnt0c
n

(1−√ybnt0c)2 − xl
)−1}

= 0.

B More details for the proof of Theorem 4.1

In this section we provide the remaining arguments in the proof of Theorem 4.1 in Section 4.3.

Several further very technical results are given in Section B.6.

B.1 Proof of Lemma 4.1

To be precise, recall the definition of Z1
n and Z2

n in (4.22) and (4.23) and define Ẑ1
n and Ẑ2

n

by Z1
n and Z2

n, respectively, in the same way as M̂1
n is defined by M1

n in equation (4.4). The

bounds (4.25) and (4.26) for the moments of Ẑ1
n and Ẑ2

n follow directly from corresponding

bounds (B.27) and (B.28) in Lemma B.5.
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We continue by proving the first assertion (4.24). If z1 and z2 are both contained in Cn, the

assertion directly follows from (B.26). Otherwise we assume that N ∈ N is sufficiently large so

that for all n ≥ N

v0 > εnn
−1.

Let z1 ∈ Cn and z2 /∈ Cn, that is, 0 ≤ Im(z2) ≤ εnn
−1 ≤ Im(z1). With the notation Re(z2) =

x ∈ {xl, xr} we have from (B.26)

E|M̂1
n(z1, t)− M̂1

n(z2, t)|2+δ =E|M1
n(z1, t)−M1

n(x+ iεnn
−1, t)|2+δ . |z1 − (x+ iεnn

−1)|2+δ

≤
[
(Re(z1)− x)2 + (Im(z1)− εnn−1)2

](2+δ)/2
≤
[
(Re(z1)− x)2 + (Im(z1)− Im(z2))

2
](2+δ)/2

=|z1 − z2|2+δ.

Finally, if both z1, z2 ∈ C+ \ Cn, it follows from (B.26) that

E|M̂1
n(z1, t)− M̂1

n(z2, t)|2+δ =E|M1
n(Re(z1) + iεnn

−1)−M1
n(Re(z2) + iεnn

−1)|2+δ

.|Re(z1)− Re(z2)|2+δ ≤ |z1 − z2|2+δ,

which completes the proof of Lemma 4.1.

B.2 Proof of Lemma 4.2

We begin by deriving an alternative form for Rn,t(z). By

E[s̃n,t(z)] =
1

ybntc
E[s̃n,t(z)] +

1

zybntc
− 1

z

and Lemma B.7, we have

−bntc
n

Es̃n,t(z)
(
− z− 1

E[s̃n,t(z)]
+ yn

∫
λdHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

)
=yn

∫
dHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

+ zynE[s̃n,t(z)]

=− n−1
bntc∑
j=1

E
[
βj,t(z)

(
r?jD

−1
j,t (z)(

bntc
n

Es̃n,t(z)Tn + I)−1rj

− 1

n
E[tr(

bntc
n

Es̃n,t(z)Tn + I)−1TnD
−1
t (z)]

)]
=− ynn−1

bntc∑
j=1

E
[
βj,t(z)

(
q?jT

1
2
nD−1j,t (z)(

bntc
n

Es̃n,t(z)Tn + I)−1T
1
2
nqj
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− 1

p
E[tr(

bntc
n

Es̃n,t(z)Tn + I)−1TnD
−1
t (z)]

)]
=− ynn−1

bntc∑
j=1

E [βj,t(z)dj,t(z)] = −bntc
n

ybntcn
−1
bntc∑
j=1

E [βj,t(z)dj,t(z)] .

This implies

bntc
n

Rn,t(z) = −z − 1

E[s̃n,t(z)]
+ yn

∫
λdHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

,

and we can conclude

E[s̃n,t(z)]− s̃0n,t(z)

=
1

−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)

− 1

−z + yn
∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

=
yn

( ∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

−
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]

)
+ bntc

n
Rn,t(z)(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

)
=
yn
bntc
n

(
E[s̃n,t(z)]− s̃0n,t(z)

) ∫ λ2dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))

+ bntc
n
Rn,t(z)(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

) (B.1)

=
yn
bntc
n

(
E[s̃n,t(z)]− s̃0n,t(z)

) ∫ λ2s̃0n,t(z)dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))

−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
− bntc

n
Rn,t(z)

+
bntc
n

Rn,t(z)E[s̃n,t(z)]s̃0n,t(z).

B.3 Proof of Theorem 4.5

In this section, D[0, 1]2 denotes the Skorokhod space on [0, 1]2 (see Bickel and Wichura, 1971;

Neuhaus, 1971, for a formal definition). We will identify the set C+ × [0, 1] with the square

[0, 1]2 and proceed in several steps. First, we will show a uniqueness condition, second we

prove the existence of a Skorokhod-limit of (E[s̃n,·(·)])n∈N. We conclude by proving that the

Skorokhod-limit is in fact an uniform limit.

Lemma B.1. Let (E[s̃k(n),t(z)])n∈N and (E[s̃l(n),t(z)])n∈N be two subsequences of (E[s̃n,t(z)])n∈N
and m1 and m2 be functions on C+ × [t0, 1]. If for z ∈ C+, t ∈ [t0, 1],

lim
n→∞

E[s̃k(n),t(z)] = m1(z, t) and lim
n→∞

E[s̃j(n),t(z)] = m2(z, t),
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then we have for z ∈ C+, t ∈ [t0, 1]

m1(z, t) = m2(z, t) = s̃t(z),

where s̃t denotes the Stieltjes transform of F̃ yt,H given in (2.2)

Proof of Lemma B.1. We will start showing that a potential limit of the sequence (E[s̃n,·(·)])n∈N
satisfies an equation which admits a unique solution. For this purpose we will adapt ideas from

Bai and Zhou (2008) and also correct some arguments in step 2 in the proof of their Theorem

1.1. To be precise, define for z ∈ C+ and t ∈ [t0, 1]

K = bt(z)Tn,

and note that

Dt(z)−
(bntc

n
K− zI

)
=

bntc∑
k=1

rkr
?
k −
bntc
n

K.

Multiplying with ((bntc/n)K−zI)−1 and D−1t (z) from the left and from the right, respectively,

and using identity (6.1.11) from Bai and Silverstein (2010) yields(bntc
n

K− zI
)−1
−D−1t (z)

=

bntc∑
k=1

(bntc
n

K− zI
)−1

rkr
?
kD
−1
t (z)− bntc

n

(bntc
n

K− zI
)−1

KD−1t (z)

=

bntc∑
k=1

βk,t(z)
(bntc

n
K− zI

)−1
rkr

?
kD
−1
k,t(z)− bntc

n

(bntc
n

K− zI
)−1

KD−1t (z).

This implies for l ∈ {0, 1}

1

p
tr Tl

n

(bntc
n

K− zI
)−1
− 1

p
tr Tl

nD
−1
t (z)

=
1

p

bntc∑
k=1

βk,t(z)r?kD
−1
k,t(z)Tl

n

(bntc
n

K− zI
)−1

rk −
1

p
tr
bntc
n

Tl
n

(bntc
n

K− zI
)−1

KD−1t (z)

=
1

p

bntc∑
k=1

βk,t(z)εk,

where

εk =r?kD
−1
k,t(z)Tl

n

(bntc
n

K− zI
)−1

rk − n−1β−1k,t (z) tr Tl
n

(bntc
n

K− zI
)−1

KD−1t (z)
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=r?kD
−1
k,t(z)Tl

n

(bntc
n

K− zI
)−1

rk − n−1 tr Tl
n

(bntc
n

K− zI
)−1

KD−1t (z)
(
1 + r?kD

−1
k,t(z)rk

)
.

We decompose εk = εk1 + εk2 + εk3, where

εk1 =n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1k,t(z)− n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1t (z)

εk2 =r?kD
−1
k,t(z)Tl

n

(bntc
n

K− zI
)−1

rk − n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1k,t(z)

εk3 =− n−1 tr Tl
n

(bntc
n

K− zI
)−1

KD−1t (z)
(
(1 + r?kD

−1
k,t(z)rk

)
)

+ n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1t (z)

=− n−1 tr Tl+1
n

(bntc
n

K− zI
)−1

D−1t (z)
{
bt(z)

(
r?kD

−1
k,t(z)rk + 1

)
− 1
}
,

and we have used the fact that the matrices Tn and ((bntc/n)K − zI)−1 commute. Similar

arguments as given by Bai and Zhou (2008) for their estimate (3.4) yield∣∣∣∣∣∣(bntc
n

K− zI
)−1∣∣∣∣∣∣ ≤ K,

and this estimate can be used to show

E|εki|2 → 0, n→∞ , i ∈ {1, 2, 3}.

This implies for l ∈ {0, 1}

1

p

(
E tr Tl

n

(bntc
n

K− zI
)−1
− E tr Tl

nD
−1
t (z)

)
→ 0, n→∞. (B.2)

Using (B.2) with l = 0 for the first line and l = 1 for the second one, we have

1

p
E tr

( bntc
n

Tn

1 + ybntcan,t(z)
− zI

)−1
− Es̃n,t(z)→ 0, (B.3)

1

p
E tr
bntc
n

Tn

( bntc
n

Tn

1 + ybntcan,t(z)
− zI

)−1
− an,t(z)→ 0, (B.4)

where an,t(z) = (bntc/n)p−1E tr TnD
−1
t (z), so that 1 + ybntcan,t(z) = bt(z). We use∣∣∣ 1

1 + ybntcan,t(z)

∣∣∣ ≤ |z|
v
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to conclude from (B.4)

1 +
z

p
E tr

( bntc
n

Tn

1 + ybntcan,t(z)
− zI

)−1
− an,t(z)

1 + ybntcan,t(z)
→ 0.

Combining this with (B.3) yields

1 + zEs̃n,t(z)− an,t(z)

1 + ybntcan,t(z)
→ 0

and, by rearranging terms and multiplying with ybntc,

1

1 + ybntcan,t(z)
= 1− ybntc(1 + zEs̃n,t(z)) + o(1).

Substituting this in (B.3), we get

1

p
E tr

(bntc
n

Tn

(
1− ybntc(1 + zEs̃n,t(z))

)
− zI

)−1
− Es̃n,t(z)→ 0. (B.5)

Due to (B.5), any potential limit s̃·(·) of (Es̃n,·(·))n∈N satisfies

s̃t(z) =

∫
1

λt(1− yt(1 + zs̃t(z)))− z
dH(λ).

It follows from Theorem 1.1 in Bai and Zhou (2008), that this equation admits a unique solution

s̃·(·).

In the following lemma, we consider for technical reasons the functions ŝn,·(·) : C+ × [0, 1]→ C
with ŝn,t(z) = 0 for t < t0 and for t ∈ [t0, 1], z = x+ iv ∈ C+

ŝn,t(z) =


s̃n,t(z) : z ∈ Cn
s̃n,t(xr + in−1εn) : x = xr, v ∈ [0, n−1εn]

s̃n,t(xl + in−1εn) : x = xl, v ∈ [0, n−1εn]

and for t ∈ [0, 1], z ∈ C+

m̂n,t(z) =

lim
t→1

ŝn,t(z) = ŝn,n−1
n

(z) : t = 1

ŝn,t(z) : t ∈ [0, 1).

Note that for t ∈ [0, 1], the functions ŝn,t(·) and s̃n,t(·) coincide on Cn, n ∈ N and that for

z ∈ C+, the functions ŝn,t(z) and m̂n,t(z) differ only in the point t = 1.
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Lemma B.2. The set {E[m̂n,·(·)] : n ∈ N} has a compact closure in the Skorokhod space

D[0, 1]2.

Proof of Lemma B.2. The sequence (Em̂n,·(·))n∈N is bounded, since by Lemma B.4, we get

uniformly with respect to t ∈ [t0, 1], z ∈ Cn, n ∈ N

|Es̃n,t(z)| = 1

p

∣∣E tr D−1t (z)
∣∣ ≤ E||D−1t (z)|| ≤ K.

We observe for t2 ≥ t1 and z ∈ Cn

|E[s̃n,t1(z)]− E[s̃n,t2(z)]| =
∣∣∣1
p
E
[
tr
(
D−1t1 (z)−D−1t2 (z)

)] ∣∣∣ =
∣∣∣1
p

bnt2c∑
j=bnt1c+1

E
[
r?jD

−1
t1

(z)D−1t2 (z)rj
] ∣∣∣

=
∣∣∣1
p

bnt2c∑
j=bnt1c+1

{
E
[
r?jD

−1
t1

(z)D−1j,t2(z)rj
]

− E
[
βj,t2(z)r?jD

−1
t1

(z)D−1j,t2(z)rjr
?
jD
−1
j,t2

(z)rj
] }∣∣∣

≤Kyn
bnt2c − bnt1c

n
≤ K

bnt2c − bnt1c
n

,

where the constant K is independent of t1, t2, z, n. Thus, we have

∣∣E[ŝn,t1(z)]− E[ŝn,t2(z)]
∣∣ ≤ K

bnt2c − bnt1c
n

.

We aim to show

lim
δ→0

sup
n∈N

sup
(t1,t2,t)∈Aδ,

z∈C+

min (|E[ŝn,t(z)]− E[ŝn,t1(z)]|, |E[ŝn,t(z)]− E[ŝn,t2(z)]|) = 0, (B.6)

where

Aδ = {(t1, t2, t) : t1 ≤ t ≤ t2, t2 − t1 ≤ δ}.

Let ε > 0 be given. We choose N ∈ N sufficiently large such that 1
N
< ε and δ > 0 sufficiently

small such that δ < ε and for all n ∈ {1, . . . , N}

bntc − bnt2c = 0 or bntc − bnt1c = 0,

where (t1, t2, t) ∈ Aδ. Then, it holds

sup
n≤N

sup
(t1,t2,t)∈Aδ,

z∈C+

min (|E[ŝn,t(z)]− E[ŝn,t1(z)]|, |E[ŝn,t(z)]− E[ŝn,t2(z)]|) = 0.
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For n ≥ N we conclude∣∣E[ŝn,t(z)]− E[ŝn,t1(z)]
∣∣ ≤K bntc − bnt1c

n

≤K
(∣∣∣bntc − nt

n

∣∣∣+ |t1 − t|+
∣∣∣bnt1c − nt1

n

∣∣∣) ≤ 3εK

and obtain

sup
n≥N

sup
(t1,t2,t)∈Aδ,

z∈C+

min
{
|E[ŝn,t(z)]− E[ŝn,t1(z)]|, |E[ŝn,t(z)]− E[ŝn,t2(z)]|

}
≤ 3εK.

Thus, (B.6) holds true. Similarly, one can show

lim
δ→0

sup
n∈N

sup
t1,t2∈[1−δ,1),

z∈C+

|E[ŝn,t1(z)]− E[ŝn,t2(z)]| = 0.

By definition, this implies

lim
δ→0

sup
n∈N

sup
t1,t2∈[1−δ,1],

z∈C+

|E[m̂n,t1(z)]− E[m̂n,t2(z)]| = 0.

Since ŝn,t(z) = 0 for t < t0, we also have for δ < t0

sup
n∈N

sup
t1,t2∈[0,δ),
z∈C+

|E[ŝn,t1(z)]− E[ŝn,t2(z)]| = 0.

Therefore, it follows from the proof of Theorem 14.4 in Billingsley (1968) that

0 = lim
δ→0

sup
n∈N

sup
z∈C+

inf
(t0,...,tr)∈Bδ,r,

r∈N

max
0≤i≤r

sup
t,t′∈[ti−1,ti)

|E[ŝn,t(z)]− E[ŝn,t′(z)]|

= lim
δ→0

sup
n∈N

sup
z∈C+

inf
(t0,...,tr)∈Bδ,r,

r∈N

max
0≤i≤r

sup
t,t′∈[ti−1,ti〉

|E[m̂n,t(z)]− E[m̂n,t′(z)]|, (B.7)

where [ti−1, ti〉 is defined as [ti−1, ti] if ti = 1 and as [ti−1, ti) otherwise and we set

Bδ,r = {(t0, . . . , tr) : 0 = t0 < t1 < . . . < tr = 1, ti − ti−1 > δ for i ∈ {1, . . . , r}}.

For the next step, we have for z1, z2 ∈ Cn

|E[s̃n,t(z1)]− E[s̃n,t(z2)]| =
1

p
|z1 − z2||E tr D−1t (z1)D

−1
t (z2)| ≤ K|z1 − z2|E||D−1t (z1)D

−1
t (z2)||

≤K|z1 − z2|
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uniformly in t ∈ [t0, 1], which implies for z1, z2 ∈ Cn or z1, z2 /∈ Cn that

|E[ŝn,t(z1)]− E[ŝn,t(z2)]| ≤ K|z1 − z2|.

In the case z1 = x1 + iv1 ∈ Cn and z2 = x2 + iv2 /∈ Cn, we conclude

|E[ŝn,t(z1)]− E[ŝn,t(z2)]| = |E[s̃n,t(z1)]− E[s̃n,t(x2 + in−1εn)]| ≤ K|z1 − (x2 + in−1εn)|

=
{

(x1 − x2)2 + (v1 − n−1εn)2
} 1

2 ≤
{

(x1 − x2)2 + (v1 − v2)2
} 1

2

≤K|z1 − z2|,

since v2 ≤ n−1εn ≤ v1. Thus, we have

lim
δ→0

sup
n∈N

sup
t∈[0,1],
z1,z2∈C+,
|z1−z2|<δ

|E[ŝn,t(z1)]− E[ŝn,t(z2)]| = 0. (B.8)

Since for A×B ⊂ (C+)2, C ×D ⊂ [0, 1]2

sup
(z,z′)∈A×B,
(t,t′)∈C×D

|E[ŝn,t(z)]− E[ŝn,t′(z
′)]|

≤ sup
(z,z′)∈A×B,

t∈C

|E[ŝn,t(z)]− E[ŝn,t(z
′)]|+ sup

z′∈B,
(t,t′)∈C×D

|E[ŝn,t(z
′)]− E[ŝn,t′(z

′)]|,

we conclude from (B.7) and (B.8)

lim
δ→0

sup
n∈N

inf
((t0,z0),...,(tr,zr))∈B(2)δ,r ,

r∈N

max
0≤i≤r

sup
t,t′∈[ti−1,ti)
z,z′∈[zi−1,zi〉

|E[ŝn,t(z)]− E[ŝn,t′(z
′)]|

= lim
δ→0

sup
n∈N

inf
((t0,z0),...,(tr,zr))∈B(2)δ,r ,

r∈N

max
0≤i≤r

sup
t,t′∈[ti−1,ti〉
z,z′∈[zi−1,zi〉

|E[m̂n,t(z)]− E[m̂n,t′(z
′)]|

=0, (B.9)

where

B
(2)
δ,r = {((t0, z0), . . . , (tr, zr)) : 0 = t0 < t1 < . . . < tr = 1, 0 = z0 < z1 < . . . < zr = 1,

ti − ti−1 > δ, zi − zi−1 > δ for i ∈ {1, . . . , r}}.

Note that in this definition, an element z ∈ C+ is identified with its representative in [0, 1].

One can observe that (B.9) is equivalent to

lim
δ→0

sup
n∈N

ω′E[m̂n,·(·)](δ) = 0,
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where the modulus ω′ is defined in Neuhaus (1971). Applying Theorem 2.1 in this reference,

we conclude that {E[m̂n,·(·)] : n ∈ N} has a compact closure in D[0, 1]2.

Proof of Theorem 4.5. From Lemma B.1 and Lemma B.2, we conclude that

lim
n→∞

d2|Cn×[t0,1)(E[s̃n,·(·)], s̃·(·)) = lim
n→∞

d2|Cn×[t0,1)(E[m̂n,·(·)], s̃·(·)) = 0,

where d2|A for some set A ⊂ C+ × [0, 1] denotes the Skorokhod metric restricted to functions

on A. Observe that for t = 1

lim
n→∞

sup
z∈Cn
|E[s̃n,1(z)]− s̃1(z)| = 0.

Then it is straightforward to show that

lim
n→∞

d2|Cn×[t0,1](E[s̃n,·(·)], s̃·(·)) = 0. (B.10)

The considerations in the proof of Lemma B.2 reveal that E[s̃·(·)] ∈ C(C+ × [t0, 1]). In this

case, the convergence in the Skorokhod space in (B.10) implies the uniform convergence

lim
n→∞

sup
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]− s̃t(z)| = 0.

A similar convergence result with respect to the sup-norm can be shown for the Stieltjes trans-

form s̃n,t(z). More precisely, since

s̃t(z) = −1− yt
z

+ yts̃t(z),

s̃n,t(z) = −
1− ybntc

z
+ ybntcs̃n,t(z),

we also have

lim
n→∞

sup
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]− s̃t(z)| = 0.

B.4 Proof of Theorem 4.6

The second assertion directly follows from the first one combined with Theorem 4.5. Therefore,

it is sufficient to show that (M2
n)n∈N is uniformly bounded. For this purpose, we use the

following lemma.
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Lemma B.3. We have

sup
n∈N,
z∈Cn,
t∈[t0,1]

∣∣∣Im(s̃0n,t(z))

Im(z)

∣∣∣ ≤ K.

Proof of Lemma B.3. We have for sufficiently large n

Im(s̃0n,t(z)) =

∫
Im
( 1

λ− z

)
dF̃

ybntc,Hn
(λ) =

∫
−Im(λ− z)

|λ− z|2
dF̃

ybntc,Hn
(λ)

=

∫
Im(z)

(λ− Re(z))2 + Im2(z)
dF̃

ybntc,Hn
(λ) ≤ KIm(z),

since for z ∈ Cl ∪ Cr, Re(z) ∈ {xl, xr} is uniformly bounded away from the support of F̃
ybntc,Hn

for sufficiently large n (Lemma A.1). If z ∈ Cu, then Im(z) = v0 is constant and hence, the

denominator is also uniformly bounded away from 0.

To continue with the proof of Theorem 4.6, we note that it follows from (B.1) in the proof of

Lemma 4.2 in Section B.2 that

bntc(E[s̃n,t(z)]− s̃0n,t(z))− bntcbntc
n

Rn,t(z)E[s̃n,t(z)]s̃0n,t(z)

=
yn
bntc
n
bntc

(
E[s̃n,t(z)]− s̃0n,t(z)

) ∫ λ2dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

) ,
which is equivalent to

bntc
(
E[s̃n,t(z)]− s̃0n,t(z)

)
=

bntc bntc
n
Rn,t(z)E[s̃n,t(z)]s̃0n,t(z)

1−
yn
bntc
n

∫ λ2dHn(λ)

(1+λ
bntc
n E[s̃n,t(z)])(1+λ

bntc
n s̃0n,t(z))(

−z+yn
∫ λdHn(λ)

1+λ
bntc
n E[s̃n,t(z)]

−Rn,t(z)
)(
−z+yn

∫ λdHn(λ)

1+λ
bntc
n s̃0n,t(z)

) .

Note that s̃0n,t(z) is uniformly bounded which follows by a similar argument as given in the

proof of Lemma B.3. In order to show that the the sequence (M2
n)n∈N is uniformly bounded,

by using (4.28), it is sufficient to show that the denominator is uniformly bounded away from

0 for sufficiently large n. For this aim, it is sufficient to prove that

∣∣∣ yn
bntc
n

∫ λ2s̃0n,t(z)E[s̃n,t(z)]dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

)∣∣∣ < 1

holds uniformly. Similarly to the proof of Lemma B.8, we conclude that for any bounded subset
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S ⊂ C+

inf
n∈N,
z∈S,
t∈[t0,1]

|s̃0n,t(z)| > 0.

Using this, Hlder’s inequality, Lemma B.3 and the identities

yn
bntc
n

∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2∣∣∣− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

∣∣∣2 =

bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

Im(z) + bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

,

yn
bntc
n

∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2∣∣∣∣−z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
+Rn,t

∣∣∣∣2 =

bntc
n

Im(E[s̃n,t(z)])yn
∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2

Im(z) + bntc
n

Im(E[s̃n,t(z)])yn
∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2
+ Im(Rn,t)

,

we obtain for sufficiently large n

∣∣∣∣∣yn
∫ λ2

bntc
n
dHn(λ)

(1+λ
bntc
n

E[s̃n,t(z)])(1+λ
bntc
n
s̃0n,t(z))(

− z + yn
∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

)(
− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

)∣∣∣∣∣
2

≤
yn
bntc
n

∫ λ2dHn(λ)

|1+λ bntcn s̃0n,t(z)|
2∣∣∣− z + yn

∫ λdHn(λ)

1+λ
bntc
n
s̃0n,t(z)

∣∣∣2
yn
bntc
n

∫ λ2dHn(λ)

|1+λ bntcn E[s̃n,t(z)])|
2∣∣∣− z + yn

∫ λdHn(λ)

1+λ
bntc
n

E[s̃n,t(z)]
−Rn,t(z)

∣∣∣2
=

bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

Im(z) + bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

×
bntc
n

Im(E[s̃n,t(z)])yn
∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2

Im(z) + bntc
n

Im(E[s̃n,t(z)])yn
∫ λ2dHn(λ)

|1+λ bntc
n

E[s̃n,t(z)]|2
+ Im(Rn,t(z))

≤1− Im(z)

Im(z) + bntc
n

Im(s̃0n,t(z))yn
∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

≤1− Im(z)

Im(z) + bntc
n
K Im(z)yn

∫ λ2dHn(λ)

|1+λ bntc
n
s̃0n,t(z)|2

≤ 1− 1

1 +K
< 1,

where we used the fact that Im(Rn,t(z)) + Im(z) ≥ 0 for sufficiently large n, which follows from

Lemma B.10. This finishes the proof of Theorem 4.6.
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B.5 Proof of the statement (4.28)

As a preparation, we need the following proposition. The proof is omitted for the sake of

brevity.

Proposition B.1.

sup
n∈N,z∈Cn,t∈[t0,1]

∥∥∥(
bntc
n

E[s̃n,t(z)]Tn + I)−1
∥∥∥ ≤ K.

Using (4.14) and the representation (B.51) we obtain

bntcRn,t(z)E[s̃n,t(z)] = ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]

=− ybntc
bntc∑
j=1

E
[
βj,t(z)

{
q?jT

1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
t (z)

]}]
=− ybntc

bntc∑
j=1

E
[
βj,t(z)

{
q?jT

1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]}]
+

1

bntc

bntc∑
j=1

E
[
βj,t(z) tr(

bntc
n

E[s̃n,t(z)]Tn + I)−1TnE
[
D−1t (z)−D−1j,t (z)

] ]
=Tn,1(z, t) + Tn,2(z, t) + o(1)

uniformly with respect to z ∈ Cn, t ∈ [t0, 1], where the terms Tn,1 and Tn,2 are defined by

Tn,1(z, t) = ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]}
γ̂j,t(z)

]
, (B.11)

Tn,2(z, t) = − 1

bntc

bntc∑
j=1

E [βj,t(z)]E
[
βj,t(z)r?jD

−1
j,t (z)

(bntc
n

Es̃n,t(z)Tn + I
)−1

TnD
−1
j,t (z)rj

]
,

(B.12)
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For this argument we used the fact

E
[
βj,t(z)

{
q?jT

1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]}]
= 0

and that by the estimate (9.10.2) in Bai and Silverstein (2010)

E
∣∣∣β2

j,t(z)βj,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]}
γ̂j,t(z)2

∣∣∣
≤E

1
2

∣∣∣β2

j,t(z)βj,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
E
[

tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

]∣∣∣2E 1
2 |γ̂j,t(z)|4

∣∣∣
≤Kn−1η2n = o

(
n−1
)
.

For the term in (B.11) we obtain the representation

Tn,1(z, t) =ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

}
γ̂j,t(z)

]
− ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnE[D−1j,t (z)]γ̂j,t(z)
]

+ ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)γ̂j,t(z)

]

=ybntc

bntc∑
j=1

E
[
β
2

j,t(z)
{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

}
γ̂j,t(z)

]
=ybntc

bntc∑
j=1

z2s̃2t (z)E
[{

q?jT
1
2
nD−1j,t (z)(

bntc
n

E[s̃n,t(z)]Tn + I)−1T
1
2
nqj

− 1

p
tr(
bntc
n

E[s̃n,t(z)]Tn + I)−1TnD
−1
j,t (z)

}
γ̂j,t(z)

]
+ o(1),

where in the last step we used the inequality (9.10.2) in Bai and Silverstein (2010), to replace all
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of the terms βj,t(z), βj,t(z), bj,t(z) and similarly defined quantities by −zs̃t(z). This argument

also implies for the term Tn,2 defined in (B.12)

Tn,2(z, t) = −z
2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr D−1j,t (z)
(bntc

n
Es̃n,t(z)Tn + I

)−1
TnD

−1
j,t (z)Tn

]
+ o(1).

We now consider the the complex case, where we have from equation (9.8.6) in Bai and Silver-

stein (2010)

Tn,1(z, t) =
z2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr D−1j,t (z)
(bntc

n
E[s̃n,t(z)]Tn + I

)−1
TnD

−1
j,t (z)Tn

]
+ o(1).

which yields Tn,1(z, t) + Tn,2(z, t) = o(1), and as a consequence (4.28) in this case.

Next, we consider the real case using again equation (9.8.6) in Bai and Silverstein (2010), which

gives

bntcRn,t(z)E[s̃n,t(z)] = Tn,1(z, t) + Tn,2(z, t) + o(1)

=
z2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr D−1j,t (z)
(bntc

n
E[s̃n,t(z)]Tn + I

)−1
TnD

−1
j,t (z)Tn

]
+ o(1)

=
z2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr D−1j,t (z)
(
ts̃t(z)Tn + I

)−1
TnD

−1
j,t (z)Tn

]
+ o(1). (B.13)

For a detailed analysis of the random variable in (B.13) we use the decomposition

D−1j,t (z) =−
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
+ bj,t(z)At(z) + Bt(z) + Ct(z), (B.14)

where

At(z) =
∑

i 6=j,1≤i≤bntc

(
zI− bntc − 1

n
bj,t(z)Tn

)−1 (
rir

?
i − n−1Tn

)
D−1i,j,t(z), (B.15)

Bt(z) =
∑

i 6=j,1≤i≤bntc

(βi,j,t(z)− bj,t(z))
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
rir

?
iD
−1
i,j,t(z),

Ct(z) = bj,t(z)
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
Tnn

−1
∑
i 6=j

(
D−1i,j,t(z)−D−1j,t (z)

)
.

(here, we do not reflect the dependence on index j in our notation). We now investigate these

terms in more detail.

Let M be a p × p (random) matrix and let ||M|| denote a nonrandom bound on the spectral
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norm of M for all parameters governing M and all realizations of M. Then, one can show

the following bounds (similarly to the inequalities (9.9.14) and (9.9.15) in Bai and Silverstein

(2010))

E| tr(Bt(z)M)| ≤ K||M||n
1
2 , (B.16)

|tr(Ct(z)M)| ≤ K||M||. (B.17)

Moreover, we have for any nonrandom M

E |tr At(z)M| ≤ K||M||,

which follows using formula (9.9.6) in Bai and Silverstein (2010).

Using the decomposition given in (B.14), the estimates (B.16) and (B.17) (which shows that

all terms involving Bt(z) and Ct(z) are negligible) and the fact

E
[

tr
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
(ts̃t(z)Tn + I)−1 TnAt(z)Tn

]
= 0,

we obtain

ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]

=
z2s̃2t (z)

bntcn

bntc∑
j=1

E
[

tr
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
(ts̃t(z)Tn + I)−1 Tn

×
(
zI− bntc − 1

n
bj,t(z)Tn

)−1
Tn

]
+
z2s̃2t (z)

bntcn

bntc∑
j=1

b2j,t(z)E
[
tr At(z) (ts̃t(z)Tn + I)−1 TnAt(z)Tn

]
+ o(1)

=
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
z4s̃4t (z)

bntcn

bntc∑
j=1

E
[
tr At(z) (ts̃t(z)Tn + I)−1 TnAt(z)Tn

]
+ o(1). (B.18)

For the term At(z) in (B.15) (which actually depends on j) we have

At(z) =
∑

i 6=j,1≤i≤bntc

(
zI− bntc − 1

n
bj,t(z)Tn

)−1 (
rir

?
i − n−1Tn

)
D−1i,j,t(z)

=
∑

i 6=j,1≤i≤bntc

D−1i,j,t(z)
(
rir

?
i − n−1Tn

) (
zI− bntc − 1

n
bj,t(z)Tn

)−1
,
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which follows from At(z) = (At(z))?. Substituting the first and second expression for the term

At(z) on the left and on the right in (B.18), respectively, yields

z4s̃4t (z)

bntcn

bntc∑
j=1

E
[
tr At(z) (ts̃t(z)Tn + I)−1 TnAt(z)Tn

]
=
z4s̃4t (z)

bntcn

bntc∑
j=1

∑
i,l 6=j

E
[

tr
(
zI− bntc − 1

n
bj,t(z)Tn

)−1 (
rir

?
i − n−1Tn

)
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

×D−1l,j,t(z)
(
rlr

?
l − n−1Tn

) (
zI− bntc − 1

n
bl,t(z)Tn

)−1
Tn

]
=
z2s̃4t (z)

bntcn

bntc∑
j=1

∑
i,l 6=j

Ai,l,j(z, t) + o(1), (B.19)

where

Ai,l,j(z, t) = E
[

tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

×D−1l,j,t(z)
(
rlr

?
l − n−1Tn

) ]
.

In the following, we will show that the sum of the cross terms Ai,l,j(z, t) (i.e. l 6= i) in (B.19)

vanishes asymptotically. For this purpose we use the formulas for l 6= i

D−1i,j,t(z) =D−1l,i,j,t(z)− βl,i,j,t(z)D−1l,i,j,t(z)rlr
?
lD
−1
l,i,j,t(z),

where

βl,i,j,t(z) =
1

1 + r?lD
−1
l,i,j,t(z)rl

.

Note that that the expectation appearing in the cross term Ai,l,j(z, t) will be 0 if D−1i,j,t(z) or

D−1l,j,t(z) are replaced by D−1l,i,j,t(z). Hence, it remains to bound for i 6= l (use also (B.51) )

|Ai,l,j(z, t)|

=
∣∣∣E[ tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

) (
D−1l,i,j,t(z)−D−1i,j,t(z)

)
(ts̃t(z)Tn + I)−1 Tn

×
(
D−1i,l,j,t(z)−D−1l,j,t(z)

) (
rlr

?
l − n−1Tn

) ]∣∣∣
=
∣∣∣E[ tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
βl,i,j,t(z)D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

× βi,l,j,t(z)D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

) ]∣∣∣
=o
(
n−1
)
,
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which is shown in Lemma B.9 and corrects a wrong statement on p. 260 in the monograph of

Bai and Silverstein (2010).

Summarizing, we have shown that

ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]

=
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
z2s̃4t (z)

bntcn

bntc∑
j=1

∑
i 6=j

E
[

tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

×D−1i,j,t(z)
(
rir

?
i − n−1Tn

) ]
+ o(1)

=
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
z2s̃4t (z)

bntcn

bntc∑
j=1

∑
i 6=j

E
[

tr (ts̃t(z)Tn + I)−2 Tnrir
?
iD
−1
i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)rir

?
i

]
+ o(1)

=
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
z2s̃4t (z)

bntcn3

bntc∑
j=1

∑
i 6=j

E
[

tr
{

(ts̃t(z)Tn + I)−2 T2
n

}
tr
{
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)Tn

} ]
+ o(1)

=
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
z2s̃4t (z)

n3

bntc∑
j=1

E
[

tr
{

(ts̃t(z)Tn + I)−2 T2
n

}
tr
{
D−1j,t (z) (ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)Tn

} ]
+ o(1).

(B.20)

Here we used for the last equality the fact∣∣∣E[ tr
{
D−1j,t (z) (ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)Tn

}
− tr

{
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)Tn

} ]∣∣∣
≤E
∣∣∣ tr (D−1i,j,t(z)−D−1j,t (z)

)
(ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)Tn

∣∣∣
+ E

∣∣∣ tr D−1i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

(
D−1i,j,t(z)−D−1j,t (z)

)
Tn

∣∣∣
=E
∣∣∣βi,j,t(z)r?iD

−1
i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)TnD

−1
i,j,t(z)ri

∣∣∣
+ E

∣∣∣βi,j,t(z)r?iD
−1
i,j,t(z)TnD

−1
i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)ri

∣∣∣
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≤K + E
∣∣∣βi,j,t(z)r?iD

−1
i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

(
D−1i,j,t(z)− βi,j,t(z)D−1i,j,t(z)rir

?
iD
−1
i,j,t(z)

)
TnD

−1
i,j,t(z)ri

∣∣∣
≤K.

Hence,

∣∣∣z2s̃4t (z)

bntcn3

bntc∑
j=1

∑
i 6=j

tr
{

(ts̃t(z)Tn + I)−2 T2
n

}
E
[

tr
{
D−1j,t (z) (ts̃t(z)Tn + I)−1 TnD

−1
j,t (z)Tn

}
− tr

{
D−1i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,j,t(z)Tn

} ]∣∣∣ = o(1).

We now apply (B.13) for (B.20) and obtain

ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)] =
s̃2t (z)

n
E
[
tr (ts̃t(z)Tn + I)−3 T2

n

]
+
s̃2t (z)bntc

n2
tr
{

(ts̃t(z)Tn + I)−2 T2
n

}
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)] + o(1).

This implies (4.28) for the real case, namely,

ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)] =
s̃2t (z)

n
tr
{

(ts̃t(z)Tn + I)−3 T2
n

}
1− s̃2t (z)bntc

n2 tr
{

(ts̃t(z)Tn + I)−2 T2
n

} + o(1)

=
y
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)3
dH(λ)

1− ty
∫ s̃2t (z)λ

2

(ts̃t(z)λ+1)2
dH(λ)

+ o(1).

B.6 Further auxiliary results

Lemma B.4. We have uniformly in n ∈ N, t ∈ [t0, 1], z ∈ Cn

E||D−1t (z)||q ≤ K, (B.21)

where K > 0 is a constant depending on q ∈ N. Similarly, for pairwise different integers

i, j, k ∈ {1, . . . , bntc}

max
(
E||D−1t (z)||q,E||D−1j,t (z)||q,E||D−1j,k,t(z)||q

)
≤ K.

It also holds that

||D−1t (z)|| ≤K + nε−1n I{||Bn,t|| ≥ ηr,t or λmin(Bn,t) ≤ ηl,t}. (B.22)

Proof of Lemma B.4. We restrict ourselves to the first assertion. Let first z ∈ Cu, that is,
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z = x+ iv0 for some x ∈ [xl, xr]. Then,

||D−1t (z)|| = 1

min(|λmin(Bn,t)− z|, |λmax(Bn,t)− z|)
≤ 1

v0
= K.

This implies E||D−1t (z)||q ≤ K. Next, assume z ∈ Cl ∪ Cr, that is, z = xr + iv or z = xl + iv for

some v ∈ [n−1εn, v0]. By formula (9.7.8) and (9.7.9) in Bai and Silverstein (2010) we have for

t ∈ [t0, 1] and any m > 0

P (||Bn,t|| > ηr,t or λmin(Bn,t) < ηl,t) = o
(
bntc−m

)
= o

(
n−m

)
, (B.23)

where ηr,t denotes a fixed number between

lim sup
n→∞

||Tn||(1 +
√
yt)

2t

and xr and ηl,t between

lim inf
n→∞

λmin(Tn)(1−√yt)2I(0,1)(yt)t

and xl. We estimate

E||D−1t (z)||q ≤KE
[
||D−1t (z)||I{||Bn,t|| ≤ ηr,t and λmin(Bn,t) ≥ ηl,t}

]q
+KE

[
||D−1t (z)||I{||Bn,t|| > ηr,t or λmin(Bn,t) < ηl,t}

]q
≤K +Knqε−qn n−m ≤ K.

To derive a bound for the first term, we distinguish the cases z ∈ Cr and z ∈ Cl. For the sake

of brevity, we only consider the first one. It holds

||D−1t (z)||I{||Bn,t|| ≤ ηr,t and λmin(Bn,t) ≥ ηl,t}

=
1

min(|λmin(Bn,t)− (xr + iv)|, |λmax(Bn,t)− (xr + iv)|)
I{||Bn,t|| ≤ ηr,t and λmin(Bn,t) ≥ ηl,t}

≤ 1

xr − λmax(Bn,t)
I{||Bn,t|| ≤ ηr,t and λmin(Bn,t) ≥ ηl,t}

≤ 1

xr − ηr,t
≤ 1

xr − lim sup
n→∞

||Tn||(1 +
√
yt0)

2
= K. (B.24)

For the second summand, we conclude

||D−1t (z)||I{||Bn,t|| > ηr,t or λmin(Bn,t) < ηl,t}

≤ 1

min(|λmin(Bn,t)− z|, |λmax(Bn,t)− z|)
I{||Bn,t|| > ηr,t or λmin(Bn,t) < ηl,t}

≤nε−1n I {||Bn,t|| > ηr,t or λmin(Bn,t) < ηl,t} . (B.25)
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The bounds in (B.24) and (B.25) show that (B.22) holds true. The assertion in (B.21) follows

by applying (B.23).

The bounds for the increments of Mn(z, t), z ∈ Cn, t ∈ [t0, 1] are given in the following lemma,

which will be proven later.

Lemma B.5. For t ∈ [t0, 1], z1, z2 ∈ Cn, it holds for sufficiently large n ∈ N under the assump-

tions of Theorem 4.3

E|M1
n(z1, t)−M1

n(z2, t)|2+δ . |z1 − z2|2+δ. (B.26)

We also have for t1, t2 ∈ [t0, 1], z ∈ Cn

E|Z1
n(z, t1, t2)|4 .

(bnt2c − bnt1c
n

)4
, (B.27)

E|Z2
n(z, t1, t2)|4+δ .

(bnt2c − bnt1c
n

)2+δ/2
, (B.28)

where

M1
n(z, t1)−M1

n(z, t2) = Z1
n(z, t1, t2) + Z2

n(z, t1, t2), (B.29)

and Z1
n and Z2

n are defined in (4.22) and (4.23), respectively.

The proof of Lemma B.5 requires some preparations. Note that while a fourth moment condi-

tion is sufficient for proving the convergence of the finite-dimensional distribution of (M̂1
n)n∈N

(Theorem 4.2) and the convergence of the non-random part (M̂2
n)n∈N (Theorem 4.4), we need

the stronger moment assumption from Theorem 2.1, namely

sup
i,j,n

E|xij|12 <∞, (B.30)

exclusively for a proof of the asymptotic tightness of (M̂1
n)n∈N.

Under this assumption, by Lemma B.26 in Bai and Silverstein (2010), the following estimates

for moments of quadratic forms hold true for q ≥ 2

E|x?jAxj − tr A|q . (tr AA?)q/2 + η(2q−12)∨0n n(q−6)∨0 tr(AA?)q/2

.

{
(tr AA?)q/2

(
1 + n(q−6)∨0) ,

nq/2||A||q + nn(q−6)∨0||A||q.

Thus, we have for q ≥ 2

E|r?jArj − n−1 tr TnA|q .

{
(tr AA?)q/2 n−(q∧6),

||A||qn−((q/2)∧5).
(B.31)
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Furthermore, combining (B.31) with arguments given in the proof of (9.9.6) in Bai and Silver-

stein (2010), we obtain the following lemma.

Lemma B.6. Let j,m ∈ N0, q ≥ 2 and Al, l ∈ {1, . . . ,m + 1} be p × p (random) matrices

independent of rj which obey for any q̃ ≥ 2

E||Al||q̃ <∞, l ∈ {1, . . . ,m+ 1}.

Then, it holds

E
∣∣∣( m∏

k=1

r?jAkrj

) (
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q . n−((q/2)∧5).

If even for any l ∈ {1, . . . ,m+ 1}, q̃ ≥ 2

E [tr AA?
l ]
q̃ <∞,

holds true, then we have

E
∣∣∣( m∏

k=1

r?jAkrj

) (
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q . n−(q∧6).

Remark B.1. In fact, as the proof of Lemma B.6 reveals, we could impose a less restrictive

condition on the spectral moments of Al, l ∈ {1, . . . ,m+ 1}. For our purpose, it is sufficient to

state the previous lemma in this form, since, when applying Lemma B.6, the involved matrices

will have bounded spectral moments of any order.

In particular, the second assertion will be useful if Bl involves a term like rkr
?
k for some k 6= j

among other matrices like D−1j,t (z), while we will make use of the first assertion in case that Bl

only involves matrices like D−1j,t (z). In the latter case, contrary to the first one, we are not able

to control moments of tr BlB
?
l uniformly in n.

Proof of Lemma B.6. For m = 0, the assertion of the lemma follows directly from (B.31) for

any q ≥ 2. We continue the proof by an induction over the integer m for some fixed q ≥ 2.

E
∣∣∣( m∏

k=1

r?jAkrj

) (
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q
.E
∣∣∣(m−1∏

k=1

r?jAkrj

) (
r?jAmrj − n−1 tr TnAm

) (
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q
+ E

∣∣∣(m−1∏
k=1

r?jAkrj

)
n−1 tr TnAm

(
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q
≤
(
E
∣∣∣(m−1∏

k=1

r?jAkrj

) (
r?jAmrj − n−1 tr TnAm

) ∣∣∣2qE ∣∣(r?jAm+1rj − n−1 tr TnAm+1

)∣∣2q ) 1
2
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+ E
∣∣∣(m−1∏

k=1

r?jAkrj

)
n−1 tr TnAm

(
r?jAm+1rj − n−1 tr TnAm+1

) ∣∣∣q.
By applying the induction hypothesis to these three terms, we get the desired result for each

case.

Adapting the proof of (9.10.5) in Bai and Silverstein (2010), we obtain under the strong moment

condition (B.30) for q ≥ 2

E|γj,t(z)|q . n−((q/2)∧5). (B.32)

We need an estimate for moments of complex martingale difference schemes. We refer to Lemma

2.1 in Li (2003), which is an corollary from Burkholder’s inequality and can easily be extended

to the complex case. We are now in the position to give a proof of Lemma B.5.

Proof of Lemma B.5. In the following, we will often make use of the decompositions

D−1t (z) = D−1j,t (z)− βj,t(z)D−1j,t (z)rjr
?
jD
−1
j,t (z), (B.33)

βj,t(z) = bj,t(z)− βj,t(z)bj,t(z)γj,t(z).

Observing the decomposition (B.29), our aim is to show the inequalities in (B.27) and (B.28),

where we assume t2 > t1 w.l.o.g.

Step 1: Analysis of Z2
n

Beginning with the proof of (B.28) for Z2
n, we are able to show that (using Lemma 2.1 in Li

(2003) with q = 4 + δ)

E|Z2
n(z, t1, t2)|4+δ = E

∣∣∣ bnt2c∑
j=bnt1c+1

(Ej − Ej−1)βj,t2(z)r?jD
−2
j,t2

(z)rj

∣∣∣4+δ
. (bnt2c − bnt1c)1+δ/2

bnt2c∑
j=bnt1c+1

E
∣∣(Ej − Ej−1)βj,t2(z)r?jD

−2
j,t2

(z)rj
∣∣4+δ

.
(bnt2c − bnt1c

n

)2+δ/2
,

since we can bound

E
∣∣(Ej − Ej−1)βj,t2(z)r?jD

−2
j,t2

(z)rj
∣∣4+δ .E ∣∣(Ej − Ej−1)bj,t2(z)r?jD

−2
j,t2

(z)rj
∣∣4+δ

+ E
∣∣(Ej − Ej−1)βj,t2(z)bj,t2(z)r?jD

−2
j,t2

(z)rjγj,t2(z)
∣∣4+δ

.E
∣∣(Ej − Ej−1)

{
r?jD

−2
j,t2

(z)rj − n−1 tr TnD
−2
j,t2

(z)
}∣∣4+δ

+ E
∣∣βj,t2(z)bj,t2(z)r?jD

−2
j,t2

(z)rjγj,t2(z)
∣∣4+δ (B.34)
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.n−(2+δ/2).

We should explain the bound for (B.34) in more detail: First, note that we are able to bound

the moments of ||D−1j,t (z)|| independent of n, z, t (see Lemma B.4). As a further preparation,

we observe for z ∈ Cn, t ∈ [t0, 1] from Lemma B.4

||D−1t (z)|| .1 + nε−1n I{||Bn,t|| ≥ ηr,t or λmin(Bn,t) ≤ ηl,t}
≤1 + n2I{||Bn,t|| ≥ ηr,t or λmin(Bn,t) ≤ ηl,t}, (B.35)

where we used the fact that εn ≥ n−α for some α ∈ (0, 1). Thus, since |rj|2 ≤ n, we obtain

|βj,t(z)| =|1− r?jD
−1
t (z)rj| ≤ 1 + |rj|2||D−1t (z)||

.1 + |rj|2 + n3I{||Bn,t|| ≥ ηr,t or λmin(Bn,t) ≤ ηl,t}. (B.36)

It is easy to see that the inequality (9.10.6) in Bai and Silverstein (2010) also holds for βj,t(z)

and by the same arguments following (9.10.6), we obtain

|bj,t(z)| ≤ K. (B.37)

Similarly to these bounds, using (B.22) in Lemma B.4 for the matrix D−1j,t (z), we get for any

m ≥ 1

|γj,t(z)| =|r?jD−1j,t (z)rj − n−1E[tr TnD
−1
j,t (z)]| . |rj|2||D−1j,t (z)||+ E||D−1j,t (z)||

.|rj|2 + |rj|2nε−1n I{||B(−j)
n,t || ≥ ηr,t or λmin(B

(−j)
n,t ) ≤ ηl,t}

+ |rj|2nε−1n P{||B(−j)
n,t || ≥ ηr,t or λmin(B

(−j)
n,t ) ≤ ηl,t}

≤|rj|2 + n3I{||B(−j)
n,t || ≥ ηr,t or λmin(B

(−j)
n,t ) ≤ ηl,t}+ o

(
n−m

)
,

where we used the fact that for any m > 0

P{||B(−j)
n,t2 || ≥ ηr,t2 or λmin(B

(−j)
n,t2 ) ≤ ηl,t2} = o

(
n−m

)
,

P{||Bn,t2|| ≥ ηr,t2 or λmin(Bn,t2) ≤ ηl,t2} = o
(
n−m

)
(B.38)

and the notation

B
(−j)
n,t = Bn,t − rjr

?
j .

Using (B.31) and (B.32), we can also bound

E
∣∣∣|rj|2γj,t(z)

∣∣∣4+δ =E|r?jrjγj,t(z)|4+δ . E|
(
r?jrj − n−1 tr Tn

)
γj,t(z)|4+δ + E|n−1 tr(Tn)γj,t(z)|4+δ

≤
(
E|r?jrj − n−1 tr Tn|8+2δE|γj,t(z)|8+2δ

) 1
2 + E|γj,t(z)|4+δ . n−(2+δ/2).
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By induction, one can show for some q ∈ N0 and δ ≥ 0

E
∣∣∣|rj|2qγj,t(z)

∣∣∣4+δ . n−(2+δ/2). (B.39)

Combining these inequalities, we conclude

E
∣∣βj,t2(z)bj,t2(z)r?jD

−2
j,t2

(z)rjγj,t2(z)
∣∣4+δ

.E
∣∣∣(1 + |rj|2 + n3I{||Bn,t2|| ≥ ηr,t2 or λmin(Bn,t2) ≤ ηl,t2}

)
|rj|2

×
(

1 + n2I{||B(−j)
n,t2 || ≥ ηr,t2 or λmin(B

(−j)
n,t2 ) ≤ ηl,t2}

)2
γj,t2(z)

∣∣∣4+δ. (B.40)

The expectation in (B.40) can now be estimated by multiplying these terms out and using the

inequalities (B.37) and (B.38).

Thus, we conclude that

E
∣∣βj,t2(z)bj,t2(z)r?jD

−2
j,t2

(z)rjγj,t2(z)
∣∣4+δ . n−(2+δ/2).

Step 2: Analysis of M1
n(z1, t)−M1

n(z2, t)

Before investigating the term Z1
n in the decomposition (B.29), we show that (B.26) holds true

in a similar fashion to the considerations above. We write for z1, z2 ∈ Cn, t ∈ [t0, 1]

M1
n(z1, t)−M1

n(z2, t) =

bntc∑
j=1

(Ej − Ej−1) tr
(
D−1t (z1)−D−1t (z2)

)
=

bntc∑
j=1

(Ej − Ej−1)(z1 − z2) tr D−1t (z1)D
−1
t (z2)

= Gn1 +Gn2 +Gn3,

where

Gn1 = (z1 − z2)
bntc∑
j=1

(Ej − Ej−1)βj,t(z1)βj,t(z2)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2
,

Gn2 = −(z1 − z2)
bntc∑
j=1

(Ej − Ej−1)βj,t(z1)r?jD−2j,t (z1)D
−1
j,t (z2)rj,

Gn3 = −(z1 − z2)
bntc∑
j=1

(Ej − Ej−1)βj,t(z2)r?jD−2j,t (z2)D
−1
j,t (z1)rj.
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The terms Gn2 and Gn3 can be estimated using similar arguments as given in the proof of

(B.28). More precisely, we obtain for the second term

E|Gn2|2+δ . |z1 − z2|2+δ,

and a similar inequality holds for the third term. For the first summand, we have

Gn1 = Gn11 +Gn12 +Gn13,

where

Gn11 =(z1 − z2)
bntc∑
j=1

(Ej − Ej−1)bj,t(z1)bj,t(z2)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2
,

Gn12 =− (z1 − z2)
bntc∑
j=1

(Ej − Ej−1)bj,t(z2)βj,t(z1)βj,t(z2)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2
γj,t(z2),

Gn13 =− (z1 − z2)
bntc∑
j=1

(Ej − Ej−1)bj,t(z1)bj,t(z2)βj,t(z1)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2
γj,t(z1).

Here, the terms Gn12 and Gn13 can be treated by similar arguments as in the derivation of

(B.34) using Lemma 2.1 in Li (2003), which gives for l ∈ {1, 2}

E|Gn1l|2+δ . |z1 − z2|2+δ.

Therefore, it remains to investigate the term Gn11:

E|Gn11|2+δ .|z1 − z2|2+δnδ/2
bntc∑
j=1

E
∣∣∣(Ej − Ej−1)bj,t(z1)bj,t(z2)

(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2∣∣∣2+δ .
We obtain for the summands in E|Gn11|2+δ observing (B.37)

E
∣∣∣(Ej − Ej−1)bj,t(z1)bj,t(z2)

(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2∣∣∣2+δ
.E

∣∣∣(Ej − Ej−1)
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

)2∣∣∣2+δ
=E

∣∣∣(Ej − Ej−1)
[(

r?jD
−1
j,t (z1)D

−1
j,t (z2)rj

)2 − (n−1 tr TnD
−1
j,t (z1)D

−1
j,t (z2)

)2]∣∣∣2+δ
=E
∣∣∣(Ej − Ej−1)

[ (
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj − n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

)
×
(
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj + n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

) ]∣∣∣2+δ

61



.E
∣∣∣(Ej − Ej−1)

[ (
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj − n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

)
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj

]∣∣∣2+δ
+E
∣∣∣(Ej − Ej−1)

[ (
r?jD

−1
j,t (z1)D

−1
j,t (z2)rj − n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

)
n−1 tr TnD

−1
j,t (z1)D

−1
j,t (z2)

]∣∣∣2+δ
.n−(1+δ/2),

where we used Lemma B.6 with q = 2 + δ and m = 1 and Lemma B.4 for the last inequality.

These considerations show that (B.26) holds true.

Step 3: Analysis of Z1
n

Next, we show the estimate (B.27) for the term Z1
n. Doing so, we will need condition (B.30) on

the moments of xij. For the following calculation, we will write βt instead of βt(z), D−1t instead

of D−1t (z) and further omit the z-argument for similar quantities. We have for j ≤ bnt1c

βj,t2r
?
jD
−2
j,t2

rj − βj,t1r?jD−2j,t1rj = (βj,t2 − βj,t1)r?jD−2j,t2rj + βj,t1r
?
j

(
D−2j,t2 −D−2j,t1

)
rj

=(βj,t2 − βj,t1)r?jD−2j,t2rj + βj,t1r
?
j

(
D−1j,t2 −D−1j,t1

)
D−1j,t1rj + βj,t1r

?
jD
−1
j,t2

(
D−1j,t2 −D−1j,t1

)
rj

=
(
r?jD

−1
t1

rj − r?jD
−1
t2

rj
)
r?jD

−2
j,t2

rj − βj,t1r?jD−1j,t1
( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1j,t2D

−1
j,t1

rj

− βj,t1r?jD−1j,t2D
−1
j,t1

( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1j,t2rj

=r?jD
−1
t2

( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1t1 rjr

?
jD
−2
j,t2

rj − βj,t1r?jD−1j,t1
( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1j,t2D

−1
j,t1

rj

− βj,t1r?jD−1j,t2D
−1
j,t1

( bnt2c∑
k=bnt1c+1

rkr
?
k

)
D−1j,t2rj

=

bnt2c∑
k=bnt1c+1

{
r?jD

−1
t2

rkr
?
kD
−1
t1

rjr
?
jD
−2
j,t2

rj − βj,t1r?jD−1j,t1rkr
?
kD
−1
j,t2

D−1j,t1rj − βj,t1r
?
jD
−1
j,t2

D−1j,t1rkr
?
kD
−1
j,t2

rj

}
.

Hence, using the identity (B.33), we obtain the representation

Z1
n(z, t1, t2)

=

bnt1c∑
j=1

bnt2c∑
k=bnt1c+1

(Ej − Ej−1)
{
− βj,t1r?jD−1j,t1rkr

?
kD
−1
j,t2

D−1j,t1rj − βj,t1r
?
jD
−1
j,t2

D−1j,t1rkr
?
kD
−1
j,t2

rj

+ r?jD
−1
j,t2

rkr
?
kD
−1
j,t1

rjr
?
jD
−2
j,t2

rj − βj,t1r?jD−1j,t2rkr
?
kD
−1
j,t1

rjr
?
jD
−1
j,t1

rjr
?
jD
−2
j,t2

rj

− βj,t2r?jD−1j,t2rjr
?
jD
−1
j,t2

rkr
?
kD
−1
j,t1

rjr
?
jD
−2
j,t2

rj + βj,t1βj,t2r
?
jD
−1
j,t2

rjr
?
jD
−1
j,t2

rkr
?
kD
−1
j,t1

rjr
?
jD
−1
j,t1

rjr
?
jD
−2
j,t2

rj

}
.
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We use the substitutions

D−1j,t2 = D−1k,j,t2 − βk,j,t2D
−1
k,j,t2

rkr
?
kD
−1
k,j,t2

(B.41)

and

βj,t = bj,t − bj,tβj,tγj,t, βk,j,t2 = bk,j,t2 − bk,j,t2βk,j,t2γk,j,t2 ,

where γk,j,t(z) = r?kD
−1
k,j,t(z)rk − n−1E[tr TnD

−1
k,j,t(z)]. This yields the representation

Z1
n(z, t1, t2) =

∑ bnt1c∑
j=1

bnt2c∑
k=bnt1c+1

(Ej − Ej−1)Tj,k.

Here, the first sum corresponds to the summation with respect to a finite number of different

terms Tj,k, which are of the form

q∏
l1=1

(
r?jAl1

( ql1∏
l2=1

rkr
?
kBl1,l2

)
rj

)
,

(βj,t1γj,t1)
X1 (βj,t2γj,t2)

X2

q∏
l1=1

(
r?jAl1

( ql1∏
l2=1

rkr
?
kBl1,l2

)
rj

)
,

(βk,j,t2γk,j,t2)
X

q∏
l1=1

(
r?jAl1

( ql1∏
l2=1

rkr
?
kBl1,l2

)
rj

)
,

(βk,j,t2γk,j,t2)
X (βj,t1γj,t1)

X1 (βj,t2γj,t2)
X2

q∏
l1=1

(
r?jAl1

( ql1∏
l2=1

rkr
?
kBl1,l2

)
rj

)
.

Here, q ∈ N, ql1 ∈ N0, l1 ∈ {1, . . . , q}, there exists an index l1 ∈ {1, . . . , q} such that ql1 ≥ 1, and

the matrices Al1 and Bl1,l2 are products of the matrices D−1j,t1 ,D
−1
k,j,t2

and Tn for l2 ∈ {1, . . . , ql1},
l1 ∈ {1, . . . , q} and of the deterministic scalars bj,t1 , bj,t2 , bk,j,t2 . We assume that X ∈ N and

that one of the exponents X1 ∈ N0 and X2 ∈ N0 is positive, that is, X1 +X2 ≥ 1. Since, again

by Lemma 2.1 in Li (2003),

E|Z1
n(z, t1, t2)|4 = E

∣∣∣∑ bnt1c∑
j=1

bnt2c∑
k=bnt1c+1

(Ej − Ej−1)Tj,k
∣∣∣4 . n

∑ bnt1c∑
j=1

E
∣∣∣ bnt2c∑
k=bnt1c+1

(Ej − Ej−1)Tj,k
∣∣∣4,

in order to prove (B.27), it suffices to show that for j ∈ {1, . . . , bnt1c} and k ∈ {bnt1c +

1, . . . , bnt2c}

E |(Ej − Ej−1)Tj,k|4 . n−6.
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In order to derive this estimate, we note that we can ignore the deterministic and bounded

terms bj,t1 , bj,t2 , bk,j,t2 and denote by Al, l ∈ N, a p × p (random) matrix which is a product of

D−1j,t1 ,D
−1
k,j,t2

and Tn. For the sake of brevity, we only consider terms of the type

R1 =E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2rkr

?
kA3rjγj,t1|4, (B.42)

R2 =E|(Ej − Ej−1)r?jA1rkr
?
kA2rkr

?
kA3rj|4, (B.43)

R3 =E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rjγj,t2|4, (B.44)

R4 =E|(Ej − Ej−1)βk,j,t2r?jA1rkr
?
kA2rkr

?
kA3rjγk,j,t2|4, (B.45)

R5 =E|(Ej − Ej−1)βk,j,t2βj,t2r?jA1rkr
?
kA2rkr

?
kA3rjγk,j,t2γj,t2|4. (B.46)

For further investigations, we observe that

(Ej − Ej−1) tr
( q1∏
l=1

rkr
?
kAl

)
= 0, (B.47)

since rkr
?
kAl, l ∈ {1, . . . , q1} does not depend on rj. In order to estimate the term in (B.42),

we note that due to independence

E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2

(
rkr

?
kA3 − n−1TnA3

)
rjγj,t1|4 = 0,

so that we obtain, using similar arguments as in the derivation of (B.34), in particular the

bound in (B.39),

R1 .E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2

(
rkr

?
kA3 − n−1TnA3

)
rjγj,t1|4

+ n−4E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2TnA3rjγj,t1|4

=n−4E|(Ej − Ej−1)βj,t1r?jA1rjr
?
jA2TnA3rjγj,t1|4 . n−6.

For (B.43), we have using Lemma B.6 and (B.47)

R2 =E
∣∣∣(Ej − Ej−1)

[
r?jA1rkr

?
kA2rkr

?
kA3rj − n−1 tr TnA1rkr

?
kA2rkr

?
kA3

]∣∣∣4
.E
∣∣∣(Ej − Ej−1)

[
r?jA1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3rj

− n−1 tr TnA1rk
(
r?kA2rk − n−1 tr TnA2

)
r?kA3

]∣∣∣4
+ E

∣∣∣(Ej − Ej−1)
[
r?jA1rk

(
n−1 tr TnA2

)
r?kA3rj − n−1 tr TnA1rk

(
n−1 tr TnA2

)
r?kA3

]∣∣∣4
=E
∣∣∣(Ej − Ej−1)

[
r?jA1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3rj

− n−1 tr TnA1rk
(
r?kA2rk − n−1 tr TnA2

)
r?kA3

]∣∣∣4
+ n−4E

∣∣∣(Ej − Ej−1)
[
r?jA1Tn

(
n−1 tr TnA2

)
A3rj − n−1 tr TnA1Tn

(
n−1 tr TnA2

)
A3

]∣∣∣4
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.n−4E
(
tr
(
A1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3

) (
A1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3

)?)2
+ n−6

=n−4E
(

tr
(
A1rk

(
r?kA2rk − n−1 tr TnA2

)
r?kA3

) (
A?

3rk(r
?
kA2rk − n−1 tr TnA2)r

?
kA

?
1

))2
+ n−6

=n−4E|
(
r?kA2rk − n−1 tr TnA2

)2
r?kA3A

?
3rkr

?
kA

?
1A1rk|2 + n−6

.n−6.

Next, we have for the term R4 defined in (B.45) by similar arguments as in the derivation of

(B.34)

R4 =E|(Ej − Ej−1)βk,j,t2{r?jA1rkr
?
kA2rkr

?
kA3rj − n−1 tr TnA1rkr

?
kA2rkr

?
kA3}γk,j,t2|4

.n−4E
[

(tr (A1rkr
?
kA2rkr

?
kA3) (A1rkr

?
kA2rkr

?
kA3)

?)
2 |βk,j,t2γk,j,t2|4

]
.n−6,

where we used the bound in Lemma B.6 and the fact that rj is independent of γk,j,t2 and βk,j,t2 .

Concerning the term R3 in (B.44), we first decompose using (B.41)

γj,t2(z) =γj,k,t2(z)−
(
βk,j,t2(z)r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1E
[
βk,j,t2(z) tr TnD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)]

=γj,k,t2(z)− βk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)

− n−1
(
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rk − E
[
βk,j,t2(z) tr TnD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
])

=γj,k,t2(z)− βk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)

− n−1bk,j,t2(z)
(
r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rk − n−1E
[
tr TnD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)
])

+ n−1bk,j,t2(z)
(
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)

− E
[
βk,j,t2(z) tr TnD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)γk,j,t2(z)
] )

=γj,k,t2(z)− βk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)

− n−1bk,j,t2(z)γ̃k,j,t2(z) + n−1bk,j,t2(z)
(
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)

− E
[
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)
] )

=γj,k,t2(z)− bk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)

+ bk,j,t2(z)βk,j,t2(z)
(
r?jD

−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)rj − n−1 tr TnD
−1
k,j,t2

(z)rkr
?
kD
−1
k,j,t2

(z)
)
γk,j,t2(z)

− n−1bk,j,t2(z)γ̃k,j,t2(z) + n−1bk,j,t2(z)
(
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)

− E
[
βk,j,t2(z)r?kD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rkγk,j,t2(z)
] )
,

where

γ̃k,j,t2(z) = r?kD
−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)rk − n−1E
[
tr TnD

−1
k,j,t2

(z)TnD
−1
k,j,t2

(z)
]
.
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Thus, we conclude for (B.44), using the notations A3 = D−1k,j,t2 and A4 = D−1k,j,t2TnD
−1
k,j,t2

and

the fact that bk,j,t2 is deterministic and bounded,

R3 .E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rjγj,k,t2|4

+ E|(Ej − Ej−1)βj,t2bk,j,t2r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4

+ E|(Ej − Ej−1)βj,t2βk,j,t2bk,j,t2r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
γk,j,t2 |4

+ n−4E|(Ej − Ej−1)βj,t2bk,j,t2r?jA1rkr
?
kA2rj γ̃k,j,t2 |4

+ n−4E|(Ej − Ej−1)βj,t2βk,j,t2bk,j,t2r?jA1rkr
?
kA2rjr

?
kA4rkγk,j,t2|4

+ n−4E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rj|4E|βk,j,t2bk,j,t2r?kA4rkγk,j,t2|4

.R31 +R32 +R33 + n−6,

where

R31 =E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rjγj,k,t2|4, (B.48)

R32 =E|(Ej − Ej−1)βj,t2r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4,

R33 =E|(Ej − Ej−1)βj,t2βk,j,t2r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
γk,j,t2|4

(B.49)

and we used an analogue of the estimate (B.39) for the terms γk,j,t2 and γ̃k,j,t2 in the last step.

The term R31 in (B.48) can be bounded using the bounds in (B.35), (B.36) and (B.38) as

follows:

R31 . R311 +R312 + o
(
n−l
)
,

where

R311 =E|r?jA1rkr
?
kA2rjγj,k,t2 |4,

R312 =E|r?jrjr?jA1rkr
?
kA2rjγj,k,t2|4.

Since R312 can be handled similarly to R311, we only consider R311 and obtain by Lemma B.6

R311 .E|
(
r?kA2rjr

?
jA1rk − n−1 tr TnA2rjr

?
jA1

)
γj,k,t2|4 + n−4E|r?jA1TnA2rjγj,k,t2|4

.n−6 + n−4E
[
|γj,k,t2|4

(
tr
(
A2rjr

?
jA1

) (
A2rjr

?
jA1

)?)2]
≤n−6.

Note that the term R33 defined in (B.49) can be bounded similarly. Similarly to R31 given in

(B.48) we bound |βj,t2| and get

R32 . R321 +R322 + o
(
n−l
)
,
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where

R321 =E|r?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4,

R322 =E|r?jrjr?jA1rkr
?
kA2rj

(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4.

For the sake of brevity, we shall limit ourselves to investigating the summand R321.

R321 .E|
(
r?kA2rjr

?
jA1rk − n−1 tr TnA2rjr

?
jA1

) (
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4

+ n−4E|r?jA1TnA2rj
(
r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3

)
|4

.n−6 +
(
E|r?kA2rjr

?
jA1rk − n−1 tr TnA2rjr

?
jA1|8E|r?jA3rkr

?
kA3rj − n−1 tr TnA3rkr

?
kA3|8

) 1
2

.n−6.

Finally, invoking Lemma B.6 and (B.39), we can show for the term R5 defined in (B.46) that

R5 . R51 +R52,

where

R51 =E|βk,j,t2βj,t2
(
r?jA1rkr

?
kA2rkr

?
kA3rj − n−1 tr TnA1rkr

?
kA2rkr

?
kA3

)
γk,j,t2γj,t2|4

≤
(
E|r?jA1rkr

?
kA2rkr

?
kA3rj − n−1 tr TnA1rkr

?
kA2rkr

?
kA3|8E|βk,j,t2βj,t2γk,j,t2γj,t2|8

) 1
2 . n−6,

R52 =n−4E|βk,j,t2βj,t2r?kA2rkr
?
kA3TnA1rkγk,j,t2γj,t2|4 . n−6.

Thus, the moment inequalities (B.26), (B.27) and (B.28) for M1
n hold true.

For the proof of Lemma 4.2, we need the following identity, which can be proved similarly to

(5.2) in Bai and Silverstein (1998).

Lemma B.7.

yn

∫
dHn(λ)

1 + λ bntc
n
E[s̃n,t(z)]

+ zynE[s̃n,t(z)]

=
1

n

bntc∑
j=1

E
{
βj,t(z)

[
r?jD

−1
j,t (z)

(bntc
n

E[s̃n,t(z)]Tn − I
)−1

rj

− 1

n
tr
(bntc

n
E[s̃n,t(z)]Tn − I

)−1
TnE[D−1t (z)]

]}
Lemma B.8. For any bounded subset S ⊂ C+, we have

inf
z∈S,t∈[t0,1]

|s̃t(z)| > 0.
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Proof of Lemma B.8. Let us assume that the assertion does not hold. In this case, there exists

sequences (zn)n∈N in S and (tn)n∈N in [t0, 1] with the property

lim
n→∞

s̃tn(zn) = 0.

By choosing approriate subsequences, we assume without loss of generality that (zn)n∈N con-

verges to limit in the closure of S and (tn)n∈N converges to a limit in [t0, 1]. From (2.5), we

conclude

lim
n→∞

y

∫
λs̃tn(zn)

1 + λtns̃tn(zn)
dH(λ) = 1.

But, using the fact that H is compactly supported, we see that the expression above tends to

0. Thus, we get a contradiction.

Lemma B.9. In the real case, it holds for i 6= l (i, l ∈ {1, . . . , n} \ {j})

sup
z∈Cn,
t∈[t0,1]

∣∣∣E[ tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
βl,i,j,t(z)D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

× βi,l,j,t(z)D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

) ]∣∣∣ (B.50)

=o
(
n−1
)
.

Proof of Lemma B.9. Denoting

γ̂i,l,j,t(z) =r?iD
−1
i,l,j,t(z)ri − n−1 tr TnD

−1
i,l,j,t(z),

β
2

i,j,l,t(z) =
1

1 + n−1 tr TnD
−1
i,l,j,t(z)

,

we use the representation

βj,t(z) = βj,t(z)− β2

j,t(z)γ̂j,t(z) + β
2

j,t(z)βj,t(z)γ̂2j,t(z), (B.51)

in order to replace βl,i,j,t(z) and βi,l,j,t(z). Note that E[||D−1l,i,j,t(z)||] ≤ K and || (ts̃t(z)Tn + I)−1 || ≤
K which follows from Lemma B.4 and Proposition B.1. By applying the triangle inequality,

this gives us several summands for the mean in (B.50). More precisely, we can write∣∣∣E[ tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
βl,i,j,t(z)D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

× βi,l,j,t(z)D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

) ]∣∣∣
≤
∑
ζ1,ζ2

|E[T (ζ1, ζ2)]|,
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where T (ζ1, ζ2) has the following form

tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
ζ1D

−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

× ζ2D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

)
,

and

ζ1 ∈ {βl,i,j,t(z),−β2

l,i,j,t(z)γ̂l,i,j,t(z), βl,i,j,t(z)β
2

l,i,j,t(z)γ̂2l,i,j,t(z)},

ζ2 ∈ {βi,l,j,t(z),−βi,l,j,t(z)2γ̂i,l,j,t(z), βi,l,j,t(z)β
2

i,l,j,t(z)γ̂2i,l,j,t(z)}.

The assertion now follows, if we show that for all ζ1, ζ2

|E[T (ζ1, ζ2)]| = o
(
n−1
)
. (B.52)

In the following, we restrict ourselves to three different cases noting that the remaining cases

can be handled similarly.

To begin with, let ζ1 = βl,i,j,t(z) and ζ2 = βi,l,j,t(z). In this case, we have

|E[T (ζ1, ζ2)]|

≤K
∣∣∣E tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 Tn

×D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

) ∣∣∣
≤K

∣∣∣E tr (ts̃t(z)Tn + I)−2 Tnrir
?
iD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)rlr

?
l

∣∣∣
+Kn−1

∣∣∣E tr (ts̃t(z)Tn + I)−2 T2
nD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)rlr

?
l

∣∣∣
+Kn−1

∣∣∣E tr (ts̃t(z)Tn + I)−2 Tnrir
?
iD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)Tn

∣∣∣
+Kn−2

∣∣∣E tr (ts̃t(z)Tn + I)−2 T2
nD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)Tn

∣∣∣
=K(T1 + T2 + T3) + o

(
n−1
)
,

where

T1 =
∣∣∣E [r?iD−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)rlr

?
l (ts̃t(z)Tn + I)−2 Tnri

] ∣∣∣,
T2 =n−1

∣∣∣E tr (ts̃t(z)Tn + I)−2 T2
nD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)rlr

?
l

∣∣∣,
T3 =n−1

∣∣∣E tr (ts̃t(z)Tn + I)−2 Tnrir
?
iD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)rir

?
iD
−1
i,l,j,t(z)Tn

∣∣∣.
For the first summand, we obtain using (9.8.6) in Bai and Silverstein (2010) for the real case

T1 ≤
∣∣∣E[{r?iD−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)ri

− n−1 tr TnD
−1
l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)

}
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×
{
r?iD

−1
i,l,j,t(z)rlr

?
l (ts̃t(z)Tn + I)−2 Tnri − n−1 tr TnD

−1
i,l,j,t(z)rlr

?
l (ts̃t(z)Tn + I)−2 Tn

}]∣∣∣+ o
(
n−1
)

=o
(
n−1
)
.

With similar ideas, it can be shown that T2 = o (n−1) and T3 = o (n−1) and that (B.52) holds

true in the case ζ1 = βl,i,j,t(z) and ζ2 = −β2

i,l,j,t(z)γ̂i,l,j,t(z).

Finally, we consider the case ζ1 = −β2

l,i,j,t(z)γ̂l,i,j,t(z) and ζ2 = −β2

i,l,j,t(z)γ̂i,l,j,t(z). Note that

βi,l,j,t(z) = βl,i,j,t(z). We obtain (B.52), that is,

|E[T (ζ1, ζ2)]|

=
∣∣∣E[β4

i,j,l,t(z) tr (ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
D−1l,i,j,t(z)rlr

?
lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 Tnγ̂l,i,j,t(z)

×D−1i,l,j,t(z)rir
?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

)
γ̂i,l,j,t(z)

]∣∣∣
≤E

1
2 |E1|2E

1
4 |E2|4E

1
4 |E3|4 = o

(
n−1
)
,

if

E
1
2 |E1|2 ≤ Kn−1, (B.53)

E
1
4 |E2|4 ≤ K, (B.54)

E
1
4 |E3|4 = o(1), (B.55)

where

E1 =β
4

i,j,l,t(z)γ̂i,l,j,t(z)γ̂l,i,j,t(z),

E2 =r?lD
−1
l,i,j,t(z) (ts̃t(z)Tn + I)−1 TnD

−1
i,l,j,t(z)ri,

E3 = tr
{

(ts̃t(z)Tn + I)−2 Tn

(
rir

?
i − n−1Tn

)
D−1l,i,j,t(z)rlr

?
iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

)}
.

We begin with a proof of (B.53). Note that γ̂l,i,j,t(z) is independent of ri and βi,j,l,t(z) is

independent of ri and rj. Using (9.9.6) in Bai and Silverstein (2010) twice, we obtain

E|E1|2 ≤ Kn−2,

which proves (B.53). The estimate (B.54) can be proven similarly to Bai and Silverstein (2010),

p. 290.

Finally, we will prove that (B.55) holds true. We obtain

E3 =r?iD
−1
i,l,j,t(z)

(
rlr

?
l − n−1Tn

)
(ts̃t(z)T + I)−2 T

(
rir

?
i − n−1T

)
D−1l,i,j,t(z)rl

=E31 + E32 + E33 + E34,
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where

E31 =r?iD
−1
i,l,j,t(z)rlr

?
l (ts̃t(z)T + I)−2 Trir

?
iD
−1
l,i,j,t(z)rl

E32 =− n−1r?iD−1i,l,j,t(z)rlr
?
l (ts̃t(z)T + I)−2 T2D−1l,i,j,t(z)rl,

E33 =− n−1r?iD−1i,l,j,t(z)Tn (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)rl,

E34 =n−2r?iD
−1
i,l,j,t(z)Tn (ts̃t(z)T + I)−2 T2D−1l,i,j,t(z)rl.

For k ∈ {2, 3, 4}, it holds

E|E3k|4 = o(1).

For the first summand, we conclude

E|E31|4 ≤KE
1
2

∣∣∣r?l (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)rl

∣∣∣8
≤KE

1
2

∣∣∣r?l (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)rl − n−1 tr T (ts̃t(z)T + I)−2 Trir

?
iD
−1
l,i,j,t(z)

∣∣∣8
+KE

1
2

∣∣∣n−1 tr T (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)

∣∣∣8
≤KE

1
2

∣∣∣r?l (ts̃t(z)T + I)−2 Trir
?
iD
−1
l,i,j,t(z)rl − n−1 tr T (ts̃t(z)T + I)−2 Trir

?
iD
−1
l,i,j,t(z)

∣∣∣8
+Kn−4

≤Kn−
1
2 +Kn−4 = o(1),

which proves (B.55). Hence, the proof of Lemma B.9 is finished.

Lemma B.10. It holds for sufficiently large N ∈ N

inf
n≥N

inf
z∈Cn,
t∈[t0,1]

(Im(z) + Im(Rn,t(z))) ≥ 0.

Proof of Lemma B.10. We start by investigating real and imaginary part of 1/E[s̃n,t(z)]. As a

preparation for the latter, one can show similarly to Lemma B.8 that Re(s̃t(z)) is uniformly

bounded away from 0. Thus, due to Theorem 4.5, we also have for some sufficiently large

N ∈ N

inf
n≥N

inf
z∈Cn,
t∈[t0,1]

|ReE[s̃n,t(z)]| > 0 and inf
n≥N

inf
z∈Cn,
t∈[t0,1]

|E[s̃n,t(z)]| > 0.

Using also |E[s̃n,t(z)]| ≤ 1/ Im(z), this implies for the real part of the inverse for some K1 > 0

Re
(
E[s̃n,t(z)]

)−1
=

Re
(
E[s̃n,t(z)]

)
|E[s̃n,t(z)]|2

≥ K1 Im2(z).
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For the imaginary part, we conclude for some K2 > 0

Im
(
E[s̃n,t(z)]

)−1
=
− Im

(
E[s̃n,t(z)]

)
|E[s̃n,t(z)]|2

=
1

|E[s̃n,t(z)]|2
Im
(∫ −1

λ− z
dFBn,t(λ)

)
=

1

|E[s̃n,t(z)]|2

∫
− Im(z)

|z − λ|2
dFBn,t(λ) ≥ KE

∫
− Im(z)

|λ− z|2
dFBn,t(λ)

≥−K2 Im(z).

By definition of Rn,t(z), we have for all n ≥ N

Im(Rn,t(z)) =ybntcbntc−1
bntc∑
j=1

Im
(
E[βj,t(z)dj,t(z)]

(
E[s̃n,t(z)]

)−1)

=ybntcbntc−1
bntc∑
j=1

Im (E[βj,t(z)dj,t(z)]) Re
(
E[s̃n,t(z)]

)−1
+ ybntcbntc−1

bntc∑
j=1

Re (E[βj,t(z)dj,t(z)]) Im
(
E[s̃n,t(z)]

)−1
≥K1 Im2(z)bntc−1 Im

(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)

−K2 Im(z)bntc−1 Re
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
,

which implies that

Im(Rn,t(z)) + Im(z)

≥ Im(z) +K1 Im2(z)bntc−1 Im
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
−K2 Im(z)bntc−1 Re

(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)

≥ Im(z)
{

1 +K1 Im(z)bntc−1 Im
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
−K2bntc−1 Re

(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)}
.

The real and imaginary part of βj,t(z)dj,t(z) might be negative, but, due to (4.29), we have for

some N ∈ N

sup
n≥N

sup
z∈Cn,
t∈[t0,1]

∣∣∣K1 Im(z)bntc−1 Im
(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)
−K2bntc−1 Re

(
ybntc

bntc∑
j=1

E[βj,t(z)dj,t(z)]
)∣∣∣ < 1
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Thus, we conclude that

inf
n≥N

inf
z∈Cn,
t∈[t0,1]

(Im(z) + Im(Rn,t(z))) ≥ 0.

C Details for the proof of Theorem 3.1

C.1 How to calculate mean and covariance in Theorem 2.1

The following result provides essential formulas for the calculation of the mean and covariance

structure in Theorem 2.1 in the case Tn = I. It generalizes the formulas given in Proposition

A.1 in Wang and Yao (2013) and Proposition 3.6 in Yao et al. (2015).

Proposition C.1. Let ht =
√
yt ∈ (0,∞) and Tn = I and let f1 and f2 be functions which

are analytic on an open region containing the interval in (2.9). For the random variable(
X(f1, t1), X(f2, t)

)
t∈[t0,1]

given in Theorem 2.1, we have the following formulas

E[X(fi, t)] =
1

2πi
lim
r↘1

∮
|ξ|=1

f(t(1 + htrξ + htr
−1ξ−1 + h2t ))

( ξ

ξ2 − r−2
− 1

ξ

)
dξ,

cov(X(f1, t1), X(f2, t2)) =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

f1(t1(1 + ht1r1ξ1 + ht1r
−1
1 ξ−11 + h2t1))

× f2(t2(1 + ht2r2ξ
−1
2 + ht2r

−1
2 ξ2 + h2t2))

g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1

where t, t1, t2 ∈ [t0, 1] with t2 ≤ t1

g1(ξ1, ξ2) =−
(
h1h2r1r2

{
h42r

2
1r

2
2t

2
2ξ

2
1ξ

2
2 + 2h32r

2
1r2t2ξ

2
1ξ2(r

2
2t1 + t2ξ

2
2)

− 2h1h2r1r2t1ξ1ξ2(r
2
2t1(2 + h1r1ξ1) + r1t2ξ1(h1 + 2r1ξ1)ξ

2
2

}
+ h21t1ξ

2
2

{
r22t1(1 + 2h1r1ξ1 + 3r21ξ

2
1 + h21r

2
1ξ

2
1 + 2h1r

3
1ξ

3
1) + r21t2ξ

2
1 (−1 + r21ξ

2
1)ξ22

}
+ h22

{
r42t

2
1 − r22t1t2(1 + 2h1r1ξ1 − 3r21ξ

2
1 + 2h21r

2
1ξ

2
1 + 2h1r

3
1ξ

3
1)ξ22 + r21t

2
2ξ

2
1ξ

4
2

})
,

g2(ξ1, ξ2) =
(
h2r2 − h1r1ξ1ξ2

)2(
h22r1r2t2ξ1ξ2 − h1r2t1(1 + h1r1ξ1 + r21ξ

2
1)ξ2 + h2r1ξ1(r

2
2t1 + t2ξ

2
2)
)2
.

In the complex case, we have E[X(fi, t)] = 0, i = 1, 2, and the covariance structure is given by

1/2 times the covariance structure for the real case.

Proof of Proposition C.1. If suffices to consider the real case. Since H = δ{1}, we obtain from
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Theorem 2.1 for i ∈ {1, 2}

E[X(fi, t)] =− 1

2πi

∮
C

fi(z)
ty

s̃3t (z)

(ts̃t(z)+1)3(
1− ty s̃2t (z)

(ts̃t(z)+1)2

)2dz
cov(X(f1, t1), X(f2, t2)) =

1

2π2

∮
C1

∮
C2
f1(z1)f2(z2)σ

2
t1,t2

(z1, z2)dz2dz1,

where the contours C, C1, C2 enclose the interval given in (2.9) and C1 and C2 are assumed to be

non-overlapping.

Step 1: Specifying the contours

We claim that it suffices for C = Ct to enclose the interval
[
t(1−√yt)2, t(1 +

√
yt)

2
]

and we

will prove this assertion in a first step. Similar arguments hold true for contours C1 = C1,t1 and

C2 = C2,t2 .

The assertion is clear in the case yt < 1. In the case yt > 1, the transformed Marčenko-Pastur

distribution F̃ ybntc has a discrete part at the origin for sufficiently large n. A priori, the contour

should enclose the whole support of F̃ yt , including the origin. However, by the exact separation

theorem in Bai and Silverstein (1999), we see that the mass at 0 of the spectral distribution

FBn,t coincides with that of F̃ ybntc for sufficiently large n. Thus, we can restrict the integration

in (2.6) to the interval
[
t(1−√yt)2, t(1 +

√
yt)

2
]

and neglect the discrete part at the origin.

Step 2: Calculation of the mean

For calculation of the mean, we use a change of variables

z(ξ) = z = t(1 + htrξ + htr
−1ξ−1 + h2t ),

where r > 1 is close to 1 and |ξ| = 1. It can be checked that when ξ runs anticlockwise on

the unit circle, z will run a contour C enclosing the interval [t(1 − ht)2, t(1 + ht)
2]. Using the

identity (2.5), we have for z ∈ C

s̃t(z) = − 1

t(1 + htrξ)
,

s̃t(z)

ts̃t(z) + 1
= − 1

thtrξ
, dz = tht(r − r−1ξ−2)dξ.

Thus, we can write for i ∈ {1, 2}

E[X(fi, t)] = lim
r↘1

1

2πi

∮
|ξ|=1

fi(z(ξ))t2h2t

(
1

thtrξ

)3(
1− t2h2t

(
1

thtrξ

)2)2 tht (r − r−1ξ−2) dξ
= lim

r↘1

t

2πi

∮
|ξ|=1

fi(z(ξ))
r−2

ξt(ξ2 − r−2)
dξ

= − lim
r↘1

t

2πi

∮
|ξ|=1

fi (z(ξ))
( 1

ξt
− ξ

t(ξ2 − r−2)
)
dξ
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= lim
r↘1

1

2πi

∮
|ξ|=1

fi (z(ξ))
( ξ

(ξ2 − r−2)
− 1

ξ

)
dξ.

Step 3: Calculation of the covariance function

In order to calculate the covariance structure, we define two non-overlapping contours through

zj = zj(ξj) = t
(

1 + htjξj + htjr
−1
j ξj + h2tj

)
, j = 1, 2,

where r2 > r1 > 1. Thus, we have for t2 ≤ t1

cov(X(f1, t1), X(f2, t2)) = lim
r2>r1,
r1,r2↘1

1

2π2

∮
|ξ1|=1

∮
|ξ2|=1

f1(z1(ξ1))f2(z2(ξ2))

× σ2
t1,t2

(z1(ξ1), z2(ξ2))t1ht1(r1 − r−11 ξ−21 )t2ht2(r2 − r−12 ξ−22 )dξ2dξ1

= lim
r2>r1,
r1,r2↘1

1

2π2

∮
|ξ1|=1

∮
|ξ2|=1

f1(z1(ξ1))f2(z2(ξ
−1
2 ))

× σ2
t1,t2

(z1(ξ1), z2(ξ
−1
2 ))t1ht1(r1 − r−11 ξ−21 )t2ht2(r2 − r−12 ξ22)dξ2dξ1.

By proceeding similarly as for the mean and additionally using

s̃t(z)dz =
htr

t(1 + htrξ)2
dξ,

we get by straightforward but tedious algebra the desired formula for the covariance (we par-

tially used a computer algebra system).

C.2 Proof of (5.1) and (5.2)

Recall that f1(x) = x and f2(x) = x2. We begin determining the centering term. Using the

moments of the Marčenko-Pastur distribution (e.g., see Example 2.12 in Yao et al. (2015)), we

get ∫
f1(x)dF̃ ybntc(x) =

∫
xdF̃ ybntc(x) =

bntc
n

∫
xdF ybntc(x) =

bntc
n

,

where F y denotes the Marčenko-Pastur distribution with index parameter y > 0 and scale

parameter σ2 = 1. Similarly, we see that by using Proposition 2.13 in Yao et al. (2015)∫
f2(x)dF̃ ybntc(x) =

∫
x2dF̃ ybntc(x) =

(bntc
n

)2 (
1 + ybntc

)
=
bntc
n

(bntc
n

+ yn

)
.
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We calculate the quantities given in Proposition C.1 by using the residue theorem. We find for

the real case

E[X(f1, t)] =
t

2πi
lim
r↘1

∮
|ξ|=1

ξ + htrξ
2 + htr

−1 + h2t ξ

ξ

( ξ

ξ2 − r−2
− 1

ξ

)
dξ

=
t

2πi
lim
r↘1

∮
|ξ|=1

ξ + htrξ
2 + htr

−1 + h2t ξ

(ξ − r−1)(ξ + r−1)
dξ − t

2πi

∮
|ξ|=1

ξ + htrξ
2 + htr

−1 + h2t ξ

ξ2
dξ

(C.1)

= lim
r↘1

t
ξ + htrξ

2 + htr
−1 + h2t ξ

ξ + r−1

∣∣∣
ξ=r−1

+ lim
r↘1

t
ξ + htrξ

2 + htr
−1 + h2t ξ

ξ − r−1
∣∣∣
ξ=−r−1

− t ∂
∂ξ

(
ξ + htrξ

2 + htr
−1 + h2t ξ

) ∣∣∣
ξ=0

=t lim
r↘1

2r−1 + 2h2t r
−1

2r−1
− t(1 + h2t ) = 0.

Note that ξ = ±r−1 are poles of order 1 for the first integrand in (C.1), since r > 1, while ξ = 0

is a pole of order 2 for the second integrand in (C.1). For the complex case, we directly have

E[X(f1, t)] = E[X(f2, t)] = 0.

For f2(x) = x2, we have

E[X(f2, t)] = I1 − I2,

where

I1 =
t2

2πi
lim
r↘1

∮
|ξ|=1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

ξ (ξ − r−1) (ξ + r−1)
dξ,

I2 =
t2

2πi
lim
r↘1

∮
|ξ|=1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

ξ3
dξ.

The integrand in I1 has poles which are all of order 1 at the points 0, r−1,−r−1. Thus, using

the residue theorem,

I1 =t2 lim
r↘1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

(ξ − r−1) (ξ + r−1)

∣∣∣
ξ=0

+ t2 lim
r↘1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

ξ (ξ + r−1)

∣∣∣
ξ=r−1

+ t2 lim
r↘1

(ξ + htrξ
2 + htr

−1 + h2t ξ)
2

ξ (ξ − r−1)

∣∣∣
ξ=−r−1

=− t2h2t +
t2(1 + ht)

4

2
+
t2(1− ht)4

2
= −th2 +

t2(1 + ht)
4

2
+
t2(1− ht)4

2
.
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Using that the integrand in I2 has a pole at ξ = 0 of order 3, similar calculations yield I2 =

(1 + 4h2t + h4t )t
2, which gives

E[X(f2, t)] = th2 = ty.

For the covariance function of (X(f1, t))t∈[t0,1], we have for t2 ≤ t1

cov(X(f1, t1), X(f1, t2)) =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

t1
(
1 + ht1ξ1 + ht1r

−1
1 ξ−11 + h2t1

)
t2

×
(
1 + ht2ξ2 + ht2r

−1
2 ξ−12 + h2t2

) g1(ξ1, ξ2)
g2(ξ1, ξ2)

dξ2dξ1

=− 2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

ht1t1t2(h1 + r1ξ1 + h21r1ξ1 + h1r
2
1ξ

2
1)

r21r
2
2ξ

3
1

dξ1

=− (2πi)2

2π2
lim
r2>r1,
r1,r2↘1

∂2

∂2ξ1

ht1t1t2(h1 + r1ξ1 + h21r1ξ1 + h1r
2
1ξ

2
1)

r21r
2
2

∣∣∣
ξ1=0

=2 lim
r1>r2,
r1,r2↘1

h21t2
r22

= 2h21t2 = 2yt2,

where we used a computer algebra system for simplifying the first integrand and then applied

the residue theorem twice. Considering the function f2, we have for (t2 ≤ t1)

cov(X(f2, t1), X(f2, t2))

=
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

t21
(
1 + ht1ξ1 + ht1r

−1
1 ξ−11 + h2t1

)2
t22

×
(
1 + ht2ξ2 + ht2r

−1
2 ξ−12 + h2t2

)2 g1(ξ1, ξ2)
g2(ξ1, ξ2)

dξ2dξ1

=
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

2h1t1t
2
2

r41r
4
2ξ

5
1

(
h1 + r1x+ h21r1x+ h1r

2
1ξ

2
1

)2
×
(
−h1t1 − h21r1t1ξ1 − r1r22t1ξ1 − h22r1r22t1ξ1 + h22r1t2ξ1 + h21r

3
1t1ξ

3
1 − h22r31t2ξ31

)
dξ1 (C.2)

=
(2πi)2

2π2
lim
r2>r1,
r1,r2↘1

1

(5− 1)!

∂4

∂4ξ1

{2h1t1t
2
2

r41r
4
2

(
h1 + r1ξ1 + h21r1ξ1 + h1r

2
1ξ

2
1

)2
×
(
−h1t1 − h21r1t1ξ1 − r1r22t1ξ1 − h22r1r22t1ξ1 + h22r1t2ξ1 + h21r

3
1t1ξ

3
1 − h22r31t2ξ31

)
dξ1

}∣∣∣
ξ1=0

=4t2y
{

2t1t2 + [t2 + 2(t1 + t2)] y + 2y2
}
, t2 ≤ t1.

Note that ξ1 = 0 is a pole of order 5 for the integrand in (C.2) and that in the special case

t1 = t2 = 1 we recover the mean and covariance given in (9.8.14) and, respectively, (9.8.15) in
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Bai and Silverstein (2010).

Finally, we want to calculate the dependence structure between X(f1, t1) and X(f2, t2). Using

similar techniques as above, we obtain for t2 ≤ t1

cov(X(f1, t1), X(f2, t2))

=
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

t1
(
1 + ht1ξ1 + ht1r

−1
1 ξ−11 + h2t1

)
t22

×
(
1 + ht2ξ2 + ht2r

−1
2 ξ−12 + h2t2

)2 g1(ξ1, ξ2)
g2(ξ1, ξ2)

dξ2dξ1 (C.3)

=
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

1

r31r
4
2ξ

4
1

2h1t
2
2(h1 + r1ξ1 + h21r1ξ1 + h1r

2
1ξ

2
1)

×
{
−h1t1 + h21r1t1ξ1(−1 + r21ξ

2
1)− r1ξ1

[
(1 + h22)r

2
2t1 + h22t2(−1 + r21ξ

2
1)
]}
dξ1 (C.4)

=4t2y(t2 + y). (C.5)

After simplifying the integrand in (C.3) with a computer algebra program, we see that it has

a pole at ξ2 = 0 of order 2. Note that the pole at

ξ2 =
h2r2
h1r1ξ1

is not relevant for an application of the residue theorem, since∣∣∣∣ h2r2h1r1ξ1

∣∣∣∣ =

∣∣∣∣ t1r2r1t2ξ1

∣∣∣∣ =
t1r2
t2r1

> 1.

The integrand in (C.4) has a pole at ξ1 = 0 of order 4. Similarly, we have, again for t2 ≤ t1,

cov(X(f2, t1), X(f1, t2)) = 4t2y(t1 + y). (C.6)

By combining (C.5) and (C.6), we have for t1, t2 ∈ [t0, 1]

cov(X(f1, t1), X(f2, t2)) = 4 min(t1, t2)y(t2 + y).

C.3 Proof of Corollary 2.1

We apply Theorem 2.1 for the choice h(x) = log(x). Note that, as y ≥ t0, the interval in (2.9)

contains the point 0. Thus, we have to impose y < t0, since h is not analytic in a neighborhood

of 0.

Using Example 2.11 in Yao et al. (2015), we obtain for the centering term∫
log xdF̃ ybntc(x) =

∫
log xdF ybntc

( n

bntc
x
)

=

∫
log xdF ybntc (x) + log

(bntc
n

)
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=
(
− 1 +

ybntc − 1

ybntc
log(1− ybntc)

)
+ log

(bntc
n

)
=− 1− 1

ybntc
log(1− ybntc) + log

(bntc
n
− yn

)
,

which implies

p

∫
log xdF̃ ybntc(x) = −p− bntc log(1− ybntc) + p log

(
bntc
n
− yn

)
.

By Proposition C.1, we have for the mean of the limiting process D in the real case

E[D(t)] = I1 + I2, (C.7)

where

I1 =
1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htrξ + htr
−1ξ−1 + h2t ))

ξ

ξ2 − r−2
dξ

=
1

2πi
lim
r↘1

∮
|ξ|=1

log(t|1 + htξ|2)
ξ

ξ2 − r−2
dξ, (C.8)

I2 =− 1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htrξ + htr
−1ξ−1 + h2t ))

1

ξ
dξ

=− 1

2πi
lim
r↘1

∮
|ξ|=1

log(t|1 + htξ|2)
1

ξ
dξ

(see also Wang and Yao (2013) for a similar representation). Beginning with I1, we further

decompose (note that for |ξ| = 1, it holds ξ−1 = ξ )

I1 = I11 + I12,

where

I11 =
1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htξ))
ξ

(ξ − r−1)(ξ + r−1)
dξ,

=
1

2
lim
r↘1

{
log
(
t
(
1 + htr

−1))+ log
(
t
(
1− htr−1

))}
=

1

2
log
(
t2
(
1− h2t

))
,

I12 =
1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htξ
−1))

ξ

(ξ − r−1)(ξ + r−1)
dξ
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=
1

2πi
lim
r↘1

∮
|z|=1

log(t(1 + htz))
r2

z(z − r)(r + z)
dz

= lim
r↘1

log(t(1 + htz))
r2

(z − r)(z + r)

∣∣∣
z=0

= − log(t).

These calculations imply

I1 =
1

2
log
(
t2
(
1− h2t

))
− log(t). (C.9)

The quantity I2 in (C.7) can be determined similarly using the decomposition

I2 = I21 + I22,

where

I21 =− 1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htξ))
1

ξ
dξ = − log t

I22 =− 1

2πi
lim
r↘1

∮
|ξ|=1

log(t(1 + htξ
−1))

1

ξ
dξ = log t.

This gives I2 = 0, and by (C.9) and (C.7), we obtain

E[D(t)] =
1

2
log
(
t2
(
1− h2t

))
− log(t) =

1

2
log
(
1− h2t

)
=

1

2
log (1− yt) .

Next, we calculate the covariance structure. Similarly to (C.8), we obtain for t2 ≤ t1

cov(D(t1),D(t2)) =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

log(t1|1 + ht1ξ1|2)log(t2|1 + ht2ξ2|2)
g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1

=
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

∮
|ξ2|=1

log(t1|1 + ht1ξ1|2) log(t2|1 + ht2ξ2|2)
g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1

=I3 + I4,

where (note that |1 + ht2ξ2|2 = (1 + ht2ξ2)(1 + ht2ξ
−1
2 ) )

I3 =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1|1 + ht1ξ1|2)
∮
|ξ2|=1

log(t2(1 + ht2ξ2))
g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1,
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I4 =
1

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1|1 + ht1ξ1|2)
∮
|ξ2|=1

log(t2(1 + ht2ξ
−1
2 ))

g1(ξ1, ξ2)

g2(ξ1, ξ2)
dξ2dξ1.

Using a computer algebra program for simplifying I3 and I4, we see that I3 = 0 and for I4, and

we perform the substitution ξ2 = z−12 , which yields

I4 =
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1|1 + ht1ξ1|2)
h1r1

r2 + h1r1ξ1
dξ1 = I41 + I42,

where

I41 =
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1(1 + ht1ξ1))
h1r1

r2 + h1r1ξ1
dξ1,

I42 =
2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|ξ1|=1

log(t1(1 + ht1ξ
−1
1 ))

h1r1
r2 + h1r1ξ1

dξ1.

It holds I41 = 0, since we have for the pole at ξ1 = −r2/(h1r1) that |ξ1|2 > 1
h2t1

= t1
y
≥ t0

y
≥ 1.

As above, we perform for I42 the substitution ξ−11 = z1 and obtain

I42 =− 2πi

2π2
lim
r2>r1,
r1,r2↘1

∮
|z1|=1

log(t1(1 + ht1z1))
ht1r1

ht1r1z1 + r2z21
dz1

=− (2πi)2

2π
lim
r2>r1,
r1,r2↘1

{
− log(t1) + log

(
t1

(
1−

h2t1r1

r2

))}
=− 2 log(1− h2t1).

Finally, we obtain for t2 ≤ t1

cov(D(t1),D(t2)) = I3 + I4 =− 2 log(1− h2t1) = −2 log(1− yt1).
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