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Abstract

We show that polynomials do not belong to the reproducing kernel Hilbert space

of infinitely differentiable translation-invariant kernels whose spectral measures have

moments corresponding to a determinate moment problem. Our proof is based

on relating this question to the problem of best linear estimation in continuous

time one-parameter regression models with a stationary error process defined by

the kernel. In particular, we show that the existence of a sequence of estimators

with variances converging to 0 implies that the regression function cannot be an

element of the reproducing kernel Hilbert space. This question is then related

to the determinacy of the Hamburger moment problem for the spectral measure

corresponding to the kernel.

In the literature it was observed that a non-vanishing constant function does not

belong to the reproducing kernel Hilbert space associated with the Gaussian kernel

(see Corollary 4.44 in Steinwart and Christmann, 2008). Our results provide a uni-

fying view of this phenomenon and show that the mentioned result can be extended

for arbitrary polynomials and a broad class of translation-invariant kernels.
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1 Introduction

1.1 Main results

Let X ⊆Rd, d≥ 1, K :X × X→R be a positive definite kernel on X and define H(K)

as the corresponding Reproducing Kernel Hilbert Space (RKHS). We assume that X has

a non-empty interior and K is an infinitely differentiable (on the diagonal) translation-

invariant kernel so that K(x, y) = k(x−y), where k : Rd → R is a non-constant positive

definite function infinitely differentiable at the point 0. Without loss of generality, we

suppose k(0) = 1.

It is well-known, see e.g. Corollary 4.44 in Steinwart and Christmann (2008), that in the

case of the squared exponential (Gaussian) kernel

k(x) = exp{−λ‖x‖2} with λ > 0, (1.1)

the constant function does not belong to H(K). The purpose of this paper is to signifi-

cantly extend this result by considering:

(a) a substantially larger class of kernels, for which this statement remains true, and

(b) arbitrary polynomials rather than simply constant functions.

The results of this paper have definite consequences for the methodologies of function

approximation, Bayesian global optimization and support vector machines (SVM) and

other kernel-based machine learning, see Section 1.2 for a short discussion.

In the main part of the paper, we consider the case X ⊂ R. In this case, by Bochner’s

theorem (Bochner and Chandrasekharan, 1949), there exists a measure α, such that the

kernel k can be represented in the form

k(x) =

∫ ∞
−∞

eitxα(dt) for all x ∈ X. (1.2)

The measure α is called spectral measure. Because k(x) = k(−x) for all x and k(0) = 1,

α is a probability measure symmetric around the point 0. We denote by

ck =

∫ ∞
−∞

tkα(dt), k = 1, 2 . . . (1.3)

the moments of this measure (in the case of their existence). The classical Hamburger
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moment problem is to give necessary and sufficient conditions such that a given real

sequence (ck)k∈N is in fact a sequence of moments of a distribution α defined on the Borel

sets of R = (−∞,∞) such that (1.3) holds. In particular, the sequence (ck)k∈N is a

sequence of moments of some distribution if and only if the Hankel matrices (ci+j)i,j=0,...,n

are positive semidefinite for all n ∈ N (see e.g. Shohat and Tamarkin, 1943; Schmüdgen,

2017, among many others). The Hamburger moment problem is called determinate if

the sequence of moments (ck)k∈N determines the measure α(dt) uniquely.

The main results of this paper are Theorems 1.1 and 1.2 formulated below. These theorems

and provide sufficient conditions ensuring that the polynomials do not belong to the RKHS

H(K). The proofs are given in Section 2.5.

Theorem 1.1 Let X ⊂ R and assume that the spectral measure α(dt) in (1.2) has infinite

support and no mass at the point 0. If the Hamburger moment problem for this measure

is determinate, then the non-zero constant functions do not belong to the RKHS H(K).

Theorem 1.2 Let X ⊂ R, m be a positive integer and assume that the spectral measure

α(dt) in (1.2) has infinite support. If the Hamburger moment problem for the measure

αm(dt) = t2mα(dt)/c2m is determinate, then the RKHS H(K) does not contain polynomi-

als on X of degree m.

Note that under the assumptions of Theorem 1.1 and 1.2 all functions of the form f+g /∈
H(K) with g ∈ H(K) and f being either a non-zero constant or a polynomial do not

belong to H(K).

Note also that in Theorem 1.2, the spectral measure α(dt) is allowed having a positive

mass at the point 0. Combining Theorems 1.1 and 1.2 with their variations in the cases

when the spectral measure α(dt) has finite support (see Section 3.1) and when this measure

has positive mass at 0 (see Theorem 3.1), we obtain the following corollary.

Corollary 1.1 Let X ⊂ R and the Hamburger moment problem for the spectral measure

α(dt) is determinate. Then we have the following:

(a) The constant functions f(x) = const 6= 0, ∀x ∈ X, belong to H(K) if and only if

α(dt) has a positive mass at the point 0;

(b) If the Hamburger moment problems for the measures t2mα(dt)/c2m are determinate

for all m ∈ N, then H(K) does not contain non-constant polynomials on X.

Theorems 1.1, 1.2 and Corollary 1.1 can be easily extended to the multivariate case, see

Section 3.2 for a more detailed discussion.
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1.2 Implications and related results

Many methods of function approximation, interpolation and prediction (see Stein, 1999;

Wendland, 2004), Bayesian methods of global optimization (see Zhigljavsky and Zilinskas,

2007) and machine learning (see Rasmussen and Williams, 2006; Steinwart and Christ-

mann, 2008) are kernel-based. Properties of all these algorithms depend on whether

an unknown function of interest belongs to the corresponding RKHS, see Steinwart et al.

(2006), Section 4.4 in Steinwart and Christmann (2008) for a discussion on the importance

of this issue for the learning performance of SVM in the case of the squared exponential

kernel. The condition that the non-zero constant functions do not belong to the RKHS

H(K) is a convenient simplifying condition which allows to avoid function centering, see,

for example, Assumption 2 in Lee et al. (2016).

Let us briefly consider two approaches for the problem of approximation of a function

f : X → R. First assume that f ∈ H = H(K) with ‖f‖H <∞, where ‖ · ‖H denotes the

norm on H(K). Let f̂n(x) =
∑n

i=1wif(xi) be a linear predictor of f(x) (for an x ∈ X)

based on evaluations of f at an n-point design Xn = {x1, . . . , xn} ⊂ X; note that the set

of weights w = (w1, . . . , wn) may depend on x. Define

ρn(x,w) =
∥∥∥K(x, ·)−

n∑
i=1

wiK(xi, ·)
∥∥∥
H
,

which is a quantity depending on x,w and design Xn. The Cauchy-Schwarz inequality

implies (see Sect. 2.1 in Pronzato and Zhigljavsky, 2020, for details)

|f(x)− f̂n(x)| ≤ ‖f‖H · ρn(x,w) . (1.4)

The inequality (1.4) yields that if f /∈ H(K) then the best linear predictors of f(x),

constructed under the assumption f ∈ H(K), can be poor. Moreover, in view of Corol-

lary 3.3 of Section 3.4, f ∈ H(K) if and only if limn→∞ σ̂2
n < ∞, where σ̂2

n is the MLE

of σ2 constructed from n observations of f under the assumption that f is a realization

of a Gaussian random field with covariance kernel R(x, x′) = σ2K(x, x′). Mean squared

error of prediction of f(x) at any x ∈ X is proportional to σ2 (and σ̂2
n in the empirical

versions) and therefore prediction error of Bayesian predictors of f can only be accurate

when f ∈ H(K).

For a given set X, kernel K and function f , the problem of deciding whether f ∈ H(K)

is very important and often difficult to resolve; this is discussed e.g. in Steinwart et al.
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(2006). In the case where the spectral measure has a positive density, say ϕ, on X = R,

there is an easy condition for deciding if f belongs to the RKHS. In fact, f ∈ H(K) if

and only if the squared modulus of the Fourier transform is integrable with respect to the

measure dt/ϕ(t) (see formula (2.4) in Berlinet and Thomas-Agnan, 2011). This condition,

however, is not very helpful when X ⊂ Rd like X = [0, 1]. A necessary condition for

an m times continuously differentiable kernel k on X can be found in Corollary 4.36 of

Steinwart and Christmann (2008) saying that any function f ∈ H(K) has to be at least

m times differentiable. The statements like “roughly speaking, a function f belongs to a

RKHS only if it is at least as smooth as the kernel” (see e.g. p. 12 in Berlinet and Thomas-

Agnan, 2011) may give an impression that the smoothness of f guarantees that f ∈ H(K).

As Theorems 1.1, 1.2 and Corollary 1.1 show this impression is misleading: polynomials

are infinitely smooth but for many infinitely differentiable translation-invariant kernels

they do not belong to H(K) for any X ⊂ Rd with non-empty interior.

The case of the squared exponential kernel (1.1) has attracted a lot of attention in the

literature. As mentioned earlier, the result of Theorem 1.1 for the kernel (1.1) is known

and clearly formulated (along with its important implications) in Steinwart et al. (2006),

see also Steinwart and Christmann (2008). Bearing in mind the interpretation discussed in

Section 3.5, this result (for the kernel (1.1)) also follows from Theorem 2.3 in Xu and Stein

(2017). Moreover, Theorem 2.4 in Xu and Stein (2017) yields the result of Theorem 1.2

for squared exponential kernel (1.1) and the function f(x) = x, x ∈ [0, 1].

1.3 Sufficient conditions for moment determinacy

There exists a vast amount of literature on sufficient conditions for the determinacy of

Hamburger and Stieltjes moment problems, see e.g. Lin (2017), Schmüdgen (2017) and

Stoyanov (2013, Chapter 11). The following two sufficient conditions for moment determi-

nacy of a measure α(dt) with moments ck in Hamburger moment problem are commonly

used:

∞∑
n=1

c
−1/(2n)
2n =∞ , (1.5)

lim sup
n→∞

1

2n
c
1/(2n)
2n <∞ . (1.6)
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Condition (1.5) is called Carleman condition and is slightly weaker than the condition

(1.6), which is often very easy to verify. Note that all measures αm(dt) (m = 0, 1, 2, . . .) in

Theorem 1.2 are moment-determinant if the original spectral measure α(dt) satisfies (1.6).

A well-known sufficient condition for indeterminacy in Hamburger moment problem is the

so-called Krein condition ∫ ∞
−∞

− logϕ(t)

1 + t2
<∞ (1.7)

applicable for absolutely continuous measures α(dt) = ϕ(t)dt, for which all moments exist.

Two important examples of kernels satisfying conditions of Theorems 1.1 and 1.2 are the

squared exponential (Gaussian) kernel defined by (1.1) with spectral density

ϕ(t) =
1

2
√
πλ

exp{−t2/(4λ)},

and the Cauchy kernel k(x) = 1/(1 + x2/λ2) with spectral density

ϕ(t) =
λ

2
exp{−λ|t|} , t ∈ R.

In both cases one can use condition (1.6) to prove that the moment problem is determinate.

Further examples of kernels are given in Section 4.2 of this paper and many other examples

can be constructed using moment-determinate spectral measures.

1.4 Main steps in the proofs and structure of the remaining part

of the paper

Section 2 is devoted to the proofs of Theorems 1.1 and 1.2, which are given in several

steps. The main idea in our approach is to relate the problem of interest to properties

of the best linear unbiased estimate (BLUE) in linear regression models, which will be

worked out in Sections 2.1 and 2.2. Sections 2.3 and 2.4 provide different characterizations

of the moment determinacy of spectral measures and finally the proofs will be completed

in Section 2.5. We now explain the different steps in more detail.

In Section 2.1 we consider the BLUE in a one-parameter linear regression model with a

regression function f ∈H(K) and show that in this case the BLUE exists and its variance

is strictly positive, see Lemma 2.1. We also show that in the case f /∈H(K), the BLUE

does not exist and establish in Lemma 2.2 that for proving f /∈H(K), it is sufficient to
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construct a sequence of linear unbiased estimators θ̂n of the unknown parameter with

variances tending to 0. Such a sequence is constructed in Section 2.2 for the location scale

model and an explicit expression for the variance of these estimators in terms of the ratio

of determinants

var(θ̂n) =
det(c2(i+j))

n
i,j=0

det(c2(i+j))ni,j=1

(1.8)

of Hankel-type matrices of the moments of the spectral measure is derived in Lemma 2.4.

In Section 2.3 we establish several properties of moment-determinant symmetric measures

which we use in Section 2.4 for building up an equivalence between the moment determi-

nacy of the spectral measures and the statement that the sequence (1.8) converges to zero.

This is arguably the most important step in the proof of both theorems (see Lemma 2.7).

Finally, these results are combined in the proofs of Theorem 1.1 and 1.2 in Section 2.5.

In Section 3 we consider several extensions and interpretations of the main results. In

Section 3.1 we consider spectral measures with finite support, while Section 3.2 discusses

the multivariate case. This discussion is continued in Sections 3.3–3.5 where we also

consider general metric spaces. In Section 3.3 we explain a technique of characterizing

the fact f ∈ H(K) via suitable discretization of the set X and show that 1/‖f‖H(K) is

the limit of variances of the related discrete BLUEs. These results are used in Section 3.4

where we show that the constant function belongs to H(K) if and only if the spectral

measure has positive mass at 0. In Section 3.5 we show that the problem of parameter

estimation in a one-parameter regression model is equivalent to the problem of estimating

the variance of a Gaussian process (field). Thus we are able to relate our findings to

the estimation problems considered in Xu and Stein (2017). In Section 3.6 we return

to the one-dimensional case and give an interpretation of Theorem 1.1 in terms of the

L2-error of the best approximation of a constant function by polynomials of the form

a1t
2 + a1t

4 + . . .+ ant
2n.

Finally, in Section 4, for two specific classes of kernels we derive explicit results on the

rates of convergence to 0 of the variances of the main estimators θ̂n. In the case of

squared exponential kernel (1.1), we detail and improve one of the asymptotic expansions

of Theorem 3.3 in Xu and Stein (2017).
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2 Parameter estimation, moment determinacy and

proofs of main results

2.1 BLUE in a one-parameter regression model

Consider a one-parameter regression model with stationary correlated errors:

y(x)=θf(x)+ε(x), x∈X, Eε(x)=0, Eε(x)ε(x′)=k(x−x′). (2.1)

Here θ is a scalar parameter, f :X→R is a given regression function and k(·) is an infinitely

differentiable positive definite function with k(0) = 1 making the kernel K(·, ·) defined

by K(x, y) = k(k − y) an infinitely differentiable correlation kernel. For constructing

estimators of the parameter θ, the observations of the process {y(x)|x ∈ X} along with

observations of all of its derivatives {y(k)(x)|x ∈ X}, k = 1, 2, . . ., can be used.

The (continuous) best linear unbiased estimator (BLUE) of θ is defined as an unbiased

estimator θ̂BLUE such that var(θ̂BLUE) ≤ var(θ̂), where θ̂ is any linear unbiased estimator

of θ. If the kernel K is differentiable and the BLUE exists, then for its computation all

available derivatives of y(x) are used, see Dette et al. (2019). In general, the BLUE may

not exist but the next lemma shows that it does exist when f ∈ H(K).

Lemma 2.1 If f ∈ H(K), then the BLUE θ̂BLUE in model (2.1) exists and

var(θ̂BLUE) = 1/‖f‖H(K) > 0.

The statement of lemma follows from Theorem 6C (p. 975) of Parzen (1961). Formally,

only the case X = [0, 1] is considered in Parzen (1961), but Parzen’s proof does not use

the structure of X and is therefore valid for a general metric space X.

Lemma 2.2 If there exists a sequence of linear unbiased estimators (θ̂n)n∈N of θ in model

(2.1) such that var(θ̂n)→ 0 as n→∞, then f /∈ H(K).

Proof. Assume that f ∈ H(K). By Lemma 2.1, the continuous BLUE θ̂BLUE exists and

var(θ̂BLUE) = 1/‖f‖H(K) > 0. From the definition of the BLUE, var(θ̂n) ≥ var(θ̂BLUE) >

0 for all n ∈ N. We have arrived at a contradiction and hence f /∈ H(K). �
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2.2 A family of estimators θ̂n in the location scale model

Consider the location scale model

y(x)=θ+ε(x) , x∈X ⊂R, Eε(x)=0, Eε(x)ε(x′)=k(x−x′), (2.2)

where k(·) is an infinitely differentiable at 0 positive definite function. Choose any interior

point x0 ∈ X and set ε0 = ε(x0). For construction of the estimator θ̂n, which we will apply

in Lemma 2.2, we use the following n+ 1 observations: the observation y(x0) = θ+ ε0 at

the point x0 and n mean-square derivatives of the process y at the point x0:

εj = y(j)(x0) =
djy(x)

dxj

∣∣∣∣
x=x0

=
djε(x)

dxj

∣∣∣∣
x=x0

, j = 2, 4, . . . , 2n . (2.3)

The following result provides a necessary and sufficient condition for the existence of the

derivatives. For a proof, see page 164 (Section 12) in Yaglom (1986).

Lemma 2.3 Let x0 be an interior point of X. The mean-square derivative εj = djε(x)/dxj
∣∣
x=x0

of the stationary process {ε(x)|x ∈ X} in (2.2) at the point x0 exists if and only if c2j <∞,

where

c2j =

∫ ∞
−∞

t2jα(dt) = (−1)j
∂2j

∂u2j
k(u)

∣∣∣∣
u=0

(2.4)

is the 2j-th moment of the spectral measure α corresponding to the kernel k in Bochner’s

theorem.

As we have assumed that the kernel k(·) is infinitely differentiable at 0, all moments cj
(j = 0, 1, . . .) exist. As an immediate consequence of the existence of all moments and the

representation (1.2), for the random variables εj defined in (2.3), we obtain by Lemma

2.3 for all i, j = 0, 1, . . .

Eεiεj =
∂i+j

∂xiyj
k(x− y)

∣∣∣∣
x,y=x0

= (−1)i+j
∂i+j

∂ui+j
k(u)

∣∣∣∣
u=0

= ci+j . (2.5)

Note that all derivatives ∂m/∂umk(u)
∣∣
u=0

of odd order m vanish as the function k(·) is

symmetric around the point 0.
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Next, we introduce the random variables δi = (−1)iε2i, i = 0, 1, . . .. The observations (2.3)

used for constructing the discrete BLUE in model (2.2) can then be rewritten as

y0 = y(x0) = θ + ε0, y1 = y(2)(x0) = δ1, . . . , yn = y(2n)(x0) = δn.

Moreover, the covariance matrix of the vector (δ0, δ1, . . . , δn)> is the Hankel matrix

Cn = (Eδiδj)ni,j=0 = (c2(i+j))
n
i,j=0 , (2.6)

where c2, . . . , c2n are the moments defined in (2.4).

Assume that the spectral measure α(dt) has infinite support. In this case, the matrices Cn
are positive definite for all n = 0, 1, . . . (see, for example, Proposition 3.11 in Schmüdgen,

2017) and the discrete BLUE is obtained as

θ̂n =
e>0,nC

−1
n Yn

e>0,nC
−1
n e0,n

, (2.7)

where Yn = (y0, y1, . . . , yn)> and e0,n = (1, 0, . . . , 0)> ∈ Rn+1 denotes the first coordinate

vector in Rn+1.

Lemma 2.4 The variance of the estimator (2.7) is

var(θ̂n) =
1

e>0,nC
−1
n e0,n

=
Hn

Gn

, (2.8)

where Hn and Gn are the determinants

Hn = det (Cn) = det
[(
c2(i+j)

)n
i,j=0

]
, Gn = det

[(
c2(i+j)

)n
i,j=1

]
. (2.9)

Proof. The expression (2.8) follows from the standard formula var(θ̂n) = 1/(e>0,nC
−1
n e0,n)

for the variance of the BLUE and Cramér’s rule for computing elements of a matrix in-

verse; in our case, e>0,nC
−1
n e0,n coincides with the top-left element of the matrix C−1n . �

Observing Lemma 2.2 we conclude that a non-vanishing constant function does not belong

to H(K) if limn→∞Hn/Gn = 0. In the following sections we relate this condition to the

moment determinacy of the spectral measure.
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Remark 2.1 Let us briefly consider the case where the spectral measure has a positive

mass at the point 0. Consider the location scale model (2.2) and let

αγ(dt) = (1− γ)α(dt) + γδ0(dt) (2.10)

denote the spectral measure corresponding to a nonnegative definite and symmetric kernel

kγ, where 0 < γ < 1, δ0 is the Dirac measure at the point 0 and α(dt) is a symmetric

probability measure on R with no mass at 0. The measure αγ(dt) is symmetric around

the point 0 with even moments c̃0 = 1 and

c̃2j = (1− γ)c2j , j = 1, 2, . . .

Recall the definition of the matrix Cn in (2.6) and define the matrices

C̃n = (c̃2(i+j))
n
i,j=0 = γe0,ne

>
0,n + (1− γ)Cn

and the corresponding determinants

H̃n = det C̃n , G̃n = det
[(
c̃2(i+j)

)n
i,j=1

]
= (1− γ)nGn ,

where Gn is defined in (2.9). Using standard formulas of linear algebra we obtain

H̃n = det [γe0,ne
>
0,n + (1− γ)Cn] = (1− γ)n

[
(1− γ) + γe>0,nC

−1
n e0,n

]
Hn .

In accordance with (2.8), the variance of θ̃n, the BLUE of θ constructed similarly to θ̂n
but for the spectral measure αγ(dt), is given by

var(θ̃n) =
1

e>0,nC̃
−1
n e0,n

=
H̃n

G̃n

=
Hn

Gn

[
(1− γ) + γe>0,nC

−1
n e0,n

]
= var(θ̂n)[(1− γ) + γ/var(θ̂n)] = (1− γ)var(θ̂n) + γ > 0 .

This implies that var(θ̃n) cannot converge to 0 and Lemma 2.2 is not applicable if the

spectral measure has a positive mass at the point 0.

In Theorem 3.1 of Section 3.4 we will prove that for any compact set X ⊂ Rd the

constant functions indeed belong to H(K), if the spectral measure has a positive mass at

the point 0.
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2.3 Moment-determinacy of the spectral measure

Consider the spectral measure α introduced in equation (1.2). As a spectral measure, α

is a symmetric measure (around 0) on the real line and we have assumed that α does

not have a positive mass at the point 0. Moreover, we have assumed k(0) = 1 making

α a probability distribution. In the following we relate α to a (unique) measure on

the nonnegative axis [0,∞). Loosely speaking, if a real valued random variable ξ has

distribution α(dt), then α+(dt) is the distribution of the random variable ξ2. In the

opposite direction, if the nonnegative random variable η has distribution α+(dt), then

±√η has distribution α(dt), where ± denotes a random sign.

For a more formal construction we follow the arguments in Section 3.3 of Schmüdgen

(2017) and denote by B the Borel sigma field on R, define τ : R → [0,∞); τ(x) = x2

and κ : [0,∞) → R, κ(x) =
√
x. Then for any symmetric (Radon) measure α on B, the

measure α+ defined by

α+(B) = α(τ−1(B)) B ∈ B ∩ [0,∞) (2.11)

defines a measure on B ∩ [0,∞). Conversely, if α+ is a measure on B ∩ [0,∞), then

α(B) =
1

2

(
α+(κ−1(B)) + α+((−κ)−1(B))

)
(2.12)

defines a symmetric measure on B. It now follows from Theorem 3.17 in Schmüdgen

(2017) that the relations (2.11) and (2.12) define a bijection from the set of all symmetric

measures on R onto the set of all measures on [0,∞).

The even moments of a symmetric probability measure α on B are related to the moments

of the measure α+ from (2.11) by

c2j =

∫ ∞
−∞

t2jα(dt) = 2

∫ ∞
0

t2jα(dt) =

∫ ∞
0

tjdα+(t) = bj, j ∈ N , (2.13)

and as a consequence the determinants Hn and Gn in (2.9) can be represented as

Hn = det
[
(bi+j)

n
i,j=0

]
, Gn = det

[
(bi+j)

n
i,j=1

]
. (2.14)

Similarly to the case of the Hamburger moment problem, the Stieltjes moment problem

is to give necessary and sufficient conditions such that a real sequence (bj)j∈N is in fact

a sequence of moments of a measure α+(dt) on the Borel sets of [0,∞); that is bj =
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∫∞
0
tjdα+(t) for all j ∈ N0. The Stieltjes moment problem is determinate if the sequence

of moments (bj)j∈N determines the measure α+(dt) uniquely. For a proof of the following

result, which relates the Hamburger and Stieltjes moment problem, see Heyde (1963,

Lemma 1), Schmüdgen (2017, Proposition 3.19) and Stoyanov (2013, Sect. 11.10).

Lemma 2.5 Let α be a symmetric probability measure on B. The Hamburger moment

problem for α is determinate if and only if the Stieltjes moment problems for the measure

α+ defined by (2.11) is determinate.

Note that for the equivalence in Lemma 2.5 to hold, the assumption that α does not have

mass at 0 is not required. This assumption, however, is needed in the next lemma.

Lemma 2.6 Let α be a symmetric probability measure on B with no mass at the point 0.

The Hamburger moment problem for α is determinate if and only if the Hamburger mo-

ment problem for the measure α+ defined by (2.11) is determinate.

Proof. Using the result of Theorem A in Heyde (1963) (see also (Stoyanov, 2013, p.113)

and (Schmüdgen, 2017, Remark 2.12)), if the Stieltjes moment problems for the measure

α+ is determinate and the measure α+ has no mass at 0, then the Hamburger moment

problems for this measure is also determinate. From Lemma 2.5, the required equivalence

follows. �

2.4 Relating moment-determinacy of the measure α+ to var(θ̂n)

Lemma 2.7 Let α be a symmetric probability measure on B with infinite support and

no mass at the point 0. The Hamburger moment problem for the measure α+ defined by

(2.11) is determinate if and only if Hn/Gn → 0 as n → ∞, where the determinants Hn

and Gn are defined in (2.14).

Proof. (i) Assume that the moment problem for the measure α+ is determinate. Let Pn
denote the class of all polynomials of degree n and define

ρn(t0) = min

{∫
R
|Pn(t)|2α+(dt) | Pn ∈ Pn, Pn(t0) = 1

}
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for any t0 ∈ R, which is not a root of the nth orthogonal polynomial with respect to the

measure α+ (see equation (2.26) in Lemma 2.11 of Shohat and Tamarkin, 1943). Then

lim
n→∞

ρn(t0) =: ρ(t0)

exists, by Theorem 2.6 in Shohat and Tamarkin (1943). As the point 0 is not a support

point of the measure α+ and all roots of the orthogonal polynomials with respect to the

measure α+ are located in supp(α+) ⊂ (0,∞) we have from Corollary 2.6 in Shohat and

Tamarkin (1943) that

ρ(0) = lim
n→∞

ρn(0) = 0.

Moreover, by the discussion on p. 72 (middle of the page) in Shohat and Tamarkin (1943)

it follows that ρn(0) is exactly the ratio Hn/Gn, where Hn and Gn are the determinants

in (2.14). Hence the moment determinacy for the measure α+ implies Hn/Gn → 0 as

n→∞.

(ii) To prove the converse, assume that Hn/Gn → 0 as n → ∞. Let λn be the smallest

eigenvalue of the matrix Cn. Theorem 1.1 in Berg et al. (2002) states that the condition

lim
n→∞

λn = 0

is necessary and sufficient for the moment-determinacy of the measure α+.

From the definition of λn as the smallest eigenvalue of the matrix Cn and the representation

(2.8) it follows

λn ≤
1

e>0,nC
−1
n e0,n

=
Hn

Gn

= ρn(0)

for all n ∈ N (see also a related discussion in Berg et al., 2002). Therefore, Hn/Gn → 0

as n → ∞ implies λn → 0 as n → ∞ and this yields the moment determinacy of the

measure α+. �

2.5 Proof of Theorem 1.1 and 1.2

Proof of Theorem 1.1. Use Lemma 2.2 with the estimator defined in (2.7). By Lemma 2.4

the variance of this estimator is given by (2.8). From Lemma 2.7, the determinacy of the

measure α+ is equivalent to var(θ̂n)→ 0 as n→∞. By Lemma 2.5, this is also equivalent

to the moment determinacy of the spectral measure α. �
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Proof of Theorem 1.2. Assume that the function f in (2.1) is a polynomial of degree

m≥1. Take m derivatives of both sides in (2.1). The model (2.1) thus reduces to

ỹ(x) = θ̃ + ε̃(x), x ∈ X, (2.15)

where θ̃ is the new parameter, ỹ(x) = y(m)(x) are new observations and ε̃ = ε(m) is the

new error process.

From (Yaglom, 1986, (2.178)), the autocovariance function of the process {ε(m)(x)|x ∈ X}
is given by

Eε(m)(x)ε(m)(x′) = km(x− x′) with km(x) = (−1)mk(2m)(x).

From (1.2), the spectral measure associated with the kernel km(x − x′) is αm(dt) =

t2mα(dt)/c2m. Hence, the statement for the case when f is a polynomial of degree m ≥ 1

is reduced to the case of the constant function proved in Theorem 1.1; this theorem is

applicable as the measure αm(dt) does not have mass at 0 for any m ≥ 1. �

3 Extensions of Theorems 1.1 and 1.2 and further

discussion

In this section we discuss several extensions of the results derived in Sections 1 and 2. In

particular, we consider spectral measures with positive mass at the point 0 and extends

the results to the multivariate case. Moreover, we briefly indicate a relation of our results

to the optimal approximation of a constant function by polynomials with no intercept.

3.1 Spectral measures with finite support

If the spectral measure α(dt) in (1.2) has finite support, say T = {±t1, . . . ,±tm} with

m ≥ 1 and 0 < t1 < . . . < tm, then the matrices Cn in (2.6) are invertible for n ≤ m− 1

but

det(Cn) = det(c2(i+j))
n
i,j=0 = 0 for n ≥ m. (3.1)
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Consequently, observing Lemma 2.4 we have in this case

var(θ̂n) = 0 for n = m,m+ 1, . . .

Therefore, by Lemma 2.2 a non-vanishing constant function does not belong to H(K) if

the corresponding spectral measure has finite support.

The relation (3.1) follows, observing the representation

Cn = 2
m∑
i=1

wig(ti)g
>(ti) ∈ R(n+1)×(n+1)

where g(t) = (1, t2, . . . , t2n)> and w1, . . . , wm are the masses of the measure α at the points

t1, . . . , tm. As Cn is a sum of rank one matrices, it is singular whenever n > m − 1. On

the other hand, in the case m = n+ 1 we have by Vandermond’s determinant formula

det Cn =
n+l∏
i=1

(2wi)
∏

1≤i<j≤n+1

(t2i − t2j)2 > 0 ,

which shows that Cn is nonsingular. Finally, if m ≥ n + 1 we have (in the Loewner

ordering)

Cn ≥ 2
n+1∑
i=1

wig(ti)g
>(ti)

where the matrix on the right-hand side is positive definite.

3.2 Multivariate case

Consider the location scale model (2.2) but assume that X is a subset of Rd with non-

empty interior. Extensions of Theorems 1.1 and 1.2 to the multivariate case, when d > 1,

essentially follow from the one-dimensional results because it is sufficient to use derivatives

of the process {y(x);x ∈ X} with respect to one variable for construction of estimators

(θ̂n)n∈N and subsequent application of Lemma 2.2. In the following discussion we consider

two cases for the kernel K(x, x′) using the notation x = (x1, . . . , xd)
>, x′ = (x′1, . . . , x

′
d)
>

and t = (t1, . . . , td)
>. We also denote by x(i), x

′
(i) and t(i) ∈ Rd−1 the vectors x, x′ and t

with i-th component removed, respectively.
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Case 1: Assume that K is a product kernel, that is

K(x, x′) =
d∏
j=1

Ki(xj, x
′
j) , (3.2)

where for all j = 1, . . . , d the kernel Kj (defined on a subset of R2) satisfies Kj(xj, x
′
j) =

kj(xj − x′j) and kj is a non-constant positive definite function infinitely differentiable

at the point 0. Denote by αj(dtj) the spectral measure for kj and define α(dt) =

α1(dt1) · · ·αd(dtd). To construct the sequence of estimators (θ̂n)n∈N for the application

of Lemma 2.2, we can use the derivatives with respect to the i-th coordinate for any i.

Therefore, Corollary 1.1 can be generalized as follows.

Corollary 3.1 Assume that X ⊂ Rd and the kernel K has the form (3.2). Then we have

the following:

(a) If the measure α has a positive mass at the point 0, then the constant functions

belong to H(K).

(b) If for at least one i ∈ {1, . . . , d} the Hamburger moment problem for the measure

αi(·) is determinate and the measure αi does not have a positive mass at the point 0,

then any non-vanishing constant function does not belong to H(K).

(c) If for at least one i ∈ {1, . . . , d} the Hamburger moment problem for the measures

t2mi αi(dti)/c2m is determinate for all m = 0, 1, . . ., then H(K) does not contain

non-constant polynomials on X.

Note that the set X in Corollary 3.1 does not have to be a product of one-dimensional

sets. Moreover, we also point out that the assumption (3.2) can be generalized to kernels

of the form

K(x, x′) = ki(xi − x′i)K(d−1)(x(i), x
′
(i)),

where K(d−1)(·, ·) is a positive definite and suitably differentiable kernel on Rd−1 × Rd−1

and ki is a non-constant positive definite function infinitely differentiable at the point 0.

Case 2: The kernel K satisfies

K(x, x′) = k(x− x′),
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where k is a positive definite function on Rd. Consider the spectral measure α(dt) corre-

sponding to k by Bochner‘s theorem, that is

k(x) =

∫
Rd

ei(t1x1+...+tdxd)α(dt) , (3.3)

and denote by

αi(B) =

∫
Rd

IB(ti)α(dt) , B ∈ B,

the ith the marginal distribution of the measure α (i = 1, . . . , d), where IB denotes the

indicator function of the set B. In this case, we can generalize Corollary 1.1 as follows.

Corollary 3.2 If the spectral measure α(dt) does not have a positive mass at the point 0

and if for at least one i ∈ {1, . . . , d} the Hamburger moment problems for the measures

proportional to t2mαi(dti) are determinate for all m = 0, 1, . . ., then H(K) does not con-

tain non-vanishing polynomials.

The case when the spectral measure has positive mass at the point 0 is treated similarly

in one-dimensional and multi-dimensional cases, see Section 3.4.

3.3 Discretization of the space and the limit of discrete BLUEs

In Section 3.4 below we will prove that constant functions belong to H(K) if the spectral

measure has positive mass at the point 0. The proof requires an auxiliary result which

is of own interest and shows that in the case f ∈ H(K) the variance of the continuous

BLUE is the limit of the variances of discrete BLUEs, after a suitable discretization of X

has been performed.

Lemma 3.1 Let X be a compact in Rd, (xn)n∈N be a sequence of distinct points in X

such that

sup
x∈X

min
1≤i≤n

‖x− xi‖ → 0 as n→∞ . (3.4)

Let θ̂BLUE,n be the BLUE of θ in model (2.1) from the observations of y(x1), . . . , y(xn).

Then f ∈ H(K) if and only if var(θ̂BLUE,n)→ c > 0 as n→∞.
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Moreover, if f ∈ H(K), the continuous BLUE θ̂BLUE of θ in model (2.1) exists and

c = 1/‖f‖H(K) = var(θ̂BLUE).

Proof. Let Xn = {x1, . . . , xn}, Kn denote the restriction of K on Xn, and define Hn =

H(Kn) as the RKHS corresponding to the kernel Kn. By Theorem 6 in Section 1.4.2 of

Berlinet and Thomas-Agnan (2011) we have for the restriction fn of f on Xn that fn ∈ Hn

and

‖fn‖Hn ≤ ‖fn+1‖Hn+1 ≤ ‖f‖H(K) .

Consequently, the sequence of (var(θ̂BLUE,n))n∈N= (1/‖fn‖Hn)n∈N is monotonously de-

creasing so that the limit c = limn→∞ var(θ̂BLUE,n) ≥ 0 exists for any f . Moreover,

var(θ̂BLUE,n) ≥ c for all n ∈ N.

If f ∈ H(K) we have by Proposition 4.12 in Paulsen (2016) that

lim
n→∞

var(θ̂BLUE,n) = c = 1/‖f‖H(K) .

Conversely, if var(θ̂BLUE,n) → c as n → ∞ for some c > 0, we can use the equivalence

between (1) and (2) in Theorem 4.15 in Paulsen (2016) to deduce that f ∈ H(K). �

Recall that the explicit expression for the variance of the discrete BLUE θ̂BLUE,n of Lemma

3.1 is given by

var(θ̂BLUE,n) = 1/F>n W
−1
n Fn , (3.5)

where

Fn = (f(x1), . . . , f(xn))> , Wn = (K(xi, xj))
n
i,j=1 . (3.6)

3.4 Spectral measures with positive mass at the point 0

In this section, we investigate the case, where the spectral measure has a positive mass at

the point 0 in more detail. In particular, we show that in this case the constant functions

belong to H(K). To be precise, assume that the covariance kernel of the error process
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has the form

Kγ(x, x
′) = γ + (1− γ)K(x, x′) , (3.7)

where 0 ≤ γ < 1 andK(x, x′) is a strictly positive definite kernel on a compact setX ⊂ Rd.

Note that in the particular case d = 1 and K(x, x′) = k(x−x′) with k having the spectral

measure α(dt), we obtain the representation (2.10) for the spectral measure αγ.

Theorem 3.1 Let X ⊂ Rd be a compact set and assume the kernel Kγ has the form (3.7)

with 0 < γ < 1. Then then the constant functions belong to H(Kγ).

Proof. Consider the location scale model

y(x)=θ+ε(x) , x∈X, Eε(x)=0, Eε(x)ε(x′)=Kγ(x, x
′) . (3.8)

and let (xn)n∈N denote a sequence of distinct points in X such that (3.4) is satisfied.

Let θ̂m,γ be the BLUE of θ in the model (3.8), constructed on the observations of

y(x1), . . . , y(xm). Define Wm,γ = (Kγ(xi, xj)
m
i,j=1, Ym = (y(x1), . . . , y(xm))> and 1m =

(1, . . . , 1)> ∈ Rm. As the covariance kernel K(x, x′) is strictly positive definite, the ma-

trix Wm,γ is invertible for all m ≥ 1, 0 ≤ γ < 1. Therefore, the BLUE is unique and given

by

θ̂m,γ = 1>mW
−1
m,γYm/1

>
mW

−1
m,γ1m .

Its variance is

var(θ̂m,γ) = 1/1>mW
−1
m,γ1m .

For simplicity of notation, denote κm,γ = 1>mW
−1
m,γ1m = 1/var(θ̂m,γ). The same arguments

as given in the proof of Lemma 3.1 show that for any 0≤ γ < 1, the sequence (κm,γ)m∈N
is monotonously increasing with some limit cγ = limm→∞ κm,γ ∈ (0,∞]. Observing the

representation

Wm,γ = (1− γ)Wm,0 + γ1m1>m

(for all m = 1, 2, . . . and 0 < γ < 1), we have

W−1
m,γ =

1

1− γ

[
W−1
m,0 −

γ

1− γ + γ1>mW
−1
m,01m

W−1
m,01m1>mW

−1
m,0

]
.
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This implies

κm,γ =
κm,0
1− γ

[
1− γκm,0

1− γ + γκm,0

]
=

κm,0
1− γ + γκm,0

,

and therefore it follows that

var(θ̂m,γ) = 1/κm,γ = γ + (1− γ)var(θ̂m,0) . (3.9)

Taking the limit (as m→∞) in (3.9) we obtain for all 0<γ<1:

lim
m→∞

var(θ̂m,γ) = γ + (1− γ)/c0 ≥ γ > 0 .

Lemma 3.1 now yields that the constant functions belong to H(Kγ). �

3.5 Estimation of the variance of a Gaussian random field

Let X ⊂ Rd be a compact set, and let f denote of a Gaussian random process (field)

on X with a strictly positive definite covariance kernel R(x, x′) = σ2K(x, x′) on X ×X,

where the kernel K(x, x′) is known but σ2 is unknown. For estimating σ2 we assume that

one can observe f at n distinct points x1, . . . , xn ∈ X. Then it is easy to see (see p.140

in Xu and Stein, 2017)) that the corresponding log-likelihood function is given by

LL(σ2) =
1

2

[
−n log(2π)− n log(σ2)− log(det(Wn))− 1

σ2
F>n W

−1
n Fn

]
, (3.10)

where Fn and Wn are defined by (3.6) and a simple calculation shows that the maximum

likelihood estimator (MLE) of σ2 is given by

σ̂2
n =

1

n
F T
nW

−1
n Fn . (3.11)

Comparing (3.11) with (3.5) we get

σ̂2
n =

1

n var(θ̂BLUE,n)
, (3.12)

and by Lemma 3.1 we obtain the following corollary.
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Corollary 3.3 Let X be a compact in Rd, K be a strictly positive definite kernel on

X ×X and f denote a centred Gaussian random field with covariance kernel R(x, x′) =

σ2K(x, x′). If x1, x2, . . . is a sequence of distinct points in X satisfying (3.4) and σ̂2
n is

the MLE of σ2 from the observations f(x1), . . . , f(xn), then the function f belongs to the

reproducing kernel Hilbert space H(K) if and only if limn→∞ σ̂2
n <∞.

3.6 Best polynomial approximation

Let L2(α) denote the space of square integrable functions with respect to the measure

α(dt) on the real line and define Pn−1 to be the space of of polynomials of degree n− 1.

For p ∈ Pn−1 we consider the L2(α)-distance

V (p) =

∫ −∞
−∞

(1− t2p(t2))2α(dt)

between the constant function g(t) ≡ 1 and the even polynomial t2p(t2) of degree 2n with

no intercept. A well know result in approximation theory (see, for example, Achieser,

1956, p. 15-16) shows that

minpn∈Pn−1V (p) =
det(c2(i+j))

n
i,j=0

det(c2(i+j))ni,j=1

= var(θ̂n) , (3.13)

where c0, c2, c4, . . . are the (even) moments of the spectral measure α defined in (2.4) and

the last equality is a consequence of Lemma 2.4.

From this representation it follows that var(θ̂n) → 0 as n → ∞ if and only if non-zero

constant functions can be approximated by polynomials of the form p̃n(t) = t2pn(t2) with

arbitrary small error. Moreover, for any polynomial p on (−∞,∞), we have

V (p) =

∫ ∞
0

(1− tp(t))2α+(dt) = b2

∫ ∞
0

(1/t− p(t))2α2,+(dt),

where the measure α+(dt) is defined by (2.11), b2 =
∫∞
0
t2dα+(t) and α2,+(dt) = t2α̃+(dt)/b2.

From Corollary 2.3.3 in Akhiezer (1965), it therefore follows that the set of all polyno-

mials P∞ = ∪∞n=0Pn is dense in the space L2([0,∞), ν) if the measure ν on [0,∞) is

the (unique) solution of a determinate Hamburger moment problem. As the function

f(t) = 1/t belongs to L2((0,∞), α2,+) we thus obtain from (3.13) another proof of the
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fact that if α(dt) has no mass at 0 and α2,+(dt) is moment-determinate in the Hamburger

sense then var(θ̂n) → 0. Note that this is almost equivalent to the ‘if’ statement in the

important Lemma 2.7.

4 Rates of convergence

In this section, we derive for several specific classes of correlation kernels explicit results

on the rate of convergence of the ratio var(θ̂n) = Hn/Gn, see (2.8), where Hn and Gn are

the determinants defined in (2.9).

4.1 Squared exponential (Gaussian) kernel

We first consider the case of the squared exponential kernel K(x, x′) = exp{−λ(x− x′)2}
with X ⊂ R and λ > 0. Assuming for simplicity λ = 1/4, we obtain that the spectral

measure is absolute continuous with density

ϕ(t) =
1√
π
e−t

2

, −∞ < t <∞ .

The moments of even order of the measure α are given by

c2j =

∫ ∞
−∞

t2jϕ(t)dx =

∫ ∞
0

tjg(t)dt = bj = 2j(2j − 1)!! j = 0, 1, . . . ,

where g(y) = 1√
π
y−1/2e−y, y > 0. Using (1.6) easy to see that the corresponding Ham-

burger moment problem is determinate and therefore non-vanishing constant functions

(and all polynomials) do not belong to the corresponding RKHS. We now investigate

the variance of the discrete BLUE defined in (2.7), which is given by the ratio of the

determinants Hn and Gn.

It follows from results in Lau and Studden (1988) that the determinant of the Hankel

matrix defined in (2.9) has the representation

Hn =
∣∣c2(i+j)∣∣ni,j=0

=
∣∣bi+j∣∣ni,j=0

=
n∏
i=1

(
d̃2i−1d̃2i

)n−i+1

, (4.1)
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where d̃j are the coefficients of the three-term recurrence relation

P`+1(t) = (t− d̃2` − d̃2`+1)P`(t)− d̃2`−1d̃2`P`−1(t), ` = 0, 1, . . . (4.2)

of the monic orthogonal polynomials with respect to measure g(y)dy (d̃0 = 0, P0(t) = 1,

P−1(t) = 0). Observing the three-term recurrence relation

(`+ 1)L
(α)
`+1(t) = (−t+ 2`+ α + 1)L

(α)
` (t)− (`+ α)L

(α)
`−1(t)

for the Laguerre polynomials L
(α)
n (t) (orthogonal with respect to e−yyαdy, y > 0) we can

identify the coefficients in (4.2). More precisely, the monic polynomials

L
(α)

`+1(t) = (−1)`+1(`+ 1)!L
(α)
`+1(t)

satisfy a three-term recurrence relation of the form (4.2) with d̃2k = k, d̃2k−1 = k + α,

see Dette and Studden (1992), Lemma 2.2 (b). As P`(t) = L
(−1/2)
` (t) we have d̃2k =

k, d̃2k−1 = k − 1/2 , and therefore obtain

Hn=
n∏
k=1

(k(2k−1))n−k+1
n∏
k=1

(1

2

)n−k+1
=
(1

2

)n(n+1)/2 n∏
k=1

(k(2k−1))n−k+1 . (4.3)

Now we move on to the determinant Gn =
∣∣bi+j∣∣ni,j=1

. Note that we have

bj =
1√
π

∫ ∞
0

yj−2y3/2e−ydy =
3

4
aj−2

for j ≥ 2, where ak =
∫∞
0
ykg̃(y)dy and the density g̃k is defined by g̃(y) = 4

3
√
π
y3/2e−y,

y > 0. Therefore,

Gn =
(3

4

)n∣∣ai+j∣∣n−1i,j=0
=
(3

4

)n n−1∏
l=1

(
d2l−1d2l

)n−l
,

where d2l−1 = l + 3/2, d2l = l. Consequently,

Gn =
(3

4

)n(1

2

)n(n−1)/2 n−1∏
k=1

(k(2k + 3))n−k
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and it follows

Hn

Gn

=
(4

3

)n(1

2

)n [ n−1∏
k=1

(k(2k − 1))n−k+1

(k(2k + 3))n−k

]
n(2n− 1)

=
(2

3

)n
n!(2n− 1)

n−1∏
k=1

(2k − 1)n−k+1

(2k + 3)n−k
.

Since
n−1∏
k=1

(2k − 1)n−k+1

(2k + 3)n−k
=

3n

(2n− 1)(2n+ 1)!!

we obtain

Hn

Gn

=
2n n!

(2n+ 1)!!
=

√
π

2
√
n

[
1− 3

8n
+

25

128n2
+O

( 1

n3

)]
, n→∞. (4.4)

The expansion (4.4) details the asymptotic relation formulated as Theorem 3.3 in Xu and

Stein (2017) in the case p = 0. Note that formula (4.4) also corrects a minor mistake in

this reference, which gives
√
π√
2n

as the leading term.

4.2 Spectral measure with Beta distribution

For measures with a compact support the determinants Hn and Gn can be conveniently

evaluated using the theory of canonical moments, see e.g. Dette and Studden (1997).

Exemplarily, we consider the symmetric Beta (α, α) distribution on the interval [−1, 1]

with density

ψ′α(t) =
1

22α+1B(α + 1, α + 1)
(1− t2)α, −1 < t < 1, (4.5)

where α > −1 andB(α, β) denotes the Beta-function. For later purposes we also introduce

the Beta(α, β) distribution on the interval [0, 1] with density

φα,β(t) =
1

B(β + 1, α + 1)
tβ(1− t)α , 0 < t < 1, (4.6)
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where the α, β > −1. The canonical moments of the Beta-distribution with density (4.6)

are given by

p2j =
j

2j + 1 + α + β
, p2j−1 =

β + j

2j + α + β
; (4.7)

see e.g. formula (1.3.11) in Dette and Studden (1997). It is easy to see that the distribution

on the interval [0, 1] related to the distribution ψα in (4.5) by the transformation (2.11)

is a Beta (α,−1
2
) distribution. Therefore, it follows from (4.7) that the corresponding

canonical moments are given by

p2j =
j

2j + 1/2 + α
, p2j−1 =

j − 1/2

2j − 1/2 + α
. (4.8)

Now Theorem 1.4.10 in Dette and Studden (1997) gives

Hn = |(bi+j)ni,j=0| =
n∏
i=1

(q2i−2p2i−1q2i−1p2i)
n+1−i , (4.9)

where q0 = 1, qj = 1− pj (j ≥ 1) and (observing (4.8))

q2i−2p2i−1q2i−1p2i =
4i (i+ α) (2 i− 1 + 2α) (2 i− 1)

(4 i+ 1 + 2α) (4 i− 1 + 2α)2 (4 i− 3 + 2α)
, i = 1, 2 . . . (4.10)

For the calculation of the determinant Gn = |(bi+j)ni,j=1| we note the relation

bi =
B(5

2
, α + 1)

B(1
2
, α + 1)

b̃i−2 i = 2, 3, . . . (4.11)

where b̃0, b̃1, . . . are the moments of the Beta(α, 3/2) distribution. Consequently, we obtain

from Theorem 1.4.10 in Dette and Studden (1997) that

Gn = |(bi+j)ni,j=1| = |(b̃i+j)n−1i,j=0| =
[
B(5

2
, α + 1)

B(1
2
, α + 1)

]n
×

n−1∏
i=1

(q̃2i−2p̃2i−1q̃2i−1p̃2i)
n−i

=

[
3

(2α + 3)(2α + 5)

]n
×

n∏
i=2

(q̃2i−4p̃2i−3q̃2i−3p̃2i−2)
n+1−i , (4.12)
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where p̃1, p̃2 are the canonical moments of Beta(α, 3/2) distribution, that is

p̃2i =
j

2i+ 5/2 + α
, p̃2i−1 =

3/2 + i

2i+ 3/2 + α
,

and

q̃2i−2p̃2i−1q̃2i−1p̃2i =
4i (i+ α) (2 i+ 3 + 2α) (2 i+ 3)

(4 i+ 5 + 2α) (4 i+ 3 + 2α)2 (4 i+ 1 + 2α)
, i = 1, 2 . . . (4.13)

Consequently, it follows from (4.13), (4.12) and (4.10)

Hn

Gn

=
[(2α + 3)(2α + 5)

3

]n
(q0p1q1p2)

n
n∏
i=2

[ q2i−2p2i−1q2i−1p2i
q̃2i−4p̃2i−3q̃2i−3p̃2i−2

]n+1−i

=
[ 4(1+α)

3 (3+2α)2

]n n∏
i=2

[ i (i+α) (i−1/2) (i+α−1/2)

(i−1) (i−1+α) (i+1/2) (i+α+1/2)

]n+1−i
.

Observing the relations

n∏
i=2

[ i

i− 1

]n+1−i
= n! ,

n∏
i=2

[i− 1/2

i+ 1/2

]n+1−i
=

3n

(2n+ 1)!!
,

n∏
i=2

[ i+ α

i− 1 + α

]n+1−i
=

Γ(n+ 1 + α)

(1 + α)nΓ(1 + α)
,

n∏
i=2

[i+ α− 1/2

i+ α + 1/2

]n+1−i
=

(3 + 2α)nΓ(3/2 + α)

2nΓ(n+ 3/2 + α)
.

we obtain

Hn

Gn

=
[ 4(1+α)

3 (3+2α)

]n n!3nΓ(n+1+α)(3+2α)nΓ(3/2+α)

(2n+1)!!(1+α)nΓ(1+α)2nΓ(n+3/2+α)

=

√
π

22α+1B(α + 1, α + 1)
× (2n)!!

(2n+ 1)!!
· Γ(n+ 1 + α)

Γ(n+ 3/2 + α)

=
π

22α+2B(α + 1, α + 1)
× 1

n

(
1 +O

( 1

n

))
, n→∞ (4.14)
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where the expansion in the last line follows by straightforward but tedious calculation

using Stirling’s formula.

We finally mention the special cases α = 0 (the spectral measure is a uniform spectral

density on the interval [−1, 1] with corresponding kernel function k(x) = sin(x)/x) and

α = −1/2 (the spectral measure is the arcsine distribution on [−1, 1] and the correspond-

ing kernel is k(x) = 2J1(x)/x, where Jα(·) is the Bessel function of the first kind) for

which the expansions are given, respectively, by

Hn

Gn

=

[
(2n)!!

(2n+ 1)!!

]2
=

π

4n
+O

( 1

n2

)
, (4.15)

Hn

Gn

=
(8

3

)n[1

8

]n
n!

3n

(2n+ 1)!!

2nΓ(n+ 1/2)

Γ(1/2)

1

n!
=

1

2n+ 1
=

1

2n
+O

( 1

n2

)
as n→∞. Interestingly, the ratio Hn/Gn in (4.15) is the squared ratio Hn/Gn of (4.4).
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