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Abstract: We propose a reproducing kernel Hilbert space approach to estimate the slope
in a function-on-function linear regression via penalised least squares, regularized by the
thin-plate spline smoothness penalty. In contrast to most of the work on functional linear
regression, our main focus is on statistical inference with respect to the sup-norm. This
point of view is motivated by the fact that slope (surfaces) with rather different shapes may
still be identified as similar when the difference is measured by an L2-type norm. However,
in applications it is often desirable to use metrics reflecting the visualization of the objects
in the statistical analysis.

We prove the weak convergence of the slope surface estimator as a process in the space of
all continuous functions. This allows us the construction of simultaneous confidence regions
for the slope surface and simultaneous prediction bands. As a further consequence, we derive
new tests for the hypothesis that the maximum deviation between the “true” slope surface
and a given surface is less or equal than a given threshold. In other words: we are not trying
to test for exact equality (because in many applications this hypothesis is hard to justify),
but rather for pre-specified deviations under the null hypothesis. To ensure practicability,
non-standard bootstrap procedures are developed addressing particular features that arise
in these testing problems.

As a by-product, we also derive several new results and statistical inference tools for the
function-on-function linear regression model, such as minimax optimal convergence rates and
likelihood-ratio tests. We also demonstrate that the new methods have good finite sample
properties by means of a simulation study and illustrate their practicability by analyzing a

data example.
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1 Introduction

Over the past decades, new measurement technologies provide enormous amounts of data
with complex structure. A popular and extremely successful approach to model high-
dimensional data on a dense grid exhibiting a certain degree of smoothness is functional
data analysis (FDA), which considers the observations as discretized functions. Meanwhile,
numerous practical and theoretical aspects in FDA have been discussed (see, for example,
the monographs Bosq, 2000; Ramsay and Silverman, 2005; Ferraty and Vieu, 2010; Horvath
and Kokoszka, 2012; Hsing and Eubank, 2015, among others). A large portion of the liter-
ature uses dimension reduction techniques such as (functional) principal components. On
the other hand, as argued in Aue et al. (2018), there are numerous applications, where it is
reasonable to assume that the functions are at least continuous, and in such cases dimension
reduction techniques can incur a loss of information and fully functional methods can prove
advantageous.

Because of its simplicity and good interpretability, the scalar-on-function regression model
1

}/;20604—/ BO(S)Xi(S)dS-f—&, 1§Z§7’L (11)
0

has found considerable attention (see, for exemple, James, 2002; Cardot et al., 2003; Miiller
and Stadtmiiller, 2005; Yao et al., 2005; Hall and Horowitz, 2007; Yuan and Cai, 2010, among
manny others). Here, the Y; and the (centred) errors ¢; are scalar variables, the predictors
X, are functions (typically of time or location) defined on the interval [0, 1], and the scalar «
and the function fy are the unknown parameters to be estimated. On the other hand, there
also exist many applications, where both, the predictor and the response, are functions, and

in recent years the function-on-function regression model
1
Yi(t) = ap(t) +/ Bo(s,t) Xi(s)ds +¢e;(t), tel0,1],1<i<m, (1.2)
0

has gained increasing attention (see Lian, 2007, 2015; Scheipl and Greven, 2016; Benatia et
al., 2017; Luo and Qi, 2017; Sun et al., 2018). Here «ay, Y;, Xj, €; are functions defined on the
interval [0,1] and the slope parameter 3, is a function defined on the square [0, 1]?, which
we call slope surface throughout this paper in order to distinguish it from the slope function
in model (1.1).

The slope By quantifies the strength of the dependence between the predictor and the

response, and is the main object of statistical inference in this context. Many methods, such



as estimation, testing, confidence regions, have been developed in the last decades for the
scalar-on-function linear regression model (1.1), which are often based on the L? metric (see,
for example, Hall and Horowitz, 2007; Horvath and Kokoszka, 2012, among many others). A
popular estimation tool is functional principle component (FPC) analysis, which provides a
series representation of the function 3y in the corresponding L? space (see, for example, Yao
et al., 2005). Other authors proposed reproducing kernel Hilbert space (RKHS) approaches
to estimate the slope parameter in a functional linear regression model. For example, Yuan
and Cai (2010) used the RKHS framework to construct a minimax optimal estimate in the
scalar-on-function linear regression, and Cai and Yuan (2012) discussed minimax properties
of their RKHS estimator in terms of prediction accuracy. We also refer to the work of Meister
(2011) who showed the asymptotic equivalence of the scalar-on-function linear regression and
the Gaussian white noise model in the Le Cam’s sense. Besides estimation, the problem of

testing the hypotheses
Hy:py=p. versus Hi: [y # b, (1.3)

for a prespecified function (5, in the scalar-functional linear regression model has been dis-
cussed intensively (see Cardot et al., 2003, 2004; Hilgert et al., 2013; Lei, 2014; Kong et al.,
2016; Qu and Wang, 2017, among others). There also exist several proposals to construct
L2-based confidence regions (see Miiller and Stadtmiiller, 2005; Imaizumi and Kato, 2019,
among others).

Non-linear and semiparametric scalar-on-function regression models, such as generalized
linear models and the Cox model, have been studied by Shang and Cheng (2015), Li and Zhu
(2020) and Hao et al. (2021). For the function-on-function model (1.2), the literature is more
scarce. Lian (2015) studied the minimax prediction rate in an RKHS, where regularization
of the estimator is only performed in one argument, while Scheipl and Greven (2016) inves-
tigated a penalized B-spline approach. Benatia et al. (2017) used Tikhonov regularization,
Luo and Qi (2017) proposed a so-called signal compression approach and Sun et al. (2018)
considered a tensor product RKHS approach to estimate the slope surface and the achieved
the minimax prediction risk.

This list of references is by no means complete, but a common feature of most of the work
in this context consists in the fact that statistical methodology is developed in a Hilbert space
framework (often the space or a subspace of the square-integrable functions on an interval),

which means that the statistical properties of estimators, tests and confidence regions for the



slope parameter are usually described in terms of a norm corresponding to a Hilbert space.
While this is convenient from a theoretical point of view and also reflects the mathematical
structure of the (integral) operator of the functional linear model, it has some drawbacks
from a practical perspective. In applications, using a metric that reflects the visualization of
the curve/surface is usually more desirable, since functions/surfaces with a small difference
with respect to an L2-type distance can differ significantly in terms of maximum deviation.
For example, a confidence region of the slope function/surface based on an L2-type distance
is often hard to visualize and does not give much information about the shape of the curve
or surface.

The choice of the metric also matters if one takes a more careful look at the formulation
of the hypotheses in (1.3). We argue that, in many regression problems, it is very unlikely
that the unknown slope (3 coincides with a pre-specified function/surface 3, on its complete
domain, and as a consequence, testing the null hypothesis in (1.3) might be questionable
in such cases. Usually, hypotheses of the form (1.3) are formulated with the intention to
investigate the question whether the effect of the predictor on the response can be approx-
imately described by the function/surface (., such that the difference Sy — B, is in some
sense “small”. This question can be better answered by testing the hypotheses of a relevant

difference

Ho: ||Bo — Bell <A versus Hy:||fo— Bil| > A, (1.4)

where || - || denotes a norm and A > 0 defines a threshold. Hypotheses of this type have
recently found some interest in functional data analysis (see, for example, Fogarty and Small,
2014; Dette et al., 2020), and here the choice of the norm matters, as different norms de-
fine different hypotheses. One may also view the choice of the threshold A as a particular
perspective of a bias-variance trade-off, which depends sensitively on the specific applica-
tion, and, of course, also on the metric under consideration. In particular, we argue that
the specification of the threshold in (1.4) is more accessible for a norm which reflects the
visualization, such as the sup-norm.

In the present paper, we address these issues and provide new statistical methodology for
the function-on-function linear regression model (1.2) if inference is based on the maximum
deviation. We propose an estimator for the slope surface 3y minimizing an integrated squared
error loss with a thin-plate spline smoothness penalty functional, and prove its minimax

optimality using an RKHS framework. Based on a Bahadur representation, we establish



the weak convergence of this estimator as a process in the Banach space C([0,1]?) with a
Gaussian limiting process. As the covariance structure of this process is not easily accessible,
we develop a multiplier bootstrap to obtain quantiles for the distribution of functionals of the
limiting process. In contrast to the L?-metric based methods, this enables us to construct
simultaneous asymptotic (1 — «)-confidence regions for the slope surface 5y in model (1.2).
Moreover, we also provide an efficient solution to the problem of testing for a relevant
deviation from a given function S, with respect to the sup-norm. Here, we combine the
developed bootstrap methodology with estimates of the extremal set of the function £y — S,
and develop an asymptotic level a-test for the relevant hypotheses in (1.4), where the norm
is given by the sup-norm. Although we mainly concentrate on the model (1.2), it is worth
mentioning that, as a special case, our approach provides also new methods for the scalar-on-
function linear regression model (1.1), which allows inference with respect to the sup-norm.

The rest of this article is organized as follows. In Section 2, we propose our RKHS
methodology of function-on-function linear regression and study the asymptotic properties
of our estimator in Section 3. Section 4 discusses several statistical applications of our results
and the finite sample properties of the proposed methodology are illustrated in Section 5.
Finally, the technical details and proofs of our theoretical results are given in the online

supplementary material.

2 Function-on-function linear regression

Suppose that (X1,Y7),...,(Xn,Y,) are independent identically distributed random variables
defined by the function-on-function regression model in (1.2), where ¢; is the centred random
noise, and the slope surface 3, is defined on [0, 1]?. For the sake of brevity, throughout this
article, we assume that the observed curves, i.e., X; and Y; in (1.2), are centred, that is,
E{X(s)} = E{Y(t)} = 0, for any (s,t) € [0,1]?, so that we may ignore the intercept
function «y, since ap(t) = E{Y (t)} — fol Bo(s,t) E{X(s)}ds. In this case, the function-on-

function linear regression model in (1.2) becomes

Yi(t) = /Olﬁg(s,t) Xi(s)ds +ei(t), 1<i<n, (2.1)

and a similar relation can be derived for the model (1.1).
In the sequel, we use L*([0,1]) and L?([0,1]?) to denote the space of square-integrable

functions on [0, 1] and [0, 1]?, respectively, and the corresponding inner product is denoted by
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(-,)12. By C(]0,1]?) we denote the Banach space of continuous functions on [0, 1]* equipped
with the supremum norm | - ||, by “~” we denote weak convergence in C([0,1]) and
C([0,1)?), and « gy stays for convergence in distribution in R* (for some positive integer

We start by proposing a RKHS approach for estimating the slope surface 3y in model

(2.1), and define by

H= {5 (0,1 - R | % is absolutely continuous, for 0 < 6 + 60, < m —1;
0146
gs;jajeg e L*([0,1]%), for 61 + 6, = m} (2.2)

the Sobolev space of order m > 1 on [0,1]?. It is known (see, for example, Wahba, 1990)
that H in (2.2) is a Hilbert space equipped with the Sobolev norm defined by

2] _|_9 801+025 2 m 8’”6 2

2 1 2

p— —_— R — . 2-

51l 2 ( 0, )(/ 88‘9182592) p> (91)/(85918t92) (2:3)
0<014+02<m—1 01+02=m

We propose to estimate [y in model (2.1) by

-~

Bn = argmin {L,(8) + (\/2)J(8,8)}, (2.4)

BeH

where

Lo(B) = %Z [ {vo- [ se0xe dS}th (25)

is the integrated squared loss functional, A > 0 is a regularization parameter, and for m > 1,

om om
(B B2) = ( ) / / aseafnll 6 88981?;_9 ds dt (2.6)

is the thin-plate spline smoothness penalty functional (see, for example, Wood, 2003).

In (2.4), for notational brevity, we suppress the dependence of Bn on A, and denote by

Lnx(P) = La(B) + (A/2)J(8, ) (2.7)

the objective function in (2.4). For 1,82 € H, we consider the following map (-, )k
H x H — R defined by

(B1, Ba)y ik = V (B, B2) + A (B1, B2) (2.8)



where

V (B, B2) = / Cx(s1,82) B1(51,t) Pa(s2,t) dsy dsy dt (2.9)
[0,1]3
and
Cx(s1,82) = cov{X(s1), X(s2)} (2.10)

denotes the the covariance function of the predictor. We first make the following mild

assumption on Cy.

Assumption A1l. Cy is continuous on [0, 1]2. For any v € L*([0, 1]), fol Cx(s,8)y(s)ds =0
implies that v = 0.

Our first result, which is proved in Section A.1, shows that the relation (-,-)x in (2.8)
defines an inner product on the space H in (2.2), and its corresponding norm is equivalent

to the Sobolev norm || - || given in (2.3).

Proposition 2.1. If Assumption A1 holds, then (-,-)k in (2.8) is a well-defined inner prod-
uct on H. If ||| x denotes its corresponding norm, then ||-||x and||-||3 in (2.3) are equivalent.

Moreover, H is a reproducing kernel Hilbert space equipped with the inner product (-, -) k.

In the sequel, for sy, s9,t1,t2 € [0, 1], let K{(s1,%1), (S2,t2)} denote the reproducing kernel
of the reproducing kernel Hilbert space H equipped with inner product (-, ). For functions
z,y on [0,1], let x @y denote the function defined by x ® y(s,t) = z(s)y(t). We use _; , to
denote the sum » 2, >, for abbreviation. Let Cx denote the covariance operator of X
defined by

CX(x):/O Cx(s,-)x(s)ds, (2.11)

for x € L?([0,1]). We assume that there exists a sequence of functions in H that diagonalizes
operators V in (2.9) and J in (2.6) simultaneously. A concrete example that satisfies the

following assumption will be provided in Section B.2 of the online supplement.

Assumption A2 (Simultaneous diagonalization). There exists a sequence of functions g, =

Tre @ My € H, such that ||prlleo < c(k0)® for any k, ¢ > 1, and

V (@, prrer) = Ot Ouer J(re, Prrer) = Proe Ok Ouer (2.12)



where a > 0, ¢ > 0 are constants, dxs is the Kronecker delta and py, are constants, such that

pre < (k€)?P for some constant D > a+ 1/2. Furthermore, any 8 € H admits the expansion
B=> V(B or)en
k.t

with convergence in ‘H with respect to the norm || - || x

Note that a similar diagonalization assumption has been made in Shang and Cheng (2015)
in the context of generalized scalar-on-function model. For the inner product (-, )k in (2.8)

it follows from Assumption A2 that
(@re, owe) ik = V(ere, owe) + M (0res Qo) = (14 Apre) O O (kK 0,00 > 1),

Therefore, it follows (3, ope)x = D 5, V (B, ore)(Pres prre) ik = (1 + Apre) V (B, re) for any
B € H, so that

= Z V (B, ore)ore(s,t) = Z %Wd(sa t). (2.13)
k0 k.l

Recall that K is the reproducing kernel and using the notation K, = K{(s,t), -} we have
ore(s,t) = (K(s1), Pre) k> 50 that by (2.13),

ore(s,t)
7 1+ A\pke

Ore(s1,t1)Pre(s2,t2)

Kip=
(51 1T+ Apre

Pre; K{(s1,t1), (s2,t2 }_ (2.14)

For (1,082 € H, let W, denote a linear self-adjoint operator such that (Wyfi,fe)x =
A (B1, B2). By definition, for the {@gs}r>1 in Assumption A2, we have (Wi@re, oro )k =
A (©ke, Prrer) = Apre Okrr Oper, 0 that in view of (2.13),

(Wxpre, pre) A Pre Pt
Wion — = PR 2.15
ok k’zé/ L+ Apwe T APre (2.15)
For any z € L*([0,1]%) and 8 € H, &.( fo fo (s,t)dsdt is a bounded linear
functional. By the Riesz representation theorem, there exists a unique element 7(z) € H
such that
1 1
(1(2), By = S,() / / B(s,t) z(s,t)dsdt. (2.16)
o Jo
In particular, (7(2), ore)k = (2, ©re) 12, SO that
<Za (;Ok€>L2
T(2) = — ks . 2.17
(2) ;1_1_)\/)]%%@ (2.17)



3 Asymptotic properties

In order to develop statistical methodology for inference on the slope surface in the function-
on-function linear regression model (1.2), we study in this section the asymptotic properties
of the estimator Bn defined by (2.4). We first present a Bahadur representation, which is
used to prove weak convergence of the estimator (point-wise and as process in C([0,1]?)).
Several statistical applications of the following results will be given in Section 4 below.

We begin introducing several useful quantities. Recalling the notation of W) and 7 defined
n (2.15) and (2.17), respectively, we obtain by direct calculations the first and second order

Fréchet derivatives of the integrated squared error L,, in (2.5)

B)Br = ——Z/ /{ /531, sl)dsl}Xi(SQ)ﬂl(SQ,t)dSth

=——Z< [ { /ﬁ H ﬁ1>K;

B)B15s = Z/ / {/ By (s1,t sl)dsl}Xi(SQ)ﬁ2(52,t)d52dt

:E;<T{Xi®{/o ﬁl(s,-)Xi(s)dSH,62> : (3.1)

K
Therefore, it follows for the function L,  in (2.7) that

DLn,)\(B)ﬁl = <Sn,)\(ﬁ)aﬁl>K s
D2 nk(ﬁ)ﬁlﬁQ <DSn,/\(6)61762>K7

where we use the notations

n

@ =5 e[ i [ s, x0aH] +mao).

Anl T|:XZ' ® { /0161(3, ) Xi(s) dsH + Wi(B1) -

1=

SN

DSTL,)\(/B)BI =
In addition, we have, in view of (2.8),

E{DQLn,A(ﬁ)ﬁlﬁﬂ =V (b1, B2) + A (51, B2) = (b1, B2) K

Remark 3.1. In the unregularized case, where A = 0, one can show that setting E{S,,o(5)} =

0 yields the common FPC expansion

p= Z X“}L;j “;>L2)uk®w, (3.3)




where the wug’s and the v,’s are eigenfunctions of the covariance functions of X and Y,
respectively (see, for example, Yao et al., 2005). To see this, in view of the definition of 7 in
(2.16), note that T(O) = 0 and that 7(z) = 0 implies z = 0. Hence, E{S,,o(8)} = E(T[X ®
{v - fol s,-)X (s)ds}]) = 0 implies that E(X ® Y) = E[X ® { [' B(s, )X (s)ds}], so that
cov{X(s) } = fo s t)Cx(s,s')ds’. Then, (3.3) can be obtained via the expansion of

this equation on both sides with respect to the eigenfunctions.

We now state several assumptions required for the asymptotic theory developed in this

section.

Assumption A3. For any t1,t € [0,1], E{e(t1)|X} = 0 and E{e(t1)e(t2)| X} = C.(t1,12)
almost surely. Assume further that C.(t1,t3) = 02 (t1,t2), for some o2 > 0, where § is the

Dirac-delta function.

Assumption A4. There exist constants cx,c. > 0 such that E{exp(cx||X||r2)} < oo and
E{exp(c|lel|z2)| X} < oo almost surely. There exists a constant ¢’ > 0 such that, for any

w e L2([0,1]),
E{ /OlX(s)w(s)ds}4 < [E{ /OlX(s)w(s)ds}zr. (3.4)

Moreover, E{e(-)e(-)e(-)e(-)| X} € L*([0,1]*) almost surely.

Assumption A5. The regularization parameter X in (2.8) satisfies A = o(1), n'A~V/ (D) =
o(1) and n~/2X7 (loglogn)'/? = o(1) as n — oo, where ¢ = (2D — 2a — 1)/(4Dm) + (a +
1)/(2D) > 0, for the constants a and D in Assumption A2.

Remark 3.2. The reason for postulating a white-noise error covariance in Assumption A3
is that the commonly used L? loss function defined in (2.5) corresponds to the likelihood
function in the case of the Gaussian white noise error process; see, for example, Wellner,
2003. It is also notable, that for the scalar-on-function model in (1.1), this assumption is in
fact not necessary (as there is no error function in this model) and Assumption A3 reduces
to E(¢|X) = 0 and E(e?|X) = o2 almost surely.

Assumption A4 requires that || X||z2, and [|e]|z2 conditional on X, have finite exponential
moments. Moreover, condition (3.4) is a common moment assumption in the context of
scalar-on function regression, used, for example, in Cai and Yuan (2012) and Shang and
Cheng (2015). Assumption A5 specifies the condition on the rate in which A tends to zero

as n — Q.
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The first result of this section establishes a Bahadur representation for the estimator (2.4)
in the function-on-function linear regression model (2.1). It is essential for deriving weak
convergence of the estimator Bn, which serves as the foundation of our statistical analysis in

Section 4. The proof of Theorem 3.1 is given in Section A.2.

Theorem 3.1 (Bahadur representation). Suppose Assumptions A1-A5 are satisfied. Then,

we have

180 = Bo + Sur(B)llx = Op(vn),

where Sy, is defined in (3.2), ¢ > 0 is the constant in Assumption A5 and
v, = nTVPATI(AY2 4 2NV ED) (og log n) V2 (3.5)

Due to the reproducing property of the kernel K, we have, for (s,t) € [0, 1]* fixed,

Bn(sv t) - 50(37 t) = <Bn - 607 K(s,t)>K )
and, by Theorem 3.1, this expression can be linearized to establish point-wise asymptotic
normality of Bn(s, t). The following theorem gives a rigorous formulation of these heuristic

arguments and is proved in Section A.3.

Theorem 3.2. Suppose that Assumptions A1-A5 hold. Assume n\e+D/CP)og(A\~1)} 4 —
00, Vi, = o(1), nA2 = o(1), 3 (1 + Apre) Z@Rels,t) = ATCHD/CD) s o oo;
Dk P V2 (Bo, pre) < 00. Then,

\/ﬁ{gn(s,t) — Bo(s, t)} BN N(0,1).
V oL+ Aoue) 20 (5, 1)

The final result of this section establishes the weak convergence of the process Bn in the
space C'([0,1]?), which enables us to construct simultaneous confidence regions for the slope

surface [y (see Section 4.2 below). The proof is given in Section A.4.

Theorem 3.3. Suppose that Assumptions A1-A5 hold and that n\* = o(1), v/nv, = o(1),
A = o(n™), nt=2\@tD/CD) s oo for some constants vy, vy > 0 as n — oo. Assume that

Zk,é 02, V2(Bo, pre) < 00, that the limit

VARG S = i + } :‘P s1,1 )Soke(82>t2)
t t =1 )\(2(1 1)/(2D) kf( 1,01 .
C {( 1 1)7( 2 2)} 1m ) (1 )\ ke)Z ( )

11



exists, and that there exist nonnegative constants cg, b,V such that

: pre(s1,t1) — pre(s2, 2)]? 20 20
lim sup \20+1)/(2D) [P < comax{|s; — s, [t — ¢ . (3.7
A0 ; (1 +)\,0kg)2 0 {| 1 2| | 1 2‘ } ( )

If the constant a in Assumption A2 either satisfies the condition (i) b < a, ¥ > 0 or the
condition (1) b= a, ¥ > 1, then

{Gn(s,t) Yo = \/ﬁ)\(zaﬂ)/(w){gn(&t) — Bo(5,t) Fse1) ~ {1Z(5,1) }srefon (3.8)

in C([0,1]%), where Z is a mean-zero Gaussian process with covariance kernel Cz in (3.6).

4 Statistical consequences

In this section, we study several statistical inference problems regarding the model in (2.1).
We first show in Section 4.1 that the estimator En in (2.4) achieves the minimax convergence
rate. In Section 4.2, we propose point-wise and simultaneous confidence regions for the
slope surface fy. In Section 4.3, we develop a new test for the the classical hypotheses
(1.3) based on the sup-norm using the duality between confidence regions and hypotheses
testing. Moreover, we also extend the penalized likelihood-ratio test for scalar-on-function
linear regression proposed in Shang and Cheng (2015) to the function-on-function linear
regression model (a numerical comparison of both tests can be found in Section 5.2 and
shows some superiority of the confidence region approach.) In Section 4.4, we study a test
for a relevant deviation of the “true” slope function and a given function S.. Finally, a
simultaneous prediction band for the conditional mean curve E{Y (¢)|X = 2} is proposed in
Section 4.5. The methodology requires knowledge of the constants a and D in Assumption
A2, and a data driven rule for this choice will be given in Section 5.1.

We also emphasize that, although we are mainly concentrating on the function-on-
function linear regression model, all results presented so far also hold for the scalar-on-
function linear model (under even weaker assumptions). As a consequence, we also obtain
new powerful methodology for the scalar-on-function linear regression model (1.1) as well,

and we briefly illustrate this fact for the problem of testing relevant hypotheses in Section 4.6.

4.1 Optimality

Under Assumption Al, the operator V in (2.9) defines a norm, say ||5]|?, = V(8,), on

H. As a by-product of the Bahadur representation in Theorem 3.1, we are able to show

12



the upper bound for the convergence rate of the estimator Bn in (2.4) with respect to the
|| - |[y-norm. Moreover, we also prove that this rate is of the same order as the lower bound
for estimating [, which shows that En is minimax optimal. To be precise, let G denote
the collection of all estimators from the data (X1,Y7),...,(X,,Y,), and let F denote the
collection of the joint distribution F' of the X and Y that satisfies Assumptions A1-A4,

according to the linear model in (2.1). The following theorem is proved in Section A.5.

Theorem 4.1 (Optimal convergence rate). Suppose Assumptions A1-Ab5 hold.
(i) By taking \ < n=2P/CP+D) e have
lim limsup sup P(Hgn — Boll} > en72P/EPFD) =,

cC— 00 n—oo ,3067‘[
FeF

(ii) There exists a constant co > 0 such that

liminf inf sup P(HB— BollZ > co n—QD/(QDH)) > 0.
n—00 ﬂeg B}(Qe‘;—:‘
€

Theorem 4.1 shows that the estimator En in (2.4) achieves the minimax optimal con-
vergence rate n~2P/(2P+D) with respect to the || - ||y-norm. It is of interest to compare this
result with the minimax prediction rate obtained in Sun et al. (2018). First, we consider
the estimation of the slope surface 3y in the Sobolev space H on the square [0, 1]* defined in
(2.2), whereas Sun et al. (2018) considered a tensor product RKHS on [0,1]%. Second, Sun
et al. (2018) showed their minimax properties in terms of excess prediction rate (hereinafter

denoted by EPR), defined by
2
}dt

. (4.1)

2

EPR(f,) =/ En+1{ Yn+1—/ Bu(s, 1) Xny1(s)ds Yn+1_/ Po(s, 1) Xnt1(s)ds
0 0 0

1
= / En+1
0

Here 3, is an estimator from the data {(X;,Y;))}", (Xns1,Yes1) is an independent future

/0 {gn(svt) - 50(3,t)}Xn+1(s)ds

observation and E,; is the conditional expectation with respect to (X1,Y7),...,(X,,Y,)

(which means that the expectation is taken with respect to (X, 41, Y,+1)). In fact, we have

N 1p g1l _ -
EPR(5,) :/0 {/0 /0 Cx(s1,82){Bn(s1,1) — Bo(s1, 1) HBn(s2,) — Bo(s2, 1) bdsidsz | dt
=V (Bn = Bo, Bn — Bo) = 1B — Boll},

13



which shows that the difference between 3, and the true 3 in squared ||-||y-norm is equivalent
to EPR(B,). Therefore, it follows from Theorem 4.1 that for the estimator B, in (2.4),
EPR(B\H) achieves the minimax rate n=2P/P+1) which is determined by the constant D > 0
that specifies the growing rate of J(pge, ¢re) in Assumption A2. In comparison, Sun et al.
(2018) showed that the EPR of their estimator achieves the minimax rate n=22/@0+)  where
the constant D > 0 characterises the decay rate of eigenvalues of the kernel
I{(s1,t1), (52, t2)} = o Cx (s, ) K {(s1,t1), (5, 8) }K*{(s52, t2), (s, u)} ds dt du,,
0,1

where K is the reproducing kernel of their tensor product RKHS.

4.2 Confidence regions

The asymptotic normality of the estimator En(s, t) in Theorem 3.2 enables us to construct

a point-wise (1 — a)-confidence interval of fy(s, t), for fixed (s,t) € [0, 1]?, since

T}ir&P{BO<Svt) € [B\n(svt) - Ql—a/Q UT(Svt> 7Bn<37t) + Ql—a/? 07(37t>]} =1- «,

where o, (s,t) = {Zu(l + Apre) 202, (s, t)}1/2 and Q;_q/2 is the (1 — a/2)-quantile of the
standard normal distribution.

On the other hand, the construction of simultaneous confidence regions based on the
sup-norm for the slope surface (3, is more complicated. In principle, this is possible using
Theorem 3.3 and the continuous mapping theorem, which give

VnAZaD/AD) gy |Bn(s,t) — Bo(s, )] 4 T= max |Z(s,1)], (4.2)
(s,)€[0,1]2 (s:t)€[0,1]2
where Z is the mean-zero Gaussian process defined in (3.8). Thus, if Q;_,(7") denotes the

(1 — a)-quantile of the distribution of 7" and

Ql—a (T)
\/ﬁ)\(2a+1)/(4D) )

then the set €, (a) = {6 : B\;(s,t) < B(s,t) < B;[(s,t)} defines a simultaneous asymptotic

B\;t(s,t) = Bn(sat) +

(1 — a)-confidence region for fy, i.e.,
lim P{f) € €, (o)} =1—qu
n—oo

However, the quantiles of the distribution of 7" depend on the covariance function Cy in
(3.6) of the Gaussian process Z, and is rarely available in practice. In order to circumvent

this difficulty, we propose the following bootstrap procedure to approximate Qi (7).
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Algorithm 4.1 (Bootstrap simultaneous confidence region for the slope surface ).

1. Generate i.i.d. bootstrap weights { M, , }1<i<n1<4<q independent of the data {(X;, Y;)},

SOl >

from a two-point distribution: taking 1—1//2 with probability 2/3 and taking 1+ v/2
with probability 1/3, such that E(M; ,) = var(M;,) = 1.
2. Compute Bn in (2.4); for each 1 < ¢ < @, compute the bootstrap estimator

B, = argmin [i ; M, | 1 {m) -/ (s, t)Xi(S)dS}Zdt 2. B)] - (3)

BEH

3. For 1 < ¢ <@, let

G, g(5:1) = VnACHDAPNEE (5.1) — Ba(s. )} 5

Tr,= swp |G, (s.0)]. (4.4)
(s,t)€]0,1]2

Compute the empirical (1—a)-quantile of the sample {i’;q}gzl, denoted by Ql—a(j—\‘:’Q)-

4. Let B;Z(s,t) = Bu(s,t) + Ql_a(/T\;,Q)/{\/ﬁ)\(Z‘IH)/(w)}. Define the set
nol@) = {810,117 = R: Blo(s,t) < B(s,1) < Bols1)) (45)
as the simultaneous (1 — «) confidence region for the slope surface 5y in model (2.1).

The following theorem, which is proved in Section A.6, provides a theoretical justifica-
tion of the above bootstrap procedure and establishes the consistency of the simultaneous

confidence region in Algorithm 4.1.
Theorem 4.2. Under the conditions of Theorem 3.5 we have
{Gq(5: ) }seton ~ {Z(s, ) sueroy  in C([0,1]%) (4.6)

conditionally on the data {(X;,Y;)}", where Z is the Gaussian process in Theorem 3.5.
In particular, the set €' (a) in Algorithm 4.1 defines a simultaneous asymptotic (1 — «)

confidence region for the slope surface By in model (2.1), that is

lim lim P{f € € (@)} =1—a. (4.7)

Q—00 n—+00

4.3 Classical hypotheses

For a given surface 3, on [0, 1}?, consider the “classical” hypotheses

Hy: By = B versus Hy: By # Ps. (4.8)

15



In the special case where f, = 0, (4.8) becomes Hy : 5y = 0 versus H; : By # 0, which is the
conventional hypothesis for linear effect; we refer to Tekbudak et al. (2019) for a review in
the scalar-on-function regression context.

In order to construct a test for (4.8), we may utilize the duality between hypotheses
thesing and confidence regions (see, for example, Aitchison, 1964). Specifically, recall from
Section 4.2 that we are able to construct a simultaneous confidence region &, 5(a) for 5y
using Algorithm 4.1, such that P{f € &} 5(a)} = 1 —a as n,Q — oo. Then, the decision

rule, which rejects the null hypothesis, whenever

ﬁ* ¢ QZ,Q(O‘) ’ (49)

defines an asymptotic level « test for the classical hypotheses in (4.8).

An alternative approach to construct a test for these classical hypotheses is to extend
the penalized likelihood ratio test (hereinafter denoted by PLRT), proposed in Shang and
Cheng (2015) for the scalar-on-function regression context, to the functional response con-
text. Specifically, for the objective function L, in (2.7), consider the penalized likelihood
ratio test statistic defined by

Qn(ﬁ*) = Ln)\(ﬁ*) - Ln,A(Bﬂ) . (410)

In order to find the asymptotic distribution of £,(f,) under the null hypothesis, we define

the sequences

112 _
Uy = {Eu(l + Apre) 1} o2 — Zk,f(l + Apre)
" Zk,((l + Aoke) 2 " Zk,z(l + Apge) 2

and obtain the following result, which is proved in Section A.7.

(4.11)

Theorem 4.3. Let Assumptions A1-A5 be satisfied. Assume that asn — oo, nAP+D/2D) —
o(1), nv? = o(1) and nu,\PTV/CD) = (1), where v, is defined in (3.5). Then, under the
null hypothesis in (4.8),
1
V2u,

where u, and o2 are given in (4.11).

{Znai L.(Be) — un}t -4 N(0,1),

Then, the PLRT at nominal level « rejects the null hypothesis in (4.8), whenever

2n02 £,(6,) — tup > V2up Q1 o, (4.12)

16



where Q;_,, is the (1 — a)-quantile of the standard normal distribution. We compare the
test (4.9) and PLRT (4.12) for the classical hypotheses (4.8) through simulated data in
Section 5.2.

4.4 Relevant hypotheses

It turns out that the construction of an asymptotic level o test for relevant hypothe-
ses as formulated in (1.4) is substantially more difficult. Recall that we are interested
in testing whether the maximum deviation between a given surface f, and the unknown
“true” slope surface [, exceeds a given value A > 0, and note that with the notation

doo = SUD (5 pepo1)2 |B0(8,t) — Bi(s,t)| the relevant hypothesis in (1.4) can be rewritten as
Hy: doo <A versus H;: dy >A. (4.13)

Therefore, a reasonable decision rule is to reject the null hypothesis for large values of the

statistic

Qo= swp [Buls,t) = BulsD)] . (4.14)
(s,t)€[0,1]2
When A = 0, the above relevant hypothesis reduces to the classical hypotheses in (4.8). In
this case, under the null hypothesis Hy : Sy = B, there exists only one function-on-function
linear model, which simplifies the asymptotic analysis of the corresponding test statistics
substantially, because basically the asymptotic distribution can be obtained from Theorem
3.3 via continuous mapping (see also the discussion in Section 4.3). On the other hand, if
A > 0, there appear additional nuisance parameters in the asymptotic distribution of the

difference d., — d~,, which makes the analysis of a decision rule more intricate.

For a precise description of the asymptotic distribution of c?oo in the case A > 0, let

EF ={(s,t) € [0,1)%: Bo(s,t) — Bu(s,t) = +doo} (4.15)

denote the set of points, where the surface 5y — [, attains it sup-norm (the set £T) or its
negative sup-norm (the set £7). Here we take the convention that £* = £~ = [0,1]? if
dss = 0 and denote by &€ = ET UE™ the set of extremal points of the difference Sy — 3,. The
following result describes the asymptotic properties of c?oo and is crucial for constructing a

test for the relevant hypothesis. It is proved in Section A.S.
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Corollary 4.1. If the assumptions of Theorem 3.3 are satisfied, then
VRACHD/ED) (g g ) Ly T = max{ sup Z(s,t), sup {—Z(s, t)}} ) (4.16)
(s,t)e€E+ (s,;t)e€E~

where Z is the mean-zero Gaussian process defined in (3.8).

Note that the distribution of T¢ depends on the covariance structure of the limiting
process Z in (3.8) and implicitly through the sets of extremal points £ and £~ on the
“true” (unknown) difference fy — 5. In order to motivate the final test, assume for the
moment the quantile, say Q;_,(T¢), of this distribution would be available (we will soon

provide an estimate for it), then we will show in Section A.8 that

yﬁ@mmm}Z @ ifdo=24 (4.17)

lim P{JOO > A+
1 if dyo > A

n—r00
Here the first two lines correspond to the null hypothesis d,, < A and the third line to the
alternative in (4.13).

This yields, in principle, a consistent asymptotic level « test for the relevant hypotheses
(4.13). To implement such a test we need to approximate the quantiles of the random variable
Te in (4.16). While the covariance structure of the process Z can be again estimated by the
multiplier bootstrap (see the discussion below), the estimation of the extremal sets is a little

more tricky. For this purpose we propose to estimate the sets £ and £~ by

. R -
& = {(5:) € 10,17 Bulsst) = Bulo,8) > oo — =2

E = {(s.0) €[00 Bu(s.0) — Buls,) <~ + cl‘z/gﬁ"}, (4.18)

respectively, where we use a term clogn/y/n in the cut-off values, for some tuning parameter

¢ > 0. Then, the random variable T¢ in (4.16) can be approximated by

Te :max{ sup Z(s,t), sup {—Z(s,t)}}. (4.19)

(s,t)eE+ (s,t)eE

In view of (4.17), the null hypothesis should be rejected at nominal level a € (0, 1), if

dss = sup |§n(s,t) — Bu(s, )] > A+ Q1a(Tt)

(s,t)€[0,1]2 \/ﬁ)\(2a+1)/(4D) ( )

where Ql_a(fg) denotes the (1 — a)-quantile of fg. Now, we still need to approximate the

quantile Ql_a(fg) of fg. Since the asymptotic distribution of fg depends on the unknown
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covariance function Cz in (3.6), we propose to combine a multiplier bootstrap similar to
the ones introduced in Section 4.2 with the estimation of the extremal sets. Specifically, for

1 < ¢ < Q and the process G}, ,(s,t) defined in (4.4), let

fgm = max{ sup G;q(s, t), sup {—Gz,q(s, t)}} , (4.21)
(s,t)eE+ (s,t)eE

where £* are the estimated extremal sets defined in (4.18). Then, the quantile of T¢ can

be approximated by the quantiles of the bootstrap extremal value estimates {fs*,n,q}qQ:r We

summarize the bootstrap procedures for the relevant hypothesis in (4.13) at nominal level «

in the following algorithm.

Algorithm 4.2 (Bootstrap for relevant hypotheses).
1. Generate i.i.d. bootstrap weights {M; ,}1<i<n,1<4<@ and compute the bootstrap process
Gy, ,(s,1) in (4.4).
2. Compute the extremal sets £t in (4.18). For 1 < ¢ < @, compute fg’mq in (4.21) and
obtain the empirical (1—«)-quantile of the sample {fgvn,q}ff:l, denoted by Ql,a(fg"n@).
3. Reject the null hypothesis in (4.13) at nominal level «, if

-~

do = sup |Ba(s,t) = Buls,t)] > A+ Q1 alTénq)

T (2ai 1) /(4D) 4.22
(s,t)€[0,1]2 V/nA2a+1)/(4D) ( )

The following theorem, which is proved in Section A.9, provides a theoretical justification

of the test (4.22).

Theorem 4.4. Suppose the conditions of Theorem 3.3 hold. Then, the decision rule (4.22)
defines a consistent and asymptotic level o test for the hypotheses (4.13), that is

Q1 -o(T%,0) 0 fde<A
Jmaaen/ap) [~ ¢ de=4 (4.23)

lim lim P{Jw > A+
1 if doo > A

Q—00 n—ro0

4.5 Simultaneous prediction bands

Based on the estimator En in (2.4), we can construct a simultaneous confidence region of
the conditional mean p,,(t) = E{Y ()| X = z¢} = fol Bo(s, t)xo(s)ds, using the consistent
estimator

fiay (t) = /0 Bp(s, t)zo(s)ds. (4.24)
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The following theorem establishes the weak convergence of the process ji,, in the space
C([0,1]), which enables us to construct simultaneous confidence regions for the function fi,.

The proof is given in Section A.10.

Theorem 4.5 (Simultaneous prediction band). Suppose that the conditions of Theorem 3.3
are satisfied. Then,

VNSO () = g (8} gy~ {Zen O ey i CLO,T]),

where Zy, s a mean zero Gaussian process with covariance function

1 1
CZ,xo(tlatQ):/ / Cz{(s1,t1), (s2,t2) } wo(s1) o(s52) dsy dsa (4.25)
o Jo
and Cy is defined in (3.6), Moreover,

VANCEDIED) sup (7 (6) — iy ()]~ Ry, = max |Z4, (0)]
te[0.1] te[0,1]

As the quantiles of the distribution of R,, depend in a complicate way on the covariance
structure of the process Z,,, we propose the following bootstrap procedure for a simultaneous

asymptotic (1 — «) prediction band for the finction ¢t — p,,(t) = E{Y (¢)|X = z0}.

Algorithm 4.3 (Bootstrap simultaneous prediction band).
1. Generate i.i.d. weights {M; , }1<i<n.1<q<@ and compute the bootstrap estimators {B;’q}gzl

n (4.3). Compute B, in (2.4) and Jiz, (¢) in (4.24).
2. For 1 < ¢ < Q, compute L} (t) = /nARet/4D) fol{g;;q(s,t) — Bu(s,t)}ao(s)ds
and define R;O ¢ = SUbepo ) [, 4(t)]. Compute the empirical (1 — a)-quantile of the

bootstrap sample {R:CO q}q ., denoted by Q;_, (R 0.0)-
3. Let ,uxo’Q( ) = Ty (t) £ Q1o CCOQ)/{\/ﬁ)\@““)/(w)}. Define the set

nola {M Mxo, (1) < pu(t) < ﬁ;;@(t)} (4.26)
as simultaneous (1 — «) prediction band for the function .

The following theorem provides a formal justification of the bootstrap procedure in Al-
gorithm 4.3, the proof uses similar arguments as given in the proof of Theorem 4.2 and is

therefore omitted.

Theorem 4.6 (Bootstrap simultaneous prediction band). Suppose the assumptions in The-
orem 3.3 are satisfied. Then, the set By o(a) in (4.26) defines a simultaneous asymptotic
(1 — @) prediction band for the function p,,, that is

lim lim P{u,, € B; o(a)} =1—a.

Q—00 n—00
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4.6 Scalar response

The results presented so far provide also new inference tools for the scalar-on-function linear

model
/50 s)ds+e;, 1<i<n, (4.27)

which can be considered as a special case of model (1.2), where the response Y is a scalar

variable. In this setting, the estimator defined in (2.4) becomes

~ D
B —arﬁger;m{ { /5 S} +§Js(575>]>

where Hs = {ﬁ 10,1 = R|B,48,..., 8™V are absolutely continuous; 3™ € L?(]0, 1]) } is
the Sobolev space on [0, 1] of order m, and J(3, 8) = fo {B™)(s5)}2ds. A direct consequence

of Theorem 3.3 in the function-response setting is the weak convergence

{Gn<3>}s€ 0,1] \/_)‘(QQH)/MD) {5 (5) }56[0,1] ~ {Z<S>}S€[071] (4'28)

in C([0,1]), where Z is a mean-zero Gaussian process. Hence, the methodology proposed
in Section 4, namely the bootstrap procedures for simultaneous confidence regions, relevant
hypothesis tests and simultaneous prediction bands, carries over naturally to the scalar
response case.
Exemplary, we consider (for a given constant A > 0) the problem of constructing a test
for the relevant hypotheses
Hy: sup [Bo(s) — Bu(s)] <A wversus Hj: sup |Bo(s) — Bu(s)] > A, (4.29)
s€[0,1] s€[0,1]
in model (4.27), which is more challenging in nature to tackle. A consistent estimator of
the maximum deviation do, = Supseo 1 [Bo(s) — Bu(s)] is doe = SUDse(0,1] 1Ba(s) — Bu(s)], so
that the null hypothesis in (4.29) should be rejected for large values of (ioo. As analog of
Algorithm 4.2, we obtain the following bootstrap test for the relevant hypotheses in (4.29).

Algorithm 4.4 (Bootstrap test for relevant hypotheses in the scalar-on-function mdoel).

It LR S

1 < g <@, compute the bootstrap estimator

-~ ) 1 n 1 2 A
B, = argmin {% lzl Mi,q{Yi — /0 B(s) X;(s) ds} + B Js(ﬂ,ﬁ)]

BEHs
and Gy, ,(s) = V/ACTV/EDRE (5) — B, (s)}.
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2. Compute the extremal sets

logn}.

£t = {5 € [0,1]: £{Bn(s) — Bul(s)} > du — € v

3. For 1 < ¢ <@, compute

YA}*?W] = max{ sup G;yq(s) , suAp{—(G;q(s)}} ,

seEt seE~

and obtain the empirical (1 — «)-quantile of the bootstrap sample {fg’n,q}ff:l, denoted

by Qu-a(T%,.0)-
4. Reject the null hypothesis in (4.29) at nominal level «, if

A~

s [Bals) — 6.(5)] > A+ e rCEng)

sel0.1] /AARa/(ED) (4.30)

It can be shown by similar arguments as given in the proof of Theorem 4.4 that the test
(4.30) is a consistent and asymptotic level « test. The details are omitted for the sake of

brevity.

5 Finite sample properties

5.1 Implementation

Because the estimators j3, in (2.4) and its bootstrap analog B;i’q in (4.3) are defined as the
solution of a (penalized) minimization problem on an infinite dimensional function space,
exact solution are inaccessible. In this section, we introduce finite-sample methods to cir-
cumvent this difficulty, and propose a method to choose the regularization parameter \. We
shall only present our approach for computing the bootstrap estimator B;‘L’q in (4.3), since the
estimator (2.4) can be viewed as a special case of (4.3) by taking M;, =1forany 1 <i<n
and 1 < ¢ < Q.

We start by deducing from Assumption A2 that J(zg @ ne, Trre @ o) = pre Okxr deer, SO
that for 5(s,t) = 30, , bee Pre(s,t) € H and for by € R, we have J(8, 8) = 37, , b, pre- We
consider the Sobolev space on [0, 1]? of order m = 2. In this case, the penalty functional
in (2.4) is J(B,58) = [} [} (5% + 26% + B%)dsdt, where By = 22 For the choice of the

basis, we use Proposition B.1 in Section B.2 of the online supplement. More precisely,
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mt) =1, n(t) = vV2cos{({ — 1)t} (¢ =2,3,...) and for £ > 1 the functions {Tps} x> are

the eigenfunctions of integro-differential equation

1
pg/ Cx(sl, 32) 5(82) d82 = %(4)(81> — 2<£ — 1)271'25(2)(81) + (g - 1)47T4
0
79(0) =79(1) =0, for # = 3 and 4

(5.1)

with corresponding eigenvalues {pgs}r>1. In order to find the eigenvalue and the eigenfunc-
tion of (5.1), we use Chebfun, an efficient open-source Matlab add-on package, available
at https://www.chebfun.org/. We substitute the covariance function C'x in (5.1) by its
empirical version éX, and find the eigenvalues py, and the normalized eigenfunctions Zy,.
Observing that the functions {n,}¢>1 are given by the cosine basis, we take the empirical
eigenfunctions @y = T, ®1,. Now, we approximate the space H by a finite dimensional sub-
space spanned by {@re}1<k o<y, defined by H = {Zlgk,zgu bre @M}, where v is a truncation
parameter that depends on the sample size n.

For 1 < g < @, for the ¢-th bootstrap estimator B;;q and for the bootstrap weights
{M;,}*, in Algorithms 4.1-4.3, let M, = diag(Mlq, ..., M, ) denote an n x n diagonal
matrix. For1 <i<nand1l <kl <w,let wy = fo (8)Te(s)ds and let €y = (wire) denote
a n X v matrix; let Ag dlag{plg, . ,pyg} denote a v X v diagonal matrix; let 372'@ = (Y;,me) 12
and let Y, = (Yi, ..., YT € RV, If we write En,q =30 252152%) Pre € H, then, in order

to approximate B ;10 (4.3), we find the b(q)’s by solving the following optimization problem

Yi(t) — ;(f?m /X $)ZTe(s)ds
Ml

dt+ — Z bg? pkg}

k(=1

aremind LS (0 EYIR IE

= arg(gun {Qn Z Mi,q b / Xi( + 3 Z bui Pre
9} i=1 =1 k=1

= argmin{l (17 Qy b(q)) ( —Qy b(Q) ull Zb(Q) Ay b(q) } (5.2)

@, |2n
{be } (=1 /=1
where we write b = (0%, ..., 09)T € R”. By direct calculations, for 1 < ¢ < v, we have
B = (Qf M, +niAo) "' M, Y, (5.3)

so that we can approximate A;;q in (4.3) by
v

~ o~ T -
Bry=> 0" z)@n,

=1
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if we let Ty = (ZT1p,...,Twe)" denote a function-valued v-dimensional vector. We propose
to use generalized cross-validation (GCV, see, for example, Wahba, 1990) to choose the

smoothing parameter A, in (5.2). For the g-th bootstrap estimator 6 we choose ), that

n,q’

minimizes the GCV score

_1 W s 112
R (T CaTmia
where Yy, = Q(QF M, Q + nAA,)'QF M, Y, and H, is the so-called hat matrix with
tr(Hy) = > tr{Qe(Q Mq Q +n Kﬁ)_l Q Mq}-

The statistical inference methods in Section 4 rely on the parameters a and D, and
we propose to estimate these two parameters from the data. To achieve this, we make
use of the growing rate of the eigenvalues of the integro-differential equation (5.1). As
indicated by Proposition B.1 in Section B.2 of the inline supplement, the pg,’s diverge at
a rate of (k)P so that we exploit the linear relationship between log(py,) and log(kf).
Specifically, for the empirical eigenvalues {px} of equation (5.1), we fit a line through the
points {(log(kf),log(Pre)) }1<k.e<20, and take D to be the value of the slope of this line
divided by 2, where we use a total number of 4v? eigenvalues. In the case of m = 2, by

Proposition B.1, D > 3 and a = D — 2, so that we take

D=max{D,3} and a=D-2.

5.2 Simulated data

For evaluating the functions X and Y on their domain [0, 1] we take 100 equally spaced time

points. For the data generating process (DGP), we used the following three settings:

(1) Let fi(s) =1, fiy1(s) = V2 cos(jms), for j > 1, and define
Bo(s. ) = +4§j DA OVIGR
Let X; = Z; Vi Zi; f;, where ZU ~ unlf( V3,V3), for 1 <i<n,1<j<50.

(2) Let Bo(s,t) = e~ the X;’s are the same as DGP 1.

(3) Let fi(s) =1, fjr1(s) = V2cos(jms) and gj.1(s) = v2{1 + cos(jrs)}, for j > 1 and
define

Bo(s,t) = +4§j L 2g,(5) f5(0)
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the X;’s are the same as DGP 1.

The first setting is similar to the ones used in Yuan and Cai (2010) and Sun et al. (2018);
the second setting is exactly the same as Scenario 1 in Sun et al. (2018); the third setting is
a non-standard setting that involves an asymmetric slope surface ;. We took € to be the

Gaussian process with the following three covariance settings:

(i) For ty,ty € [0,1], Cu(ty, ) = 028(t1, ), where 07 = 0.1 x [var{Y (t)}dt and Y (t) =
fol Bo(s,t) X (s)ds, for t € [0, 1].

(ii) Forty,ty € [0,1], Co(t1,t2) = 02(t)d(t1,t2), where o3(t) = 0.1 x var{Y (¢)}, for t € [0, 1].
(iii) For t1,ty € [0,1], C.(t1,ts) = 2035(t1,12), where 0% is as in (i).

For each above setting, we simulated 1000 Monte Carlo samples, each of size n = 30 or
60, and we took the bootstrap sample size Q = 300. We compared our method (hereinafter
referred to as RK) with the tensor product reproducing kernel Hilbert space method proposed
in Sun et al. (2018) (hereinafter referred to as TP). For our method, we took the number of
components v = [n?°] in Section 5.1. To evaluate the performance of different estimators,

we considered the following three criteria. The first criterion is the integrated squared error

of B, defined by

SEG) = [ [ 1Bs.t) = (s t)Pasr

-~

The second criterion is the excess prediction risk EPR(S) defined in (4.1). The third criterion
is the maximum deviation, defined by

MD(3) = sup |5(s.t) = Bo(s.1)]
(s,t)€[0,1]2

In Table 1, we report the three quartiles of ISE, EPR and MD of the estimators computed
from the 1000 Monte Carlo samples under the data generating process 1-3 with error pro-
cesses (1)—(iii), using our method (RK) and Sun et al. (2018)’s method (TP). Figure 1 displays
the plots of the true slope surface 3y and their corresponding estimators using RK and TP,
under the data generating processes 1-3 with error (i) and sample size n = 60.

The results in Table 1 indicate that, for DGPs 1 and 3, our method (RK) produces
higher estimation accuracy in terms of ISE, EPR and MD compared to Sun et al. (2018)’s

method (TP), whereas Sun et al. (2018)’s produces slightly better estimators in DGP 2.
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These results are in accordance with the fact that, in contrast to DGPs 1 and 3, the true 5
in DGP 2 is multiplicatively separable and the approach of Sun et al. (2018) is based on this
assumption. However, it is notable that the loss of the RK-method, which does not require
this condition, is not substantial. From Table 1, we also notice that, in some cases, both
methods perform better in error setting (ii) than in error setting (i). An explanation for this
observation is that, the point-wise signal-to-noise ratio is 10 in error setting (i), whereas this
value is smaller than 10 for some ¢ € [0, 1] in setting (ii). As for computation, Sun et al.
(2018)’s method involves computing the inverse or the Cholesky decomposition of matrices,
whose size are larger than n2-by-n?, which means their method could be time consuming for
sample size n larger than, say, 100.

We also evaluated the performance of the simultaneous confidence region &, 5 defined in

Algorithm 4.1, using the uniform covering probability
UCP(€}, ) = P{Bo(s,t) € €, for all (s,t) € [0,1]*}.

In Table 2 we report the empirical empirical UCP from 1000 simulation runs for data gen-
erating processes 1-3 with all error setting (i) and nominal level & = 0.10 and 0.05. We
observe a reasonable approximation of the confidence level in all cases under consideration.
The simultaneous confidence regions for the slope function for the DGPs 1-3 and the error
process (i) are displayed in Figure 2.

For the finite sample properties of classical hypothesis tests proposed in Section 4.3, we

consider the following hypothesis:
Hy: Bo=0 versus Hy: By #0, (5.4)

that is, we put S, = 0 in (4.8). We compared the decision rule based on the bootstrap
confidence regions defined in (4.9) (denoted by BT) and the penalized likelihood ratio test
(PLRT) at (4.12). Here, for the PLRT, in view of (5.2) and (5.3), substituting Mq by 1,, and
observing that QF Q, = nl,, the statistic £,(0) = L, (0) — LM(E,%) (defined in equation
(4.10)) can be estimated by

~ 1 o ~ ~ ~
£,(0) = ™ Z V" Qp (nl, +nXA) Q) Y.
=1

We took n = 30 and 60, and chose the nominal level & = 0.05 and used DGPs 1-3 with error
settings (i)-(iii). For DGPs 1 and 3, the empirical rejection probabilities are all 1.0 for both

26



methods for all settings. Table 3 displays the empirical rejection probabilities under DGP 2
with error settings (i)-(iii), together with the empirical sizes under H (that is, fy = 0),
of both BT and PLRT for the classical hypothesis (5.4) out of 1000 simulation runs. From
the results we observe reasonable approximation of both BT and PLRT of the nominal level
0.05 under Hy; BT outperforms PLRT in terms of empirical power, and as expected, the
empirical powers increases for larger sample sizes.

Next, we study the finite sample properties of the test (4.22) for the relevant hypotheses

Hy: sup |Bo(s,t)] <A wversus Hp: sup [Bo(s,t)] > A, (5.5)
(s,t)€l0,1]2 (s,t)€l0,1]2

(we put 5, =0 in (4.13)), where the nominal level is chosen as a = 0.05. We used the data
generating processes 1-3 with error setting (i), where the true ||5y||s = 6.0, 1.0 and 11.0 for
the three DGPs, respectively. We took the cut-off parameter ¢ = HB\HHOO/ZL in (4.18), which
scales according to the magnitude of Bn In Figure 3, we display the empirical rejection
probabilities of test (4.13) based on 1000 simulation runs, for the three data generating
processes, for different values of A in (4.13). The results shown in Figure 3 indicate that,
when A < d, the empirical rejection probabilities are smaller than o = 0.05, and when
A > d., the rejection probabilities increases towards 1 as A increases, which is consistent

with our theory.

5.3 Real data example

We applied the new methodology to the Canadian weather data in Ramsay and Silverman
(2005), which consists of daily temperature and precipitation at n = 35 locations in Canada
averaged over 1960 to 1994. In this case, for 1 < i < 35, X, is the average daily temper-
ature for each day of the year at the i-th location, and Y; is the base 10 logarithm of the
corresponding average precipitation; see Ramsay and Silverman (2005), p. 248. We took
the domain of X and Y to be [0, 1] with 365 equality spaced time points. The size of the
bootstrap sample is @ = 300 and the truncation parameter is chosen as v = [n?/®] = 4. In
Figure 4, we display the estimated slope function 5y and the 0.95 confidence region, using
our method RK. In order to evaluate the prediction accuracy, for both our method RK and

Sun et al. (2018)’s method TP, we computed the integrated squared prediction error (ISPE)
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Figure 1: Plots of the “true” slope surface By in model (2.1) and the corresponding estimators

using our method (RK) and Sun et al. (2018)’s method (TP), under DGP 1-3 (rows 1-3)

with error (i) with sample size n = 60.

Figure 2: Simultaneous 0.95 confidence regions for the slope surface By under DGPs 1-3 with

error (i) and sample size n = 60.
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« 0.10 0.05 | 0.10 0.05 | 0.10 0.05
n=30 ] 0863 0.932 | 0.882 0.963 | 0.858 0.915
n =260 | 0.881 0.944 | 0.913 0.960 | 0.870 0.939

Table 2: Empirical covering probabilities of the simultaneous confidence region (4.5) for the

slope surface By under DGPs 1-3 with error setting (i).

(i) (i) (i)
n=30 n=60 | n=30 n=60 | n=30 n=060
0.536 0.693 0.328 0.494 0.478 0.546
(0.061) (0.037) | (0.012) (0.028) | (0.063) (0.042)
0.367 0.562 0.304 0.418 0.330 0.513
(0.059) (0.020) | (0.074) (0.057) | (0.027) (0.060)

PLRT

Table 3: Empirical rejection probabilities under DGP 2, together with empirical sizes (in
brackets) of the decision rule based on the bootstrap confidence region (BT) in (4.9) and the
penalized likelihood ratio test (PLRT) in (4.12) for the classical hypothesis (5.4) with error
settings (i)—(iii) at nominal level o = 0.05.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

Figure 3: Empirical rejection probabilities of test (4.22) for the relevant hypothesis in (5.5)
at nominal level o = 0.05, under DGPs 1-3 with error setting (i) and sample size n = 30, 60,
for different values of A in (4.13). The horizontal dashed line is the nominal level 0.05; the
vertical dashed line is A\ = d

and maximum prediction deviation (MPD ), for each observation (1 < i < n), defined by

/X s)ds

m—@/ Xi(s) Bi(s) ds
30

ISPE; = dt;

(5.6)

MPD,; = sup
te(0,1]




where sz' is the estimator of the slope function based on the data with the i-th observation
removed. In Figure 5, we display the boxplot of {VISPE;}7, and {MPD;},, for both
methods RK and TP. The results in Figure 5 show that, in general, our method performs
better in terms of prediction accuracy and robustness, which is indicated by a smaller median,
smaller interquartile range in terms of v/ ISPE and MPD, and fewer outliers of v/ISPE. In
contrast, Sun et al. (2018)’s method achieves a smaller minimum value of both v/ISPE and
MPD.
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Figure 4: Estimated slope surface in model (2.1) (left panel) and its 0.95 simultaneous band
(right panel), using the Canadian weather data.
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Figure 5: Boxplot of the square root of the integrated squared prediction error VISPE (left
penal), and the mazximum prediction deviation (MPD) (right penal) defined in (5.6) using
our method RK and Sun et al. (2018)’s method TP.
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NOT-FOR-PUBLICATION APPENDIX 1

Supplementary material for “Statistical inference for
function-on-function linear regression”

Holger Dette, Jiajun Tang
Fakultat fiir Mathematik, Ruhr-Universitdt Bochum, Bochum, Germany

In this supplementary material we provide technical details of our theoretical results. In
Section A we provide the proofs of our theorems in our main article. In Section B.1 we
provide supporting lemmas that are used in the proofs in Section A. Section B.2 provides a
concrete example that satisfies Assumption A2. In the sequel, we use ¢ to denote a generic

positive constant that might differ from line to line.

A Proofs of main results

A.1 Proof of Proposition 2.1

To begin with, by Mercer’s theorem and Assumption A1, there exists a series of positive real
values {v;}32; and orthogonal basis functions {7;(s)}32, of L*([0, 1]) such that

(51, 82) Zvﬂﬂ $1)7;(s2) (A.1)

where v; > v;41 > 0, forj > 1. For any 3 € H such that ||3||% = 0, for the ; in (A.1) and

for t € [0, 1], let cp;(t fo s,1)7j(s)ds, so that B(s,t) = 372 v;(s)cp ;(t). Since {7,152,
is the orthogonal bas1s of L*([0,1]), we have

18117 = S)eai | =D Illialessliz = llesli- (A.2)
12 g=l j=1
Moreover,
1,11 00 ~
V(ﬁ,ﬁ):///C’X(sl,SQ){Zvj(sl)cm }{Z (s2)cpi(t }dsldSth

o Jo Jo oy —

= v;llesllze (A.3)
j=1

By the fact that v; > 0 and Assumption Al, ||3||% = 0 implies that, for any j > 1,
v [1 &, @)dt = V(B,8) < ||BI% = 0, so that cg;(t) = 0, and by (A.2) we have ||5]2, =
> =i llesjlli2 = 0, which shows that [|3]|% = 0 implies 3 = 0. Also, both V and J in (2.8)
are symmetric bilinear operators. Therefore, (-, ) is an well-defined inner product.
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Next, we show the equivalence of || - |k and || - ||». First, for any 8 € H, by (A.2) and
(A.3),

V(B,8) = Y villessllie <01 ) llesgllze = villBlI2 < corllBl3, (A4)

J=1 Jj=1

for some ¢ > 0. Hence,

1Bl% = V(8,8) + AI(B, 8) < (cor + M| BII3, (A.5)

achieve this, recall the definition of J in (2.6) and note that J(3, ) is a semi-norm on H.
Let Ho ={p € H: J(B,5) = 0} denote the null space of J(f, ). It is known that H, is a
finite-dimensional subspace of H spanned by the polynomials of total degree < m — 1, and
mo := dim{Ho} = (m+ 1)m/2; see Wahba (1990). Let {&;,...,&mn, } denote an orthonormal
basis of Ho. Let H1 = {v1 € H : {7,%)n = 0, V70 € Ho} denote the orthogonal complement
of Hy in H, such that H = Hg @ H1, where “@” stands for the direct sum. That is, for any
B € H, there are unique vectors g, 51 such that

We proceed to show that there exists a constant ¢y > 0 such that [|8]|3, < cl|8]|%. To

BZﬂO‘f‘Bla ﬁOEH[)?/BlE,HlJ (A6)
Here, in view of (2.3), (-,-)% is the inner product corresponding to || - ||3; defined by
01 + 65 / 8914—9271 / 8914-92,}/2
= —————dsdt ————dsdt
(15 v2)m Z ( 0, ) o D5t b sdt X orp 9501 970> S

0<014+02<m—1

m am’Yl am")/Z
dsdt f )
i Z (91> /[0,1]2 0s%10tP2 % 0501 0t02 sat, or v1,72 € H

01+02=m
Due to the fact that & € Hg, for 1 < k < my, we have

01 + 0, ael+92§k 891+9261
_ _ 97k e P st
0 <€k751>7‘[ Z ( 6, ) /[(')71]2 0591 002 sat X /[071]2 05910102 sat ,

0<6014+02<m—1

for 1 < k < mg. We deduce from the above result that f[o 1t %dsdt =0, for 0 <

01 + 02 < m — 1. In fact, the above argument shows that

891 +02 61

Hy = eH: _—
! {7 [0,1]2 0s%10t02

dsdt=0,0§91+92§m—1}

Therefore,

18115, = J(Br, B1) < ATV(B,B) + T (81, B1) = A |Bll - (A7)
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It then suffice to show that [|5y]|%, < collB]|% for some c¢o > 0. Since Sy € Ho, we have
J(Bo, Bo) = J(Bo, f1) = 0, so that in view of (A.7),

1811% = V(Bo + B1, Bo + Br) + A (B, 1)
=V (Bo, Bo) + 2V (Bo, 1) + V(B1, B1) + A 81l - (A.8)

Since V/(-,-) is an inner product, by the Cauchy-Schwarz inequality,

IV (Bo, B1)| < {V(Bo. Bo) }/*{V (b1, B1) }/? (A.9)

Next, we examine the connection between || 5|3, and V (81, 51). It is known that both H,
and H; are reproducing kernel Hilbert spaces with inner product (-, -)4 restricted to Ho and
H1, respectively. Let C1{(s1,t1), (s2,t2)} denote the reproducing kernel of H;. It is known
that C) is continuous and square-integrable on [0, 1]? x [0, 1]?; see, for example, Section 2.4
in Wahba (1990) and Section 4.3.2 in Gu (2013). Hence, by Mercer’s theorem, C; admits
the following eigen-decomposition:

Ci{(s1,t1), (s2,t2)} = ZCJ X (81, 1) x5 (52, t2)
j=1
where ¢; > (11 > 0, for 5 > 1, {x;};>1 forms an orthonormal basis of L?([0,1]?), and
81,82,t1,1 € [0, 1] Note that
XGrxe)e =0, (s xen =G 0

where §;4 is the Kronecker delta; see, for example, Cucker and Smale (2001) and Yuan and
Cai (2010). For B in (A.6), we have Bi(s,t) = > | (51, Xj) 12X (5, 1), so that

18112 = S (B XV 2ellz = 3 G Br xi)e
j=1 j=1
> S (B = GBI - (A.10)
j=1

In view of (A.2) and (A.3),
V(BB =D vsllessllis <o) llesgllze = v 1Bullze
j=1 j=1

Combining the above equation with (A.10) yields that

181113, > ¢ Moy 'V (B, Ba) -
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Therefore, combining the above equation with (A.8) and (A.9), we find that

1B1% >V (Bo, Bo) — 2|V (Bo, B1)| + V(Br, B1) + M| AillZ
>V (o, o) — 20V (Bos o)}V (B, )} + (1 i l) V(B )

1C1
_ A UlCl 1/2 U1C1 + A 1/2
= ot /\V(ﬁovﬁ@ + [ o /\{V(ﬁo,ﬁo)} L 2By, B}
A
Z Gt 5V o o) (A.11)

Next, we examine the connection between V (S, 5o) and ||5o||3,. Since 5y € Ho and

{&;}72, is an orthonormal basis of Hy under the inner product (-,-)3, we have By(s,t) =

ST Bos €5 &5 (s, 1) and || BollF, = 274 (Bo, )3 Note that
V(Bo, Bo) = ZZ Bo, &) (Bos E)n V (&5, 6e) -
7j=1 /=1

Let b denote an mg x 1 vector whose j-th entry is (5o, &;)#, and let V. denote an mgy x my

matrix, whose (j, ¢)-th entry is

V(&, &) = /[01]3 Cx(51,52)&;(51,1)&(s2,1) dsidsadt .

Now, we have V (5, fo) = b V.b and || 5|3, = ||b]|3. Due to Assumption Al, the matrix V; is
a positive definite matrix, and therefore admits a singular value decomposition V, = UT DU,
where U is an orthogonal matrix and W = diag(dy,...,dn,) is a diagonal matrix with
dy > ... > dy, > 0. Therefore,

V (B, Bo) = b U WU = dyny UB]I3 = duny |15 = s || Boll3, -

Therefore, combining the above result with (A.11), we find

viG + A
Ay A

1Boll3 < dr V' (Bo, Bo) < 181% -

Combining the above equation with (A.7) yields that

U1C1 + A + d
Ao N

18153 = 115oll3, + 1181117, < =281 - (A.12)

This together with (A.5) completes the proof of the equivalence between || - || and || - || k-
Since H is a reproducing kernel Hilbert space equipped with || - ||z, we therefore deduce that
H equipped with || - ||k is a reproducing kernel Hilbert space.
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A.2 Proof of Theorem 3.1

We first prove the following lemma, which is useful for proving Theorem 3.1. In this section,

without loss of generality, we assume that o2 = 1 in Assumption A3.

Lemma A.1. For any 5 € H, let

(X0 B _T[X ®{/ B(s H (A13)

H, (B Z (Xi, ) —E{g(X. B)}] - (A.14)
\/_
Forp, > 1, let
Fon =B €M |8l < 1,(8,8) < pa}- (A.15)
Then, under Assumptions A1-A4, as n — o0,
[ Hn(8) |5 . 1/2
= 0,( AV oglogn) '~ (A.16)
BEF,, pn/(Qm)Hﬂ”(m 1)/m +n_1/2 p( )

Proof. We follow the proof of Lemma 3.4 in Shang and Cheng (2015). For the {zjs}re>1
and {n,},>1 in Assumption A2, and for 1 <7 < n, let

1 1/2
X)) = ||X; — (X 2 2 A7
w06) = 1l (2 g (o mw l) (A17)
and let X, = {w(Xi) ? .. By Lemma B.5 in Section B,

H (X, 81) — B{g(X;, B1)}] — [9(Xi, Ba) — E{QXWZ)HHK

CHIASE o)),

+%E (s / (B, —@(s,-)}xi(s)dsDHK
< % 18— Ballze x [w(X) + E{w(X)}]

By Theorem 3.5 in Pinelis (1994),

2
P{|Hu(61) = Hu(Bo)lx = 2| X} < 2exp (_2W2 Hﬁf — Boll3 > ’
n L2

where

n

W, <Z )+ E{w(X )}}2) v : (A.18)

=1
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By Lemma B.6 in Section B, E(W?) < 4E|w(X)[|? < c A"V, Let
1Z]le = inf {¢ > 0: E{¥(|Z|/c)|X.} < 1}

denote the Orlicz norm of a random variable Z conditional on X,,, with ¥(z) = exp(2?) — 1,
then, by Lemma 8.1 in Kosorok (2007),

1 (8) = Ha(B)lx]|, < VW 181 = Bl

Let N(6,Fp,. || - ||z2) denote d-covering number of the class F,, in (A.15) w.r.t. the
L?([0,1]*)-norm. Since p,, > 1 for n large enough and J(p 1/25, 1/25) = pJ (B, ), we have
Fp, C pi/* Fy. Hence,

log N(8, Fp,, || - ll22) < log N (8, /2 F, || - || 12)
< log N(p, 20, F1, || - |l22) < e (p,'/28) %™,

where in the last step we used the result in Birman and Solomjak (1967). By Lemma 8.2
and Theorem 8.4 in Kosorok (2007), we have

sup | Hn(B1) — Ho(B2)|

B1,B2€Fpy s [161—B2l| 2 <6

¥
0

< WU VIog{1+ N0 Fy |- 12)} dn + 63/ log {1+ N2(6. F. | - 1)}
0

S Clwn p711/(2m)5171/m ’

for some absolute constant ¢; > 0. Since H,,(0) = 0, by Lemma 8.1 in Kosorok (2007),

P sup | Ha ()l > x| Xy p < 2exp (— W, ?p, e M)
BEFpn 1Bl 12<0

Taking v = 1 — 1/m, b, = Vapd®™, 0, = b-', Q, = [—log,0, + v — 1] and T, =
co(A7/P) loglogn)'/2, for some constant ¢, > 0 to be specified below, yields that

P{ . qu()nK Tnm}

BEFpm, 1Bl 2<2 On e

<P sup  V/nl[Ha(B)llx > T |
ﬁerpn:“ﬂ‘llﬂgeh/v

Qn
+ZP{ . VAl (Bl Tn‘Xn}

= | 8eFon, 021 <iBl 2 <2 )1/r bn ENEEE
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<P sup vl Ha(B)llx > T | X
Be}-Pnz HIBHLQ Serll/’y

Q7L
+) P sup Vil Ha(B)llxe > (ba8n2” +1)T,, | X,
=0 BEFpn, 1Bl 2 <(0n29F1) 1/

< 26Xp ( o 01—2W7l—2pT—Ll/m97(l—2+2/m)/'yn—lTi)

Qn
+2 Z exp { — W M (9,2 RN (5,6,27 + 1)2n*1T3}

=0
< 2exp (— W, T5) +2(Q, + 1V exp ( — ¢, W, *T7 /4)
<2(Qn+2)exp (— W, *T7/4) . (A.19)

For the W2 in (A.18), denote the event A, = {W? < csA"Y@P)} for some constant

cs > 0. Since E(W?) < eA™'/P) we have that, for cs large enough, P(A,) tends to one. On

/2

the event A, by taking ¢, > 2clc;1 , as n — 00,

2Qu +2) exp (— W, T2 /4) < 2(Qu + 2) exp  — e *Besloglogn/4) = o(1)

which together with (A.19) completes the proof of Lemma A.1.
O

Next, we prove the following lemma regarding the convergence rate of Bn, which is useful
to prove Theorem 3.1.

Lemma A.2. Under Assumptions A1-Ab, for any By € H, we have
1Bn — Bollxc = O, (N2 = 1/2)\=1/UD)y

Proof. For L, and S, » defined in (2.5) and (3.2), let

Su(B) =DLn(B);  S(B) = E{DLa(B)};  Sx(B) = E{Sur(9)}- (A.20)

In view of (3.2), Sx(8) = S(B) + Wa(5). We first show that there exists a unique element
Bx € H such that Sy(5\) = 0, and then we prove the upper bound for |5y — fo||x. Since

D?L(B0)B182 = (DSA(Bo)Br, Bo) ik = (b1, Bo) ks

we have DS\ (By) = id, where id is the identity operator. Since D2S) vanishes, we deduce
that DSy(5) = id for any 5 € H. Hence, by the mean value theorem, for any f € H,

Sx(B) = B+ Sa(Bo) — Po. Therefore, letting By = By — Sx(Bo), we find Sx(By) = 0, and S,
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is the unique solution to the estimating equation Sy(5) = 0. Moreover, since S(fy) = 0, we
have Sx(Bo) = S(Bo) + Wa(5o) = Wi(By). By the Cauchy-Schwarz inequality, for J in (2.6),

18x = Bollx = IWx(Bo)ll = sup [(Wx(Bo), vkl = sup AlJ(Bo,7)l

Il =1 Il =1
< H S”upl{\/U Bos Bo) VAT (7,7)} < s (VAT (Bo, Bo) 17l } = VAT (Bo, Bo) - (A.21)
YK "/ K=1

Since [|B, — Bollx < 18y — Bollk + 1Bn — Brlli, we then proceed to show the rate of
|Br — Ballk- Let F(B) = B — Sua(Br+ 5). Recall that DS\(8))8 = S, so that, for DS, » in
(32)

Fo(B) = Lin(B) + Lon(B) — Sua(By), (A.22)

where

I (B) = —{Sua(Br + B) = Sua(Br) — DSua(Br)B}
Irn(B) = —{DSpA(Br)B — DSA(Br)B} . (A.23)

First, for I, ,(f) in (A.23), in view of S, and DS, , defined in (3.2),
1 !
@) = 237 (00 [vi- [ + 85, N X018 )
i=1 0

_ %iT[Xi ® {Yi - /015(57 ')Xi(s)ds}]
+ % éT{Xi ® { /Olﬁx(s, -)Xi(S)dSH =0. (A.24)

For I,,(5) in (A.23), in view of (3.2),

1120 (B8) |l = ||DSnA(82)5 — DSA(Br)B|

= ||DS.(B\)B = DSBS = B)le , (A.25)

1
—\|\H,
vl
where H, () is defined in (A.14) in Lemma A.1. For a,D in Assumption A2 and ck in
Lemma B.3, let p, = ¢ 2A2e+D/2D)=1 Tn order to apply Lemma A.1, we shall rescale 3 such
that the L?-norm of its rescaled version is bounded by 1. For the constant cx in Lemma B.3,
let

(A.26)

5 (cK)r(2a+1)/(4D)WHK)*& 540,
0 if3=0.
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We have ||8]|z2 < cxgA~CetD/UD)|| B, < 1, since ||B]|x < (cxA~e+D/(P)) =1 by Lemma B.3.
In addition, in view of (2.8), J(B,5) < A |84 < ¢2AetD/@D)~L — p which implies
Be F,,. By Lemma A.1, since n=Y/2 = o(p}/@m)) by Assumption A5, we find that, for some
constant ¢ > 0 large enough, with probability tending to one,

HHn(g)HK < c(p}/@m) + nil/g) ()\*1/(2]3) log log n)1/2 < cpi/@m))\*l/(w) (loglog n)1/2 )

Therefore, in view of (A.26), we deduce from the above inequality that, for some constant
¢ > 0 large enough, with probability tending to one,

IHa(B) i < (exch™ GG ) [|Ha(B)l|c < epy/ G/ CP) (log log n) /2|8

Recall that p, = O(A2et1/P)=1) " Therefore, for I, () in (A.23), in view of (A.25), we
deduce from the equation result that, for some constant ¢ > 0 large enough, with probability

tending to one,

1w (B)llx < 0™ 2 Ha(B) i < en™2p/ EmIA~ @ DED) (log log n) V2| 5] i

< en A5 (loglog ) ||Bllx = o(1) IBllx . (A27)

where we used Assumption A5 in the last step.

For estimating the remaining term —S,, »(8y) in (A.22), we recall the definition of 7 in
(2.17) and define O; = 7[X; ® {V; — [ Br(s, ) X;(s)ds}], for 1 < i < n. Since Sy(f) = 0,
we obtain observing (3.1) that

n

—Spa(B) = ={Sua(By) = SA(BN)} =n™" > {0: — E(0))}.

i=1

Let AyB = By — B, so that from (A.21) we obtain ||Ay8||% < ¢ for some constant ¢ > 0.
We notice that

B[ Sua(By)llic = n""EllO; — E(O:) |l < n'BlO:}

rlxe{n- [ 1 B )X s K

(X ®e)+ T [Xi ® { /01 AB(s, -)Xi(s)dsH

=n'E

2
=n"'E

K

1 2
< 2 'B||r(X; @ &)|[5, + 20 'E|r {Xi ® {/ A\B(s, -)Xi(s)dsH (A.28)
0 K
By Lemma B.4 in Section B, we have
1 2
E|lT {Xi ® { / A\S(s, -)Xi(s)ds}] < eXYP A%, (A.29)
0 K




NOT-FOR-PUBLICATION APPENDIX 10

and Lemmas B.2, B.7 and Assumption A2 give for the first term in (A.28)

2 1 1
_ <N cepven),
K 214‘)\%@_621‘1‘)\(%)213_6

k.0 kL

EHT<X1' ® ;)

Combining this equality with (A.21), (A.28), (A.29) and Lemma B.7 yields

E|Sur(B% < enB||7(Xi @ &) |5 + en ]AYP || ANBII%

< en INTVED) 4T INIEUD < ot I\ ED) (A.30)

Let q, = 2con™Y2A7Y/(4P) and denote by B(r) = {y € H, ||7|lx < r} the | - ||x-ball with
radius r > 0 in H. In view of (A.27), for any 5 € B(g,), with probability tending to one,
|2 (B)lx < IBllk/2 < gn/2. Therefore, observing (A.22) and (A.24), we obtain for the
term F,,(f) in (A.22), with probability tending to one, for any 3 € B(q,),

HFn(ﬁ)HK S "12,11(5)"1( + HSn,)\(ﬁ)\)HK S Co n71/2)\71/(4D) + q'n/2 S dn

which implies that F,{B(q,)} C B.(g,) with probability converging to one. Note that for

any 1, B2 € B(qn), Fn(B1) — Fn(B2) = Ion(B1) — I2,0(B2). Due to (A.27), with probability
tending to one,

[ Fn(B1) = En(Bo)|| = [[12.n(B1) — L2n(Ba) |l < (|81 — Ballk /2,

which indicates that F,, is a contraction mapping on B(g,). By the Banach contraction

mapping theorem with probability converging to one, there exists a unique element 5* € B,
such that f* = F,(8*) = 8" — Sux(Br + 5%). Letting 3, = p\ + 5%, we have S, \(8,) = 0,
which indicates that 3, is the estimator defined by (2.4). In view of (A.21),

15 = Bollic < 118 = Bollsc + 130 = Ballsc = Op(N2 + ) = Op (A2 7 H/2A7H (D)

Finally, we conclude the proof of Theorem 3.1 using Lemmas A.1 and A.2.
Proof of Theorem 3.1. Let fa = §n — Bo. Since D%S, vanishes and DSy(8y) = id, we have
Sx(Bn) — Sx(Bo) = DSx(Bo)Ba = Ba. For S, and S defined in (A.20), since Sm,\(gn) =0,
B\n = Bo+ Sua(Bo) = Ba + Snua(Bo) = — n)\(gn) + Sna(Bo) + 5/\(371) — Sx(o)

Let r, = A2 4+ n~12\"Y/UD) For ¢; > 0, denote the event M,, = {HBAHK < ey ). From
Lemma A.2, we obtain that P(M,,) is arbitrarily close to one except for a finite number of n
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if ¢; > 0is large enough. For the constant cx > 0 in Lemma B.3, let ¢, = cicpg A\~ 20D/ (A0
and let p, = ¢ 2272 = ¢ 2N 2P+2a4D/(2D) - We have p, > 1 for n large enough since
D > a+ 1/2 by Assumption A2. In order to apply Lemma A.1, we shall rescale S such
that the L?-norm of its rescaled version is bounded by 1. Let BA = ¢, 'a. By Lemma B.3,

we have that, on the event M,,,
HEAHH < CKAf(2a+1)/(4D)H§AHK < CqulA—(2a+1)/(4D)HBAHK < ClCKq;1)\—(2a+1)/(4D)Tn <1.

In addition, since J(Ba, Ba) < A7|Ball%, we have
J(BaBa) < 6;27(Ba. Ba) < 6227 MBall% < g 22712 = p,.

Hence, we have shown that Ba € Fy,,, where the set F,,, is defined in (A.15).
Recalling the notations (3.2), (A.14) and the identity (A.31), we have

HB\n - BO + Sn,)\(BO)HK = H - Sn(gn) + Sn(ﬂo) + S(B\n) - S(ﬁO)HK
=n" 2| H (o) (A.32)

Since EA € Fp,, by Lemma A.1,
||Hn(gA)||K — Op{(p}/@m) + n—1/2) ()\—1/(2/3) log log n)l/Z}
= Op{p;/@m)/\*l/(w) (loglog n)l/Q} )

p}/ (2m))

since n~1/2 = o by Assumption A5. Therefore, we deduce from the above equation

that, for some constant ¢ > 0 large enough, with probability tending to one,

n V2| Hy(Ba)llx < 07 2q | Ho(Ba)llx < en™2q, pt/ @A"Y UD) (1og log )/

< Cn—l/2()\—(2a+1)/(4D) Tn) )\(—2D+2a+1)/(4Dm) )\—1/(4D) (lOg log n>1/2
= en VPATS(AY2 4 2NV ED) (log log n) Y2 (A.33)

where ¢ > 0 is the constant in Assumption A5. Combining the above result with (A.32)
yields that

180 = B0 + Sur(Bo)ll,c = Op{n™2AS (N2 402XV 0D (loglog n) 2}

which completes the proof of Theorem 3.1.
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A.3 Proof of Theorem 3.2

Recall that

vy = n " VPATIAYZ 472NV ED) (og log ) V2 (A.34)

where ¢ > 0 is the constant in Assumption A5, so that by Theorem 3.1, HBn — Bo +
Sur(Bo)llk = Op(vy). In view of (3.2), Sya(Bo) = —n 'YL 7(X; ® &) + Wi(S), so
that

n

B = Bo = (Bn — Bo + SupBo) — Wa(Bo) + % Z T(X; ®e). (A.35)

i=1

We first denote

o-(s,t) = { ;(1 + Aoke) 2 k(s, lﬁ)}l/2 7 (A.36)
so that
5.0 = G5, 0} = 5,8+ Tans.0)+ (5.0,
where
L(s,t) = afj 5 (B = Bo+ SuaBo. Ks)xc
I, (s,t) = —OT\(/jt)W,\BO(s,t),
Il = S (X @e)(s.t).

Vno-(s,t) i1

By Theorem 3.1, (B.2) and Cauchy-Schwarz inequality,

\/ﬁ —~
[1n(s,t)] = mKﬁn — Bo + SnupBos Kis)) |
i _
< o (5.0) K syl X 1|80 — Bo + Sua(Bo)

1/2 R
n Sn
_m@ﬂhﬂ+MJ < 1B = B + Sual6)l

2 1/2
< OWANE D) x 0yfun) x { 1= T 0, v, (aam
kil ke

where we used Assumption A2 and Lemma B.2, which imply o, (s, t) =< A~(2a+1)/(4D),
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For the term Iy, in view of (2.15), by the assumption that >, , pi,V*(80, ore) < 00,
Assumption A2 and Lemma B.2,

|50 (s,t)] = |WBo(s,t)]

V (Bo,
Zﬂke (Bos re) (,OM(S,t)'

\/_
o.(s,t) 1+ Apre

Sy (ﬁw>}/{2(”¢—”00)} Sevr=oll). (A3

1+ )\,Okg

Finally, the term I3, can be estimated as follows. For 1 <7 <n, let
T(X; ®&)(s,1) T(X; ® &) (s, 1)
\/HUT(Svt) \/nZk,E(l +)‘pk5)7290i2<57t)

so that I3, = > 4;. We start by noticing that, Assumption A3 indicates that

B{(r(X ©), 0u) s} = E[ /[O . E{e(t)|X}<pkg(s,t)Xi(s)dsdt] 0.

Ll,; —

so that in view of (2.17), E{m(X ®¢)(s,t)} = >, , B(X @&, ore) 12) (14 Apre) ' pre(s, 1) = 0,
so that E(4;) = 0. In view of (B.7) in the proof of Lemma B.7 in Section B,

Elr(X ®¢e)(s,t)2 =E (Z XKooz o t))

" 1+ Apre

B k,k’z,uf (1904?5)(\2;)) Zk,i (;’ﬂz')z') E{<X B pre)iz (X O, SOW/>L2} = o8,
where o, is defined in (A.36) and we used o2(s,t) (B.8) in the last step. By the assumption
that o2(s,t) < A\~2e+D/CD) e deduce that E|7(X ® ¢)(s,t)|? = o2(s,t) > 2A~(2e+)/2D)
for some constant ¢y > 0.
To conclude the proof, we shall check that the triangular array of random variables
{3, = {n"2071(s,0)7(X; @ &;)(s,t)}, satisfies the Lindeberg’s condition. By the
Cauchy-Schwarz inequality, for any e > 0,

D B[l x 1{jek] > e}]

_ Ugéﬁ B[[r(X ®e)(s, )2 x 1{[7(X @¢)(5,1)] > ev/no,(s,1)}]

[Blr(xe s)(s,t)\A‘}l/z x [P{Ir(x @ e)(s1)] > e\/ﬁaT(s,t)Hl/z. (A.39)

~ 02(s,t)
We shall deal with the above moment term and the tail probability separately. In order to
find the order of E|7(X ®¢)(s,t)[*, in view of (B.2) and Lemma B.2, by Assumption A2,

el —(2a+1)/(2D)
Sup K . o0 S C}\ a . A.40
(s,t)€[0,1]2 1K Iic = Z L+ Apre ( )
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Therefore, by Lemma B.7, we find

sup E‘T(X ® 5)(3,25)‘4 < sup ||K(S,t)||}1( X E[|[7(X @ ¢)|[} < eA™@ /D (A 41)
(s,t)€(0,1]2 (s,t)€[0,1]2
In order to find the order of the tail probability P{|7(X ® ¢)(s,t)| > ey/no,(s,t)}, we
first show an upper bound of |7(X ® €)(s,t)|. To achieve this, in view of (B.7) in the proof
of Lemma B.7 in Section B, by Lemma B.3,

IT(X ®@e)llx = sup [(T(X ®e),7)k|= sup [(X @& )]

Ivlx=1 vl x=1

= e Illze x X @ ellze < exed™ @ EDX o e 2
=1

By (A.40) and the Cauchy-Schwarz inequality, we deduce from the above equation that

sup [T(X ®@e)(s,t)[ = sup [(Kp T(X @e))r[ < sup K|k x [[T(X @ ek
(s,t)€[0,1]2 (s,t)€[0,1]2 (s,t)€[0,1]2
< eX~CaED/CD) | X ]| 2 - (A.42)

Now, by assumption, o,(s,t) > coA~*+D/(UP) for some ¢y > 0, hence for any e > 0, we can
choose ¢; > (c.D)7L, for ¢, > 0 in Assumption A4, so that

P{I7(X ©&)(s,t)| 2 evon(s,) |
P(CY(Q“H)/(?D)||X||L2||<°3||L2 > 600\/5)\—(2a+1)/<4D>>
P(I1X 2 llellze > e coy/maletn/am))
P{||X||Lz > ecl_lc_lcg\/ﬁ)\@aH)/(w)/log()\_l)} + P{||5||Lz > cllog()\_l)}
exp{ —cxecy e L egy/nAEHTV/ D) Jog( ATV Efexp(ex || X | 12)}
T B {exp(e el )}

_ O(/\Cxecl—1c_1co{\/ﬁ/\(2a+1)/(4D>/1og2()\—1)}) + O()\clcs) _ O(AI/D) ’ (A.43)

IN I IA

IN

where we used the assumption that \/nA(22+D/(4P) /10g%(\~1) — oo in the last step. Since, by
assumption, 02(s,t) < A~(2+D/D) - combining the above equation with (A.39) and (A.41)
yields that, for any e > 0,

DB < 1] > ef] < s

i=1 T

Therefore, by Lindeberg’s CLT,

x O(A~@FD/DY 5 o(AVED)) = (1)

n

m > r(Xi@en)(s ) - NO,1).



NOT-FOR-PUBLICATION APPENDIX 15

Combining the above result with (A.35)—(A.38), we deduce that
NG

o,(s,t)

{Bu(s,t) = Bols,1)} = \/ﬁ;

o 7(X; @ &) (s,t) + 0,(1) =5 N(0,1),

i=1

which completes the proof.

A.4 Proof of Theorem 3.3
Recall the definition of the process G,, in (3.8) and note that in view of (A.35),
Gn(s,t) = Lin(s,t) + Lopn(s,t) + I5,(s, 1), (A.44)
where
(s, 1) = /RACSHD/EDNR (6 1) — Bo(s,t) + SurBols, )}

Iyn(8,1) = —/nAETV/ U, By (s 1)

Isn(s, t) = n~/2\@a+D/4D) ZT(Xi ®&)(s,t). (A.45)

=1

In view of (A.37) and Theorem 3.1, for v, in (A.34),

2 1/2 .
sup ‘Il,n<37t)’ < \/ﬁ)\(2a+l)/(4D){ Z M} Hﬂn — 50 + Sn,A(ﬁO)HK
k0

(s,0)€[0,1]2 L+ Apre

— O,(v/va) = 0,(1), (A.46)
V (5o,
sup (s, 0)] = VNS0 g | SR )

(s,£)€[0,1]2 (s:)€l0,1)2 | 7 + Apre
< \/ﬁ)\1+(2a+1)/(4D){ Zpie VQ(BO (pkg)}uz{ Z HSOMHC%O }1/2
—_— ) 2

I, ol (1+ Apke)

=O0(v/n)) = o(1). (A.47)

For the term I3, we use E{7(X ®¢)(s,t)} = 0 and (B.8) to obtain as n — oo

cov{Izn(s1,t1), I3 (50, 12) }
= )\(2a+1)/(2D)COV{T(X ®e)(s1,t1), 7(X ®€)(sq, tg)}

X X 101
= \(2atD/C2D) g [{ > M%z(sl, t1)}{ > X e pwe)ue e (52, tz)}

7 LT Ak oo LT Aowe

1) Pre(s2, t2)
— ACern/eD) Y Pre(51, T = Cz{(s1,t1), (s2,t2)} + 0(1). A48
) (1 + Apwe)? 2{(s1, 1), (52, 12)} + o(1) (A.48)
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Note that the results in Section 1.5 in van der Vaart and Wellner (1996) are valid if the

£>([0,1]%) space is replaced by C([0,1]?). We shall prove the weak convergence in C([0, 1]?)
through the following two steps.

Step 1. Weak convergence of the finite-dimensional marginals of G,

In order to prove the weak convergence of the finite-dimensional marginal distributions
of Gy, by the Cramér-Wold device, we shall show that, for any ¢ € N, (cy,...,¢,)T € R? and
(Slvt1>v (Sq’ ) [O 1]

q

Z n(85,1; —> ch (s5,t;). (A.49)
j=1
For 1 <i < mn, let {l;, = n~/2\2a+1)/(4D) Zj‘:l ¢;7(X; ®¢:)(s5,t;). In view of (A.46) and
(A.47), we deduce that

ch (85,1, chlgnsj, —I—ch{llns], )+ Lon(sj, t;)} = Zﬂz,q—kop)

=1

By (A.48) and assumption, we find, as n — oo,

Var(ﬂm) _1 Z Cj, Cjy COV{T X ®52)(831’ J1) (X ®gl>(8j27tj2>}

J1,j2=1
q

=0 > ¢6uCr{(850 1), (852, 13,) } +o(n ")
J1,j2=1
When >7% . ¢ic;,Cz{(s4, 1), (Sja, tj)} = 0, we have that Y 9_, ¢;Z(s;,t;) has a degen-
erate distribution with a point mass at zero, so that (A.49) is followed by the Markov’s
inequality. When > 7 5 ¢j,¢;,Cz{(sj,t51), (8jn: o)} # 0, to prove (A.49), we shall check
that the triangular array of random variables {4l; ,}7 , satisfies Lindeberg’s condition. By
the Cauchy-Schwarz inequality, we find, for any e > 0,

ZE{ L(|thiq| > €)}

q 2 q
= E{)‘(Qaﬂ)/(w) D em(X @e)(sty)] X 1{)\(2@+1)/(4D) > gT(X @e)(sy )| > 6\/5}}
j=1 j=1
q 45 3 q 1
< /\(2“1)/(213){]3 > em(X @e)(s;ity) } P{)‘(%H)/(w) Y or(X @e)(sy, )] > 6\/5}
j=1 j=1

In view of (A.41),
{r

42 ;
} Sc{ sup E|T(X®5)(s,t)\4} < ex~@tb/p

(s,t)€[0,1]2

Z oT(X ®e)(s), b))
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Let 5, = »29_, |ej]. We have s, > 0, since > 7 ., ¢;,¢;,Cz{(s5:,5,), (Sja, tj) } # 0. In view
of (A.42), by arguments similar to the ones used in (A.43), we find, by taking ¢; > (c.D)™,

for c. > 0 in Assumption A4,

P { )\(2a+1)/(4D)

ZCjT(X ®e)(sj,t;)| > e\/ﬁ}

< p{sq)\(QaH)/(w) sup ‘T(X ® 5)(3,1&)‘ > e\/ﬁ}

(s,t)€[0,1]2
< P X el > s,y mACeH/AD))
< P{HXHL2 > ecl_lc_lsgl\/ﬁ)\(2“+1)/(4D)/log()\_1)} + P{H5HL2 > cllog()\_l)}
< exp{—cxecflcflsqfl\/ﬁ)\@‘”l)/(w)/ log()\*l)}E{exp(cXHXHLQ)}
+ X E{exp(cele|z2)}

o O()\CXEQ Loy Hy/mARatD)/(AD) /1662 (A~ 1)}) +O(Aclci) _ O(}\l/D)’

Therefore, for any e > 0,
D B{, 1(|thy] > €)} < eACHN/ED) s \T@ENID o o(AEP)) = o(1)
=1

By Lindeberg’s CLT,

ch (sj,t; Zﬂzq—&-op

q
o > ¢ Z(s;ity) NN<0a > cenCo{lsinty), (Sjgy%)}) :

Jj=1 J1,J2=1

Step 2. Asymptotic tightness of G,

Next, we show the equicontinuity of the process G,, in (3.8). We first focus on the leading
term I3, in (A.45), and recall that

I3 (s, ) ZL( s,t) = n*I/Q)\(QaH)/(w)Z (X; ®¢ei)(s,t). (A.50)

=1 =1

Let ¥(z) = 2% and let [|U|lg = inf{c > 0 : E{¥(|U]|/c)} < 1} denote the Orlicz norm for a
real-valued random variable U. For some metric d on [0, 1]2, let ©(w, d) denote the w-packing

number of the metric space ([0, 1]?, d), where d is an appropriate metric specified below. Since



NOT-FOR-PUBLICATION APPENDIX 18

E{T(X ®¢)(s,t)} = 0 for any (s,t) € [0,1]? and E{(X ® &, ore)12({X @ €, opror) 2} = OprOerr,
for kyk/>€7€/ Z 1’ by (37)? for any (Slvtl)v (52>t2) S [07 1]27

E|l3,(s1,t1) — Izn(s2,t2)|

= ACHV/COI B (X @ €)(s1,11) — 7(X @ &) (52, 12)|°
2

= \EeD/CD) B {ere(s1,t1) — @relsa, t2)}

Z (X ® €, ore)re
1+ Apre

k0

1 2

— \2a+1)/(2D) Z—‘w’d(sl t1) — ore(sa, ta)|

2 Y Y
Y (1 4+ Apre)

S C)\(a_b)/D maX{\sl - 82|2197 |t1 - t2|219} . <A51>
We therefore deduce from (A.51) that
H131n<81, t1> — IB,n(SQ, tz)”\p S C)\(a—b)/(2D) maX{|81 — 52|197 |t1 - t2|19} . <A52>

Next, we shall show that, there exists a metric d on [0, 1]? such that, for any e > 0,

lim lim sup P{ sup | I3.n(51,t1) — I3 n(S2,t2)| > e} =0, (A.53)
o0 n—oo d{(s1,01),(52,42)} <6

where we distinguish the cases: ¥ > 1 and 0 <9 < 1.
Case (i): 9 > 1

Recall that in the case of ¥ > 1, we have assumed b = a, and let d;{(s1,%1), (s2,t2)} =
max{|s; — so|”,[t1 — t2|"}. In view of (A.51), we have ||I3,(s1,t1) — I3n(s2,t2)|w <
cdi{(s1,t1), (s2,t2)}. Note that the packing number of [0,1]* with respect to the metric
d, satisfies D(¢,d;) < ¢7%Y. By Theorem 2.2.4 in van der Vaart and Wellner (1996), for
any e,n > 0,

<c

P{ sup |]37n(51,t1) — Ig’n(527t2)| > 6}
di{(s1,t1),(s2,¢2)}<6
n
sup |30 (51,t1) — I3n(S2,t2)|| < C/ VO(C, dy)d¢ + 6D(n, dy)
di{(s1,t1),(s2,¢2)}<6 N 0

< c/77 V¢ + w20 = en@0=D/0 45 y=2/7
0

Using 7 = v/¢ and ¢ > 1, it follows that (A.53) holds by taking the metric d = d;.

Case (11): 0 <9 <1
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In this case, in order to show (A.53), we shall use Lemma B.8 in Section B.1, which is a
modified version of Lemma A.1 in Kley et al. (2016). Let

dof{(s1,t1), (52,12)} = max{|s; — so|?, |t1 — t2]*}

and let 7j = A\(@=0/P=9D) Ty view of (A.52), we have, when do{(s1,t1), (s2,t2)} >7/2 > 0,

1I3.(81,t1) — T3 (82, ) ||y < e O/ D) [d2{(31a t1), (S2, t2)}]ﬂ/2 < cda{(s1,t1), (52,12) } -

By Assumption A4 and Markov’s inequality, by taking ¢ > c)_(l, for cx in Assumption A4,
S P(IX 2 > clogn) < E{exp(ex||X||z2)} > ooy n®X < oo. By the Borel-Cantelli
lemma and applying the same argument to ||e||;2 yields that || X @ ¢||2 = || X |12 % ||e]| 12 <
(clogn)? holds for n large enough almost surely. Hence, by Assumption A2 and Lemma B.2,

for n large enough,

sup |ui(8,t)| < sup n /2 )\(2a+1)/(4D) ‘(Xz ®5i7‘;0k€>L2| % ||Q0ke”oo
(s,t)€[0,1]2 (s,t)€(0, 1]2 Z 1+ )\p

< n—1/2/\(2a+1)/(4D)Z ||Xi ® &llrz X [[orellzz X |lorells

1+ )\
“1/2,(2 k:E 2a
< en”V2AQAD/AD) (1og ) Z
kit
< en~Y2)\~(2a+D)/( )(logn) (A54)
almost surely. In addition, by (A.51),
sup E|I3,n(817 tl) - [3,n(82, t2)|2 < c)\(a_b)/D.

(817t1),(82,t2)€[0,1]2
By Bernstein’s inequality, combining the above equation with (A.54), we deduce that, for n
large enough, for any (sy,t1), (s9,t2) € [0,1]? and for any e > 0,

P{lsn(s1,11) = Toa(szt2)| > ¢/4}

e?/16
< Zexp { " 9A@ /D | ep-1/2\~(2a+1)/(D) (og n)2/6} : (A.55)

Now, note that D((,d2) < ¢(~! and recall that in the case of 0 < 9 < 1 we have assumed
b < a. By Lemma B.8 and (A.55), there exists a set [0,1]> C [0, 1]? that contains at most
D (¢, ds) points, such that, for any d,e > 0 and n > 7, as n — o0,

P{ sup ‘13771(81,751) — _[3,n(52,t2)| > 6}
da{(

Slytl)v(s27t2)}§6

= C{/L VO(C, da)d¢ + (0 + 25)9(77,612)}



NOT-FOR-PUBLICATION APPENDIX 20

+P{ sup ‘13771(81,151) —[3,n(82,t2)’ > 6/4}
da{(s1,t1),(s2,t2)}<m
(81,t1)€[0,1}2

2
< C{/n C*l/QdC+ <6+2>\(ab)/(2D19D))771}
n/2

+D(7, da) x sup P{|I3,n(51,t1) — I3,(52,12)| > 6/4}

(81 ,tl),(sg ,tQ)E [0,1]2

2
2, -2 ~(a=t)/(2D-9D) _ ¢ /16
<ec(n+dn7)+cA exp { 2\@=0)/D 1 ep~1/2)\~2a+1)/4D) (log )2 /6

<c(n+6n?) +o(l),

where in the last step we used A™! < n?P by Assumption A5, and the assumption that
Na=b)/D — o(p=(@=bm/Dy and n~1/2\~Cat)/UD) — o(n=*2), for vy, > 0. Therefore, by
taking n > 0 small enough, we deduce from the above equation that, when 0 < 9 < 1, for
any e > 0, (A.53) holds by taking the metric d = ds.

As for the remaining processes [, and I, in (A.44), in view of (A.47), for any e > 0

and for the metric d,

lim lim sup P{ sup |[1,n(517 tl) + -[2,n(517t1) — Iljn(SQ, tz) — _[27»“(52, t2)| > 6}
810 n—oo d{(s1,t1),(s2,t2)} <6

< lim sup P{ sup |Lin(s,t)|+ sup |lan(s,t)| > 6/2} =0,
n—00 (s,8)€[0,1)2 (s,t)€[0,1]2
Combining this result with (A.53) proves that the process G, is asymptotic uniformly
equicontinuous w.r.t. the metric d in (A.53) (that is, d = d; when ¥ > 1, and d = d
when 0 < ¢ < 1), which entails the asymptotic tightness of G,,.
The assertion of the theorem therefore follows from Theorems 1.5.4 and 1.5.7 in van der
Vaart and Wellner (1996).

A.5 Proof of Theorem 4.1

By taking A < n=?P/P+1) the upper bound in (i) follows from Lemma A.2 and the fact
that |BII2 < |83 for any 5 € H.

For (ii), we prove the lower bound in the particular case where ¢ is a mean zero Gaussian
white noise process independent of X with E{2(¢)} = ¢ > 0. By Theorem 2.5 in Tsybakov
(2008), in order to show the lower bound, we need to show that, for M > 2, H contains

elements [y, ..., By that satisfy the following two conditions:

(C1) ||B; — Brll? > 2¢on=2P/CP+Y for 0 < j < k < M;
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(C2) M~! Zj]\/illC(Pj,Po) < alog M, where 0 < a < 1/8, K is the Kullback-Leibler
divergence, and P; denotes joint distribution of (Xi;,Y1,),...,(X,;,Ys,;), where
t) = [ B;(s,t) X, (s)ds + &;(t), for 1 <i < n.

For the constant D in Assumption A2, define v, = [nY/UP+2|  For any w =
(w(un-l—l,un—i-l)v cee 7w(21/n,2un)) S {07 1}V%7 let

2up 2Un

5@0:617171/2 Z Z W(k,0) Pkt 5 (A.56)

k=vn+1 l=vp+1

where ¢; > 0 is a constant independent of n to be specified later. We first verify that the
B.'s are elements in H. Since, by Assumption A2, {¢ge}re>1 diagonalizes the operator J
defined in (2.6), we have

2Un 2Un 2Un 2Un
||5w||12r<= < Z Z W(k,t) Pre Z Z w(k/él)¢k/4/>

k=vn+1 l=vp+1 k'=vn+1 O/=v,+1
2upn 2Un 2vUn 2Un
= E E W(k 0 [ = E E W(k o (L+ Apke)
k=vn+1 l=vp+1 k=vp+1 l=v,+1
2Un 2Un

<ent Y Y {1HARD™).
k=vn+1 l=vp+1
Note that this inequality and the inequality in (A.12) in the proof of Proposition 2.1 holds
for any A > 0. Therefore, for || - ||3; defined in (2.3), combining these two equations, we may

take A = 1 and find that

2Un 2Un

18113, < cllBulli < en” Z Z (k0)*P < en PP < ¢,

k=vn+1 l=v,+1

which shows that, for any w € {0,1}"%, £, defined in (A.56) is an element of H.

By the Varshamov-Gilbert bound (Lemma 2.9 in Tsybakov, 2008), for v? > 8, there
exists a subset Q = {w©®, ... w®} € {0,1}*" with M > 2"/ such that, w® = (0,...,0)
and for any 0 < j < j' < M,

2
H(w(jl)’w(jz)) > gn

where H(-, -) is the Hamming distance. For 0 < j < M, let w¥) = (w ((1]/1+1 pnt1)r 83/” 2vm))-
Let fo, . .., B denote the functions defined as in (A.56) that corresponds to w(®, ... w®™) ¢
Q. For 0 <j<j <M, in view of (A.56),
2upn 2y
Bj— By =cin ' Z Z W((i)e) W(k 2)) Pre - (A.57)

k=vp+1 l=vp+1
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By Assumption A2, since {¢xs}r>1 diagonalizes the operator V' defined in (2.9), we deduce
from (A.57) that

2un 2un

2
Hﬁj BJ HV Z Z ((;)z) ((i 2)) V(SOM;SOM)
k=vn+1 {=vp+1

2Un 2un

YYD {uly Avi

k=vp+1 l=vp+1

= c% nilH(w(j),w(j,)) > cf S*In*IVfL > cf g1y ~2P/2D+1)

»aw

By taking ¢y = ¢2/16, the above equation indicates that Condition (C1) is valid.
For any 0 < j < 5/ < M, in view of (A.57),

K(PPy) = s B / [ [ 160600~ 5y, X01s] = 5l — 1
=do? 30 D0 (Wi —wie) <o

k=vn+1 l=vyp+1

Therefore, for any 0 < o < 1/8, by taking 0 < ¢; < 0.4/alog2/8 in (A.56), we have

1 U av?log?2
i E K(]Dj,Pg)Scfa*QVflgnTgalogM,
J=1

which verifies Condition (C2) and completes the proof.

A.6 Proof of Theorem 4.2

Let BL1{C([0,1]*)} denote the collection of all functionals h : C([0,1]*) — [—1,1] such
that h is uniformly Lipschitz: for any gi,g2 € C([0,1]?), |h(g1) — h(g2)| < llg1 — g2lloc =
SUD(s.)ef0.1)2 [91(8; 1) — g2(s,t)[. We shall show that conditionally on the data {(X;,Y;)}i,,

the bootstrap process G}, converges to the same limit as G,, in (3.8). To achieve this, we

n,q
shall prove that, for Z in (3.8), as n — oo,

sup By {h(Gy )} — E{h(Z)}| = 0,(1)
heBL1{C([0,1]2)}
where Ej; denote the conditional expectation given the data {(X;,Y;)} ; see Theorem 23.7
in Van der Vaart (1998). Note that the results in Lemma 3.1 in Biicher and Kojadinovic
(2019) hold if their ¢>°(T") space is replaced by C(7T), and therefore, in our case, we shall
show that, for any fixed @) > 2, as n — oo,

(Gn. Gy, Glg) ~» (Z,24,..., Zg)  in {C([0,1]*)}°, (A.58)
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where 73, ..., Zg are i.i.d. copies of the process Z in (3.8).
For 1 < ¢ < @, define the bootstrap version of S, » in (3.2) by

S:,qw):—%éMm[Xi@{ - [ stsxis)] + i),

and let L; ,(3) denote the bootstrap objective function in (4.3). Direct calculations

yields that L;,A(ﬂ)ﬁl = <S:;q(5)751>1<7 E{DZLZ,/\(B)&@} = <ﬁ1,52>1< and SZ,q(ﬁo) =
—n Y M, 7(X; ®€;). Recalling the notation of I,, (s, t) in (A.45), we have

Gt (5,1) = V/nACHV/UD B (5 4y — B (s,8)} = Tty (5,8) + HE(5,8) — La(s, 1),

where

Tha(5:t) = VACTV DB (5 4) — Bo(s,t) + S\ Bols, 1)}
H; (s,t) = VRAEADIEDILG B (s ) — Sr Bo(s, 1)}

- 1/2\(2a+1)/(4D) 2(1 — M; ) T(X; ®ei)(s,1).

i=1

By exactly the same arguments used in the proof of Theorem 3.3, it follows that sup, 4¢(o.1j2 [J
0p(1) as n — oo. Furthermore, recall from (A.47) that sup, ;ep,1)2 [1n2(5,t)] = 0,(1). Since
in the proof of Theorem 3.3 we have shown that H, ~ Z in C([0,1]?), therefore, in order
to show (A.58), we shall show that (H; |,..., H} ) ~ (Z4,..., Zg) in C([0,1]%). The proof
of (A.58) therefore relies on the finite dimensional convergence of (H ..., Hy o) and the
asymptotic tightness of the process H, .

We first show convergence of the finite dimensional distributions and introduce the no-

tations HY = (H} H;;Q)T and Z = (Z,...,Zg)". For arbitrary L € N, by,..., by, € R

n,ly ">
and cy,...,c; € R?, we need to prove that
L L
ZCZ Sg,tg ZC Z S@,tg <A59)
(=1 =1

For 1 < i < n, let ! = n—1/2)\(2a+1)/(4D) Zle Zqul Cl,q<Mi,q _ 1)T(XZ~ ® Ez')(Sz,tz), and
note that the H*’s are iid. and Y i, ¢/ HZ(sp, 1) = Sor, HF. Since the M, ,’s are iid.,
E(M;,) =1 and E|M;, — 1]* = 1, direct calculations yield that

L Q

L
ar{ ZC[HZ(S@, tg)} = var($)7) = )\(2‘1+1)/(2D)Var{ Z Z Coq(Mig—1)7(X5 @ e1)(se, tg)}
=1

(=1 g=1

na(s: )] =

L Q
= )\(2a+1)/(2D) Z Z C&qu/,q/E{(MLq — 1>(M17q/ — 1)}E{T(X1 & 51)(Sg,tg)7'(X1 & 61)(85/,1551)}

{0'=1q,q'=1
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L Q
NCAV/ED) SN e B (M - 1)2}E{T<X1 ® 1) (50 1) (X1 © 1) (s, w)}

£0=1 q=1

/\(2a+1)/(2D) Z Zcf Ctq Z Spkj(Sz,U)Sij(Szl,te/)

00'=1 q=1 (1+)\pk])2

L
Z CrqCe q Cz{ Sg,tg) (Sg/,t(f)}+0(1),

QMQ

as n — oo. Note that var{ S ¢/ Z(se )} = Zqul 25,4/:1 coqCeq Cz{(se,t0), (s, ter) }
When Zqul ZZL,Z/=1 coqCerq Cz{(se,te), (S0, )} = 0, Zle c, Z(s¢,ty) has a degenerate dis-
tribution with a point mass at zero, and Zle c, HZ (s¢, te) = 0,(1), so that (A.59) is valid.
When Zle ij,zlce,qc@/ﬂ Cz{(se,ts), (ser,t¢)} # 0, using arguments similar to the ones
used in the proof of Theorem 3.3, we can show that Lindeberg’s condition is satisfied, so
that (A.59) is valid.

For the asymptotic tightness of the H , note that |1 — M, .| < V2 almost surely. There-

n,q’
fore, the asymptotic tightness of H,, in (A.50), proved in Section A.4, implies the asymptotic
tightness of H,; . By Theorem 1.5.4 in van der Vaart and Wellner (1996), together with the

weak convergence H,, ~» Z proved in Section A.4, we have that, for any () > 2, as n — oo,
(Hu, Hyy g5 Hy o) (2, 20,0, Zg) - in {C([0, 1]2)}9+1

which validates (A.58) and completes the proof.

A.7 Proof of Theorem 4.3

Defining Ba = 3, — B, and observing (3.1), (3.2) and (A.20), it follows that

£0(52) = Lua(8:) = Lna(5 + Ba) = ~DLur(8:)8a — 5D*Lua(5e)Ba
= ~(Sua(3),Fa) e = 5(DSun(B)Bis B
= —(Sur(8). B~ 5(DSur(8)Bs — DS (8.0 Ba) 5 lBalic
= Bl — (Ba+ Sur(8).Ba) — (DSua(B)Bs — DSB8 Ba)
where we use the fact that DSy(4,) = id. Note that

1Ball% = |{Ba + Sur(B)} — Sun(B2)|[5
= 1S (BI% = 208 r(B.), Ba + Sur(B))x + 1B + Sux(Bo)I% -
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Therefore, we deduce that
2n 'gn(ﬁ*) = Il,n + IQ,n + [3,n + [4,71 )
where we use the notations that
L = nl[Sun (Bl
IZ,n = —=2n B\A + Sn,A(B*): B\A 5
< )i (A.60)

IS,n = _n<DSn,)\(B*>BA - DSA(ﬁ*)EA7 B\A>K
L = =20(Sux(B.), Ba + Sun(B8.)) o + 0llBa + Sur(B)1% -

We now discuss the term I, separately, starting with [, ,. In view of (3.2), we have

n

Sus (Bl = | = £ 370t ) + (6.

=1

2
=hin+hion+Tlizn,

K

where

n

Z T(X; ®¢;)

i=1

2

ILl,n = -
n K

-[1,2,71 = —2 Z <T(XZ ® ‘Si)7 W)\(ﬁ*)>K
i=1

Lign =nlIWa(B) % -

Observing (2.13), we have

2 (5, @k@)K <5, SOW/>K (5, Sﬂkeﬁ(
= y 191 = ) \V/ S H,
151 k;@ (14 Aore) (1 + Apreer) ore, e ; 1+ Apre b

which gives

n 2 n 2
1 1

I n = — TXi®€i = — TXi®5i;

1 1 " W, 1
= - Xi i)s = T Wog,

n;1+)\0k£{;<T( ®8)(’0M>K} n +n; "
where W, = >, ;. Wi, and
1

VViu'Q = 2% 11 )\pkg <T(XZ‘1 & 51'1), SDM>K<T(X2'2 & 51‘2)7 (pkg>K,

1 2
Woi = Z 15 e (T(Xi ® &), One)y -

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)
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For W, in (A.64), we have

ot =B =Y E(WZ,)

11 <12

=4 Z E[{ Z 1 +1)\Pk£< (Xz‘l ®52‘1)790k€>K<T(Xi2 ® 5i2)7(pk4>[{}

11 <ig

1
X { Z 1+ )\Pk/g/ <T<Xi1 &® 5’i1)7 9019/8/>K<7'(Xi2 & EiQ), gOk/e/>K}]

k'

- Z Z [ (1 + Apwe)( 1+)\,0W/)E{< T(Xiy, @ i), pre)  (T(X, @ €), SOk'e/>K}

i1<i2 k,k’ 0,0/

X E{<T(X¢2 ® €iy), <PM>K<T(Xz‘2 ® €iy), SOW’>K}]

1
=2n(n—1)Y ————— =0(n’x7/CP)),
™ (1 -+ )\pkg)2

by Assumption A2.
In order to show the asymptotic normality of W,, we use Proposition 3.2 in de Jong
(1987) and show that

Hl = Z E(VV;iZQ>

11 <ig
Z {E W12112W7,227,3 + E<m2221W7,2213) + E(Vl/fgllwlilz)} )
11 <i2<i3

H3 = Z {E(M/ilhwiliswum VVi4i3) + E(Wiﬂzmlizxmsh VVisu) + E(VVilis m1i4Wi2i3Wi2i4)} :
11 <12<i3<14

are of order oo}y, ) as n — oo. Since E{(7(X;, ® €;,), ¢re)x } = 0 due to Assumption A3,

we have E(W;,4,|€:,, Xi,) = 0 for iy # is. From (B.9), we obtain E{{7(X; ® &;), ore)%} < ¢,

which implies that

Hy =) EW},)=16> E

1 4
Z (T(Xi, ®€i,), 0re) ( (T(Xiy ® €5,), Pt o }]
i1<7,2 7,1<7,2 { 1 + )\ka 1 1 2 2

1 4
<cn ( ]%Z T +/\ka) <cn

Since E(W2, W2, ) < E(W#,)), we have Hy < cn®A=?/P. Finally, for the term Hj, we use

i112 " 1113 1112

(B.8) and obtain,

E(M/’Lllg WZIZS Wl412 I4/1413 )
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=16E [{ Z ;<7—(le & 51'1)7 (pk1€1>K<T<Xi2 ® 5i2)7 90161€1>K}

bt T AP

1
. { Z 1+ Apkzb < <XZ1 ® gil)’ <’Ok2€2>K<T(Xi3 ® 513 wkﬂ? K

{ 1 + )\kaZB < (X7,4 & 5i4)7 ng3Z3>K<T(X’L'2 X 512 Pty K}

Xi i4)s )(Z i-
{k4[ 1+>\Pk4£4< ( 4®€4) 90k4f4>K<7—( 5®€5 ¢k4€4 K ]

= 16 Z 5]61]4:2 6k1k§3 5]62]@4 5k3k4 5[1@2 6@1£3 52254 553&1 H

1 )\ .
[ A 7 T APk

1
163
e (LT

Apre)t
We therefore deduce that Hs < en*\~Y2P) which yields
Hy + Hy + Hy = O(n*A™%P + p*\7YCP)) = o(oy), )

since nAYP — oco. By Proposition 3.2 in de Jong (1987), it follows that

{2 %: (;}_1/2 Wo 4, N(0,1). (A.66)

1+ Appe)? n

Next, we examine the second term n* " | Wy, in (A.64). Note that the W ,’s in (A.65)
are i.i.d. and satisfy

E(Wo,;) = kz ;E{@(Xi ® €:), <PM>§{} = ; _ , (A.67)

- 14 Apke - 1+ Apre

where we used (B.8) in the last step. For the variance, by (B.9), E{(7(X; ® &), vre)% } < ¢,
so that by Assumption A2,

(1(X; ® &), <Pu>i<

var (n_l Z WO,i) =n""var(Wo;) <n 'E(WJ,) =n"'E —_—
i—1 k0 14 Aok

1 2
<ent ——— 5 =0 \VP). A.68
e { X pyn) =00 (A9
Therefore, the above equation and (A.67) yields that

1 12\ - 12\ _
—ZWOZ _Zl—i—)\pu + 0, (n"V2ATYED)) = 0 (ATY/ED) 4 l/2)\71/@D)y — o (A"V/@D))
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where we use Assumption A2, which yields E(Wy,;) < ¢ A™/2P. In view of (A.64), since we
have shown W,,/n = O,(A\~/#P)) we therefore deduce from the above equation that

n

Z 7(X; ® &)

i=1

2
= 0,(\" VD). (A.69)

K

Il,l,n = -
n

Moreover, since by Assumption A2, 37, ,(1+ Ape) > = O(AY@DP)) "and in view of (A.68),
var(n=t Y1 Wo,) = O(n~'A7YP) = o(A~Y/@P)) due to the assumption that n='A~1/2P) =
o(1) in Assumption A5, combining (A.64), (A.66) and (A.67),

1 —1/2
2 —_ Lii,—E(li1,
{ ;(1+>\sz)2} {1,17 (1,1, )}
1 2w 1 1 p
=<2 e 4= Woi— — N(0,1). A.70
{%;(14‘)\/%2)2} (n n; ; %;14-)\/71@[) 1) (5.70)

We now consider the term I 5, in (A.62). By Assumption A2, we obtain

ZV (B k) Wi(pre) = )\Z 6*1’ iki\p/:j Pkt (A.71)

Since J(Bs, Bx) = 340 oreV*(Bs, pre) < 00, we have A7y iy VA (Bs, ore) /(14 Apie)* = o(1)
by the dominated convergence theorem. Since E{(7(X;®¢;), Wx(5:))k} = 0, it follows from
(2.17) and Assumption A2 that

E(23,) = nB{(r(X: ® 1), Wa(5.) x }2 = nB{(X @, Wi(5))} }

V 6*7 V %9
=nV{WAB), Wa(B) = nXV { Z le n )\/)ZM Z pM1 +ﬁApZM “}

2 Pke 5*a<ﬂkz) _
n\ Z ESYWE = o(n)\). (A.72)

For the term I3, = n||Wi(8.)|% in (A.62), we use (A.71), the dominated convergence
theorem and the fact that Zk,ﬁ preV2(Bs, ore) < 00, and obtain

Z PreV (B, Ore)

2
_ e S VB k) o a g
e ey on\).  (AT3)

K k.0

n|[Wi(B) |k = Pht

Therefore, combining (A.61), (A.69), (A.72) and (A.74), we find
nl|Sua(Bu)llic = Op(AHE)) + 0(nd) + 0, (n!/2A12) = O, (A/E)). (A.74)
For the term I, in (A.60), by Lemma A.2 and Theorem 3.1, we find

Lol < 201 Ba + Sun(B) |l X 1Ballx = Op(nvy) x Op(AV2 4 7 1/2A71/ED)) |
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where v, is defined in (A.34). For the term I3, in (A.60), note that, in view of (3.2), for
H, () defined in (A.14),

IDSun(8)3a — DSy(B)Ballx = 0V Hu(Ba)llx = Op(on)
where we used (A.33). Therefore, by Lemma A.2,
L5 | < 1 ||DSuA(Be)Ba — DSA(B)Ballk X |1Ballk = Oplnw,) x Oy (V2 4 n~1/2A\~-1/UD))
For the term I, in (A.60), by (A.74) and Theorem 3.1,

’14,71‘ S QnHSn,)\(B*)HK X ||B\A + Sn,A(B*)HK + nHB\A + Sn,)\(ﬁ*)”ﬁ( S Op()\_l/(2D)vn + nvi) .

Combining (A.69), (A.72), (A.73) and the above convergence rates of I, I3, 14 5, it follows
that Iy o, + lian + lop + I3 + Lin = 0,(A"Y3P)) In addition, we use Assumption A2 and
Lemma B.2 to obtain that >, (1 + Apre) ™ =< AP and 37, (14 Apge) ™2 < A7V D),
Therefore, in view of (A.69), (A.70),

{ > m}m (2n£n(ﬁ*) -y - +‘&pke) 5 N(0,1).

k.t kl

Since for u,, and o2 in (4.11),

_ Zk,£<1 + )‘Pkﬁ)_l ] 0,% _ { Zk,g(l + )\Pké)_z}lﬂ _ { Z 1 }1/2
Dk + o) 2327 g, > oL+ Apwe) 2 (1 + Apke)? ’

the proof is therefore complete.

N

)

A.8 Proof of Corollary 4.1 and (4.17)

By assumption, we have n~Y/2\~(2a+D/(4D) 160 (n \(2a+D/(2D)) = (1). Therefore, Corollary 4.1
is a consequence of Theorem B.1 in Dette and Kokot (2021a) and Theorem 3.3. For a proof
of (4.17), note that d,, < A,

lim P{cioo > A+ _Qia(Ty) }

n—oo \/ﬁ)\(2a+1)/(4D)
— lim P{\/EA@““)/(“D) (doo — doo) > VRARFD/EDY (A — g} + Ql_a(TS)} —0,
n—oo

since /nAZetD/UP) 5 o6 as n — oo, where T¢ is defined in (4.16). If do = A,

. ~ Qi-a(T) Iy (2a+1)/(4D) (T
nll_{IOloP{doo >A+W —nh_{glop{\/ﬁA (doo_doo) > Ql—a(TS)} = Q.

Under the alternative hypothesis Hy in (4.13), i.e., doo > A,

. >~ Ql—a(TS)
T}LIEOP{CZ(’O > At G )

~ lim P{ﬁA(zaH)/(zLD)(C’[OO —dy) > \/ﬁ)\@““)/(‘w)(A —ds) + Q1—a(TS>} =1.

n—oo
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A.9 Proof of Theorem 4.4

We notice that, by the continuous mapping theorem, Theorem 3.3 and Lemma B.3 in Dette
et al. (2020), conditional on the data, the bootstrap statistic fgmq in (4.21) converges to T¢
in (4.16), the same limit as /Ao D/@D) (. — d..). Hence, the assertion in Theorem 4.4

follows from arguments similar to the ones in the proof of (4.17) in Section A.8.

A.10 Proof of Theorem 4.5

By (3.6), we obtain, for the kernel Cy,, in (4.25),

1 1
Clrg (1, 1) = AP/~ —2/ pre(s1,t1)x0(s1)ds
7 (L 2k0)? Jo

X /O (pw(Sz, tg)l'g(Sz)dSQ + 0(1) s <A75)

since it follows from the dominated convergence theorem and the Cauchy-Schwarz inequality,
uniformly in n > 1,

Zﬁ/{) @ké(Sl,tl)Io(Sl)dﬁ/o ©re(S2,t2)xo(s2)dss

)\(2(1—0—1)/(2D)
I, 14 Apre

2 kE)Za
< )‘(2a+1)/(2D)Hx0H%2§ : HSDMHOO < C/\(2a+1)/(2D)H$0H22§ : ( <ec.
— 2 — L 2D\2 —
v (1 + Apke) " {14+ A(k0)?P}

By the definition of 7 in (2.17),

1
Frao () — e (1) = / (Bu(5.) — o, ) }zo(s)ds = (B — for (20 ® 6)) o
0
where J; is the delta function at ¢ € [0,1]. We have,

VRACEDIAPI L (8) = piay (8)} = T1n(t) + Lan(t) + Tsa(t),

where
(1) = V/RACSTV/ADN (B 5o 4 S, 5B, (w0 @ 6)) 4 »
I (t) = \/ﬁ)\(2a+1)/(4D)<W)\ﬁ07 7(zo ® 5t)>1< 7

n

Lsn(t) = n—1/2)\(2a+1)/(4D) Z <7’(Xi ® &), (T ® 5t>>K )

i=1
Observing (2.17), Assumption A2 and Lemma B.2, and the Cauchy-Schwarz inequality,
it follows

<.T0 ® 6t7 80k£>
sup |70 @ 8% = sup

t€[0,1] tef0,1] 7 L+ Apre tef0,1

2 2

L2(T) 2 HSO]CZHOO
< ) X ¥
< Sup] |zo ® 04|72 kgé 1+ Apie
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< CZL)M ¢ \—(20+1)/2D) (A.76)
= LT A(k0)?D =

Hence, by Theorem 3.1 and the Cauchy-Schwarz inequality,

sup |11,(t)] < \/ﬁ)\@aﬂ)/(w)Hﬁn Bo + Suabollx x sup ||7(zo ® &) x

tel0,1] tel0,1]
= 0,(vnv,) = 0,(1). (A.77)

where v, is defined in (A.34).
In addition, since by assumption, prngQ(ﬁo, Vre) < 00, we have

Z pre V (Bo, ©re)

V2(Bo, ¢re)
= )\? pM ! < N\
L+ Apre Z ¢

%% = )2
H AﬁOHK 1+ )‘pkf =

SOM

Therefore, we obtain, for the term Iy,

sup [Io.,(t)] < V/RACHD/ED W, Bl x sup ||7(0 @ 04| 5
te[0,1] t€[0,1]

< VAWl = O(/A) = o(1). (A.78)

Finally, using the representation 7(X ®@ €) = >, (1 + Aowe) " HX @ €, ope) r2one (see
equation (B.7) in the proof of Lemma B.7 in Section B), we obtain

I3,n( ) o n71/2)\(2a+1)/(4D) Z X ® 81) (xo ® 6t)>K

i=1

n~1/2)\(2at+1)/(4D) Z Z —(X ® €5, Pre) 12 {Pre, T(To @ 0¢)) i
=1 kJt 1 + Apk:@

_ n*l/?)\(2a+1)/(4D) Z Z T)W<X X Ei, QDM>L2 <g0kg, o X 6t>

i=1 kJ
ke\2 0 . .
iy 1+ )\sz 0

For 1 <i<mn, let
ﬂl(t) = n—1/2>\(2a+1)/(4D) <T(XZ X 51’), T<$0 & 6t)>K

1

L —1/2\(2a41)/(4D) <Xi®€i,90ke>m/

=n""/"A s,t)xo(s)ds,
Z 1_|_>\ka 0 Sokf( ) 0( )

so that I3, (t) = > 1 4;(¢). Since E{(X;®¢;, pre)r2} = 0 for k, £ > 1, we have E{tl;(¢)} = 0,
and observing (B.8), it follows that

cov{ili(t1),6;(t2)}
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1
— )\(2a+1)/(2D) E{
k,%f/ (1 + Apkf)(l + Apk’ﬁ’) <

X /¢k@(81,t1)9€0(81)d81 X /90k€(327t2)370<52)d32

1
= )\(2a+1)/(2D)Z—/QpM(81 tl)l’o(Sl)dSl X /Qﬁkg(SQ tg)l’o(SQ)dSQ
2 Y Y
Y (1 + )\pkg)

X b2 g, 90’6[>L2 <X o2y €, @k%’)Lz}

= CZ#EO (tlv t2) + 0(1) ) asn — oo, (A.SO)

where we used (A.75) in the last step.

In order to prove the weak convergence of the finite-dimensional marginal distributions
of fiz,, by the Cramér-Wold device, we shall show that, for any ¢ € N, (c1,...,¢c,)T € R
and tq,...,t, € [0,1],

q q
N eillag ()~ Y 052y (1) (A.81)
j=1 j=1

In view of (A.77) and (A.78), we deduce that

n

q q q
> Gillae(t;) =Y eilsnll; +ZC]{ITL1 )+ La(t)} =D > eithi(ty) + 0p(1).
j=1 j=1 1 j=1

1=

Observing (A.80), we have

n q q
ar{ > Cjﬂi(tj)} = Y c1uCray(tissty) +o(1)
i=1 j=1 J1,j2=1
asn — o0, If 330 . ¢, Crug(tyy,ty,) = 0, D25 ¢ Z4,(t;) has a degenerate distribution
with a point mass at zero, so that (A.81) is a consequenee of the Markov’s inequality. If
Zj‘l,jgzl Cjr CjQCZ#Eo (tjl ) th) # 0, we have Val"{ Z?:l ] 1€ } Z]l Ja=1 Ci 2 CZ#UO (tjl ) tj2)+
1) = var{ > i1 G2y (t5) }+0(1). To prove (A.81), we shall check that the triangular array
of random variables {>7_, ¢;8l;(¢;)}7_, satisfies Lindeberg’s condition. Let %, = > "%, |c;].
We have ¥, > 0 since Xy = 0 indicates Y . _ ¢;,¢;,Cr(tj,, tj,) = 0. For any e > 0, by
the Cauchy-Schwarz inequality,
)

n q 2

ZE[ D eithity)| X n{

i=1 j=1
ZCJ X ®€1 .730@(5,5 >K
7=1

q

> eithilty)] >

Jj=1

q
— )\(2a+1)/(2D) E|:

1

> e}é . (A.82)

o

1
< ¢ARaTD/CD) g E{KT(Xi ®e;), (o ® 5t)>[(‘4}2 X P{

te(0,1]

ZCJ
q

> eithi(t;)

j=1
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Using (A.76) and Lemma B.7 in Section B.1, it follows that

sup E’< (X ®¢g), (x0®5t)>K|4
t€[0,1]

< E|r(X; @ &)||% x Sl[lp] I (z0 @ 6,)|[Fc < c A~/ (A.83)
tefo,1

In addition, for some ¢y > 0,

sup

X Qe 1
< , k£>L2 / )ékf(éat)lo(s)
te[0,1]

1+ Apre 0

2

Prt|lco —(2a

< Noolle x X @ ellzn x 32 APl o y-osnreo) e
W, Pke

Hence, by arguments similar to the ones used in (A.43), by taking ¢; > a(c.D)™!, for c. >0
in Assumption A4, we find

q
P{ > eithi(ty) >e}

j=1

<X ® €, (pki>L2 /1
B . | #rels,t)zo(s)ds

{tG[O,l} ; 14+ Apre 0 kf( ) o( )

< P{IX e lelle > ey 7t VmACesD/60) Y
< P{JIX]lz2 > e g5, VNG log (A b+ P ez > eqlog(h7) )
< exp { — exect ey N /AR Y/UD) [og (A1) M E{exp(cx || X|z2)}

+ A< E{exp(ce|e||z2)}
_ O(/\chcl_1cg12(1_1{\/5,\(2(1+1)/<4D>/10g2()\—1)}) + O(/\clcs) — 0(/\1/D) 7

> eE;l /A~ (2e+1)/(4D) }

where we used the assumption /nAe+D/(P) /10g2(A\~1) — oo in the last step. Therefore,
combining the above result with (A.82) and (A.83) yields

2 q
> x| > ekioy)| x1{| L esn)
j=1 j=1
By Lindeberg’s CLT,

q
chﬁwo ZZCJ i)+ 0p(1) — N< Z i1 Cza0 (i s L ) ZCJ 2o
j=1

=1 j=1 Ji,J2=1

> eH < ¢ \2aHD/CD) \=(a+1)/D ( (NV/ED)Y — (1) |

Next, we prove the asymptotic tightness of ji,,. For any t,ts € [0, 1], since E{l3,,(t1) —
I3 ,(t2)} =0, by (B.8) and the Cauchy-Schwarz inequality, we find

E|ls,(t1) — Isn(t2)]? = n Bl (t) — U(ta)
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2
_ )\(2a+1)/(2D) E

Z (Xi ® e, ore) L / {@re(s,t1) — @re(s, ta) }ao(s)ds

"t 1T+ Apre

1
P C )y —
2
™ (1 + Apke)

< AEEFD/ED) 120112, ZW/ lore(s,t1) — prels, ta)|ds .

k.t

2

/ {pre(s,t1) — @re(s, ta) }ao(s)ds

By the assumption in (3.7), we have, for constants ¢y, ¥ and b specified in Theorem 3.3,
E|l35(t1) = s n(ta)* < coA ™ Pl Zaltr — to|*” < e XV P[ty — 5?7

Moreover, in view of (A.79), by the Cauchy-Schwarz inequality, Assumption A2, we deduce
that

sup [8l;(t)]

te(0,1]

< p~1/2)\at1)/(4D) Z ’<Xi1@)_::i)7\ ©re) 12| X sup
Pre tel0,1]

/2
Sn*1/2)\(2a+1)/(4D)HXi(ghgiHLQHxOHL2 H‘PMHL X sup {/ ‘SDM s, t ‘ ds}
% L+ Apre  tepo,1)

/01 ore(s,t)xo(s)ds

2
< cn_l/z)\@““)/(w)(logn)2Z [sprellZ
7 1+ A\pie

kE)Qa
< en IAEED/AD) log ) 3 _ (kO™
2D

Z T (K

< en~ M2\~ CeD/ED) (06 )2

almost surely, where we used Lemma B.2 and the fact that || X ® ¢[|z2 < c¢(logn)? almost
surely from Section A.4. Therefore, by arguments similar to the ones used in the proof of
Theorem 3.3, we find that, there exists a semi-metric d on [0, 1]? such that, for any e > 0,

lim lim sup P{ sup [ I30(t1) — I3 n(ta)] > 6} =0.
o0 noo d{(s1.,11),(s2:12)} <6

Combining the above result with (A.77) and (A.78),
lim lim sup P{ sup |y (t1) — T (t2)| > e} =0.
o0 n—oo d{(s1.1),(s2,2)} <6

Therefore, by applying Theorems 1.5.4 and 1.5.7 in van der Vaart and Wellner (1996), we

have shown that /pACetD/UDG Y~ Z,in C([0,1]?). By the continuous mapping
o —~ d

theorem, v/IACHD/ D) sup, o iy (1) — iy ()]~ masicio ) [ Zoo ().
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B Auxiliary lemmas and technical details

B.1 Auxiliary lemmas for the proofs in Section A

Lemma B.1. For any 81,82 € H and x € L*([0,1]), for T defined in (2.16),

(e {f s mmf] 2), = (e { [ amon].o),

= B1(81,t) Pa(s2,t) x(s1) x(s2) dsy dsy dt .

(0,1

Proof. By Fubini’s theorem and (2.17), direct calculation yields
Clo{ [ H ),
/ / (59 {/ Bi(s1,t) z(s1 dSl}ﬁQ(Sz, t) dsy dt

— 51(81, )ﬁg(SQ,) ( ) (Sg)dsldSth

[01

{/ Ba(sa,t 52)d52}51(51, t)ds; dt

=<[ { s aasf]m)

Lemma B.2. For D in Assumption A2, for any 0 < v < D —1/2, for 0 < A < 1 and for
either r =1 or 2, there exist constants ci,co > 0 independent of A such that

k>1

O

Proof. Using change of variables, we first notice that

2y 2y 21/ 21/
_ y—(2v+1)/(2D)
/ / 1+)\x2D J7D)r dedy =\~ / / 1+x2D 47D dx dy .

Since 2D — 2v > 1, we have [[° [ 2®y? (1 + 2*Py*P) " dady < oo.
Let my = A"y /(rD — )}1/(2D). Note that the function 2% /(1+ Az?P) is increasing
n (0,m,), and is decreasing on (my,00). For any real value x € R, let [x] denote the

smallest integer greater than or equal to x, and let || denote the largest integer smaller
than or equal to z. Let 1{-} denote the indicator function. For the left-hand side of the
inequality in (B.1), note that

Z kf 2v
{1+ A(k0)2D}r

k>1
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-y {H%&;D}T [1{kt < |my]} + 1{k > [my]}]

* Z If +(§(£112€;2D} I{[my] < k< [ma]}

kjf)gl/
/ / f +/\ (vy 2D} drdy + D gy HEm <K< )

k>1

[m)\"QV
/ / {1+)\ xy 2D} drdy + (1 + A[my 2D Z I{|{my] <kl < [my]}

ke>1

2 I'm)\'l 2v+1

<[] {1+A 7 QD} Y T A 20y

drd )\7(211"1’1)/(21:))
/ / {1+)\1:y2D} ray +c ’

for some ¢ > 0 that does not depend on A, where we used the fact that >, o, 1{[m\] <
k¢ < [my]} < 2[m,]. This proves the right-hand side of (B.1).
For the left-hand side of the inequality in (B.1), by change of variables, we find

(k£>2u
2 {1+ A(k0)2D}"
k.g)Zl/

(k.g)Zu
- Z {1+>\(M)2D} L{ke < [ma]} + Y {1+)\<M)2D}r]l{k£2 [mal}

k,>1

/ / {1+ )\ (ry QD} [ﬂ{xy < [mal}+ L{zy > [my] }} dxdy

R / / {1+ (2y)?Py" + xy zD} [1{zy < AP ma [} + 1wy > AV Ty 1} dady

Note that there exists constants 0 < ¢; < ¢, independent of A such that 0 < ¢; < AY/P) [m, |
and \Y/2P)[m,] <& < oo. We therefore deduce from the above equation that

k0> —(2v+1)/(2D) - _

which completes the proof of (B.1).

]
Lemma B.3. Under Assumptions A1-AJ, for B € H, we have, for some constant cx > 0,
18112 < ex A= CerD/ED) | g

Proof. For any € H and the reproducing kernel K in (2.14), we have ((s,t) = (8, K(s4)) K,
from which we deduce that [3(s,t)| < ||B||x | K|k, so that

1 1
812 < I [ / | Kool ds .
0
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which yields

<K st 790k€>2 (p2 (S7t)
K ply =Y -l 2 N 2 s (B.2)
— 1+ Apwe — 1+ Apwe
Therefore, we find
1 p1 ) 1 ) J;20p2a (0s1)/2D)
K, dsdt = < —_— <\t
[ olicasar =3 5wl < €3 < ,
where we used the assumption that D > a + 1/2 in Assumption A2 and Lemma B.2 in the
last step.
O
Lemma B.4. Under Assumptions A1-AJ, for any 5 € H,
1
' [ ; {/ o '”(S)ds}] P e [ PR E (B.3)
0 K
1 2
E||lT {Xi ® { / B(s, -)Xi(s)ds}] <M YP18)1% - (B.4)
0 K

Here, c1,co > 0 are absolute constants.

Proof. By the Cauchy-Schwarz inequality,

fo{ o],
(e { [ i),

B(s1, ) (52, 1) (1) 2(s2) s dso dt\

= sup
Il =1

= sup
vl x=1

1/2
< sup { / 72 (s1,t) 2%(s2) dsy dsy dt} X { B2(s9,t) 2%(s1) dsy dso dt}
[0,1]3 [0,1]3

7l =1

[0,1]3
1/2

= sup |llzz x [IBllz2 x 272
Il =1

< e ACEVEPY 8] 2 ¢ |12

< ci APV B e [l

where we used Lemma B.3. This proves (B.3).

In order to prove (B.4), by Lemma B.1, we find

(e [ o mon]] )



NOT-FOR-PUBLICATION APPENDIX 38

2
= E{ Xi(s1)Xi(s2)@re(s1,1)0re (82, t)dsldSth}
[0,1]3

2

= E{ o Xi(Sl)Xi<82)l’kg(81)$k/gl(Sl)dsldSQ}2 X {/Olng(t)m/(t)dt}

=E [{ /OlXi(sl)xkg(sl)dsl}Z X {/OlXi(SQ)ZEk/g/(SQ)dSQ}2 X {/Olng(t)m/(t)dt}Q.

Using the Cauchy-Schwarz inequality, by Assumptions A2 and A4, we deduce from the above

equation that, for the constant ¢q > 0 in (3.4),

E<<T[X¢ ® { /01 ere(s, ')Xz‘(S)ds}] | s@w>l>
[E{ /01 Xi(sl)xkg(sl)dsl}4] ?

1 2 1
sCOE{ / Xi(snxke(sl)dsl} xE{ / Xi<52>xkfe/<82)d52} X |nell72 % [Ine]l7
0 0

(SIS

IN

1 4
E{/ XASz)wa(Sz)dSz} ] X [mellZ2 % [Imer |72
0

:CO{/ Cx(sl,82)xke(81)xke(82)d81d82}
[0,1]2

y { / cX(sl,smmsl)w<sg>ds1dsg} < nellZe x lime
[0,1]2

= co (Cx(zre), Tre) 12 (Cx (@), Twe) 12 |mell72 [1ne])72
= o V(Tre @ e, Te @ o) V(Thror @ Mory Tpror @ o)
= ¢co V(res 0re) V(we, ore) = co -

In view of (A.63), the above equation implies that

fro{ [ outsoions )]
Eret(fre { [ e mon o))

k0

1
<c¢ . B.5
=0 k’Z,Z’ 1 + /\Pk’é’ ( )

2

E

Now, using (A.63) once again, by Lemma B.1 and Cauchy-Schwarz inequality,

e { [ x|

K

E
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S (s ey
Sl [ e monl) )

<18l < B e { / (s, (3)ds |

Combining the above result and (B.5), by Assumption A2 and Lemma B.2, we find

! ’ 1 1
rlxe{ [seaxmat]| <l o x Y

K k.t ke
1 2
< el < { X g} < XM Iek
k.

which proves (B.4).

2

K

]

Lemma B.5. Under Assumptions A1-A4, for the xy,’s in Assumption A2, for any B € H
and ¥ € L*([0,1]),

rles{ [ 15<3,.>gz~<s>ds}] 2

K

y 1 y
<l 1813 Y- T @ ade el (B)
I, Pke

Proof. By Assumption A2, the representation 3(s,t) = >, , V(B, ore)pre(s, 1) = 324, V (B, 2e®
ne)Tre(s)ne(t) holds for any § € H, and the Cauchy-Schwarz inequality and Lemma B.1 yield

(o[ e monf] o).

= / Ore(s1,t) B(se,t) T(s1) T(s2) dsy dsy dt
[0,1]3

2

2

= Z V(B, zpe @ne) / \ Tre(81) Ty (52) T(s1) T(s2) e(t) ner (t)ds1 dsa dt
K0 [0.1]

2 2

1

1
V( 1o / T 1o d (t) d
S VGave @) [ dlsoels)dss [ty d

ke

1
= /.f(Sl)ilfkg(Sl ) dsy
0

2
X

2

— /01 Z(s1) Tre(s1) dsy

B(sa,t) Z(s2) ne(t) dsq dt

[0,1]2
1 2
< 1812 1212 ||m||%2{ / #(5) 2aels) ds}

= 18Iz 121122 (2, zxe) 72 lImelzo -
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Therefore, in view of (A.63), we deduce from the above result that

T{f ® { /Olﬁ(s, -):f(s)ds” 1 - ; 1 ;AW <T[x ® { /Olﬁ(s, ~)f(s)dsH ,W>Z

1
<BIG 12132 > ——— (& k) 3o [mell2
o 1+ Apre

which proves (B.6).

Recall from (A.17) that, for the {zx}re>1 and {n},>1 in Assumption A2,

1

2 2 2 2 ,

w(X;) = || Xi|72 § —— (X, 2Rz e, 1 <i<n.
Y L+ Apre

We have the following lemma regarding the second moment of w(X).

Lemma B.6. Under Assumptions A1-A4, we have E{w?(X;)} < cA\"YEP) where w(X;) is
defined in (A.17) and ¢ > 0 is an absolute constant.

Proof. By Assumption A2, for k,¢ > 1,

V(gre ore) = mell2s / O (51, 52)ae(s1)ere(sa)dsrdsy = 1.

Using the Cauchy-Schwarz inequality and Assumption A4,

B (X))} = 3 umuigE[nXiu%z {/ ' X(5) 7uals) d}]
< (Bit) " Y ||77£||L2[ { [ 5t d}]

1/2

1/2
<e(Ei) Y ; et B] [ Xt as)
1/2 1
ZC(EHXiHi‘z) > o HWHLz/CX (51, 82) Tre(s1) Tre(s2) dsi ds2
k.6
1/2 1
= c(BIXillL:) V(ne,
(BI%1E:) 3 iy, Ve u0)
1/2 1
— (Bl Xi}:)
1+ Apre
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Since E||X;||7, is finite by Assumption A4, by Assumption A2 and Lemma B.2, we deduce

from the above equation that

1 _
E{w’(X;)} <c Z T+ A(kO)D <caVen,
kL

[
Lemma B.7. Under Assumptions A1-A4,
1
E|l7(X ®¢)|% = ,
I © i = X 1
E|r(X @)l <ex VP,
where ¢ > 0 is an absolute constant.
Proof. In view of (2.13) and (A.63), we have
(T(X ®¢), pre) (X ® e, 0re) 12
X ® g) = = _—_— ,
’ ’ (B.7)

HT<X®5)H%( _ Z <T(X®€)7<Pk€>]< _ Z <X®5790k£>L2 .

L+ Apke L+ Apre

k0 kL

Recall from Assumption A3 that C.(s1,s2) = E{e(s1)e(s2)| X} = (51, s2) (we have assumed
0?2 = 1 without loss of generality; see the beginning of Section A.5). Observing the definition
of Vin (2.9) and 7 in (2.17), we find, for k, k', ¢,¢' > 1,

E{<T(X ®e), 90k£>K (r(X ®e), SDW’>K}

—B{(X @ e, 0u) 0 (X @2, 000),0 |

=E

{ [O’I]QX(S)S(t)gokg(s,t) ds dt} X {/[071]2X(s’)e(t')gpk/@/(s',t') ds' dt’}]

E [/ E{e(®)e(t)| X} X ()X (") pre(s,t) pre(s',t') dsds’ dt dt'}
[0,1)*

= Co(t, ") Cx(s,8") re(s,t) pre (s, ') dsds" dt dt’
[0,1)*

= Cx(s,8") pre(s,t) e (s, t) dsds' dt
[0,1]3

= V(e prrer) = s Ouer (B.8)

where we used Assumption A2 in the last step. From the above equation we have obtained

E(<X ® e, gokg>;> =1.
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In view of (B.7),

Elr(X o)k =3 BUX @ e oulin) _ S

v L+ Apre y L+ Apre

To show the order of E||7(X ® ¢)||% we use Assumptions A2 and A4 to obtain

E((X ®e¢, pr)12) = {/ / X(s gokgst)dsdt}4

_ {/0 X(s)me(s)ds} /[071]4 E{g(tl)5<t2)5(t3)5(t4>‘X}nf(tl)UZsz)??g(tg)?][(t4)dtldt2dt3dt4]

E{ /0 1 X(s)xkg(s)ds}Ql 2

=c [ {/ / Cx( 81,SQ).Z'k[(Sl)xkg(sz)dSldsz}2] = c{V(zpe, z10)}* = c. (B.9)

<( [ [eteteeet)etlx) dtldmdtzdu) < el

Therefore, we deduce that

1
Z (1 + )‘pklfl)(l + Apk2€2)E(<

k1,01,k2,l2

1 1/2
< [; = )\Pke{E(<X ® E,QPkZYiQ)}

Blr(X @e)lli =

X® €, ka1€1>%2 <X ® e, 90k2€2>%2>

2 2
1
<ec E < eNVDP
- { ™ 1+>\Pke} -

]

The following lemma is a modified version of Lemma A.1 in Kley et al. (2016), which we
use to prove Theorem 3.3.

Lemma B.8. For any non-decreasing, convex function ¥ : R™ — RT with ¥(0) = 0 and
for any real-valued random variable Z, let || Z||y = inf{c > 0: E{¥(|Z|/c)} < 1} denote the
Orlicz norm. Let {H(s,t) : (s,t) € [0,1]*} be a separable stochastic process with ||H (s1,t1) —
H(sg,t2)||w < cd{(s1,t1), (s2,t2)} for any (s1,t1), (s2,t2) € [0, 1]% with d{(s1,t1), (s2,t2)} >
7/2 > 0 and for some constant ¢ > 0. Let ©(w, d) denote the packing number of the metric
space ([0,1]2,d). Then, for any § > 0, n > 7, there exists a random variable S and a constant
K > 0 such that
sup |H(s1,t1) — H(s2,12)| <5 +2 sup [H (s1,11) — H(s2,12)]

d{(s1,t1),(s2,t2)} <8 d{(s1,t1),(s2,t2)}<7
(sl,tl)e[o,l]z

and
n
Il < | [ 01D )de + 64 2m) W 2041
n/2

where WY s the inverse function of U, and the set [0,1)? contains at most D (7, d) points.
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B.2 An example for Assumption A2

In this section we provide a concrete example that satisfies Assumption A2. We use the
cosine basis of L?([0,1]) defined by

m(t) =1, n(t) =v2cos{({ — D)t} £=2,3,... (B.10)

Now, the derivatives of these functions are orthogonal with respect to the L?-inner product
(-, -)12, that is, for any integer § > 0 and ¢,¢' > 2 <7]£0),T]é,)>L2 = O Hnég)H%Q = O (0 —
1)2072; for any § > 0 and £ > 2, (n\° ,née)ﬁz = 0. Given {n},>1, the functions xy, are
defined as the solution of a series of integral-differential equations whose parameters depend
on HW )12 72, such that (2.12) is satisfied. In particular, we have the following proposition,
which provides an example of an eigen-system that satisfies Assumption A2 and is proved
in Section B.3 using the theory of integro-differential equations.

Proposition B.1. For each ¢ > 1, let {(pke, Tke) }i>1 denote the eigenvalue-eigenfunction

pairs of the following integro-differential equations with boundary conditions:

g O (s, () = (13 +mz< )= prprEn ), -

g(@(o):%’(@)(l)zoy form <60 <2m—1.

For the functions n, defined in (B.10), let x, = (CX(&?M),BEM)Z;/Q Tre and Qe = T @ 1y,
where the operator Cx is defined by (2.11). Suppose Condition B(r) below is satisfied for
some constant r > 0. Then, the pairs (pre, Pre)re satisfy Assumption A2 with D = m+r+1
and a=1r+1.

For a constant r > 0, we now state as follows Condition B(r) for Proposition B.1, which
was proposed in Shang and Cheng (2015). Let Q) = {(s,t) € [0,1] : s > t}, Q_ = {(s,t) €
[0,1] : s < t} and let cl(A) denote the closure of A C [0,1]%. Recall that Cx defined in (2.10)
is the covariance function of X.

Condition B(r). Suppose that there exists a constant » > 0 such that one of the following
two assumptions is satisfied: (i) r = 0; (ii) » > 1, and for any j = 0,1,...,7—1, C’ég’o)(o, t) =
0, for any 0 <t < 1. Assume Cx satisfies the following pseudo SY conditions of order r:
(1) L(s1,s2) := C’g’r)(sl, $2) is continuous on [0, 1]%. All the partial derivatives of L(sq, s2)
up to order 2m + 2r 4 2 are continuous on €2, U2, and continuously extendable to
cl(Q4) and cl(Q24).
(2) a(s) :== LY (s,s) — LY (s, s) has a positive lower bound for any s € [0,1], where
L% and L(j’o) are two different extensions of L(%% to [0,1]? that are continuous on
cl(Q_) and cl(€2, ), respectively.
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(3) LY (s1,55) is bounded over [0,1]2, where LP” is the extension of L to [0,1]? that
is continuous on cl(£2,).

In addition, assume that the integro-differential equations with the boundary conditions in

Proposition B.1 are regular in the the sense of Birkhoff (1908b) (see Definition B.1 below).

Definition B.1 (Regular boundary conditions of even order; Birkhoff, 1908b). Consider the
linear differential equation of order 2k in ¢: @) (z) + 32272 () (z) + vo(z) = 0
on an interval [a,b] with 2k linear homogeneous boundary conditions W;(¢) = 0 in
o(a), ¢ (a), o5 V(a), ..., p(b), ¢ (b), % V(b), for 1 < i < 2k. Applying the linear
transformation on the W;’s to obtain the normalized boundary conditions in the form
Wi(e) = Wialp) + Ww< ) = 0, where Wia(p) = aip¥(a) + 75 aup(a), Wis(p) =
bl (b) + Z]’fl w0 (b), and where j; > ... > j, are such that no successive three of
them are equal. Define (y, (1, (2 € C through the identity

o J1 Ji b1\,,,J1 Ji . j1
ajw] aywiy  (ay+bis)wy (ar +")wyl,  biwg, biw?,
J2 J2 J2 b J2 J2 j
Cz agwy® -+ awily (ag +bas)wy’ (ax + Z)wid, bawpil, o bhwi?
CO + Cls + — = ;
a,wi anwp” 1 (G +bps)wy”  (an + 22w, b wk” b wir

where the w;’s are the 2k-th root of unity ordered according to Re(pw;) < Re(pws) < - -+ <
Re(pw,) and p = vY/(?%) Then, the boundary conditions Wy (), ..., War() are regular if
G # 0 and ¢ # 0.

B.3 Proof of Proposition B.1

We follow the proof of Proposition 2.2 in Shang and Cheng (2015) and we assume that a(-) in
Condition B(r) satisfies a = 1 without loss of generality. For the integro-differential equation
(B.11), taking ¢ = 1 yields

1
o[ Cxlons)alsn) dsa = (<15 s).
0

5(9)(()):““(9)(1):0, form<60<2m-—-1.

This case was proved by Shang and Cheng (2015). We therefore focus on the case where
¢ > 2 in equation (B.11), which is equivalent to, for ¢ > 2,

pe /01 Cx(81,52) 7(s2) dsy = i (T;) (=D = D)2 5@ (sy)

=0 (B.12)

§(9)(0>:§(9)(1):0, form<0<2m-—1.



NOT-FOR-PUBLICATION APPENDIX 45

By virtue of simple presentation, without loss of generality, we change the subscript of p, to
¢ —11in (B.12) to write, for £ > 1,

o [ Oxtorsatsadss =3 (7 ) (1m0

0=0

(B.13)
790)=29(1) =0, form<6<2m-—1.

In the sequel we show the results in Proposition B.1 based on (B.13). Let N(s1,82) =
Lf’o)(sl, sy) for Ly in Section B.2 and let M(sy, s2) denote its reciprocal kernel such that

the following reciprocal property (Tamarkin, 1927) is satisfied

M(81,82)+N(81,52)=/0 M(Sl,é)N(é,sfz)d&:/O N(s1,€)M (&, 52)dS . (B.14)

For 0 < 0 < m, let ¢g = () (=1)’7*"=2*. For r in Condition B(r), we have (B.13) is
equivalent to the following equation

( m

1
Z Co €2m_29¢(29+r)(51) = Pe/ Cx (s1, 82) @/J(T)(Sz) dsa,
=0 0

w(v)@):@b(”)(l):O, form+7"§U§2m+r—1, <B15)

Y1) =0, for0<v<r—1.

\

That is, 7 = 9(") being the solution to (B.13) is equivalent to 1 being the solution to (B.15).
From the first equation in (B.15), by integration by parts we find

m 1
> e B s) = (<1 pr [ O (o1, 50) o(sa) i
0=0 0
due to the assumption that C_g?’v)(s,O) = 1for 0 < v <r—1, and that (1) = 0, for
0 <wv <r—1in (B.15). Taking partial derivatives of the above equation yields that, for
0<v<r,
m 1
Zce (2RO (g1) = (‘DTW/ Cg’r)(sl, 52) Y(s2) dsz,
0=0 0
m 1
Zce €2m729,¢(29+2r+1)<$1) — <_1>rpg/ L(I,O)(s17 82) 1/)(82) dSQ,
6=0 0

m 1
Z Co €2m—29¢(29+27‘+2)(51> — (—1)T+1pe¢(81) + (_1)rp£/ L(+2,0)($17 52) @/}(82) dSQ ,
6=0 0

due to the fact that a(s) = 1 and fol LU0 (51, 59)1h(s9) dsg = fsll L(_I’O)(sl,SQ)w(sQ)dSQ +

I LS:’O)(sl, S2)1(s2)dss. Hence we find that (B.15) is equivalent to the following boundary
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value problem

(

. 1
ZCQ (220,202 +2) (5 ) | (_1)Tpe{¢(51) —/ Lf’o)(sl, Sg)w(sz)dsz} =0,

=0 0
@ (0) =¥ (1) =0, form+r<v<2m+r-—1,

(0) = v (1) )
p™) (1) =0, for0<v<r-—1,

m 1
S o B0 () = (—1)7p, / CUN (0, )p(s)ds, 0<v<r+1.
0=0 0

\

Recall from the paragraph above (B.14) that N(sp,s2) = Lf’o)(51,82). For the first
equation in (B.16), using the reciprocal property in (B.14),

THZC p2m— 29/ M 57 w(29+2r+2)( )d

{/ M(¢ s)ds—/o /o M(f,sl)N(sl,SQ)w(SQ)dsldSQ}

~ pe [ / Mg s - | (e ) + NG s)}zp(s)ds]

1
_ _pg/ N(&,8)0(s)ds = —p /O L0, s)(s) ds .

Combining the above equation with the first equation of (B.16) yields

peth(s1) = (— THZC p2m— 29{ (20+2r+2) / M(s1,s (29+2r+2)(82)d82}. (B.17)

Combining (B.17) with the first equation of (B.16) and using the reciprocal property in
(B.14), we find

1)+ Z co éQm—26¢(29+2T+2)(81)
0=0
1
= peb(s1) —/ N(s1,52)
% [ T+IZC p2m—20 {w(29+2r+2) / M w(29+2r+2)(§)d§}] dss

0=0

= pe(s1) — T+1ZC p2m— 29/ N(sy,s )w(29+2r+2)< 2)dsy

01=

1)r+1 92% Co €2m—29/0 A N(Sl, 82)]\4(827 5)1/}(29-}—27"—5—2) (ﬁ)dﬁdSQ
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_ pé¢(31) T‘+1 ZC me 29/ N 51 So w(20+2r+2)( )dSQ
r+1 Z co p2m— 20 / N w(29+2r+2) (f)df
'r+1 Z Co €2m 20 / M ?/}(29+2r+2) (f)dé—

= peb(s1) + r+1zc (2m— 20/ M(s1, s )w(20+2r+2)( 2)dss .

Using integration by parts, we deduce from the above equation that

1)r+1 Z co €2m—20¢(29+2r+2)(81)

6=0
m 1
= Péw(sl) + (_1>r+1 Z Co gQm%/ M(0’29+2T+2)(51, 82) ¢(82)d82
9=0 0
m  204+2r+2

4 Z Z (—1)"*eq ng—Z@{M(O,j—l)(Sb 1)p@0+2r+2=0) (1) — @I (g, O)w(20+2r+2—j)(0)}
0=0 j=1

= pep(s1) + Letb(s1), (B.18)

if we define

m  204+2r+2

Lg@[](sl —(_ T—i—lzc €2m 20/ M(029+2r+2) S 82 82 d82—|—2 Z T+j09 €2m—20
Jj=

x {Mww“(sl, 1) @220 (1) — MO (s, 0) w<29””2*f><0>} : (B.19)

For the last boundary value condition in (B.16), by (B.17) and integration by parts, we
find that, for 0 < v <r+1,

_1)r Z Co €2m—29,l/](29+7‘+v) (0)

0=0

1
:/ Cg?u)(sl’o)[ THZC (2m— 29{w(29+2r+2 / M (s, s )¢(29+27«+2)( )dsz}] dsy
0

0=0
m 1
= (—1)’"+1 Z co €2m—29{ / (Jﬁ?“)(sl, 0) ¢(29+2r+2)(81)d81
0=0 0
1,1
- / / CY (51,00 M (51, 52) ¢(29+2T+2)(52)d32d51}
0o Jo
= (1) Z cg 1220
0=0

1
/ C§?9+37‘+2,’U) (81, 0) ¢(81)d81
0
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11
- / / C)(;’U)(sl, 0) M O20F2r+2) (51 s5) 4h(s9)dsads,
o Jo

204-2r4-2

PN 1 C 0,00 D) - O (0,0) )

_w(29+2r+2j)(1)/ C)(?v)(sl,O)M(O,j—l)(su1)d81

0

0

1
+¢(29+2r+2—j)(0)/ C)(g’v)(sl,O)M(O’j_l)(81,0)d51 }] _
ForO0<v<r+1land1l<j<2m+ 2r+ 2, if we denote

Azu Zc p2m— 29{ (20+3r+2 v) / C(rv) 3 0) MO 29+2r+2)(£73>d€} :

0

0 = <—1>J’{C§§”‘1’”><o7 0) — / C (s,0)M @31 (s, o>ds} :

b = <—1>ﬂ‘“{0§§+f‘1’“<1, 0) — / O (s,0)M @31 (s, 1>ds} , (B.20)

0
we have that for 0 <ov <r—+1,

m  20+4+2r+2

Z Z ¢ €2m—29{aju 1/)(29+2r+2—j)(0) + by, ¢(20+2r+2—j)(1)}
0=0 j=1
+ Z co (220 ¢(26+r+v)(0) + /A&U(S)l/)(S)dS —0.
0=0

By assumption, we have Cﬁg’o)(o,s) =0for 0 < j < r—1, so that Cg?’v)(s,O) =
Cy’q)(o,s) =0for0 <v<r—1landl <gq < 2m+ 3r+ 2. Hence aj,, = bj, = 0
and Ay ,(s) =0, for 0 <j <r—1and 1 <wv <20+ 2r+ 2. Therefore, in view of (B.18),
from the above calculations, if we let D = m +r + 1, we find that (B.13), (B.15) and (B.16)

are equivalent, and are equivalent to the following boundary value problem

( m—1
Y (8) 4 ()™ e PP (5) 4 (1) pyap(s) + Letp(s) =
=0
P (0) =0, form+r<v<2m+r—-1,
Y1) =0, for0<v<r—landm+r<ov<2m-+r-—1,

m 2042142 (B.21)

Z Z co €2m729{aj7v w(20+2r+27j)(0) + by, ¢(29+27’+27]’)(1>}
9=0 j=1

+ Z co 1P 20qp 204+ () 4 /Agyv(s)w(s)ds =0, forv=rr+1.

L 0=0
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The auziliary problem (cf. Tamarkin and Langer, 1928, p. 459) of (B.21) is

m—1
PO () + (= 1)™ Y e (BP0 (5) 4 (=1)™ b (s) = 0,
0=0
Pp®(0) =0, form+r<v<2m+r-—1,
z/;<v>(1):0, for0<v<r—landm+r<ov<2m-+r-—1, (B.22)
m  20+4+2r+2
Z Z Co €2m—29{ajv ¢(29+27‘+2—j) (0) + ij ¢(29+2r+2—j)(1>}
0=0 j=1
+ Z g (P22 (0) =0, forv =17+ 1.
L 0=0

The above boundary value problem in (B.22) is a linear differential equation of the order of
2m + 2r +2 = 2D in ¢, with 2D linear homogeneous conditions on the 1?)(0) and ¥\ (1),
for 0 < 7 < 2m+2r+1; furthermore, the coefficients of the odd-order derivatives of ¢ in the
first equation of (B.22) are all zero. The characteristic value (see Birkhoff, 1908b) of (B.22)
is (—1)™*7py. Letting pp = (—1)P+12P 3P we have the first equation in (B.22) is

P (8) 4 g PP (5) + 2P PP (s) = 0, (B.23)
=1

Let 9(s) = ¢(s/0), so that ™) (s) = £704)(s/0), for 0 < v < 2D. The key of this proof
is that ¢(s) being the solution to (B.23) is equivalent to ¥(s) being the solution to the
following ordinary differential equation corresponding to the characteristic value o?? that is
independent of /:

m

V() + ) g VP2 (5) + 3P 4j(s) = 0. (B.24)
=1
In view of (B.22), together with the boundary conditions, J is the solution of the following
boundary value problem.

(

P (s) £ eng WP (5) + 8P d(s) = 0,
=1

{/;(U)(O):O, form+r<v<2m+r—1,
JOW) =0,  for0<v<r—landm+r<ov<2m+r—1, .
m 20+2r+2

Z Z co €2D—j{ajv J(29+2r+2—j)(0) + b J(20+2r+2—j)(€)}
=0 j=1

fgAmtrty Z P (0) = 0, forv=rr+1.
\ 0=0
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Rearranging the last two boundary conditions in (B.25) yields that, for v = r + 1,7 and for
Ajv, bj,v in (BQO),

m  20+2r+1

Z Z CBKZm_Qe-H {a29+2r+2—j,v¢v(j) (0) + b26’+2r+2—j,vig(j) (é)} + €2m+r+u Z CGJ(ZQ_H"—H)) (0)
0=0

0=0 j=0
2m—+2r+1 " " " m _
= f””[ > {0000 + b OO ] 4 07 Zcew@“*”(m] ~0.
j=0 6=0
For convenience of presentation, let a;,, = 0, for —2m +1 < j < 0. For v = r,r + 1 and

0<j<2m+2r+1, denote

m m

Qe = Z 2072 e Ggp s ariaju s s = Z 7202 e bog oo - (B.26)
0=0 0=0
Let
o amarl _
Wy (1) = Z {ajﬂ%m ¢(j)( 0) + b . +1Z¢(J) } ZC ¢(29+2r+1)( 0)
2mi—2?"+1
/1/\[72(1;) — Z {%’M J(j)( )—l—b ew(]) }+€ 120 Q/)(29+27~ (0)
j=0 0=0

In view of (B.22), for the @, ,’s and gj,w’s in (B.26), 1; satisfies the following differential
equation with normalized boundary conditions (Birkhoff, 1908b, p. 382) is

2Z(QD) +ZC w(QD 20)( ) v2D w( )

;

2m+27‘+1
Wi(0) = 3 {ajmﬂ,ﬁ{/;(j)( 0) + bjire 99(0) } chemrm() 0,
§=0
o 2mi2ral o B.27
W)=Y {5],77«7[@/)(])() e (0) }+g lzcw(%—&-%) 0) =0, (B.27)
j=0 0=0

QZ(“)(O):O, @Z(U)(ﬁ):()y form+r<ov<2m+4+r-—1,

W) =0, for0<v<r—1.

\

Let /vag(zg), . ,WQD(J) denote left hand side of the boundary conditions in the rest of the
last two lines of the above equations. Now, ¢ being the solution to (B.22) is equivalent to 1;
being the solution to (B.27).

Next, we draw the conclusion of the growing rate of the characteristic value 2P
(B.27). For g € C, let wy, ..., wyp denote the roots of w?? + 1 = 0, whose subscript is
ordered according to

Re(éﬁ?l) S Re(éwg) < ... S Re(éfﬁw).
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By Birkhoff (1908a) and Theorem III’ in Stone (1926), for any ¢ € C, (B.24) has 2D linear

independent analytic solutions ;Zvjm, e ,@/v)m p in the form of
v y { Byl 0,0(8, 0)
0 (s) = (81)" exp(4ijs {1+ Z : £ Ag , (B.28)
q=1 (Qw] Q

for some uniformly bounded functions B, , , and E;, . The condition that 0°P is the char-
acteristic value of (B.27) is that

Wl(lzz,l) Wl(lze,z) <o Wi(ve2n)

| Waen) W

>

Il
)
N
=
&
o
S

=0. (B.29)

Ww(i/u)e,l) Ww(&e,z) fWVQD(IZZ,QD)

In order to analyse the condition in (B.29), Birkhoff (1908b) introduced the definition of
regular boundary conditions; see Birkhoff (1908b), p. 382 and Definition B.1 in Section B.2.
For the @, ,’s and gj,v,g’s in (B.26), the boundary conditions in (B.27) is regular if (o ¢, (1.0, (2.0
defined through the following equation according to the boundary conditions in (B.27) is such
that (¢ Cer # 0 for any £ > 1:

Cz ¢ _
C()?e + Cl,gs +— =
[~ D-1 L \2D—1 ~ ) T 2D 1 birirey ~2D— ~aD-1 T ~ap-1]
(@410 + o) © @i+ )@py {(@rrre+ o) + bjpaes}p {(@ri1e + ‘o) + ey bw+l.€“/D+z e breretyp
o)) ~  =9p D ~2D 7. /2D 7. 2D
@jr WY T AjrWp_y (@0 + b] 80 (@, )uu+1 bjrtWhiy -+ bjreW3p
~2 —1 ~2m+r—1 ~2 —1 ~2 —1
wymtT e wptr wytr w;r{r 0 e 0
0 . 0 s@guwfl éﬁ%}m#r—l if)fg —1 . 1~L~§D+ —1
@2 =2 F2mtr=2 @ 0 - 0
S2mtr—2 1=2m+r—2 2mr—2 L 2T
det 0 e 0 SWp Swp Whh w;
O apr i 0 0
metr 1~m+r omtT .. Ty
0 0 SWp SWHTT uD+2 wyp
1 11 ...
0 0 SWp sWpy1 Wi batyp'
0 o 0 s, a0, Wh s e byl

Then, letting i = v/—1, by the theorem in Birkhoff (1908b), p. 383, we find that the eigenvalue
or in (B.27) is of the following form:

) Mo—1 o
2kmi 1 e E
2,0 o ¢ oo

Wp Wp

where €;,(s) and Es, are the coefficients of the equal or higher order terms of 0~! from the
determinant A in (B.29), and lejel < c1 and |Ey| < co uniformly in &, ¢ > 1 and ¢9. Moreover,

< |€10/Coul < o for some ¢, ¢y > 0. Therefore, (—1)P+1g2P < k*P. In conclusion, the
eigenvalue of (B.22) is ppy = (—1)PT102P 520 < (k()?P.
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Suppose ¢?? is a characteristic value of (B.21) and suppose ¥(s) = J(Zs) is the solution
to the problem (B.21) corresponding to ¢*”. We rewrite the first equation in (B.21) that 1
satisfies. For the L, in (B.21) defined in (B.19), substituting ¥(s) by 1 (¢s) yields

m 20+42r+42

sz(sl) f 20—2r— 2 / M(O 29+2r+2) S 82 682 d82+z Z m+r+j€—jce
Jj=

% {M 0,j— 1)(3 1) ¢ (20+2r+2— ])(@ B M(ngl)(sl, 0) w(2a+2r+2ﬂ)(0)}

m  204+2r+2

1
_ / ﬁg(S, gg dé- + Z Z {mjez ¢(29+2r+2 j)(g) o %j,97£(8)¢(20+27‘+2—j) (0)} ’
0
where, for 0 < 0 <m and 1 < j <20+ 2r + 2,

m
ﬁé(sl, 82) — Z g—Z@—Qr—2ceM(0,29+2r+2)(817 82) ’
0=0

91]"97[(8) = (—1)m+r+j€_j69 M(O’j_l)(s, 1) ,
%jygyg(s) = (—1)m+r+j€_j69 M(O’j_l)(s, 0) .
We have [$4(s1, s2)| < ¢72"2 uniformly in s1,52 € [0,1]; [250.(5)], [Bj0.0(s)| < ¢! uni-

formly in s € [0,1], for 0 < 0 < m and 1 < j < 20 + 2r + 2. Therefore, for A, is as in
(B.20), we have that ¢(s) is the solution to the following equations

{/}V(QD)(S) +ZCG7Z(2D—29)< )+ Q2D¢ / (s )d¢
m 25—',—27“4—2

PP {Hoals)perrre J><e>—%j,e,e<s>%29+2f+2fﬂ<0>}=o,

J(v)(): 0, form+r<ov<2m-+r-—1,
- (B.30)
LD(“)(E):O, for0<v<r—landm+r<ov<2m+r-—1,
m  20+4+2r+2 " ~
Z Z ‘€2D_]06{aj,v w(29+2r+2—;)(0) + bjﬂJ w(20+2r+2—])<€>}
9=0 j=1
# 30 e, Je o) 4 [ A0 =0, forv=rrt1.
\ 9:0

Following the proof of Theorem 7 in Tamarkin (1927), the characteristic value g5 of (B.30)
and the characteristic value g of (B.27) have the same growing rate uniformly in ¢, so that
pre = (k0)?P.

For the order of ||x||0o, Let Y = pké( € R and e = ik exp{mi/(2D)}. We therefore
have 77 = (=1)™"" pge, and Re(yge) = —Fpesin{r/(2D)}, and Im(yke) = Fpe cos{m/(2D)}.
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Let wpei,-- . weeop € { exp{(2v — 1)xi/(2D)}},_ ., denote the solution of w?” +1 =0,
of which the subscripts are assigned according to the order

Re(lyke wie1) < Re(lype wiez) < - -+ < Re(lyge wieop)

so that Re(yxewie;) < 0 when 1 < j < D, and Re(yge wie;) > 0 when D +1 < v < 2D.
Following Tamarkin and Langer (1928), pp. 467-469, the solution (s) corresponding to the
eigenvalue py, in (B.21) is such that, for 0 < v < 2D — 1,

2D
i (s) = ’W[ZGXP Vit Wie 78) [ Qegwhp;] + Y exp{ymewne (s — 1)}HQejwhy,l|
J=1 j=D+1

(B.31)

where for z € C, [2] is such that [[z] — 2| = O(k™" + ¢71), and Qu1,...,Qu2p are real-
valued constants that does not depend on k and are bounded, and at least one of these
2D constants is non-zero. Without loss of generality we may assume that Im(wgp) <
0 and Im(wgepi1) > 0, so that Y wrep = —iYke and Vi Wrepy1 = Yke; when j # D
and 2D, |Re(yrewke ;)| > Aresin(n/D). Now, since s € [0,1], when 1 < v < D — 1,
| exp(Vke wiej5)| = exp{Re(Vrs wie;)s} < 1; when D+2 <v < 2D, |exp{yp wie;(s —1)}| =
exp{Re(yrr wie ;) (s — 1)} < 1; | exp(vke wie,ps)| = | exp{yee wie,p+1(s — 1)} = 1. Therefore,
from (B.31), we find that, for 0 < 6 <m,

sup |w(r+9) >‘
s€[0,1]

< el sup {ZNXP Vit We,55)| | Qe g| + Z | exp{me whe (s — DHI1Qes| + O(k™)

s€[0,1] =1 i=Dt1
2D
< WW{ > Q0] + 0<k—1>} < (thy** (B.32)
>1 =
>1 4
Let
Zueo(s) exp(Yee wee,8) [Qejwig 7] for1<j<D,
ke,0,5(S) =
exp{Yee wre (s — 1)}HQewptl],  for D+1<j<2D,

so that 1/1(T+0)( ) = T+9 Z] leggj( ). Note that for 1 < j; < D —1 and for 1 < j, < 2D,

| Zk,0,,(8) Zito.5,(5)| < | exp(vue wie i 8)| % |[Qei]] % [[Qego]| + O(K™)
= exp{Re( ke ke, )5} X [Qrjy Q| + O(k™1)
< exp{—Tresin(m/D)s} X [Qpj, Qe | + O(k™1)
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< cpexp(—cyks) , (B.33)

for ¢4, ¢, > 0. Hence, we deduce from the above equation that fol ‘Zkg’97j1(5) Zkg,ng(S)‘dS <
k=1, Likewise, for D +2 < j; < 2D and for any 1 < j, < 2D,

| Z1.0.,(5) Zieo>(5)] < | exp{amewie, (s — D} x [[Qe]l X [[Qen]l + O™
= exp{Re(yre wie ) (s — 1)} X [Qeji Qe + O(K™Y)
< exp{Fresin(m/D) (s — 1)} x [Qejy Qejo| + Ok
< cyexp{—ciki(s — 1)}, (B.34)

for ¢, ¢, > 0. Hence, we find that fol | Zk,0,,(8) Zipj,(s)|ds < k. Recall that Yy wie,p =
—iYre and Y wie,py1 = 1Yke. We have

‘ZM,G,D<5)‘2 = exp{2Re(vr wie,p)s} X |Qepl> + O(k™) = |Qup> + O(k™").
‘ZkZ,H,D—H( )| = exp{2Re(Yre wreps1)(s — 1)} X |Qepii]* + O(k™") = |Qupii* + O(K71).

Therefore,

2D 2D

I = Pl 323 [ Zun(5) B o0

Jj1=1ja=1

= |7ke|2r+29{/‘Zu,e,p(s)‘zds—i—/‘Zke,e,DH(S){?ds—kO(k’l)}

= h/ké|2r+29{‘Q£,D|2 + Qe |* + O(k‘l)} .

Now we show that in the above equation |Qp|* + |Qr.p+1]* # 0, which can be proved by
contradiction. Suppose Qyp = Q¢p+1 = 0. Then, in view of the boundary condition in
(B.22), for m+1r < vy <2m +r — 1, and for vy such that 0 <wvy <r—Tlorm+7r <wvy <
2m+r — 1,

D—1 2D
0= (0) vke{Z@e,]wm + 3 exp(—mwke,m@e,jwz;;,j]+0<k—l>},

1 j=D+2

—1 2D
0 =2 (1) M{ Z exp (Ve Wie,j) [ Qewii ;] + Z [Qejwyz ;] + O(k’_l)} :
Jj=1 j=D+2
Following the arguments in Shang and Cheng (2015b), pp. 7-9, letting k — oo yields Qp; = 0
for all 1 < 5 < 2D, which contradicts with the fact that at least one of these 2D constants is
nonzero. Therefore, we deduce that |Qy p|*+|Qrp11|* # 0, so that ]|¢,g;+9)|]2LQ = e <
(0k)?+20 for 0 < § < m. From this we deduce that

m

(extld o =it S ()W ol s = (k0
6=0
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Recall that zz = (Cx (%), 122)>—1/2 o, Hence, from the above equation and (B.32) we
conclude that |xel|oe = (Cx (V7)) ¥4 ) 12" 047 lloe S ()1

Since the cosine series {ny}¢>1 is a complete basis of L?([0,1]) (Theorem 2.4.18 in Hsing
and Eubank, 2015), by the argument similar to the ones in Shang and Cheng (2015b) p. 7,
we have {@ks}r>1 is complete in H, and any S € H admits the Fourier expansion =
> ke V(85 @re) Pre-

In order to show (2.12), due to Assumption Al, Vx(x1,x2) = (Cxx1,xs)r2 defines an
inner product, for z1,z, € L*([0,1]). For each ¢ > 1, we may orthonormalize the Zx’s,
k > 1, w.r.t. Vx to obtain the zy,’s. That is, Vx(zke, pre) = Op, for k, k" > 1. Recall that
ore(s,t) = zre(s)ne(t), k, € > 1. For V in (2.9),

V(0re, orer) Z/ Cx (1, 52){@re(s1)ne(t) } {xwe (s2)m0 (t) } dsidsadt

s1,82€[0,1]; t€[0,1]

1
= CX(Sl,SQ)xj[(Sl)xkgl(SQ)d31d32X/ ne(E)ne (t) dt
0

[0,1]?

= (Cx (o), Ther) 12 X (e, r2 = Vi (Tre, Tioe) G = O Oeer -

For J in (2.6) and the 7, in (B.10), we have (né ),né,)ﬁz =0for0 < <mand?¢>1,s0
that

n m 2] m—0 m—6
J(pre, ore) = J(Tre @ M, Torp @ Mpr) = Z <6><w§€27x;§%>p<n§ ! g )>L2

6=0
_ — (m @ .0 (m=0) _(m—0)
= Z <9) Tt s Tpop ) 2 e ) g2
6=0
6 0 m—60
Y ( 9><x,22,x;/2/>pun§ 2.
6=0

Using integration by parts and the boundary conditions, in view of (B.13), we deduce from
the above equation that

e m 0 m—0
Twepee) =00 S (9)<—1>9 (289, 2 o ™02

0

o=
m
= 0w <Z [ e ,:vw'>
L2

0=0

= O <Pke/ CX(31752)$M'(52) dss ,ka/é/>
0

L2

= O¢p Pre VX(ZL’ s ZL’M') = Pkt Ok Orpr

which completes the proof.
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