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Abstract: We propose a reproducing kernel Hilbert space approach to estimate the slope

in a function-on-function linear regression via penalised least squares, regularized by the

thin-plate spline smoothness penalty. In contrast to most of the work on functional linear

regression, our main focus is on statistical inference with respect to the sup-norm. This

point of view is motivated by the fact that slope (surfaces) with rather di↵erent shapes may

still be identified as similar when the di↵erence is measured by an L2-type norm. However,

in applications it is often desirable to use metrics reflecting the visualization of the objects

in the statistical analysis.

We prove the weak convergence of the slope surface estimator as a process in the space of

all continuous functions. This allows us the construction of simultaneous confidence regions

for the slope surface and simultaneous prediction bands. As a further consequence, we derive

new tests for the hypothesis that the maximum deviation between the “true” slope surface

and a given surface is less or equal than a given threshold. In other words: we are not trying

to test for exact equality (because in many applications this hypothesis is hard to justify),

but rather for pre-specified deviations under the null hypothesis. To ensure practicability,

non-standard bootstrap procedures are developed addressing particular features that arise

in these testing problems.

As a by-product, we also derive several new results and statistical inference tools for the

function-on-function linear regression model, such as minimax optimal convergence rates and

likelihood-ratio tests. We also demonstrate that the new methods have good finite sample

properties by means of a simulation study and illustrate their practicability by analyzing a

data example.
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1 Introduction

Over the past decades, new measurement technologies provide enormous amounts of data

with complex structure. A popular and extremely successful approach to model high-

dimensional data on a dense grid exhibiting a certain degree of smoothness is functional

data analysis (FDA), which considers the observations as discretized functions. Meanwhile,

numerous practical and theoretical aspects in FDA have been discussed (see, for example,

the monographs Bosq, 2000; Ramsay and Silverman, 2005; Ferraty and Vieu, 2010; Horváth

and Kokoszka, 2012; Hsing and Eubank, 2015, among others). A large portion of the liter-

ature uses dimension reduction techniques such as (functional) principal components. On

the other hand, as argued in Aue et al. (2018), there are numerous applications, where it is

reasonable to assume that the functions are at least continuous, and in such cases dimension

reduction techniques can incur a loss of information and fully functional methods can prove

advantageous.

Because of its simplicity and good interpretability, the scalar-on-function regression model

Yi = ↵0 +

Z 1

0

�0(s)Xi(s) ds+ "i , 1  i  n . (1.1)

has found considerable attention (see, for exemple, James, 2002; Cardot et al., 2003; Müller

and Stadtmüller, 2005; Yao et al., 2005; Hall and Horowitz, 2007; Yuan and Cai, 2010, among

manny others). Here, the Yi and the (centred) errors "i are scalar variables, the predictors

Xi are functions (typically of time or location) defined on the interval [0, 1], and the scalar ↵0

and the function �0 are the unknown parameters to be estimated. On the other hand, there

also exist many applications, where both, the predictor and the response, are functions, and

in recent years the function-on-function regression model

Yi(t) = ↵0(t) +

Z 1

0

�0(s, t)Xi(s) ds+ "i(t) , t 2 [0, 1] , 1  i  n , (1.2)

has gained increasing attention (see Lian, 2007, 2015; Scheipl and Greven, 2016; Benatia et

al., 2017; Luo and Qi, 2017; Sun et al., 2018). Here ↵0, Yi, Xi, "i are functions defined on the

interval [0, 1] and the slope parameter �0 is a function defined on the square [0, 1]2, which

we call slope surface throughout this paper in order to distinguish it from the slope function

in model (1.1).

The slope �0 quantifies the strength of the dependence between the predictor and the

response, and is the main object of statistical inference in this context. Many methods, such
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as estimation, testing, confidence regions, have been developed in the last decades for the

scalar-on-function linear regression model (1.1), which are often based on the L2 metric (see,

for example, Hall and Horowitz, 2007; Horváth and Kokoszka, 2012, among many others). A

popular estimation tool is functional principle component (FPC) analysis, which provides a

series representation of the function �0 in the corresponding L2 space (see, for example, Yao

et al., 2005). Other authors proposed reproducing kernel Hilbert space (RKHS) approaches

to estimate the slope parameter in a functional linear regression model. For example, Yuan

and Cai (2010) used the RKHS framework to construct a minimax optimal estimate in the

scalar-on-function linear regression, and Cai and Yuan (2012) discussed minimax properties

of their RKHS estimator in terms of prediction accuracy. We also refer to the work of Meister

(2011) who showed the asymptotic equivalence of the scalar-on-function linear regression and

the Gaussian white noise model in the Le Cam’s sense. Besides estimation, the problem of

testing the hypotheses

H0 : �0 = �⇤ versus H1 : �0 6= �⇤ , (1.3)

for a prespecified function �⇤ in the scalar-functional linear regression model has been dis-

cussed intensively (see Cardot et al., 2003, 2004; Hilgert et al., 2013; Lei, 2014; Kong et al.,

2016; Qu and Wang, 2017, among others). There also exist several proposals to construct

L2-based confidence regions (see Müller and Stadtmüller, 2005; Imaizumi and Kato, 2019,

among others).

Non-linear and semiparametric scalar-on-function regression models, such as generalized

linear models and the Cox model, have been studied by Shang and Cheng (2015), Li and Zhu

(2020) and Hao et al. (2021). For the function-on-function model (1.2), the literature is more

scarce. Lian (2015) studied the minimax prediction rate in an RKHS, where regularization

of the estimator is only performed in one argument, while Scheipl and Greven (2016) inves-

tigated a penalized B-spline approach. Benatia et al. (2017) used Tikhonov regularization,

Luo and Qi (2017) proposed a so-called signal compression approach and Sun et al. (2018)

considered a tensor product RKHS approach to estimate the slope surface and the achieved

the minimax prediction risk.

This list of references is by no means complete, but a common feature of most of the work

in this context consists in the fact that statistical methodology is developed in a Hilbert space

framework (often the space or a subspace of the square-integrable functions on an interval),

which means that the statistical properties of estimators, tests and confidence regions for the

3



slope parameter are usually described in terms of a norm corresponding to a Hilbert space.

While this is convenient from a theoretical point of view and also reflects the mathematical

structure of the (integral) operator of the functional linear model, it has some drawbacks

from a practical perspective. In applications, using a metric that reflects the visualization of

the curve/surface is usually more desirable, since functions/surfaces with a small di↵erence

with respect to an L2-type distance can di↵er significantly in terms of maximum deviation.

For example, a confidence region of the slope function/surface based on an L2-type distance

is often hard to visualize and does not give much information about the shape of the curve

or surface.

The choice of the metric also matters if one takes a more careful look at the formulation

of the hypotheses in (1.3). We argue that, in many regression problems, it is very unlikely

that the unknown slope �0 coincides with a pre-specified function/surface �⇤ on its complete

domain, and as a consequence, testing the null hypothesis in (1.3) might be questionable

in such cases. Usually, hypotheses of the form (1.3) are formulated with the intention to

investigate the question whether the e↵ect of the predictor on the response can be approx-

imately described by the function/surface �⇤, such that the di↵erence �0 � �⇤ is in some

sense “small”. This question can be better answered by testing the hypotheses of a relevant

di↵erence

H0 : k�0 � �⇤k  � versus H1 : k�0 � �⇤k > � , (1.4)

where k · k denotes a norm and � > 0 defines a threshold. Hypotheses of this type have

recently found some interest in functional data analysis (see, for example, Fogarty and Small,

2014; Dette et al., 2020), and here the choice of the norm matters, as di↵erent norms de-

fine di↵erent hypotheses. One may also view the choice of the threshold � as a particular

perspective of a bias-variance trade-o↵, which depends sensitively on the specific applica-

tion, and, of course, also on the metric under consideration. In particular, we argue that

the specification of the threshold in (1.4) is more accessible for a norm which reflects the

visualization, such as the sup-norm.

In the present paper, we address these issues and provide new statistical methodology for

the function-on-function linear regression model (1.2) if inference is based on the maximum

deviation. We propose an estimator for the slope surface �0 minimizing an integrated squared

error loss with a thin-plate spline smoothness penalty functional, and prove its minimax

optimality using an RKHS framework. Based on a Bahadur representation, we establish
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the weak convergence of this estimator as a process in the Banach space C([0, 1]2) with a

Gaussian limiting process. As the covariance structure of this process is not easily accessible,

we develop a multiplier bootstrap to obtain quantiles for the distribution of functionals of the

limiting process. In contrast to the L2-metric based methods, this enables us to construct

simultaneous asymptotic (1� ↵)-confidence regions for the slope surface �0 in model (1.2).

Moreover, we also provide an e�cient solution to the problem of testing for a relevant

deviation from a given function �⇤ with respect to the sup-norm. Here, we combine the

developed bootstrap methodology with estimates of the extremal set of the function �0��⇤,

and develop an asymptotic level ↵-test for the relevant hypotheses in (1.4), where the norm

is given by the sup-norm. Although we mainly concentrate on the model (1.2), it is worth

mentioning that, as a special case, our approach provides also new methods for the scalar-on-

function linear regression model (1.1), which allows inference with respect to the sup-norm.

The rest of this article is organized as follows. In Section 2, we propose our RKHS

methodology of function-on-function linear regression and study the asymptotic properties

of our estimator in Section 3. Section 4 discusses several statistical applications of our results

and the finite sample properties of the proposed methodology are illustrated in Section 5.

Finally, the technical details and proofs of our theoretical results are given in the online

supplementary material.

2 Function-on-function linear regression

Suppose that (X1, Y1), . . . , (Xn, Yn) are independent identically distributed random variables

defined by the function-on-function regression model in (1.2), where "i is the centred random

noise, and the slope surface �0 is defined on [0, 1]2. For the sake of brevity, throughout this

article, we assume that the observed curves, i.e., Xi and Yi in (1.2), are centred, that is,

E{X(s)} = E{Y (t)} = 0, for any (s, t) 2 [0, 1]2, so that we may ignore the intercept

function ↵0, since ↵0(t) = E{Y (t)} �
R 1

0 �0(s, t) E{X(s)}ds. In this case, the function-on-

function linear regression model in (1.2) becomes

Yi(t) =

Z 1

0

�0(s, t)Xi(s) ds+ "i(t) , 1  i  n , (2.1)

and a similar relation can be derived for the model (1.1).

In the sequel, we use L2([0, 1]) and L2([0, 1]2) to denote the space of square-integrable

functions on [0, 1] and [0, 1]2, respectively, and the corresponding inner product is denoted by
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h·, ·iL2 . By C([0, 1]2) we denote the Banach space of continuous functions on [0, 1]2 equipped

with the supremum norm k · k1, by “ ” we denote weak convergence in C([0, 1]) and

C([0, 1]2), and “
d

�!” stays for convergence in distribution in R
k (for some positive integer

k).

We start by proposing a RKHS approach for estimating the slope surface �0 in model

(2.1), and define by

H =
n
� : [0, 1]2 ! R

�� @✓1+✓2�
@s✓1@t✓2

is absolutely continuous, for 0  ✓1 + ✓2  m� 1 ;

@✓1+✓2�
@s✓1@t✓2

2 L2([0, 1]2), for ✓1 + ✓2 = m
o

(2.2)

the Sobolev space of order m > 1 on [0, 1]2. It is known (see, for example, Wahba, 1990)

that H in (2.2) is a Hilbert space equipped with the Sobolev norm defined by

k�k2
H
=

X

0✓1+✓2m�1

✓
✓1 + ✓2
✓1

◆✓Z
@✓1+✓2�

@s✓1@t✓2

◆2

+
X

✓1+✓2=m

✓
m

✓1

◆Z ✓
@m�

@s✓1@t✓2

◆2

. (2.3)

We propose to estimate �0 in model (2.1) by

b�n = argmin
�2H

�
Ln(�) + (�/2)J(�, �)

 
, (2.4)

where

Ln(�) =
1

2n

nX

i=1

Z 1

0

⇢
Yi(t)�

Z 1

0

�(s, t)Xi(s) ds

�2

dt (2.5)

is the integrated squared loss functional, � > 0 is a regularization parameter, and for m > 1,

J(�1, �2) =
mX

✓=0

✓
m

✓

◆Z 1

0

Z 1

0

@m�1
@s✓ @tm�✓

⇥
@m�2

@s✓ @tm�✓
ds dt (2.6)

is the thin-plate spline smoothness penalty functional (see, for example, Wood, 2003).

In (2.4), for notational brevity, we suppress the dependence of b�n on �, and denote by

Ln,�(�) = Ln(�) + (�/2)J(�, �) (2.7)

the objective function in (2.4). For �1, �2 2 H, we consider the following map h·, ·iK :

H⇥H ! R defined by

h�1, �2iK = V (�1, �2) + �J(�1, �2) , (2.8)
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where

V (�1, �2) =

Z

[0,1]3
CX(s1, s2) �1(s1, t) �2(s2, t) ds1 ds2 dt (2.9)

and

CX(s1, s2) = cov{X(s1), X(s2)} (2.10)

denotes the the covariance function of the predictor. We first make the following mild

assumption on CX .

Assumption A1. CX is continuous on [0, 1]2. For any � 2 L2([0, 1]),
R 1

0 CX(s, s0)�(s)ds = 0

implies that � ⌘ 0.

Our first result, which is proved in Section A.1, shows that the relation h·, ·iK in (2.8)

defines an inner product on the space H in (2.2), and its corresponding norm is equivalent

to the Sobolev norm k · kH given in (2.3).

Proposition 2.1. If Assumption A1 holds, then h·, ·iK in (2.8) is a well-defined inner prod-

uct on H. If k·kK denotes its corresponding norm, then k·kK and k·kH in (2.3) are equivalent.

Moreover, H is a reproducing kernel Hilbert space equipped with the inner product h·, ·iK.

In the sequel, for s1, s2, t1, t2 2 [0, 1], let K{(s1, t1), (s2, t2)} denote the reproducing kernel

of the reproducing kernel Hilbert space H equipped with inner product h·, ·iK . For functions

x, y on [0, 1], let x⌦ y denote the function defined by x⌦ y(s, t) = x(s)y(t). We use
P

k,` to

denote the sum
P

1

k=1

P
1

`=1 for abbreviation. Let CX denote the covariance operator of X

defined by

CX(x) =

Z 1

0

CX(s, ·) x(s) ds , (2.11)

for x 2 L2([0, 1]). We assume that there exists a sequence of functions in H that diagonalizes

operators V in (2.9) and J in (2.6) simultaneously. A concrete example that satisfies the

following assumption will be provided in Section B.2 of the online supplement.

Assumption A2 (Simultaneous diagonalization). There exists a sequence of functions 'k` =

xk` ⌦ ⌘` 2 H, such that k'k`k1  c(k`)a for any k, ` � 1, and

V ('k`,'k0`0) = �kk0 �``0 , J('k`,'k0`0) = ⇢k` �kk0 �``0 , (2.12)
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where a � 0, c > 0 are constants, �kk0 is the Kronecker delta and ⇢k` are constants, such that

⇢k` ⇣ (k`)2D for some constant D > a+1/2. Furthermore, any � 2 H admits the expansion

� =
X

k,`

V (�,'k`)'k`

with convergence in H with respect to the norm k · kK .

Note that a similar diagonalization assumption has been made in Shang and Cheng (2015)

in the context of generalized scalar-on-function model. For the inner product h·, ·iK in (2.8)

it follows from Assumption A2 that

h'k`,'k0`0iK = V ('k`,'k0`0) + �J('k`,'k0`0) = (1 + �⇢k`) �kk0 �``0 (k, k0, `, `0 � 1).

Therefore, it follows h�,'k0`0iK =
P

k,` V (�,'k`)h'k`,'k0`0iK = (1 + �⇢k`)V (�,'k`) for any

� 2 H, so that

�(s, t) =
X

k,`

V (�,'k`)'k`(s, t) =
X

k,`

h�,'k`iK

1 + �⇢k`
'k`(s, t) . (2.13)

Recall that K is the reproducing kernel and using the notation K(s,t) = K{(s, t), ·} we have

'k`(s, t) = hK(s,t),'k`iK , so that by (2.13),

K(s,t) =
X

k,`

'k`(s, t)

1 + �⇢k`
'k` ; K{(s1, t1), (s2, t2)} =

X

k,`

'k`(s1, t1)'k`(s2, t2)

1 + �⇢k`
. (2.14)

For �1, �2 2 H, let W� denote a linear self-adjoint operator such that hW��1, �2iK =

�J(�1, �2). By definition, for the {'k`}k,`�1 in Assumption A2, we have hW�'k`,'k0`0iK =

�J('k`,'k0`0) = �⇢k` �kk0 �``0 , so that in view of (2.13),

W�'k` =
X

k0,`0

hW�'k`,'k0`0iK

1 + �⇢k0`0
'k0`0 =

� ⇢k` 'k`

1 + �⇢k`
. (2.15)

For any z 2 L2([0, 1]2) and � 2 H, Sz(�) =
R 1

0

R 1

0 �(s, t)z(s, t)dsdt is a bounded linear

functional. By the Riesz representation theorem, there exists a unique element ⌧(z) 2 H

such that

h⌧(z), �iK = Sz(�) =

Z 1

0

Z 1

0

�(s, t) z(s, t) ds dt . (2.16)

In particular, h⌧(z),'k`iK = hz,'k`iL2 , so that

⌧(z) =
X

k,`

hz,'k`iL2

1 + �⇢k`
'k` . (2.17)
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3 Asymptotic properties

In order to develop statistical methodology for inference on the slope surface in the function-

on-function linear regression model (1.2), we study in this section the asymptotic properties

of the estimator b�n defined by (2.4). We first present a Bahadur representation, which is

used to prove weak convergence of the estimator (point-wise and as process in C([0, 1]2)).

Several statistical applications of the following results will be given in Section 4 below.

We begin introducing several useful quantities. Recalling the notation ofW� and ⌧ defined

in (2.15) and (2.17), respectively, we obtain by direct calculations the first and second order

Fréchet derivatives of the integrated squared error Ln in (2.5)

DLn(�)�1 = �
1

n

nX

i=1

Z 1

0

Z 1

0

⇢
Yi(t)�

Z 1

0

�(s1, t)Xi(s1)ds1

�
Xi(s2) �1(s2, t) ds2 dt

= �
1

n

nX

i=1

*
⌧


Xi ⌦

⇢
Yi �

Z 1

0

�(s, ·)Xi(s) ds

��
, �1

+

K

;

D
2Ln(�)�1�2 =

1

n

nX

i=1

Z 1

0

Z 1

0

⇢Z 1

0

�1(s1, t)Xi(s1) ds1

�
Xi(s2) �2(s2, t) ds2 dt

=
1

n

nX

i=1

*
⌧


Xi ⌦

⇢Z 1

0

�1(s, ·)Xi(s) ds

��
, �2

+

K

. (3.1)

Therefore, it follows for the function Ln,� in (2.7) that

DLn,�(�)�1 = hSn,�(�), �1iK ,

D
2Ln,�(�)�1�2 = hDSn,�(�)�1, �2iK ,

where we use the notations

Sn,�(�) = �
1

n

nX

i=1

⌧


Xi ⌦

⇢
Yi �

Z 1

0

�(s, ·)Xi(s) ds

��
+W�(�) ,

DSn,�(�)�1 =
1

n

nX

i=1

⌧


Xi ⌦

⇢Z 1

0

�1(s, ·)Xi(s) ds

��
+W�(�1) .

(3.2)

In addition, we have, in view of (2.8),

E{D2Ln,�(�)�1�2} = V (�1, �2) + �J(�1, �2) = h�1, �2iK .

Remark 3.1. In the unregularized case, where � = 0, one can show that setting E{Sn,0(�)} =

0 yields the common FPC expansion

� =
X

k,`

E(hX, ukiL2hY, v`iL2)

E(hX, uki
2
L2)

uk ⌦ v` , (3.3)
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where the uk’s and the v`’s are eigenfunctions of the covariance functions of X and Y ,

respectively (see, for example, Yao et al., 2005). To see this, in view of the definition of ⌧ in

(2.16), note that ⌧(0) = 0 and that ⌧(z) = 0 implies z = 0. Hence, E{Sn,0(�)} = E
�
⌧
⇥
X ⌦

�
Y �

R 1

0 �(s, ·)X(s)ds
 ⇤�

= 0 implies that E(X ⌦ Y ) = E
⇥
X ⌦

� R 1

0 �(s, ·)X(s)ds
 ⇤
, so that

cov{X(s), Y (t)} =
R 1

0 �(s
0, t)CX(s, s0)ds0. Then, (3.3) can be obtained via the expansion of

this equation on both sides with respect to the eigenfunctions.

We now state several assumptions required for the asymptotic theory developed in this

section.

Assumption A3. For any t1, t2 2 [0, 1], E{"(t1)|X} = 0 and E{"(t1)"(t2)|X} = C"(t1, t2)

almost surely. Assume further that C"(t1, t2) = �2
" �(t1, t2), for some �2

" > 0, where � is the

Dirac-delta function.

Assumption A4. There exist constants cX , c" > 0 such that E{exp(cXkXkL2)} < 1 and

E{exp(c"k"kL2)|X} < 1 almost surely. There exists a constant c0 > 0 such that, for any

! 2 L2([0, 1]),

E

⇢Z 1

0

X(s)!(s)ds

�4

 c0

E

⇢Z 1

0

X(s)!(s)ds

�2 �2
. (3.4)

Moreover, E{"(·)"(·)"(·)"(·)|X} 2 L2([0, 1]4) almost surely.

Assumption A5. The regularization parameter � in (2.8) satisfies � = o(1), n�1��1/(2D) =

o(1) and n�1/2��& (log log n)1/2 = o(1) as n ! 1, where & = (2D � 2a � 1)/(4Dm) + (a +

1)/(2D) > 0, for the constants a and D in Assumption A2.

Remark 3.2. The reason for postulating a white-noise error covariance in Assumption A3

is that the commonly used L2 loss function defined in (2.5) corresponds to the likelihood

function in the case of the Gaussian white noise error process; see, for example, Wellner,

2003. It is also notable, that for the scalar-on-function model in (1.1), this assumption is in

fact not necessary (as there is no error function in this model) and Assumption A3 reduces

to E("|X) = 0 and E("2|X) = �2
" almost surely.

Assumption A4 requires that kXkL2 , and k"kL2 conditional on X, have finite exponential

moments. Moreover, condition (3.4) is a common moment assumption in the context of

scalar-on function regression, used, for example, in Cai and Yuan (2012) and Shang and

Cheng (2015). Assumption A5 specifies the condition on the rate in which � tends to zero

as n ! 1.
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The first result of this section establishes a Bahadur representation for the estimator (2.4)

in the function-on-function linear regression model (2.1). It is essential for deriving weak

convergence of the estimator b�n, which serves as the foundation of our statistical analysis in

Section 4. The proof of Theorem 3.1 is given in Section A.2.

Theorem 3.1 (Bahadur representation). Suppose Assumptions A1–A5 are satisfied. Then,

we have

kb�n � �0 + Sn,�(�0)kK = Op(vn),

where Sn,� is defined in (3.2), & > 0 is the constant in Assumption A5 and

vn = n�1/2��&(�1/2 + n�1/2��1/(4D))(log log n)1/2 . (3.5)

Due to the reproducing property of the kernel K, we have, for (s, t) 2 [0, 1]2 fixed,

b�n(s, t)� �0(s, t) = hb�n � �0, K(s,t)iK ,

and, by Theorem 3.1, this expression can be linearized to establish point-wise asymptotic

normality of b�n(s, t). The following theorem gives a rigorous formulation of these heuristic

arguments and is proved in Section A.3.

Theorem 3.2. Suppose that Assumptions A1–A5 hold. Assume n�(2a+1)/(2D)
{log(��1)}�4

!

1,
p
nvn = o(1), n�2 = o(1),

P
k,`(1 + �⇢k`)�2'2

k`(s, t) ⇣ ��(2a+1)/(2D), as n ! 1;
P

k,` ⇢
2
k` V

2(�0,'k`) < 1. Then,

p
n{b�n(s, t)� �0(s, t)}qP
k,`(1 + �⇢k`)�2'2

k`(s, t)

d.
�! N(0, 1) .

The final result of this section establishes the weak convergence of the process b�n in the

space C([0, 1]2), which enables us to construct simultaneous confidence regions for the slope

surface �0 (see Section 4.2 below). The proof is given in Section A.4.

Theorem 3.3. Suppose that Assumptions A1–A5 hold and that n�2 = o(1),
p
nvn = o(1),

� = o(n�⌫1), n1�⌫2�(2a+1)/(2D)
! 1 for some constants ⌫1, ⌫2 > 0 as n ! 1. Assume that

P
k,` ⇢

2
k` V

2(�0,'k`) < 1, that the limit

CZ{(s1, t1), (s2, t2)} = lim
n!1

�(2a+1)/(2D)
X

k,`

'k`(s1, t1)'k`(s2, t2)

(1 + �⇢k`)2
(3.6)
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exists, and that there exist nonnegative constants c0, b,# such that

lim sup
�!0

�(2b+1)/(2D)
X

k,`

|'k`(s1, t1)� 'k`(s2, t2)|2

(1 + �⇢k`)2
 c0 max{|s1 � s2|

2#, |t1 � t2|
2#
} . (3.7)

If the constant a in Assumption A2 either satisfies the condition (i) b < a, # � 0 or the

condition (ii) b = a, # > 1, then

{Gn(s, t)}s,t2[0,1] =
p
n�(2a+1)/(4D)

{b�n(s, t)� �0(s, t)}s,t2[0,1]  {Z(s, t)}s,t2[0,1] (3.8)

in C([0, 1]2), where Z is a mean-zero Gaussian process with covariance kernel CZ in (3.6).

4 Statistical consequences

In this section, we study several statistical inference problems regarding the model in (2.1).

We first show in Section 4.1 that the estimator b�n in (2.4) achieves the minimax convergence

rate. In Section 4.2, we propose point-wise and simultaneous confidence regions for the

slope surface �0. In Section 4.3, we develop a new test for the the classical hypotheses

(1.3) based on the sup-norm using the duality between confidence regions and hypotheses

testing. Moreover, we also extend the penalized likelihood-ratio test for scalar-on-function

linear regression proposed in Shang and Cheng (2015) to the function-on-function linear

regression model (a numerical comparison of both tests can be found in Section 5.2 and

shows some superiority of the confidence region approach.) In Section 4.4, we study a test

for a relevant deviation of the “true” slope function and a given function �⇤. Finally, a

simultaneous prediction band for the conditional mean curve E{Y (t)|X = x0} is proposed in

Section 4.5. The methodology requires knowledge of the constants a and D in Assumption

A2, and a data driven rule for this choice will be given in Section 5.1.

We also emphasize that, although we are mainly concentrating on the function-on-

function linear regression model, all results presented so far also hold for the scalar-on-

function linear model (under even weaker assumptions). As a consequence, we also obtain

new powerful methodology for the scalar-on-function linear regression model (1.1) as well,

and we briefly illustrate this fact for the problem of testing relevant hypotheses in Section 4.6.

4.1 Optimality

Under Assumption A1, the operator V in (2.9) defines a norm, say k�k2V = V (�, �), on

H. As a by-product of the Bahadur representation in Theorem 3.1, we are able to show

12



the upper bound for the convergence rate of the estimator b�n in (2.4) with respect to the

k · kV -norm. Moreover, we also prove that this rate is of the same order as the lower bound

for estimating �0, which shows that b�n is minimax optimal. To be precise, let G denote

the collection of all estimators from the data (X1, Y1), . . . , (Xn, Yn), and let F denote the

collection of the joint distribution F of the X and Y that satisfies Assumptions A1–A4,

according to the linear model in (2.1). The following theorem is proved in Section A.5.

Theorem 4.1 (Optimal convergence rate). Suppose Assumptions A1–A5 hold.

(i) By taking � ⇣ n�2D/(2D+1), we have

lim
c!1

lim sup
n!1

sup
�02H
F2F

P
�
kb�n � �0k

2
V � c n�2D/(2D+1)

�
= 0 .

(ii) There exists a constant c0 > 0 such that

lim inf
n!1

inf
e�2G

sup
�02H
F2F

P
�
ke� � �0k

2
V � c0 n

�2D/(2D+1)
�
> 0 .

Theorem 4.1 shows that the estimator b�n in (2.4) achieves the minimax optimal con-

vergence rate n�2D/(2D+1) with respect to the k · kV -norm. It is of interest to compare this

result with the minimax prediction rate obtained in Sun et al. (2018). First, we consider

the estimation of the slope surface �0 in the Sobolev space H on the square [0, 1]2 defined in

(2.2), whereas Sun et al. (2018) considered a tensor product RKHS on [0, 1]2. Second, Sun

et al. (2018) showed their minimax properties in terms of excess prediction rate (hereinafter

denoted by EPR), defined by

EPR(e�n) =
Z 1

0

En+1

⇢ ����Yn+1 �

Z 1

0

e�n(s, t)Xn+1(s)ds

����
2

�

����Yn+1 �

Z 1

0

�0(s, t)Xn+1(s)ds

����
2�

dt

=

Z 1

0

En+1

����
Z 1

0

�e�n(s, t)� �0(s, t)
 
Xn+1(s)ds

����
2

dt . (4.1)

Here e�n is an estimator from the data {(Xi, Yi)}ni=1, (Xn+1, Yn+1) is an independent future

observation and En+1 is the conditional expectation with respect to (X1, Y1), . . . , (Xn, Yn)

(which means that the expectation is taken with respect to (Xn+1, Yn+1)). In fact, we have

EPR(e�n) =
Z 1

0

 Z 1

0

Z 1

0

CX(s1, s2){e�n(s1, t)� �0(s1, t)}{e�n(s2, t)� �0(s2, t)}ds1ds2

�
dt

= V (e�n � �0, e�n � �0) = ke�n � �0k
2
V ,
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which shows that the di↵erence between e�n and the true �0 in squared k·kV -norm is equivalent

to EPR(e�n). Therefore, it follows from Theorem 4.1 that for the estimator b�n in (2.4),

EPR(b�n) achieves the minimax rate n�2D/(2D+1), which is determined by the constant D > 0

that specifies the growing rate of J('k`,'k`) in Assumption A2. In comparison, Sun et al.

(2018) showed that the EPR of their estimator achieves the minimax rate n�2D̆/(2D̆+1), where

the constant D̆ > 0 characterises the decay rate of eigenvalues of the kernel

⇧{(s1, t1), (s2, t2)} =

Z

[0,1]3
CX(s, t) eK1/2

{(s1, t1), (s, t)} eK1/2
{(s2, t2), (s, u)} ds dt du ,

where eK is the reproducing kernel of their tensor product RKHS.

4.2 Confidence regions

The asymptotic normality of the estimator b�n(s, t) in Theorem 3.2 enables us to construct

a point-wise (1� ↵)-confidence interval of �0(s, t), for fixed (s, t) 2 [0, 1]2, since

lim
n!1

P
n
�0(s, t) 2

⇥b�n(s, t)�Q1�↵/2 �⌧ (s, t) , b�n(s, t) +Q1�↵/2 �⌧ (s, t)
⇤o

= 1� ↵ ,

where �⌧ (s, t) =
�P

k,`(1 + �⇢k`)�2'2
k`(s, t)

 1/2
and Q1�↵/2 is the (1 � ↵/2)-quantile of the

standard normal distribution.

On the other hand, the construction of simultaneous confidence regions based on the

sup-norm for the slope surface �0 is more complicated. In principle, this is possible using

Theorem 3.3 and the continuous mapping theorem, which give

p
n�(2a+1)/(4D) sup

(s,t)2[0,1]2
|b�n(s, t)� �0(s, t)|

d
�! T = max

(s,t)2[0,1]2
|Z(s, t)| , (4.2)

where Z is the mean-zero Gaussian process defined in (3.8). Thus, if Q1�↵(T ) denotes the

(1� ↵)-quantile of the distribution of T and

b�±

n (s, t) = b�n(s, t)±
Q1�↵(T )

p
n�(2a+1)/(4D)

,

then the set Cn(↵) =
�
� : b��

n (s, t)  �(s, t)  b�+
n (s, t)

 
defines a simultaneous asymptotic

(1� ↵)-confidence region for �0, i.e.,

lim
n!1

P{�0 2 Cn(↵)} = 1� ↵.

However, the quantiles of the distribution of T depend on the covariance function CZ in

(3.6) of the Gaussian process Z, and is rarely available in practice. In order to circumvent

this di�culty, we propose the following bootstrap procedure to approximate Q1�↵(T ).
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Algorithm 4.1 (Bootstrap simultaneous confidence region for the slope surface �0).

1. Generate i.i.d. bootstrap weights {Mi,q}1in,1qQ independent of the data {(Xi, Yi)}ni=1

from a two-point distribution: taking 1�1/
p
2 with probability 2/3 and taking 1+

p
2

with probability 1/3, such that E(Mi,q) = var(Mi,q) = 1.

2. Compute b�n in (2.4); for each 1  q  Q, compute the bootstrap estimator

b�⇤

n,q = argmin
�2H


1

2n

nX

i=1

Mi,q

Z 1

0

⇢
Yi(t)�

Z 1

0

�(s, t)Xi(s)ds

�2

dt+
�

2
J(�, �)

�
. (4.3)

3. For 1  q  Q, let

G
⇤

n,q(s, t) =
p
n�(2a+1)/(4D)

{b�⇤

n,q(s, t)� b�n(s, t)} ;

bT ⇤

n,q = sup
(s,t)2[0,1]2

|G
⇤

n,q(s, t)| . (4.4)

Compute the empirical (1�↵)-quantile of the sample {bT ⇤

n,q}
Q
q=1, denoted byQ1�↵(bT ⇤

n,Q).

4. Let b�⇤
±

n,Q(s, t) = b�n(s, t)±Q1�↵(bT ⇤

n,Q)/{
p
n�(2a+1)/(4D)

}. Define the set

C
⇤

n,Q(↵) =
�
� : [0, 1]2 ! R : b�⇤

�

n,Q(s, t)  �(s, t)  b�⇤
+

n,Q(s, t)
 

(4.5)

as the simultaneous (1� ↵) confidence region for the slope surface �0 in model (2.1).

The following theorem, which is proved in Section A.6, provides a theoretical justifica-

tion of the above bootstrap procedure and establishes the consistency of the simultaneous

confidence region in Algorithm 4.1.

Theorem 4.2. Under the conditions of Theorem 3.3 we have

{G
⇤

n,q(s, t)}s,t2[0,1]  {Z(s, t)}s,t2[0,1] in C([0, 1]2) (4.6)

conditionally on the data {(Xi, Yi)}ni=1, where Z is the Gaussian process in Theorem 3.3.

In particular, the set C
⇤

n(↵) in Algorithm 4.1 defines a simultaneous asymptotic (1 � ↵)

confidence region for the slope surface �0 in model (2.1), that is

lim
Q!1

lim
n!1

P{�0 2 C
⇤

n,Q(↵)} = 1� ↵ . (4.7)

4.3 Classical hypotheses

For a given surface �⇤ on [0, 1]2, consider the “classical” hypotheses

H0 : �0 = �⇤ versus H1 : �0 6= �⇤ . (4.8)
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In the special case where �⇤ ⌘ 0, (4.8) becomes H0 : �0 = 0 versus H1 : �0 6= 0, which is the

conventional hypothesis for linear e↵ect; we refer to Tekbudak et al. (2019) for a review in

the scalar-on-function regression context.

In order to construct a test for (4.8), we may utilize the duality between hypotheses

thesing and confidence regions (see, for example, Aitchison, 1964). Specifically, recall from

Section 4.2 that we are able to construct a simultaneous confidence region C
⇤

n,Q(↵) for �0

using Algorithm 4.1, such that P{�0 2 C
⇤

n,Q(↵)} ! 1� ↵ as n,Q ! 1. Then, the decision

rule, which rejects the null hypothesis, whenever

�⇤ /2 C
⇤

n,Q(↵) , (4.9)

defines an asymptotic level ↵ test for the classical hypotheses in (4.8).

An alternative approach to construct a test for these classical hypotheses is to extend

the penalized likelihood ratio test (hereinafter denoted by PLRT), proposed in Shang and

Cheng (2015) for the scalar-on-function regression context, to the functional response con-

text. Specifically, for the objective function Ln,� in (2.7), consider the penalized likelihood

ratio test statistic defined by

Ln(�⇤) = Ln,�(�⇤)� Ln,�(b�n) . (4.10)

In order to find the asymptotic distribution of Ln(�⇤) under the null hypothesis, we define

the sequences

un =

�P
k,`(1 + �⇢k`)�1

 2
P

k,`(1 + �⇢k`)�2
, �2

n =

P
k,`(1 + �⇢k`)�1

P
k,`(1 + �⇢k`)�2

, (4.11)

and obtain the following result, which is proved in Section A.7.

Theorem 4.3. Let Assumptions A1–A5 be satisfied. Assume that as n ! 1, n�(2D+1)/(2D) =

o(1), nv2n = o(1) and nvn�(D+1)/(2D) = o(1), where vn is defined in (3.5). Then, under the

null hypothesis in (4.8),

1
p
2un

{2n�2
n Ln(�⇤)� un}

d
�! N(0, 1) ,

where un and �2
n are given in (4.11).

Then, the PLRT at nominal level ↵ rejects the null hypothesis in (4.8), whenever

2n�2
n Ln(�⇤)� un �

p
2un Q1�↵ , (4.12)
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where Q1�↵ is the (1 � ↵)-quantile of the standard normal distribution. We compare the

test (4.9) and PLRT (4.12) for the classical hypotheses (4.8) through simulated data in

Section 5.2.

4.4 Relevant hypotheses

It turns out that the construction of an asymptotic level ↵ test for relevant hypothe-

ses as formulated in (1.4) is substantially more di�cult. Recall that we are interested

in testing whether the maximum deviation between a given surface �⇤ and the unknown

“true” slope surface �0 exceeds a given value � � 0, and note that with the notation

d1 = sup(s,t)2[0,1]2 |�0(s, t)� �⇤(s, t)| the relevant hypothesis in (1.4) can be rewritten as

H0 : d1  � versus H1 : d1 > � . (4.13)

Therefore, a reasonable decision rule is to reject the null hypothesis for large values of the

statistic

bd1 = sup
(s,t)2[0,1]2

|b�n(s, t)� �⇤(s, t)| . (4.14)

When � = 0, the above relevant hypothesis reduces to the classical hypotheses in (4.8). In

this case, under the null hypothesis H0 : �0 = �⇤, there exists only one function-on-function

linear model, which simplifies the asymptotic analysis of the corresponding test statistics

substantially, because basically the asymptotic distribution can be obtained from Theorem

3.3 via continuous mapping (see also the discussion in Section 4.3). On the other hand, if

� > 0, there appear additional nuisance parameters in the asymptotic distribution of the

di↵erence bd1 � d1, which makes the analysis of a decision rule more intricate.

For a precise description of the asymptotic distribution of bd1 in the case � > 0, let

E
± = {(s, t) 2 [0, 1]2 : �0(s, t)� �⇤(s, t) = ±d1} (4.15)

denote the set of points, where the surface �0 � �⇤ attains it sup-norm (the set E
+) or its

negative sup-norm (the set E
�). Here we take the convention that E

+ = E
� = [0, 1]2 if

d1 = 0 and denote by E = E
+
[ E

� the set of extremal points of the di↵erence �0 � �⇤. The

following result describes the asymptotic properties of bd1 and is crucial for constructing a

test for the relevant hypothesis. It is proved in Section A.8.
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Corollary 4.1. If the assumptions of Theorem 3.3 are satisfied, then

p
n�(2a+1)/(4D)(bd1 � d1)

d
�! TE = max

n
sup

(s,t)2E+

Z(s, t), sup
(s,t)2E�

{�Z(s, t)}
o
, (4.16)

where Z is the mean-zero Gaussian process defined in (3.8).

Note that the distribution of TE depends on the covariance structure of the limiting

process Z in (3.8) and implicitly through the sets of extremal points E
+ and E

� on the

“true” (unknown) di↵erence �0 � �⇤. In order to motivate the final test, assume for the

moment the quantile, say Q1�↵(TE), of this distribution would be available (we will soon

provide an estimate for it), then we will show in Section A.8 that

lim
n!1

P

⇢
bd1 > �+

Q1�↵(TE)
p
n�(2a+1)/(4D)

�
=

8
><

>:

0 if d1 < �
↵ if d1 = �
1 if d1 > �

. (4.17)

Here the first two lines correspond to the null hypothesis d1  � and the third line to the

alternative in (4.13).

This yields, in principle, a consistent asymptotic level ↵ test for the relevant hypotheses

(4.13). To implement such a test we need to approximate the quantiles of the random variable

TE in (4.16). While the covariance structure of the process Z can be again estimated by the

multiplier bootstrap (see the discussion below), the estimation of the extremal sets is a little

more tricky. For this purpose we propose to estimate the sets E+ and E
� by

bE+ =
n
(s, t) 2 [0, 1]2 : b�n(s, t)� �⇤(s, t) � bd1 � c

log n
p
n

o
,

bE� =
n
(s, t) 2 [0, 1]2 : b�n(s, t)� �⇤(s, t)  �bd1 + c

log n
p
n

o
, (4.18)

respectively, where we use a term c log n/
p
n in the cut-o↵ values, for some tuning parameter

c > 0. Then, the random variable TE in (4.16) can be approximated by

bTE = max

⇢
sup

(s,t)2bE+

Z(s, t) , sup
(s,t)2bE�

{�Z(s, t)}

�
. (4.19)

In view of (4.17), the null hypothesis should be rejected at nominal level ↵ 2 (0, 1), if

bd1 = sup
(s,t)2[0,1]2

|b�n(s, t)� �⇤(s, t)| > �+
Q1�↵(bTE)

p
n�(2a+1)/(4D)

, (4.20)

where Q1�↵(bTE) denotes the (1 � ↵)-quantile of bTE . Now, we still need to approximate the

quantile Q1�↵(bTE) of bTE . Since the asymptotic distribution of bTE depends on the unknown
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covariance function CZ in (3.6), we propose to combine a multiplier bootstrap similar to

the ones introduced in Section 4.2 with the estimation of the extremal sets. Specifically, for

1  q  Q and the process G⇤

n,q(s, t) defined in (4.4), let

bT ⇤

E,n,q = max

⇢
sup

(s,t)2bE+

G
⇤

n,q(s, t) , sup
(s,t)2bE�

{�G
⇤

n,q(s, t)}

�
, (4.21)

where bE± are the estimated extremal sets defined in (4.18). Then, the quantile of bTE can

be approximated by the quantiles of the bootstrap extremal value estimates {bT ⇤

E,n,q}
Q
q=1. We

summarize the bootstrap procedures for the relevant hypothesis in (4.13) at nominal level ↵

in the following algorithm.

Algorithm 4.2 (Bootstrap for relevant hypotheses).

1. Generate i.i.d. bootstrap weights {Mi,q}1in,1qQ and compute the bootstrap process

G
⇤

n,q(s, t) in (4.4).

2. Compute the extremal sets bE± in (4.18). For 1  q  Q, compute bT ⇤

E,n,q in (4.21) and

obtain the empirical (1�↵)-quantile of the sample {bT ⇤

E,n,q}
Q
q=1, denoted byQ1�↵(bT ⇤

E,n,Q).

3. Reject the null hypothesis in (4.13) at nominal level ↵, if

bd1 = sup
(s,t)2[0,1]2

|b�n(s, t)� �⇤(s, t)| > �+
Q1�↵(bT ⇤

E,n,Q)
p
n�(2a+1)/(4D)

. (4.22)

The following theorem, which is proved in Section A.9, provides a theoretical justification

of the test (4.22).

Theorem 4.4. Suppose the conditions of Theorem 3.3 hold. Then, the decision rule (4.22)

defines a consistent and asymptotic level ↵ test for the hypotheses (4.13), that is

lim
Q!1

lim
n!1

P

⇢
bd1 > �+

Q1�↵(bT ⇤

E,n,Q)
p
n�(2a+1)/(4D)

�
=

8
><

>:

0 if d1 < �
↵ if d1 = �
1 if d1 > �

. (4.23)

4.5 Simultaneous prediction bands

Based on the estimator b�n in (2.4), we can construct a simultaneous confidence region of

the conditional mean µx0(t) = E{Y (t)|X = x0} =
R 1

0 �0(s, t)x0(s)ds, using the consistent

estimator

bµx0(t) =

Z 1

0

b�n(s, t)x0(s)ds. (4.24)
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The following theorem establishes the weak convergence of the process bµx0 in the space

C([0, 1]), which enables us to construct simultaneous confidence regions for the function µx0 .

The proof is given in Section A.10.

Theorem 4.5 (Simultaneous prediction band). Suppose that the conditions of Theorem 3.3

are satisfied. Then,

p
n�(2a+1)/(4D)

�
bµx0(t)� µx0(t)

 
t2[0,1]

 
�
Zx0(t)

 
t2[0,1]

in C([0, 1]) ,

where Zx0 is a mean zero Gaussian process with covariance function

CZ,x0(t1, t2) =

Z 1

0

Z 1

0

CZ{(s1, t1), (s2, t2)}x0(s1) x0(s2) ds1 ds2 (4.25)

and CZ is defined in (3.6), Moreover,

p
n�(2a+1)/(4D) sup

t2[0,1]
|bµx0(t)� µx0(t)|

d
�! Rx0 = max

t2[0,1]
|Zx0(t)| .

As the quantiles of the distribution of Rx0 depend in a complicate way on the covariance

structure of the process Zx0 , we propose the following bootstrap procedure for a simultaneous

asymptotic (1� ↵) prediction band for the finction t ! µx0(t) = E{Y (t)|X = x0}.

Algorithm 4.3 (Bootstrap simultaneous prediction band).

1. Generate i.i.d. weights {Mi,q}1in,1qQ and compute the bootstrap estimators {b�⇤

n,q}
Q
q=1

in (4.3). Compute b�n in (2.4) and bµx0(t) in (4.24).

2. For 1  q  Q, compute L
⇤

x0,q(t) =
p
n�(2a+1)/(4D)

R 1

0 {
b�⇤

n,q(s, t) � b�n(s, t)}x0(s)ds

and define bR⇤

x0,q = supt2[0,1] |L
⇤

x0,q(t)|. Compute the empirical (1 � ↵)-quantile of the

bootstrap sample { bR⇤

x0,q}
Q
q=1, denoted by Q1�↵( bR⇤

x0,Q).

3. Let bµ⇤
±

x0,Q(t) = bµx0(t)±Q1�↵( bR⇤

x0,Q)/{
p
n�(2a+1)/(4D)

}. Define the set

B
⇤

n,Q(↵) =
�
µ : bµ⇤

�

x0,Q(t)  µ(t)  bµ⇤
+

x0,Q(t)
 

(4.26)

as simultaneous (1� ↵) prediction band for the function µx0 .

The following theorem provides a formal justification of the bootstrap procedure in Al-

gorithm 4.3, the proof uses similar arguments as given in the proof of Theorem 4.2 and is

therefore omitted.

Theorem 4.6 (Bootstrap simultaneous prediction band). Suppose the assumptions in The-

orem 3.3 are satisfied. Then, the set B⇤

n,Q(↵) in (4.26) defines a simultaneous asymptotic

(1� ↵) prediction band for the function µx0, that is

lim
Q!1

lim
n!1

P{µx0 2 B
⇤

n,Q(↵)} = 1� ↵ .
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4.6 Scalar response

The results presented so far provide also new inference tools for the scalar-on-function linear

model

Yi =

Z 1

0

�0(s)Xi(s) ds+ "i , 1  i  n , (4.27)

which can be considered as a special case of model (1.2), where the response Y is a scalar

variable. In this setting, the estimator defined in (2.4) becomes

b�n = argmin
�2Hs


1

2n

nX

i=1

⇢
Yi �

Z 1

0

�(s)Xi(s) ds

�2

+
�

2
Js(�, �)

�
,

where Hs =
�
� : [0, 1] ! R | �, �0, . . . , �(m�1) are absolutely continuous; �(m)

2 L2([0, 1])
 
is

the Sobolev space on [0, 1] of order m, and Js(�, �) =
R 1

0 {�
(m)(s)}2ds. A direct consequence

of Theorem 3.3 in the function-response setting is the weak convergence

{Gn(s)}s2[0,1] =
p
n�(2a+1)/(4D)

�b�n(s)� �0(s)
 
s2[0,1]

 {Z(s)}s2[0,1] (4.28)

in C([0, 1]), where Z is a mean-zero Gaussian process. Hence, the methodology proposed

in Section 4, namely the bootstrap procedures for simultaneous confidence regions, relevant

hypothesis tests and simultaneous prediction bands, carries over naturally to the scalar

response case.

Exemplary, we consider (for a given constant � � 0) the problem of constructing a test

for the relevant hypotheses

H0 : sup
s2[0,1]

|�0(s)� �⇤(s)|  � versus H1 : sup
s2[0,1]

|�0(s)� �⇤(s)| > � , (4.29)

in model (4.27), which is more challenging in nature to tackle. A consistent estimator of

the maximum deviation d1 = sups2[0,1] |�0(s) � �⇤(s)| is bd1 = sups2[0,1] |
b�n(s) � �⇤(s)|, so

that the null hypothesis in (4.29) should be rejected for large values of bd1. As analog of

Algorithm 4.2, we obtain the following bootstrap test for the relevant hypotheses in (4.29).

Algorithm 4.4 (Bootstrap test for relevant hypotheses in the scalar-on-function mdoel).

1. Generate i.i.d. bootstrap weights {Mi,q}1in,1qQ as in Algorithm 4.1 and for each

1  q  Q, compute the bootstrap estimator

b�⇤

n,q = argmin
�2Hs


1

2n

nX

i=1

Mi,q

⇢
Yi �

Z 1

0

�(s)Xi(s) ds

�2

+
�

2
Js(�, �)

�

and G
⇤

n,q(s) =
p
n�(2a+1)/(4D)

{b�⇤

n,q(s)� b�n(s)}.
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2. Compute the extremal sets

bE± =
n
s 2 [0, 1] : ±{b�n(s)� �⇤(s)} � bd1 � c

log n
p
n

o
.

3. For 1  q  Q, compute

bT ⇤

E,n,q = max

⇢
sup
s2bE+

G
⇤

n,q(s) , sup
s2bE�

{�G
⇤

n,q(s)}

�
,

and obtain the empirical (1�↵)-quantile of the bootstrap sample {bT ⇤

E,n,q}
Q
q=1, denoted

by Q1�↵(bT ⇤

E,n,Q).

4. Reject the null hypothesis in (4.29) at nominal level ↵, if

sup
s2[0,1]

|b�n(s)� �⇤(s)| > �+
Q1�↵(bT ⇤

E,n,Q)
p
n�(2a+1)/(4D)

. (4.30)

It can be shown by similar arguments as given in the proof of Theorem 4.4 that the test

(4.30) is a consistent and asymptotic level ↵ test. The details are omitted for the sake of

brevity.

5 Finite sample properties

5.1 Implementation

Because the estimators b�n in (2.4) and its bootstrap analog b�⇤

n,q in (4.3) are defined as the

solution of a (penalized) minimization problem on an infinite dimensional function space,

exact solution are inaccessible. In this section, we introduce finite-sample methods to cir-

cumvent this di�culty, and propose a method to choose the regularization parameter �. We

shall only present our approach for computing the bootstrap estimator b�⇤

n,q in (4.3), since the

estimator (2.4) can be viewed as a special case of (4.3) by taking Mi,q = 1 for any 1  i  n

and 1  q  Q.

We start by deducing from Assumption A2 that J(xk` ⌦ ⌘`, xk0`0 ⌦ ⌘`0) = ⇢k` �kk0 �``0 , so

that for �(s, t) =
P

k,` bk` 'k`(s, t) 2 H and for bk` 2 R, we have J(�, �) =
P

k,` b
2
k` ⇢k`. We

consider the Sobolev space on [0, 1]2 of order m = 2. In this case, the penalty functional

in (2.4) is J(�, �) =
R 1

0

R 1

0 (�
2
ss + 2�2

st + �2
tt) ds dt, where �st =

@2�
@s@t . For the choice of the

basis, we use Proposition B.1 in Section B.2 of the online supplement. More precisely,
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⌘1(t) ⌘ 1, ⌘`(t) =
p
2 cos{(` � 1)⇡t} (` = 2, 3, . . .) and for ` � 1 the functions {exk`}k�1 are

the eigenfunctions of integro-di↵erential equation
8
><

>:

⇢`

Z 1

0

CX(s1, s2) ex(s2) ds2 = ex(4)(s1)� 2(`� 1)2⇡2ex(2)(s1) + (`� 1)4⇡4

ex(✓)(0) = ex(✓)(1) = 0 , for ✓ = 3 and 4
(5.1)

with corresponding eigenvalues {⇢k`}k�1. In order to find the eigenvalue and the eigenfunc-

tion of (5.1), we use Chebfun, an e�cient open-source Matlab add-on package, available

at https://www.chebfun.org/. We substitute the covariance function CX in (5.1) by its

empirical version bCX , and find the eigenvalues b⇢k` and the normalized eigenfunctions bxk`.

Observing that the functions {⌘`}`�1 are given by the cosine basis, we take the empirical

eigenfunctions b'k` = bxk`⌦⌘`. Now, we approximate the space H by a finite dimensional sub-

space spanned by {b'k`}1k,`v, defined by eH =
�P

1k,`v bk` b'k`

 
, where v is a truncation

parameter that depends on the sample size n.

For 1  q  Q, for the q-th bootstrap estimator b�⇤

n,q and for the bootstrap weights

{Mi,q}
n
i=1 in Algorithms 4.1–4.3, let fMq = diag(M1,q, . . . ,Mn,q) denote an n ⇥ n diagonal

matrix. For 1  i  n and 1  k, `  v, let !ik` =
R 1

0 Xi(s)bxk`(s)ds and let ⌦` = (!ik`) denote

a n⇥v matrix; let b⇤` = diag
�
b⇢1`, . . . , b⇢v`

 
denote a v⇥v diagonal matrix; let eYi` = hYi, ⌘`iL2

and let eY` = (eY1`, . . . , eYn`)T 2 R
v. If we write e�n,q =

Pv
k=1

Pv
`=1
eb(q)k` b'k` 2

eH, then, in order

to approximate b�⇤

n,q in (4.3), we find the eb(q)k` ’s by solving the following optimization problem

{eb(q)k` } = argmin
{b

(q)
k` }

8
<

:
1

2n

nX

i=1

Mi,q

Z 1

0

����Yi(t)�
vX

k,`=1

b(q)k` ⌘`(t)

Z 1

0
Xi(s)bxk`(s)ds

����
2

dt+
�q

2

vX

k,`=1

b(q)
2

k` b⇢k`

9
=

;

= argmin
{b

(q)
k` }

8
<

:
1

2n

nX

i=1

vX

`=1

Mi,q

����eYi` �
vX

k=1

b(q)k`

Z 1

0
Xi(s)bxk`(s)ds

����
2

+
�q

2

vX

k,`=1

b(q)
2

k` b⇢k`

9
=

;

= argmin
{b

(q)
` }

(
1

2n

vX

`=1

�eY` � ⌦` b
(q)
`

�T fMq
�eY` � ⌦` b

(q)
`

�
+

�q

2

vX

`=1

b(q)
T

`
b⇤` b

(q)
`

)
, (5.2)

where we write b(q)` = (b(q)1` , . . . , b
(q)
v` )

T
2 R

v. By direct calculations, for 1  `  v, we have

bb(q)` = (⌦T
`
fMq ⌦` + n�qb⇤`)�1⌦T

`
fMq
eY` , (5.3)

so that we can approximate b�⇤

n,q in (4.3) by

e�⇤

n,q =
vX

`=1

(bb(q)
T

` bx`)⌦ ⌘` ,
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if we let bx` = (bx1`, . . . , bxv`)T denote a function-valued v-dimensional vector. We propose

to use generalized cross-validation (GCV, see, for example, Wahba, 1990) to choose the

smoothing parameter �q in (5.2). For the q-th bootstrap estimator e�⇤

n,q, we choose �q that

minimizes the GCV score

GCV(�q) =
n�1

Pv
`=1 k

bY`,q � eY`k22
{1� tr(Hq)/n}2

,

where bY`,q = ⌦`(⌦T
`
fMq ⌦` + n�qb⇤`)�1⌦T

`
fMq
eY` and Hq is the so-called hat matrix with

tr(Hq) =
Pv

`=1 tr{⌦`(⌦
T
`
fMq ⌦` + n�q b⇤`)�1⌦T

`
fMq}.

The statistical inference methods in Section 4 rely on the parameters a and D, and

we propose to estimate these two parameters from the data. To achieve this, we make

use of the growing rate of the eigenvalues of the integro-di↵erential equation (5.1). As

indicated by Proposition B.1 in Section B.2 of the inline supplement, the ⇢k`’s diverge at

a rate of (k`)2D, so that we exploit the linear relationship between log(⇢k`) and log(k`).

Specifically, for the empirical eigenvalues {b⇢k`} of equation (5.1), we fit a line through the

points {(log(k`), log(b⇢k`))}1k,`2v, and take eD to be the value of the slope of this line

divided by 2, where we use a total number of 4v2 eigenvalues. In the case of m = 2, by

Proposition B.1, D � 3 and a = D � 2, so that we take

bD = max{ eD, 3} and ba = bD � 2 .

5.2 Simulated data

For evaluating the functions X and Y on their domain [0, 1] we take 100 equally spaced time

points. For the data generating process (DGP), we used the following three settings:

(1) Let f1(s) ⌘ 1, fj+1(s) =
p
2 cos(j⇡s), for j � 1, and define

�0(s, t) = f1(s)f1(t) + 4
50X

j=2

(�1)j+1j�2fj(s)fj(t) .

Let Xi =
P50

j=1 j
�1Zij fj, where Zij

iid
⇠ unif(�

p
3,
p
3), for 1  i  n, 1  j  50.

(2) Let �0(s, t) = e�(s+t); the Xi’s are the same as DGP 1.

(3) Let f1(s) ⌘ 1, fj+1(s) =
p
2 cos(j⇡s) and gj+1(s) =

p
2{1 + cos(j⇡s)}, for j � 1 and

define

�0(s, t) = f1(s)f1(t) + 4
50X

j=2

(�1)j+1j�2gj(s)fj(t) ;
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the Xi’s are the same as DGP 1.

The first setting is similar to the ones used in Yuan and Cai (2010) and Sun et al. (2018);

the second setting is exactly the same as Scenario 1 in Sun et al. (2018); the third setting is

a non-standard setting that involves an asymmetric slope surface �0. We took " to be the

Gaussian process with the following three covariance settings:

(i) For t1, t2 2 [0, 1], C"(t1, t2) = �2
1�(t1, t2), where �

2
1 = 0.1 ⇥

R
var{eY (t)}dt and eY (t) =

R 1

0 �0(s, t)X(s)ds, for t 2 [0, 1].

(ii) For t1, t2 2 [0, 1], C"(t1, t2) = �2
2(t)�(t1, t2), where �

2
2(t) = 0.1⇥var{Y (t)}, for t 2 [0, 1].

(iii) For t1, t2 2 [0, 1], C"(t1, t2) = 2�2
1�(t1, t2), where �

2
1 is as in (i).

For each above setting, we simulated 1000 Monte Carlo samples, each of size n = 30 or

60, and we took the bootstrap sample size Q = 300. We compared our method (hereinafter

referred to as RK) with the tensor product reproducing kernel Hilbert space method proposed

in Sun et al. (2018) (hereinafter referred to as TP). For our method, we took the number of

components v = dn2/5
e in Section 5.1. To evaluate the performance of di↵erent estimators,

we considered the following three criteria. The first criterion is the integrated squared error

of b�, defined by

ISE(b�) =
Z 1

0

Z 1

0

|b�(s, t)� �0(s, t)|
2dsdt.

The second criterion is the excess prediction risk EPR(b�) defined in (4.1). The third criterion

is the maximum deviation, defined by

MD(b�) = sup
(s,t)2[0,1]2

|b�(s, t)� �0(s, t)| .

In Table 1, we report the three quartiles of ISE, EPR and MD of the estimators computed

from the 1000 Monte Carlo samples under the data generating process 1–3 with error pro-

cesses (i)–(iii), using our method (RK) and Sun et al. (2018)’s method (TP). Figure 1 displays

the plots of the true slope surface �0 and their corresponding estimators using RK and TP,

under the data generating processes 1–3 with error (i) and sample size n = 60.

The results in Table 1 indicate that, for DGPs 1 and 3, our method (RK) produces

higher estimation accuracy in terms of ISE, EPR and MD compared to Sun et al. (2018)’s

method (TP), whereas Sun et al. (2018)’s produces slightly better estimators in DGP 2.
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These results are in accordance with the fact that, in contrast to DGPs 1 and 3, the true �0

in DGP 2 is multiplicatively separable and the approach of Sun et al. (2018) is based on this

assumption. However, it is notable that the loss of the RK-method, which does not require

this condition, is not substantial. From Table 1, we also notice that, in some cases, both

methods perform better in error setting (ii) than in error setting (i). An explanation for this

observation is that, the point-wise signal-to-noise ratio is 10 in error setting (i), whereas this

value is smaller than 10 for some t 2 [0, 1] in setting (ii). As for computation, Sun et al.

(2018)’s method involves computing the inverse or the Cholesky decomposition of matrices,

whose size are larger than n2-by-n2, which means their method could be time consuming for

sample size n larger than, say, 100.

We also evaluated the performance of the simultaneous confidence region C
⇤

n,Q defined in

Algorithm 4.1, using the uniform covering probability

UCP(C⇤

n,Q) = P
�
�0(s, t) 2 C

⇤

n,Q, for all (s, t) 2 [0, 1]2
 
.

In Table 2 we report the empirical empirical UCP from 1000 simulation runs for data gen-

erating processes 1–3 with all error setting (i) and nominal level ↵ = 0.10 and 0.05. We

observe a reasonable approximation of the confidence level in all cases under consideration.

The simultaneous confidence regions for the slope function for the DGPs 1–3 and the error

process (i) are displayed in Figure 2.

For the finite sample properties of classical hypothesis tests proposed in Section 4.3, we

consider the following hypothesis:

H0 : �0 = 0 versus H1 : �0 6= 0 , (5.4)

that is, we put �⇤ ⌘ 0 in (4.8). We compared the decision rule based on the bootstrap

confidence regions defined in (4.9) (denoted by BT) and the penalized likelihood ratio test

(PLRT) at (4.12). Here, for the PLRT, in view of (5.2) and (5.3), substituting fMq by In and

observing that ⌦T
` ⌦` = nIv, the statistic Ln(0) = Ln,�(0) � Ln,�(b�n) (defined in equation

(4.10)) can be estimated by

eLn(0) =
1

2n

vX

`=1

eY T
` ⌦` (nIv + n�b⇤`)�1⌦T

`
eY` .

We took n = 30 and 60, and chose the nominal level ↵ = 0.05 and used DGPs 1–3 with error

settings (i)–(iii). For DGPs 1 and 3, the empirical rejection probabilities are all 1.0 for both
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methods for all settings. Table 3 displays the empirical rejection probabilities under DGP 2

with error settings (i)–(iii), together with the empirical sizes under H0 (that is, �0 = 0),

of both BT and PLRT for the classical hypothesis (5.4) out of 1000 simulation runs. From

the results we observe reasonable approximation of both BT and PLRT of the nominal level

0.05 under H0; BT outperforms PLRT in terms of empirical power, and as expected, the

empirical powers increases for larger sample sizes.

Next, we study the finite sample properties of the test (4.22) for the relevant hypotheses

H0 : sup
(s,t)2[0,1]2

|�0(s, t)|  � versus H1 : sup
(s,t)2[0,1]2

|�0(s, t)| > � , (5.5)

(we put �⇤ ⌘ 0 in (4.13)), where the nominal level is chosen as ↵ = 0.05. We used the data

generating processes 1–3 with error setting (i), where the true k�0k1 = 6.0, 1.0 and 11.0 for

the three DGPs, respectively. We took the cut-o↵ parameter c = kb�nk1/4 in (4.18), which

scales according to the magnitude of b�n. In Figure 3, we display the empirical rejection

probabilities of test (4.13) based on 1000 simulation runs, for the three data generating

processes, for di↵erent values of � in (4.13). The results shown in Figure 3 indicate that,

when �  d1, the empirical rejection probabilities are smaller than ↵ = 0.05, and when

� > d1, the rejection probabilities increases towards 1 as � increases, which is consistent

with our theory.

5.3 Real data example

We applied the new methodology to the Canadian weather data in Ramsay and Silverman

(2005), which consists of daily temperature and precipitation at n = 35 locations in Canada

averaged over 1960 to 1994. In this case, for 1  i  35, Xi is the average daily temper-

ature for each day of the year at the i-th location, and Yi is the base 10 logarithm of the

corresponding average precipitation; see Ramsay and Silverman (2005), p. 248. We took

the domain of X and Y to be [0, 1] with 365 equality spaced time points. The size of the

bootstrap sample is Q = 300 and the truncation parameter is chosen as v = dn2/5
e = 4. In

Figure 4, we display the estimated slope function �0 and the 0.95 confidence region, using

our method RK. In order to evaluate the prediction accuracy, for both our method RK and

Sun et al. (2018)’s method TP, we computed the integrated squared prediction error (ISPE)
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Figure 1: Plots of the “true” slope surface �0 in model (2.1) and the corresponding estimators

using our method (RK) and Sun et al. (2018)’s method (TP), under DGP 1–3 (rows 1–3)

with error (i) with sample size n = 60.
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Figure 2: Simultaneous 0.95 confidence regions for the slope surface �0 under DGPs 1–3 with

error (i) and sample size n = 60.
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DGP 1 2 3

↵ 0.10 0.05 0.10 0.05 0.10 0.05

n = 30 0.863 0.932 0.882 0.963 0.858 0.915

n = 60 0.881 0.944 0.913 0.960 0.870 0.939

Table 2: Empirical covering probabilities of the simultaneous confidence region (4.5) for the

slope surface �0 under DGPs 1–3 with error setting (i).

(i) (ii) (iii)

n = 30 n = 60 n = 30 n = 60 n = 30 n = 60

BT
0.536 0.693 0.328 0.494 0.478 0.546

(0.061) (0.037) (0.012) (0.028) (0.063) (0.042)

PLRT
0.367 0.562 0.304 0.418 0.330 0.513

(0.059) (0.020) (0.074) (0.057) (0.027) (0.060)

Table 3: Empirical rejection probabilities under DGP 2, together with empirical sizes (in

brackets) of the decision rule based on the bootstrap confidence region (BT) in (4.9) and the

penalized likelihood ratio test (PLRT) in (4.12) for the classical hypothesis (5.4) with error

settings (i)–(iii) at nominal level ↵ = 0.05.
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Figure 3: Empirical rejection probabilities of test (4.22) for the relevant hypothesis in (5.5)

at nominal level ↵ = 0.05, under DGPs 1–3 with error setting (i) and sample size n = 30, 60,

for di↵erent values of � in (4.13). The horizontal dashed line is the nominal level 0.05; the

vertical dashed line is � = d1.

and maximum prediction deviation (MPD), for each observation (1  i  n), defined by

ISPEi =

Z 1

0

����Yi(t)�

Z 1

0

Xi(s) b��i(s) ds

����
2

dt ;

MPDi = sup
t2[0,1]

����Yi(t)�

Z 1

0

Xi(s) b��i(s) ds

���� ,
(5.6)
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where b��i is the estimator of the slope function based on the data with the i-th observation

removed. In Figure 5, we display the boxplot of {
p
ISPEi}

n
i=1 and {MPDi}

n
i=1, for both

methods RK and TP. The results in Figure 5 show that, in general, our method performs

better in terms of prediction accuracy and robustness, which is indicated by a smaller median,

smaller interquartile range in terms of
p
ISPE and MPD, and fewer outliers of

p
ISPE. In

contrast, Sun et al. (2018)’s method achieves a smaller minimum value of both
p
ISPE and

MPD.
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Figure 4: Estimated slope surface in model (2.1) (left panel) and its 0.95 simultaneous band

(right panel), using the Canadian weather data.
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Figure 5: Boxplot of the square root of the integrated squared prediction error
p
ISPE (left

penal), and the maximum prediction deviation (MPD) (right penal) defined in (5.6) using

our method RK and Sun et al. (2018)’s method TP.
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NOT-FOR-PUBLICATION APPENDIX 1

Supplementary material for “Statistical inference for

function-on-function linear regression”

Holger Dette, Jiajun Tang

Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany

In this supplementary material we provide technical details of our theoretical results. In

Section A we provide the proofs of our theorems in our main article. In Section B.1 we

provide supporting lemmas that are used in the proofs in Section A. Section B.2 provides a

concrete example that satisfies Assumption A2. In the sequel, we use c to denote a generic

positive constant that might di↵er from line to line.

A Proofs of main results

A.1 Proof of Proposition 2.1

To begin with, by Mercer’s theorem and Assumption A1, there exists a series of positive real

values {vj}1j=1 and orthogonal basis functions {�j(s)}1j=1 of L2([0, 1]) such that

CX(s1, s2) =
1X

j=1

vj�j(s1)�j(s2) , (A.1)

where vj � vj+1 > 0, for j � 1. For any � 2 H such that k�k2K = 0, for the �j in (A.1) and

for t 2 [0, 1], let c�,j(t) =
R 1

0 �(s, t)�j(s)ds, so that �(s, t) =
P

1

j=1 �j(s)c�,j(t). Since {�j}1j=1

is the orthogonal basis of L2([0, 1]), we have

k�k2L2 =

�����

1X

j=1

�j(s)c�,j(t)

�����

2

L2

=
1X

j=1

k�jk
2
L2kc�,jk

2
L2 =

1X

j=1

kc�,jk
2
L2 . (A.2)

Moreover,

V (�, �) =

Z 1

0

Z 1

0

Z 1

0

CX(s1, s2)

⇢ 1X

j=1

�j(s1)c�,j(t)

�⇢ 1X

j=1

�j(s2)c�,j(t)

�
ds1ds2dt

=
1X

j=1

vj kc�,jk
2
L2 . (A.3)

By the fact that vj > 0 and Assumption A1, k�k2K = 0 implies that, for any j � 1,

vj
R 1

0 c2�,j(t)dt = V (�, �)  k�k2K = 0, so that c�,j(t) = 0, and by (A.2) we have k�k2L2 =P
1

j=1 kc�,jk
2
L2 = 0, which shows that k�k2K = 0 implies � = 0. Also, both V and J in (2.8)

are symmetric bilinear operators. Therefore, h·, ·iK is an well-defined inner product.
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Next, we show the equivalence of k · kK and k · kH. First, for any � 2 H, by (A.2) and

(A.3),

V (�, �) =
1X

j=1

vjkc�,jk
2
L2  v1

1X

j=1

kc�,jk
2
L2 = v1k�k

2
L2  cv1k�k

2
H
, (A.4)

for some c > 0. Hence,

k�k2K = V (�, �) + �J(�, �)  (cv1 + �)k�k2
H
. (A.5)

We proceed to show that there exists a constant c0 > 0 such that k�k2
H

 c0k�k2K . To

achieve this, recall the definition of J in (2.6) and note that J(�, �) is a semi-norm on H.

Let H0 = {� 2 H : J(�, �) = 0} denote the null space of J(�, �). It is known that H0 is a

finite-dimensional subspace of H spanned by the polynomials of total degree  m � 1, and

m0 := dim{H0} = (m+1)m/2; see Wahba (1990). Let {⇠1, . . . , ⇠m0} denote an orthonormal

basis ofH0. LetH1 = {�1 2 H : h�1, �0iH = 0, 8�0 2 H0} denote the orthogonal complement

of H0 in H, such that H = H0 �H1, where “�” stands for the direct sum. That is, for any

� 2 H, there are unique vectors �0, �1 such that

� = �0 + �1 , �0 2 H0 , �1 2 H1 , (A.6)

Here, in view of (2.3), h·, ·iH is the inner product corresponding to k · kH defined by

h�1, �2iH =
X

0✓1+✓2m�1

✓
✓1 + ✓2
✓1

◆Z

[0,1]2

@✓1+✓2�1
@s✓1@t✓2

dsdt⇥

Z

[0,1]2

@✓1+✓2�2
@s✓1@t✓2

dsdt

+
X

✓1+✓2=m

✓
m

✓1

◆Z

[0,1]2

@m�1
@s✓1@t✓2

⇥
@m�2
@s✓1@t✓2

dsdt , for �1, �2 2 H .

Due to the fact that ⇠k 2 H0, for 1  k  m0, we have

0 = h⇠k, �1iH =
X

0✓1+✓2m�1

✓
✓1 + ✓2
✓1

◆Z

[0,1]2

@✓1+✓2⇠k
@s✓1@t✓2

dsdt⇥

Z

[0,1]2

@✓1+✓2�1
@s✓1@t✓2

dsdt ,

for 1  k  m0. We deduce from the above result that
R
[0,1]2

@✓1+✓2�1
@s✓1@t✓2

dsdt = 0, for 0 

✓1 + ✓2  m� 1. In fact, the above argument shows that

H1 =

⇢
� 2 H :

Z

[0,1]2

@✓1+✓2�1
@s✓1@t✓2

dsdt = 0, 0  ✓1 + ✓2  m� 1

�
.

Therefore,

k�1k
2
H
= J(�1, �1)  ��1V (�, �) + J(�1, �1) = ��1

k�k2K . (A.7)
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It then su�ce to show that k�0k2H  c0k�k2K for some c0 > 0. Since �0 2 H0, we have

J(�0, �0) = J(�0, �1) = 0, so that in view of (A.7),

k�k2K = V (�0 + �1, �0 + �1) + �J(�1, �1)

= V (�0, �0) + 2V (�0, �1) + V (�1, �1) + �k�1k
2
H
. (A.8)

Since V (·, ·) is an inner product, by the Cauchy-Schwarz inequality,

|V (�0, �1)|  {V (�0, �0)}
1/2

{V (�1, �1)}
1/2 (A.9)

Next, we examine the connection between k�1k2H and V (�1, �1). It is known that both H0

and H1 are reproducing kernel Hilbert spaces with inner product h·, ·iH restricted to H0 and

H1, respectively. Let C1{(s1, t1), (s2, t2)} denote the reproducing kernel of H1. It is known

that C1 is continuous and square-integrable on [0, 1]2 ⇥ [0, 1]2; see, for example, Section 2.4

in Wahba (1990) and Section 4.3.2 in Gu (2013). Hence, by Mercer’s theorem, C1 admits

the following eigen-decomposition:

C1{(s1, t1), (s2, t2)} =
1X

j=1

⇣j �j(s1, t1)�j(s2, t2) ,

where ⇣j � ⇣j+1 � 0, for j � 1, {�j}j�1 forms an orthonormal basis of L2([0, 1]2), and

s1, s2, t1, t2 2 [0, 1]. Note that

h�j,�`iL2 = �j` , h�j,�`iH = ⇣�1
j �j` ,

where �j` is the Kronecker delta; see, for example, Cucker and Smale (2001) and Yuan and

Cai (2010). For �1 in (A.6), we have �1(s, t) =
P

1

j=1h�1,�jiL2�j(s, t), so that

k�1k
2
H
=

1X

j=1

h�1,�ji
2
L2k�jk

2
H
=

1X

j=1

⇣�1
j h�1,�ji

2
L2

� ⇣�1
1

1X

j=1

h�1,�ji
2
L2 = ⇣�1

1 k�1k
2
L2 . (A.10)

In view of (A.2) and (A.3),

V (�1, �1) =
1X

j=1

vjkc�1,jk
2
L2  v1

1X

j=1

kc�1,jk
2
L2 = v1 k�1k

2
L2 .

Combining the above equation with (A.10) yields that

k�1k
2
H
� ⇣�1

1 v�1
1 V (�1, �1) .
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Therefore, combining the above equation with (A.8) and (A.9), we find that

k�k2K � V (�0, �0)� 2|V (�0, �1)|+ V (�1, �1) + �k�1k
2
H

� V (�0, �0)� 2{V (�0, �0)}
1/2

{V (�1, �1)}
1/2 +

✓
1 +

�

v1⇣1

◆
V (�1, �1)

=
�

v1⇣1 + �
V (�0, �0) +

"s
v1⇣1

v1⇣1 + �
{V (�0, �0)}

1/2
�

s
v1⇣1 + �

v1⇣1
{V (�1, �1)}

1/2

#2

�
�

v1⇣1 + �
V (�0, �0) . (A.11)

Next, we examine the connection between V (�0, �0) and k�0k2H. Since �0 2 H0 and

{⇠j}
m0
j=1 is an orthonormal basis of H0 under the inner product h·, ·iH, we have �0(s, t) =Pm0

j=1h�0, ⇠jiH ⇠j(s, t) and k�0k2H =
Pm0

j=1h�0, ⇠ji
2
H
. Note that

V (�0, �0) =
m0X

j=1

m0X

`=1

h�0, ⇠jiH h�0, ⇠`iH V (⇠j, ⇠`) .

Let b denote an m0 ⇥ 1 vector whose j-th entry is h�0, ⇠jiH, and let V⇤ denote an m0 ⇥m0

matrix, whose (j, `)-th entry is

V (⇠j, ⇠`) =

Z

[0,1]3
CX(s1, s2)⇠j(s1, t)⇠`(s2, t) ds1ds2dt .

Now, we have V (�0, �0) = bTV⇤b and k�0k2H = kbk22. Due to Assumption A1, the matrix V⇤ is

a positive definite matrix, and therefore admits a singular value decomposition V⇤ = UTDU ,

where U is an orthogonal matrix and W = diag(d1, . . . , dm0) is a diagonal matrix with

d1 � . . . � dm0 > 0. Therefore,

V (�0, �0) = bTUTWUb � dm0kUbk22 = dm0kbk
2
2 = dm0k�0k

2
H
.

Therefore, combining the above result with (A.11), we find

k�0k
2
H
 d�1

m0
V (�0, �0) 

v1⇣1 + �

dm0�
k�k2K .

Combining the above equation with (A.7) yields that

k�k2
H
= k�0k

2
H
+ k�1k

2
H


v1⇣1 + �+ dm0

dm0�
k�k2K . (A.12)

This together with (A.5) completes the proof of the equivalence between k · kH and k · kK .

Since H is a reproducing kernel Hilbert space equipped with k ·kH, we therefore deduce that

H equipped with k · kK is a reproducing kernel Hilbert space.
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A.2 Proof of Theorem 3.1

We first prove the following lemma, which is useful for proving Theorem 3.1. In this section,

without loss of generality, we assume that �2
" = 1 in Assumption A3.

Lemma A.1. For any � 2 H, let

g(Xi, �) = ⌧


Xi ⌦

⇢Z 1

0

�(s, ·)Xi(s)ds

��
, (A.13)

Hn(�) =
1
p
n

nX

i=1

⇥
g(Xi, �)� E{g(X, �)}

⇤
. (A.14)

For pn � 1, let

Fpn = {� 2 H : k�kL2  1, J(�, �)  pn}. (A.15)

Then, under Assumptions A1–A4, as n ! 1,

sup
�2Fpn

kHn(�)kK

p1/(2m)
n k�k(m�1)/m

L2 + n�1/2
= Op

�
��1/(2D) log log n

�1/2
. (A.16)

Proof. We follow the proof of Lemma 3.4 in Shang and Cheng (2015). For the {xk`}k,`�1

and {⌘`}`�1 in Assumption A2, and for 1  i  n, let

w(Xi) = kXikL2

✓X

k,`

1

1 + �⇢k`
hXi, xk`i

2
L2 k⌘`k

2
L2

◆1/2

, (A.17)

and let Xn = {w(Xi)}ni=1. By Lemma B.5 in Section B,

1
p
n

���
⇥
g(Xi, �1)� E{g(Xi, �1)}

⇤
�
⇥
g(Xi, �2)� E{g(Xi, �2)}

⇤���
K


1
p
n

����⌧
✓
Xi ⌦

 Z 1

0

{�1(s, ·)� �2(s, ·)}Xi(s)ds

�◆����
K

+
1
p
n
E

����⌧
✓
Xi ⌦

 Z 1

0

{�1(s, ·)� �2(s, ·)}Xi(s)ds

�◆����
K


1
p
n
k�1 � �2kL2 ⇥

⇥
w(Xi) + E{w(Xi)}

⇤
.

By Theorem 3.5 in Pinelis (1994),

P
�
kHn(�1)�Hn(�2)kK � x

��Xn

 
 2 exp

✓
�

x2

2W 2
n k�1 � �2k2L2

◆
,

where

Wn =
1
p
n

✓ nX

i=1

⇥
w(Xi) + E{w(Xi)}

⇤2
◆1/2

. (A.18)
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By Lemma B.6 in Section B, E(W 2
n)  4E|w(X)|2  c��1/(2D). Let

kZk = inf
�
c > 0 : E{ (|Z|/c)|Xn}  1

 

denote the Orlicz norm of a random variable Z conditional on Xn, with  (x) = exp(x2)� 1,

then, by Lemma 8.1 in Kosorok (2007),

���kHn(�1)�Hn(�2)kK
���
 


p

6Wn k�1 � �2kL2 .

Let N(�,Fpn , k · kL2) denote �-covering number of the class Fpn in (A.15) w.r.t. the

L2([0, 1]2)-norm. Since pn � 1 for n large enough and J(p1/2n �, p1/2n �) = pnJ(�, �), we have

Fpn ⇢ p1/2n F1. Hence,

logN(�,Fpn , k · kL2)  logN(�, p1/2n F1, k · kL2)

 logN(p�1/2
n �,F1, k · kL2)  c (p�1/2

n �)�2/m ,

where in the last step we used the result in Birman and Solomjak (1967). By Lemma 8.2

and Theorem 8.4 in Kosorok (2007), we have

����� sup
�1,�22Fpn , k�1��2kL2�

kHn(�1)�Hn(�2)kK

�����
 

 cWn

 Z �

0

q
log{1 +N(⌘,Fpn , k · kL2)} d⌘ + �

q
log{1 +N2(�,Fpn , k · kL2)}

�

 c1Wn p
1/(2m)
n �1�1/m ,

for some absolute constant c1 > 0. Since Hn(0) = 0, by Lemma 8.1 in Kosorok (2007),

P

(
sup

�2Fpn , k�kL2�
kHn(�)kK � x

��Xn

)
 2 exp

�
� c�2

1 W�2
n p�1/m

n ��2+2/mx2
�
.

Taking � = 1 � 1/m, bn =
p
n p1/(2m)

n , ✓n = b�1
n , Qn = d� log2 ✓n + � � 1e and Tn =

c2(��1/(2D) log log n)1/2, for some constant c2 > 0 to be specified below, yields that

P

(
sup

�2Fpn , k�kL22

p
nkHn(�)kK
bnk�k

�
L2 + 1

� Tn

��Xn

)

 P

8
<

: sup
�2Fpn , k�kL2✓

1/�
n

p
nkHn(�)kK � Tn

��Xn

9
=

;

+
QnX

j=0

P

(
sup

�2Fpn , (✓n2
j)1/�k�kL2(✓n2j+1)1/�

p
nkHn(�)kK
bnk�k

�
L2 + 1

� Tn

��Xn

)
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 P

8
<

: sup
�2Fpn , k�kL2✓

1/�
n

p
nkHn(�)kK � Tn

��Xn

9
=

;

+
QnX

j=0

P

(
sup

�2Fpn , k�kL2(✓n2j+1)1/�

p
nkHn(�)kK � (bn✓n2

j + 1)Tn

��Xn

)

 2 exp
�
� c�2

1 W�2
n p�1/m

n ✓(�2+2/m)/�
n n�1T 2

n

�

+ 2
QnX

j=0

exp
n
� c�2

1 W�2
n p�1/m

n (✓n2
j+1)(�2+2/m)/�(bn✓n2

j + 1)2n�1T 2
n

o

 2 exp
�
� c�2

1 W�2
n T 2

n

�
+ 2(Qn + 1) exp

�
� c�2

1 W�2
n T 2

n/4
�

 2(Qn + 2) exp
�
� c�2

1 W�2
n T 2

n/4
�
. (A.19)

For the W 2
n in (A.18), denote the event An = {W 2

n  c3��1/(2D)
} for some constant

c3 > 0. Since E(W 2
n)  c��1/(2D), we have that, for c3 large enough, P(An) tends to one. On

the event An, by taking c2 > 2c1c
�1/2
3 , as n ! 1,

2(Qn + 2) exp
�
� c�2

1 W�2
n T 2

n/4
�
 2(Qn + 2) exp

�
� c�2

1 c22c3 log log n/4
�
= o(1) ,

which together with (A.19) completes the proof of Lemma A.1.

Next, we prove the following lemma regarding the convergence rate of b�n, which is useful

to prove Theorem 3.1.

Lemma A.2. Under Assumptions A1–A5, for any �0 2 H, we have

kb�n � �0kK = Op(�
1/2 + n�1/2��1/(4D)).

Proof. For Ln and Sn,� defined in (2.5) and (3.2), let

Sn(�) = DLn(�) ; S(�) = E{DLn(�)} ; S�(�) = E{Sn,�(�)} . (A.20)

In view of (3.2), S�(�) = S(�) +W�(�). We first show that there exists a unique element

�� 2 H such that S�(��) = 0, and then we prove the upper bound for k�� � �0kK . Since

D
2L�(�0)�1�2 = hDS�(�0)�1, �2iK = h�1, �2iK ,

we have DS�(�0) = id, where id is the identity operator. Since D
2S� vanishes, we deduce

that DS�(�) = id for any � 2 H. Hence, by the mean value theorem, for any � 2 H,

S�(�) = � + S�(�0) � �0. Therefore, letting �� = �0 � S�(�0), we find S�(��) = 0, and ��
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is the unique solution to the estimating equation S�(�) = 0. Moreover, since S(�0) = 0, we

have S�(�0) = S(�0) +W�(�0) = W�(�0). By the Cauchy-Schwarz inequality, for J in (2.6),

k�� � �0kK = kW�(�0)kK = sup
k�kK=1

|hW�(�0), �iK | = sup
k�kK=1

�|J(�0, �)|

 sup
k�kK=1

�p
�J(�0, �0)

p
�J(�, �)

 
 sup

k�kK=1

�p
�J(�0, �0) k�kK

 
=
p
�J(�0, �0) . (A.21)

Since kb�n � �0kK  k�� � �0kK + kb�n � ��kK , we then proceed to show the rate of

kb�n � ��kK . Let Fn(�) = � � Sn,�(��+ �). Recall that DS�(��)� = �, so that, for DSn,� in

(3.2),

Fn(�) = I1,n(�) + I2,n(�)� Sn,�(��) , (A.22)

where

I1,n(�) = �{Sn,�(�� + �)� Sn,�(��)�DSn,�(��)�} ,

I2,n(�) = �{DSn,�(��)� �DS�(��)�} . (A.23)

First, for I1,n(�) in (A.23), in view of Sn,� and DSn,� defined in (3.2),

I1,n(�) =
1

n

nX

i=1

⌧

✓
Xi ⌦


Yi �

Z 1

0

{��(s, ·) + �(s, ·)}Xi(s)ds

�◆

�
1

n

nX

i=1

⌧


Xi ⌦

⇢
Yi �

Z 1

0

�(s, ·)Xi(s)ds

��

+
1

n

nX

i=1

⌧


Xi ⌦

⇢Z 1

0

��(s, ·)Xi(s)ds

��
= 0 . (A.24)

For I2,n(�) in (A.23), in view of (3.2),

kI2,n(�)kK =
��DSn,�(��)� �DS�(��)�

��
K

=
��DSn(��)� �DS(��)�

��
K
=

1
p
n
kHn(�)kK , (A.25)

where Hn(�) is defined in (A.14) in Lemma A.1. For a,D in Assumption A2 and cK in

Lemma B.3, let pn = c�2
K �(2a+1)/(2D)�1. In order to apply Lemma A.1, we shall rescale � such

that the L2-norm of its rescaled version is bounded by 1. For the constant cK in Lemma B.3,

let

e� =

8
<

:

�
cK��(2a+1)/(4D)

k�kK
��1

� if � 6= 0 ,

0 if � = 0 .
(A.26)
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We have ke�kL2  cK��(2a+1)/(4D)
ke�kK  1, since ke�kK  (cK��(2a+1)/(4D))�1 by Lemma B.3.

In addition, in view of (2.8), J(e�, e�)  ��1
ke�k2K  c�2

K �(2a+1)/(2D)�1 = pn, which implies
e� 2 Fpn . By Lemma A.1, since n�1/2 = o(p1/(2m)

n ) by Assumption A5, we find that, for some

constant c > 0 large enough, with probability tending to one,

kHn(e�)kK  c
�
p1/(2m)
n + n�1/2

��
��1/(2D) log log n

�1/2
 c p1/(2m)

n ��1/(4D)(log log n)1/2 .

Therefore, in view of (A.26), we deduce from the above inequality that, for some constant

c > 0 large enough, with probability tending to one,

kHn(�)kK 
�
cK�

�(2a+1)/(4D)
k�kK

�
kHn(e�)kK  c p1/(2m)

n ��(a+1)/(2D)(log log n)1/2k�kK .

Recall that pn = O(�(2a+1)/(2D)�1). Therefore, for I2,n(�) in (A.23), in view of (A.25), we

deduce from the equation result that, for some constant c > 0 large enough, with probability

tending to one,

kI2,n(�)kK  n�1/2
kHn(�)kK  c n�1/2p1/(2m)

n ��(a+1)/(2D)(log log n)1/2k�kK

 c n�1/2��&(log log n)1/2 k�kK = o(1) k�kK , (A.27)

where we used Assumption A5 in the last step.

For estimating the remaining term �Sn,�(��) in (A.22), we recall the definition of ⌧ in

(2.17) and define Oi = ⌧
⇥
Xi ⌦

�
Yi �

R 1

0 ��(s, ·)Xi(s)ds
 ⇤
, for 1  i  n. Since S�(��) = 0,

we obtain observing (3.1) that

�Sn,�(��) = �{Sn,�(��)� S�(��)} = n�1
nX

i=1

{Oi � E(Oi)}.

Let ��� = �0 � ��, so that from (A.21) we obtain k���k2K  c� for some constant c > 0.

We notice that

EkSn,�(��)k
2
K = n�1EkOi � E(Oi)k

2
K  n�1EkOik

2
K

= n�1E

����⌧

Xi ⌦

⇢
Yi �

Z 1

0

��(s, ·)Xi(s)ds

������
2

K

= n�1E

����⌧(Xi ⌦ "i) + ⌧


Xi ⌦

⇢Z 1

0

���(s, ·)Xi(s)ds

������
2

K

 2n�1E
��⌧(Xi ⌦ "i)

��2
K
+ 2n�1E

����⌧

Xi ⌦

⇢Z 1

0

���(s, ·)Xi(s)ds

������
2

K

. (A.28)

By Lemma B.4 in Section B, we have

E

����⌧

Xi ⌦

⇢Z 1

0

���(s, ·)Xi(s)ds

������
2

K

 c��1/D
k���k

2
K , (A.29)
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and Lemmas B.2, B.7 and Assumption A2 give for the first term in (A.28)

E
��⌧(Xi ⌦ "i)

��2
K
=
X

k,`

1

1 + �⇢k`
 c

X

k,`

1

1 + �(k`)2D
 c��1/(2D) .

Combining this equality with (A.21), (A.28), (A.29) and Lemma B.7 yields

EkSn,�(��)k
2
K  c n�1E

��⌧(Xi ⌦ "i)
��2
K
+ c n�1��1/D

k���k
2
K

 c n�1��1/(2D) + c n�1�1�1/D
 c n�1��1/(2D) . (A.30)

Let qn = 2c0n�1/2��1/(4D) and denote by B(r) = {� 2 H, k�kK  r} the k · kK-ball with

radius r > 0 in H. In view of (A.27), for any � 2 B(qn), with probability tending to one,

kI2,n(�)kK  k�kK/2  qn/2. Therefore, observing (A.22) and (A.24), we obtain for the

term Fn(�) in (A.22), with probability tending to one, for any � 2 B(qn),

kFn(�)kK  kI2,n(�)kK + kSn,�(��)kK  c0 n
�1/2��1/(4D) + qn/2  qn ,

which implies that Fn{B(qn)} ⇢ Bn(qn) with probability converging to one. Note that for

any �1, �2 2 B(qn), Fn(�1) � Fn(�2) = I2,n(�1) � I2,n(�2). Due to (A.27), with probability

tending to one,

kFn(�1)� Fn(�2)k = kI2,n(�1)� I2,n(�2)kK  k�1 � �2kK/2 ,

which indicates that Fn is a contraction mapping on B(qn). By the Banach contraction

mapping theorem with probability converging to one, there exists a unique element �⇤
2 Bn

such that �⇤ = Fn(�⇤) = �⇤
� Sn,�(�� + �⇤). Letting b�n = �� + �⇤, we have Sn,�(b�n) = 0,

which indicates that b�n is the estimator defined by (2.4). In view of (A.21),

kb�n � �0kK  k�� � �0kK + kb�n � ��kK = Op(�
1/2 + qn) = Op

�
�1/2 + n�1/2��1/(4D)

�
.

Finally, we conclude the proof of Theorem 3.1 using Lemmas A.1 and A.2.

Proof of Theorem 3.1. Let �� = b�n � �0. Since D
2S� vanishes and DS�(�0) = id, we have

S�(b�n)� S�(�0) = DS�(�0)�� = ��. For Sn and S defined in (A.20), since Sn,�(b�n) = 0,

b�n � �0 + Sn,�(�0) = �� + Sn,�(�0) = �Sn,�(b�n) + Sn,�(�0) + S�(b�n)� S�(�0)

= �Sn(b�n) + Sn(�0) + S(b�n)� S(�0) . (A.31)

Let rn = �1/2 + n�1/2��1/(4D). For c1 > 0, denote the event Mn =
�
k��kK  c1rn

 
. From

Lemma A.2, we obtain that P(Mn) is arbitrarily close to one except for a finite number of n
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if c1 > 0 is large enough. For the constant cK > 0 in Lemma B.3, let qn = c1cK��(2a+1)/(4D)rn
and let pn = c21q

�2
n ��1r2n = c�2

K �(�2D+2a+1)/(2D). We have pn � 1 for n large enough since

D > a + 1/2 by Assumption A2. In order to apply Lemma A.1, we shall rescale �� such

that the L2-norm of its rescaled version is bounded by 1. Let e�� = q�1
n ��. By Lemma B.3,

we have that, on the event Mn,

ke��kL2  cK�
�(2a+1)/(4D)

ke��kK  cKq
�1
n ��(2a+1)/(4D)

k��kK  c1cKq
�1
n ��(2a+1)/(4D)rn  1 .

In addition, since J(��, ��)  ��1
k��k2K , we have

J(e��, e��)  q�2
n J(��, ��)  q�2

n ��1
k��k

2
K  c21 q

�2
n ��1r2n = pn .

Hence, we have shown that e�� 2 Fpn , where the set Fpn is defined in (A.15).

Recalling the notations (3.2), (A.14) and the identity (A.31), we have

��b�n � �0 + Sn,�(�0)
��
K
=
��� Sn(b�n) + Sn(�0) + S(b�n)� S(�0)

��
K

= n�1/2
kHn(��)kK . (A.32)

Since e�� 2 Fpn , by Lemma A.1,

kHn(e��)kK = Op

��
p1/(2m)
n + n�1/2

��
��1/(2D) log log n

�1/2 

= Op

�
p1/(2m)
n ��1/(4D)(log log n)1/2

 
.

since n�1/2 = o(p1/(2m)
n ) by Assumption A5. Therefore, we deduce from the above equation

that, for some constant c > 0 large enough, with probability tending to one,

n�1/2
kHn(��)kK  n�1/2qn kHn(e��)kK  c n�1/2qn p

1/(2m)
n ��1/(4D)(log log n)1/2

 c n�1/2(��(2a+1)/(4D) rn)�
(�2D+2a+1)/(4Dm) ��1/(4D)(log log n)1/2

= c n�1/2��&(�1/2 + n�1/2��1/(4D))(log log n)1/2 , (A.33)

where & > 0 is the constant in Assumption A5. Combining the above result with (A.32)

yields that

��b�n � �0 + Sn,�(�0)
��
K
= Op

�
n�1/2��&(�1/2 + n�1/2��1/(4D))(log log n)1/2

 
,

which completes the proof of Theorem 3.1.
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A.3 Proof of Theorem 3.2

Recall that

vn = n�1/2��&(�1/2 + n�1/2��1/(4D))(log log n)1/2 , (A.34)

where & > 0 is the constant in Assumption A5, so that by Theorem 3.1, kb�n � �0 +

Sn,�(�0)kK = Op(vn). In view of (3.2), Sn,�(�0) = �n�1
Pn

i=1 ⌧(Xi ⌦ "i) + W�(�0), so

that

b�n � �0 = (b�n � �0 + Sn,��0)�W�(�0) +
1

n

nX

i=1

⌧(Xi ⌦ "i) . (A.35)

We first denote

�⌧ (s, t) =

⇢X

k,`

(1 + �⇢k`)
�2'2

k`(s, t)

�1/2

, (A.36)

so that
p
n

�⌧ (s, t)
{b�n(s, t)� �0(s, t)} = I1,n(s, t) + I2,n(s, t) + I3,n(s, t) ,

where

I1,n(s, t) =

p
n

�⌧ (s, t)

⌦b�n � �0 + Sn,��0, K(s,t)iK ,

I2,n(s, t) = �

p
n

�⌧ (s, t)
W��0(s, t) ,

I3,n(s, t) =
1

p
n �⌧ (s, t)

nX

i=1

⌧(Xi ⌦ "i)(s, t) .

By Theorem 3.1, (B.2) and Cauchy-Schwarz inequality,

|I1,n(s, t)| =

p
n

�⌧ (s, t)

��⌦b�n � �0 + Sn,��0, K(s,t)

↵
K

��



p
n

�⌧ (s, t)
kK(s,t)kK ⇥ kb�n � �0 + Sn,�(�0)kK



p
n

�⌧ (s, t)

⇢X

k,`

'2
k`(s, t)

1 + �⇢k`

�1/2

⇥ kb�n � �0 + Sn,�(�0)kK

 O(
p
n�(2a+1)/(4D))⇥Op(vn)⇥

⇢X

k,`

k'k`k
2
1

1 + �⇢k`

�1/2

= Op(
p
nvn) , (A.37)

where we used Assumption A2 and Lemma B.2, which imply �⌧ (s, t) ⇣ ��(2a+1)/(4D).
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For the term I2,n, in view of (2.15), by the assumption that
P

k,` ⇢
2
k`V

2(�0,'k`) < 1,

Assumption A2 and Lemma B.2,

|I2,n(s, t)| =

p
n

�⌧ (s, t)
|W��0(s, t)| =

p
n�

�⌧ (s, t)

����
X

k,`

⇢k` V (�0,'k`)

1 + �⇢k`
'k`(s, t)

����



p
n�

�⌧ (s, t)

⇢X

k,`

⇢2k` V
2(�0,'k`)

�1/2⇢X

k,`

k'k`k
2
1

(1 + �⇢k`)2

�1/2

 c
p
n� = o(1) . (A.38)

Finally, the term I3,n can be estimated as follows. For 1  i  n, let

Ui =
⌧(Xi ⌦ "i)(s, t)
p
n �⌧ (s, t)

=
⌧(Xi ⌦ "i)(s, t)q

n
P

k,`(1 + �⇢k`)�2'2
k`(s, t)

,

so that I3,n =
Pn

i=1 Ui. We start by noticing that, Assumption A3 indicates that

E
n⌦
⌧(X ⌦ "),'k`

↵
L2

o
= E

 Z

[0,1]2
E{"(t)|X}'k`(s, t)Xi(s)dsdt

�
= 0 ,

so that in view of (2.17), E{⌧(X⌦")(s, t)} =
P

k,` E
�
hX⌦",'k`iL2

�
(1+�⇢k`)�1'k`(s, t) = 0,

so that E(Ui) = 0. In view of (B.7) in the proof of Lemma B.7 in Section B,

E|⌧(X ⌦ ")(s, t)|2 = E

 
X

k,`

hX ⌦ ",'k`iL2

1 + �⇢k`
'k`(s, t)

!2

=
X

k,k0,`,`0

'k`(s, t)'k0`0(s, t)

(1 + �⇢k`)(1 + �⇢k0`0)
E
n
hX ⌦ ",'k`iL2 hX ⌦ ",'k0`0iL2

o
= �2

⌧ (s, t) ,

where �⌧ is defined in (A.36) and we used �2
⌧ (s, t) (B.8) in the last step. By the assumption

that �2
⌧ (s, t) ⇣ ��(2a+1)/(2D), we deduce that E|⌧(X ⌦ ")(s, t)|2 = �2

⌧ (s, t) � c20�
�(2a+1)/(2D)

for some constant c0 > 0.

To conclude the proof, we shall check that the triangular array of random variables

{Ui}
n
i=1 = {n�1/2��1

⌧ (s, t)⌧(Xi ⌦ "i)(s, t)}ni=1 satisfies the Lindeberg’s condition. By the

Cauchy-Schwarz inequality, for any e > 0,
nX

i=1

E
⇥
|Ui|

2
⇥ {|Ui| > e}

⇤

=
1

�2
⌧ (s, t)

E
h
|⌧(X ⌦ ")(s, t)|2 ⇥

n
|⌧(X ⌦ ")(s, t)| � e

p
n �⌧ (s, t)

oi


1

�2
⌧ (s, t)

n
E|⌧(X ⌦ ")(s, t)|4

o1/2

⇥

h
P
n
|⌧(X ⌦ ")(s, t)| � e

p
n �⌧ (s, t)

oi1/2
. (A.39)

We shall deal with the above moment term and the tail probability separately. In order to

find the order of E|⌧(X ⌦ ")(s, t)|4, in view of (B.2) and Lemma B.2, by Assumption A2,

sup
(s,t)2[0,1]2

kK(s,t)k
2
K =

X

k,`

k'k`k
2
1

1 + �⇢k`
 c��(2a+1)/(2D) . (A.40)
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Therefore, by Lemma B.7, we find

sup
(s,t)2[0,1]2

E
��⌧(X ⌦ ")(s, t)

��4  sup
(s,t)2[0,1]2

kK(s,t)k
4
K ⇥ Ek⌧(X ⌦ ")k4K  c��(2a+2)/D . (A.41)

In order to find the order of the tail probability P
�
|⌧(X ⌦ ")(s, t)| � e

p
n�⌧ (s, t)

 
, we

first show an upper bound of |⌧(X ⌦ ")(s, t)|. To achieve this, in view of (B.7) in the proof

of Lemma B.7 in Section B, by Lemma B.3,

k⌧(X ⌦ ")kK = sup
k�kK=1

|h⌧(X ⌦ "), �iK | = sup
k�kK=1

|hX ⌦ ", �iL2 |

 sup
k�kK=1

k�kL2 ⇥ kX ⌦ "kL2  cK�
�(2a+1)/(4D)

kXkL2k"kL2 .

By (A.40) and the Cauchy-Schwarz inequality, we deduce from the above equation that

sup
(s,t)2[0,1]2

|⌧(X ⌦ ")(s, t)| = sup
(s,t)2[0,1]2

|hK(s,t), ⌧(X ⌦ ")iK |  sup
(s,t)2[0,1]2

kK(s,t)kK ⇥ k⌧(X ⌦ ")kK

 c��(2a+1)/(2D)
kXkL2k"kL2 . (A.42)

Now, by assumption, �⌧ (s, t) � c0��(2a+1)/(4D) for some c0 > 0, hence for any e > 0, we can

choose c1 > (c"D)�1, for c" > 0 in Assumption A4, so that

P
n
|⌧(X ⌦ ")(s, t)| � e

p
n �⌧ (s, t)

o

 P
⇣
c��(2a+1)/(2D)

kXkL2k"kL2 � ec0
p
n��(2a+1)/(4D)

⌘

= P
⇣
kXkL2k"kL2 � ec�1c0

p
n�(2a+1)/(4D)

⌘

 P
n
kXkL2 � ec�1

1 c�1c0
p
n�(2a+1)/(4D)/log(��1)

o
+ P

n
k"kL2 � c1log(�

�1)
o

 exp{�cXec
�1
1 c�1c0

p
n�(2a+1)/(4D)/ log(��1)}E{exp(cXkXkL2)}

+ �c1c"E{exp(c"k"kL2)}

= O
�
�cXec�1

1 c�1c0{
p
n�(2a+1)/(4D)/ log2(��1)}

�
+O(�c1c") = o(�1/D) , (A.43)

where we used the assumption that
p
n�(2a+1)/(4D)/ log2(��1) ! 1 in the last step. Since, by

assumption, �2
⌧ (s, t) ⇣ ��(2a+1)/(2D), combining the above equation with (A.39) and (A.41)

yields that, for any e > 0,

nX

i=1

E
⇥
|Ui|

2
⇥ {|Ui| > e}

⇤


c

�2
⌧ (s, t)

⇥O(��(a+1)/D)⇥ o(�1/(2D)) = o(1) .

Therefore, by Lindeberg’s CLT,

1
p
n �⌧ (s, t)

nX

i=1

⌧(Xi ⌦ "i)(s, t)
d.

�! N(0, 1) .
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Combining the above result with (A.35)–(A.38), we deduce that

p
n

�⌧ (s, t)

�b�n(s, t)� �0(s, t)
 
=

1
p
n �⌧ (s, t)

nX

i=1

⌧(Xi ⌦ "i)(s, t) + op(1)
d.

�! N(0, 1) ,

which completes the proof.

A.4 Proof of Theorem 3.3

Recall the definition of the process Gn in (3.8) and note that in view of (A.35),

Gn(s, t) = I1,n(s, t) + I2,n(s, t) + I3,n(s, t) , (A.44)

where

I1,n(s, t) =
p
n�(2a+1)/(4D)

{b�n(s, t)� �0(s, t) + Sn,��0(s, t)}

I2,n(s, t) = �
p
n�(2a+1)/(4D)W��0(s, t) ,

I3,n(s, t) = n�1/2�(2a+1)/(4D)
nX

i=1

⌧(Xi ⌦ "i)(s, t) . (A.45)

In view of (A.37) and Theorem 3.1, for vn in (A.34),

sup
(s,t)2[0,1]2

|I1,n(s, t)| 
p
n�(2a+1)/(4D)

⇢X

k,`

k'k`k
2
1

1 + �⇢k`

�1/2

kb�n � �0 + Sn,�(�0)kK

= Op(
p
nvn) = op(1) , (A.46)

sup
(s,t)2[0,1]2

|I2,n(s, t)| =
p
n�1+(2a+1)/(4D) sup

(s,t)2[0,1]2

����
X

k,`

⇢k` V (�0,'k`)

1 + �⇢k`
'k`(s, t)

����


p
n�1+(2a+1)/(4D)

⇢X

k,`

⇢2k` V
2(�0,'k`)

�1/2⇢X

k,`

k'k`k
2
1

(1 + �⇢k`)2

�1/2

= O(
p
n�) = o(1) . (A.47)

For the term I3,n we use E
�
⌧(X ⌦ ")(s, t)

 
= 0 and (B.8) to obtain as n ! 1

cov
�
I3,n(s1, t1), I3,n(s2, t2)

 

= �(2a+1)/(2D)cov
�
⌧(X ⌦ ")(s1, t1), ⌧(X ⌦ ")(s2, t2)

 

= �(2a+1)/(2D) E

"⇢X

k,`

hX ⌦ ",'k`iL2

1 + �⇢k`
'k`(s1, t1)

�⇢X

k0,`0

hX ⌦ ",'k0`0iL2

1 + �⇢k0`0
'k0`0(s2, t2)

�#

= �(2a+1)/(2D)
X

k,`

'k`(s1, t1)'k`(s2, t2)

(1 + �⇢k`)2
= CZ{(s1, t1), (s2, t2)}+ o(1) . (A.48)
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Note that the results in Section 1.5 in van der Vaart and Wellner (1996) are valid if the

`1([0, 1]2) space is replaced by C([0, 1]2). We shall prove the weak convergence in C([0, 1]2)

through the following two steps.

Step 1. Weak convergence of the finite-dimensional marginals of Gn

In order to prove the weak convergence of the finite-dimensional marginal distributions

of Gn, by the Cramér-Wold device, we shall show that, for any q 2 N, (c1, . . . , cq)T 2 R
q and

(s1, t1), . . . , (sq, tq) 2 [0, 1]2,

qX

j=1

cjGn(sj, tj)
d.

�!

qX

j=1

cjZ(sj, tj) . (A.49)

For 1  i  n, let Ui,q = n�1/2�(2a+1)/(4D)
Pq

j=1 cj⌧(Xi⌦ "i)(sj, tj). In view of (A.46) and

(A.47), we deduce that

qX

j=1

cjGn(sj, tj) =
qX

j=1

cjI3,n(sj, tj) +
qX

j=1

cj{I1,n(sj, tj) + I2,n(sj, tj)} =
nX

i=1

Ui,q + op(1) .

By (A.48) and assumption, we find, as n ! 1,

var(Ui,q) = n�1
qX

j1,j2=1

cj1cj2 cov
�
⌧(Xi ⌦ "i)(sj1 , tj1), ⌧(Xi ⌦ "i)(sj2 , tj2)

 

= n�1
qX

j1,j2=1

cj1cj2CZ{(sj1 , tj1), (sj2 , tj2)}+ o(n�1) .

When
Pq

j1,j2=1 cj1cj2CZ{(sj1 , tj1), (sj2 , tj2)} = 0, we have that
Pq

j=1 cjZ(sj, tj) has a degen-

erate distribution with a point mass at zero, so that (A.49) is followed by the Markov’s

inequality. When
Pq

j1,j2=1 cj1cj2CZ{(sj1 , tj1), (sj2 , tj2)} 6= 0, to prove (A.49), we shall check

that the triangular array of random variables {Ui,q}
n
i=1 satisfies Lindeberg’s condition. By

the Cauchy-Schwarz inequality, we find, for any e > 0,
nX

i=1

E
�
U
2
i,q (|Ui,q| > e)

 

= E


�(2a+1)/(2D)

����
qX

j=1

cj⌧(X ⌦ ")(sj, tj)

����
2

⇥

⇢
�(2a+1)/(4D)

����
qX

j=1

cj⌧(X ⌦ ")(sj, tj)

���� � e
p
n

��

 �(2a+1)/(2D)

⇢
E

����
qX

j=1

cj⌧(X ⌦ ")(sj, tj)

����
4� 1

2

P

⇢
�(2a+1)/(4D)

����
qX

j=1

cj⌧(X ⌦ ")(sj, tj)

���� � e
p
n

� 1
2

.

In view of (A.41),
⇢
E

����
qX

j=1

cj⌧(X ⌦ ")(sj, tj)

����
4� 1

2

 c

⇢
sup

(s,t)2[0,1]2
E|⌧(X ⌦ ")(s, t)|4

� 1
2

 c��(a+1)/D .



NOT-FOR-PUBLICATION APPENDIX 17

Let sq =
Pq

j=1 |cj|. We have sq > 0, since
Pq

j1,j2=1 cj1cj2CZ{(sj1 , tj1), (sj2 , tj2)} 6= 0. In view

of (A.42), by arguments similar to the ones used in (A.43), we find, by taking c1 > (c"D)�1,

for c" > 0 in Assumption A4,

P

⇢
�(2a+1)/(4D)

����
qX

j=1

cj⌧(X ⌦ ")(sj, tj)

���� � e
p
n

�

 P

⇢
sq�

(2a+1)/(4D) sup
(s,t)2[0,1]2

��⌧(X ⌦ ")(s, t)
�� � e

p
n

�

 P
⇣
kXkL2k"kL2 � ec�1

s
�1
q

p
n�(2a+1)/(4D)

⌘

 P
n
kXkL2 � ec�1

1 c�1
s
�1
q

p
n�(2a+1)/(4D)/log(��1)

o
+ P

n
k"kL2 � c1log(�

�1)
o

 exp{�cXec
�1
1 c�1

s
�1
q

p
n�(2a+1)/(4D)/ log(��1)}E{exp(cXkXkL2)}

+ �c1c"E{exp(c"k"kL2)}

= O
�
�cXec�1

1 c�1
s
�1
q {

p
n�(2a+1)/(4D)/ log2(��1)}

�
+O(�c1c") = o(�1/D) ,

Therefore, for any e > 0,

nX

i=1

E
�
U
2
i,q (|Ui,q| > e)

 
 c�(2a+1)/(2D)

⇥ ��(a+1)/D
⇥ o(�1/(2D)) = o(1) .

By Lindeberg’s CLT,

qX

j=1

cjGn(sj, tj) =
nX

i=1

Ui,q + op(1)

d
�!

qX

j=1

cjZ(sj, tj) ⇠ N

⇣
0,

qX

j1,j2=1

cj1cj2CZ{(sj1 , tj1), (sj2 , tj2)}
⌘
.

Step 2. Asymptotic tightness of Gn

Next, we show the equicontinuity of the process Gn in (3.8). We first focus on the leading

term I3,n in (A.45), and recall that

I3,n(s, t) =
nX

i=1

Ui(s, t) = n�1/2�(2a+1)/(4D)
nX

i=1

⌧(Xi ⌦ "i)(s, t) . (A.50)

Let  (x) = x2 and let kUk = inf{c > 0 : E{ (|U |/c)}  1} denote the Orlicz norm for a

real-valued random variable U . For some metric d on [0, 1]2, letD(w, d) denote the w-packing

number of the metric space ([0, 1]2, d), where d is an appropriate metric specified below. Since
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E{⌧(X ⌦ ")(s, t)} = 0 for any (s, t) 2 [0, 1]2 and E{hX ⌦ ",'k`iL2hX ⌦ ",'k0`0iL2} = �kk0�``0 ,

for k, k0, `, `0 � 1, by (3.7), for any (s1, t1), (s2, t2) 2 [0, 1]2,

E|I3,n(s1, t1)� I3,n(s2, t2)|
2

= �(2a+1)/(2D) E
��⌧(X ⌦ ")(s1, t1)� ⌧(X ⌦ ")(s2, t2)

��2

= �(2a+1)/(2D) E

����
X

k,`

hX ⌦ ",'k`iL2

1 + �⇢k`

�
'k`(s1, t1)� 'k`(s2, t2)

 ����
2

= �(2a+1)/(2D)
X

k,`

1

(1 + �⇢k`)2
��'k`(s1, t1)� 'k`(s2, t2)

��2

 c�(a�b)/D max{|s1 � s2|
2#, |t1 � t2|

2#
} . (A.51)

We therefore deduce from (A.51) that

kI3,n(s1, t1)� I3,n(s2, t2)k  c�(a�b)/(2D) max{|s1 � s2|
#, |t1 � t2|

#
} . (A.52)

Next, we shall show that, there exists a metric d on [0, 1]2 such that, for any e > 0,

lim
�#0

lim sup
n!1

P

⇢
sup

d{(s1,t1),(s2,t2)}�
|I3,n(s1, t1)� I3,n(s2, t2)| > e

�
= 0 , (A.53)

where we distinguish the cases: # > 1 and 0  #  1.

Case (i): # > 1

Recall that in the case of # > 1, we have assumed b = a, and let d1{(s1, t1), (s2, t2)} =

max{|s1 � s2|#, |t1 � t2|#}. In view of (A.51), we have kI3,n(s1, t1) � I3,n(s2, t2)k 

c d1{(s1, t1), (s2, t2)}. Note that the packing number of [0, 1]2 with respect to the metric

d1 satisfies D(⇣, d1) . ⇣�2/#. By Theorem 2.2.4 in van der Vaart and Wellner (1996), for

any e, ⌘ > 0,

P

⇢
sup

d1{(s1,t1),(s2,t2)}�
|I3,n(s1, t1)� I3,n(s2, t2)| > e

�

 c

���� sup
d1{(s1,t1),(s2,t2)}�

|I3,n(s1, t1)� I3,n(s2, t2)

����
 

 c

Z ⌘

0

p
D(⇣, d1)d⇣ + �D(⌘, d1)

 c

Z ⌘

0

⇣�1/#d⇣ + �w�2/# = c ⌘(#�1)/# + � ⌘�2/# .

Using ⌘ =
p
� and # > 1, it follows that (A.53) holds by taking the metric d = d1.

Case (ii): 0  #  1
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In this case, in order to show (A.53), we shall use Lemma B.8 in Section B.1, which is a

modified version of Lemma A.1 in Kley et al. (2016). Let

d2{(s1, t1), (s2, t2)} = max{|s1 � s2|
2, |t1 � t2|

2
}

and let ⌘ = �(a�b)/(2D�#D). In view of (A.52), we have, when d2{(s1, t1), (s2, t2)} � ⌘/2 > 0,

kI3,n(s1, t1)� I3,n(s2, t2)k  c�(a�b)/(2D)
⇥
d2{(s1, t1), (s2, t2)}

⇤#/2
 c d2{(s1, t1), (s2, t2)} .

By Assumption A4 and Markov’s inequality, by taking c > c�1
X , for cX in Assumption A4,P

1

n=1 P
�
kXkL2 � c log n

�
 E{exp(cXkXkL2)}

P
1

n=1 n
�ccX < 1. By the Borel-Cantelli

lemma and applying the same argument to k"kL2 yields that kX ⌦ "kL2 = kXkL2 ⇥k"kL2 

(c log n)2 holds for n large enough almost surely. Hence, by Assumption A2 and Lemma B.2,

for n large enough,

sup
(s,t)2[0,1]2

|Ui(s, t)|  sup
(s,t)2[0,1]2

n�1/2�(2a+1)/(4D)
X

k,`

1

1 + �⇢k`
|hXi ⌦ "i,'k`iL2 |⇥ k'k`k1

 n�1/2�(2a+1)/(4D)
X

k,`

1

1 + �⇢k`
kXi ⌦ "ikL2 ⇥ k'k`kL2 ⇥ k'k`k1

 c n�1/2�(2a+1)/(4D)(log n)2
X

k,`

(k`)2a

1 + �(k`)2D

 c n�1/2��(2a+1)/(4D)(log n)2 (A.54)

almost surely. In addition, by (A.51),

sup
(s1,t1),(s2,t2)2[0,1]2

E|I3,n(s1, t1)� I3,n(s2, t2)|
2
 c�(a�b)/D.

By Bernstein’s inequality, combining the above equation with (A.54), we deduce that, for n

large enough, for any (s1, t1), (s2, t2) 2 [0, 1]2 and for any e > 0,

P
n
|I3,n(s1, t1)� I3,n(s2, t2)| > e/4

o

 2 exp

⇢
�

e2/16

2�(a�b)/D + en�1/2��(2a+1)/(4D)(log n)2/6

�
. (A.55)

Now, note that D(⇣, d2)  c ⇣�1 and recall that in the case of 0  #  1 we have assumed

b < a. By Lemma B.8 and (A.55), there exists a set e[0, 1]2 ⇢ [0, 1]2 that contains at most

D(⇣, d2) points, such that, for any �, e > 0 and ⌘ > ⌘, as n ! 1,

P

⇢
sup

d2{(s1,t1),(s2,t2)}�
|I3,n(s1, t1)� I3,n(s2, t2)| > e

�

 c

⇢Z ⌘

⌘/2

p
D(⇣, d2)d⇣ + (� + 2⌘)D(⌘, d2)

)2
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+ P

(
sup

d2{(s1,t1),(s2,t2)}⌘

(s1,t1)2e[0,1]2

|I3,n(s1, t1)� I3,n(s2, t2)| > e/4

)

 c

⇢Z ⌘

⌘/2

⇣�1/2d⇣ + (� + 2�(a�b)/(2D�#D))⌘�1

�2

+D(⌘, d2)⇥ sup
(s1,t1),(s2,t2)2e[0,1]2

P
n
|I3,n(s1, t1)� I3,n(s2, t2)| > e/4

o

 c (⌘ + �2⌘�2) + c��(a�b)/(2D�#D) exp

⇢
�

e2/16

2�(a�b)/D + en�1/2��(2a+1)/(4D)(log n)2/6

�

 c (⌘ + �2⌘�2) + o(1) ,

where in the last step we used ��1 . n2D by Assumption A5, and the assumption that

�(a�b)/D = o(n�(a�b)⌫1/D) and n�1/2��(2a+1)/(4D) = o(n�⌫2), for ⌫1, ⌫2 > 0. Therefore, by

taking ⌘ > 0 small enough, we deduce from the above equation that, when 0  #  1, for

any e > 0, (A.53) holds by taking the metric d = d2.

As for the remaining processes I1,n and I2,n in (A.44), in view of (A.47), for any e > 0

and for the metric d,

lim
�#0

lim sup
n!1

P

⇢
sup

d{(s1,t1),(s2,t2)}�
|I1,n(s1, t1) + I2,n(s1, t1)� I1,n(s2, t2)� I2,n(s2, t2)| > e

�

 lim sup
n!1

P

⇢
sup

(s,t)2[0,1]2
|I1,n(s, t)|+ sup

(s,t)2[0,1]2
|I2,n(s, t)| > e/2

�
= 0 ,

Combining this result with (A.53) proves that the process Gn is asymptotic uniformly

equicontinuous w.r.t. the metric d in (A.53) (that is, d = d1 when # > 1, and d = d2
when 0  #  1), which entails the asymptotic tightness of Gn.

The assertion of the theorem therefore follows from Theorems 1.5.4 and 1.5.7 in van der

Vaart and Wellner (1996).

A.5 Proof of Theorem 4.1

By taking � ⇣ n�2D/(2D+1), the upper bound in (i) follows from Lemma A.2 and the fact

that k�k2V  k�k2K for any � 2 H.

For (ii), we prove the lower bound in the particular case where " is a mean zero Gaussian

white noise process independent of X with E{"2(t)} ⌘ �2
" > 0. By Theorem 2.5 in Tsybakov

(2008), in order to show the lower bound, we need to show that, for M � 2, H contains

elements �0, . . . , �M that satisfy the following two conditions:

(C1) k�j � �kk2V � 2c0n�2D/(2D+1), for 0  j < k  M ;
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(C2) M�1
PM

j=1 K(Pj, P0)  ↵ logM , where 0 < ↵ < 1/8, K is the Kullback-Leibler

divergence, and Pj denotes joint distribution of (X1,j, Y1,j), . . . , (Xn,j, Yn,j), where

Yi,j(t) =
R
�j(s, t)Xi,j(s)ds+ "i,j(t), for 1  i  n.

For the constant D in Assumption A2, define ⌫n = bn1/(4D+2)
c. For any ! =

(!(⌫n+1,⌫n+1), . . . ,!(2⌫n,2⌫n)) 2 {0, 1}⌫
2
n , let

�! = c1n
�1/2

2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

!(k,`) 'k` , (A.56)

where c1 > 0 is a constant independent of n to be specified later. We first verify that the

�!’s are elements in H. Since, by Assumption A2, {'k`}k,`�1 diagonalizes the operator J

defined in (2.6), we have

k�!k
2
K = c21 n

�1

*
2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

!(k,`) 'k` ,
2⌫nX

k0=⌫n+1

2⌫nX

`0=⌫n+1

!(k0,`0) 'k0`0

+

K

= c21 n
�1

2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

!2
(k,`) k'k`k

2
K = c21 n

�1
2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

!2
(k,`) (1 + �⇢k`)

 c n�1
2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

{1 + �(k`)2D} .

Note that this inequality and the inequality in (A.12) in the proof of Proposition 2.1 holds

for any � > 0. Therefore, for k · kH defined in (2.3), combining these two equations, we may

take � = 1 and find that

k�!k
2
H
 c k�!k

2
K  c n�1

2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

(k`)2D  c n�1⌫2+4D
n  c ,

which shows that, for any ! 2 {0, 1}⌫
2
n , �! defined in (A.56) is an element of H.

By the Varshamov-Gilbert bound (Lemma 2.9 in Tsybakov, 2008), for ⌫2n � 8, there

exists a subset ⌦ = {!(0), . . . ,!(M)
} 2 {0, 1}⌫

2
n with M � 2⌫

2
n/8 such that, !(0) = (0, . . . , 0)

and for any 0  j < j0  M ,

H
�
!(j1),!(j2)

�
�
⌫2n
8
,

where H(·, ·) is the Hamming distance. For 0  j  M , let !(j) = (!(j)
(⌫n+1,⌫n+1), . . . ,!

(j)
(2⌫n,2⌫n)

).

Let �0, . . . , �M denote the functions defined as in (A.56) that corresponds to !(0), . . . ,!(M)
2

⌦. For 0  j < j0  M , in view of (A.56),

�j � �j0 = c1 n
�1/2

2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

�
!(j)
(k,`) � !(j0)

(k,`)

�
'k` . (A.57)
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By Assumption A2, since {'k`}k,`�1 diagonalizes the operator V defined in (2.9), we deduce

from (A.57) that

k�j � �j0k
2
V = c21 n

�1
2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

�
!(j)
(k,`) � !(j0)

(k,`)

�2
V ('k`,'k`)

= c21 n
�1

2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

�
!(j)
(k,`) 6= !(j0)

(k,`)

 

= c21 n
�1H

�
!(j),!(j0)

�
� c21 8

�1n�1⌫2n � c21 8
�1n�2D/(2D+1) .

By taking c0 = c21/16, the above equation indicates that Condition (C1) is valid.

For any 0  j < j0  M , in view of (A.57),

K(Pj, Pj0) =
n

2�2
"

E

Z 1

0

 Z 1

0

{�j(s, t)� �j0(s, t)}X(s)ds

�2
dt =

n

2�2
"

k�j � �j0k
2
V

= c21 �
�2
"

2⌫nX

k=⌫n+1

2⌫nX

`=⌫n+1

�
!(j)
(k,`) � !(j0)

(k,`)

�2
 c21 �

�2
" ⌫2n .

Therefore, for any 0 < ↵ < 1/8, by taking 0 < c1 < �"
p
↵ log 2/8 in (A.56), we have

1

M

MX

j=1

K(Pj, P0)  c21 �
�2
" ⌫2n 

↵⌫2n log 2

8
 ↵ logM ,

which verifies Condition (C2) and completes the proof.

A.6 Proof of Theorem 4.2

Let BL1{C([0, 1]2)} denote the collection of all functionals h : C([0, 1]2) ! [�1, 1] such

that h is uniformly Lipschitz: for any g1, g2 2 C([0, 1]2), |h(g1) � h(g2)|  kg1 � g2k1 =

sup(s,t)2[0,1]2 |g1(s, t) � g2(s, t)|. We shall show that conditionally on the data {(Xi, Yi)}ni=1,

the bootstrap process G⇤

n,q converges to the same limit as Gn in (3.8). To achieve this, we

shall prove that, for Z in (3.8), as n ! 1,

sup
h2BL1{C([0,1]2)}

|EM{h(G⇤

n,1)}� E{h(Z)}| = op(1) ,

where EM denote the conditional expectation given the data {(Xi, Yi)}ni=1; see Theorem 23.7

in Van der Vaart (1998). Note that the results in Lemma 3.1 in Bücher and Kojadinovic

(2019) hold if their `1(T ) space is replaced by C(T ), and therefore, in our case, we shall

show that, for any fixed Q � 2, as n ! 1,

(Gn,G
⇤

n,1, . . . ,G
⇤

n,Q) (Z,Z1, . . . , ZQ) in {C([0, 1]2)}Q+1 , (A.58)
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where Z1, . . . , ZQ are i.i.d. copies of the process Z in (3.8).

For 1  q  Q, define the bootstrap version of Sn,� in (3.2) by

S⇤

n,q(�) = �
1

n

nX

i=1

Mi,q ⌧


Xi ⌦

⇢
Yi �

Z 1

0

�(s, ·)Xi(s)ds

��
+W�(�) ,

and let L⇤

n,�(�) denote the bootstrap objective function in (4.3). Direct calculations

yields that L⇤

n,�(�)�1 = hS⇤

n,q(�), �1iK , E{D2L⇤

n,�(�)�1�2} = h�1, �2iK and S⇤

n,q(�0) =

�n�1
Pn

i=1 Mi,q ⌧(Xi ⌦ "i). Recalling the notation of In,2(s, t) in (A.45), we have

G
⇤

n,q(s, t) =
p
n�(2a+1)/(4D)

{b�⇤

n,q(s, t)� b�n(s, t)} = J
⇤

n,q(s, t) +H⇤

n,q(s, t)� In,2(s, t) ,

where

J
⇤

n,q(s, t) =
p
n�(2a+1)/(4D)

{b�⇤

n,q(s, t)� �0(s, t) + S⇤

n,��0(s, t)} ,

H⇤

n,q(s, t) =
p
n�(2a+1)/(4D)

{Sn,��0(s, t)� S⇤

n,q�0(s, t)}

= n�1/2�(2a+1)/(4D)
nX

i=1

(1�Mi,q) ⌧(Xi ⌦ "i)(s, t) .

By exactly the same arguments used in the proof of Theorem 3.3, it follows that sup(s,t)2[0,1]2 |J
⇤

n,q(s, t)| =

op(1) as n ! 1. Furthermore, recall from (A.47) that sup(s,t)2[0,1]2 |In,2(s, t)| = op(1). Since

in the proof of Theorem 3.3 we have shown that Hn  Z in C([0, 1]2), therefore, in order

to show (A.58), we shall show that (H⇤

n,1, . . . , H
⇤

n,Q) (Z1, . . . , ZQ) in C([0, 1]2). The proof

of (A.58) therefore relies on the finite dimensional convergence of (H⇤

n,1, . . . , H
⇤

n,Q) and the

asymptotic tightness of the process H⇤

n,q.

We first show convergence of the finite dimensional distributions and introduce the no-

tations H⇤

n = (H⇤

n,1, . . . , H
⇤

n,Q)
> and Z = (Z1, . . . , ZQ)>. For arbitrary L 2 N, b1, . . . , bL 2 R

and c1, . . . , cL 2 R
Q, we need to prove that

LX

`=1

c
>

` H
⇤

n(s`, t`)
d

�!

LX

`=1

c
>

` Z(s`, t`) . (A.59)

For 1  i  n, let H
⇤

i = n�1/2�(2a+1)/(4D)
PL

`=1

PQ
q=1 c`,q(Mi,q � 1) ⌧(Xi ⌦ "i)(s`, t`), and

note that the H
⇤

i ’s are i.i.d. and
PL

`=1 c
>

` H
⇤

n(s`, t`) =
Pn

i=1 H
⇤

i . Since the Mi,q’s are i.i.d.,

E(Mi,q) = 1 and E|Mi,q � 1|2 = 1, direct calculations yield that

var

⇢ LX

`=1

c
>

` H
⇤

n(s`, t`)

�
= var(H⇤

1) = �(2a+1)/(2D)var

⇢ LX

`=1

QX

q=1

c`,q(M1,q � 1) ⌧(X1 ⌦ "1)(s`, t`)

�

= �(2a+1)/(2D)
LX

`,`0=1

QX

q,q0=1

c`,qc`0,q0E{(M1,q � 1)(M1,q0 � 1)}E
�
⌧(X1 ⌦ "1)(s`, t`)⌧(X1 ⌦ "1)(s`0 , t`0)

 



NOT-FOR-PUBLICATION APPENDIX 24

= �(2a+1)/(2D)
LX

`,`0=1

QX

q=1

c`,qc`0,qE{(M1,q � 1)2}E

⇢
⌧(X1 ⌦ "1)(s`, t`)⌧(X1 ⌦ "1)(s`0 , t`0)

�

= �(2a+1)/(2D)
LX

`,`0=1

QX

q=1

c`,qc`0,q
X

k,j

'kj(s`, t`)'kj(s`0 , t`0)

(1 + �⇢kj)2

=
QX

q=1

LX

`,`0=1

c`,qc`0,q CZ{(s`, t`), (s`0 , t`0)}+ o(1) ,

as n ! 1. Note that var
�PL

`=1 c
>

` Z(s`, t`)
 

=
PQ

q=1

PL
`,`0=1 c`,qc`0,q CZ{(s`, t`), (s`0 , t`0)}.

When
PQ

q=1

PL
`,`0=1 c`,qc`0,q CZ{(s`, t`), (s`0 , t`0)} = 0,

PL
`=1 c

>

` Z(s`, t`) has a degenerate dis-

tribution with a point mass at zero, and
PL

`=1 c
>

` H
⇤

n(s`, t`) = op(1), so that (A.59) is valid.

When
PQ

q=1

PL
`,`0=1 c`,qc`0,q CZ{(s`, t`), (s`0 , t`0)} 6= 0, using arguments similar to the ones

used in the proof of Theorem 3.3, we can show that Lindeberg’s condition is satisfied, so

that (A.59) is valid.

For the asymptotic tightness of the H⇤

n,q, note that |1�Mi,q| 
p
2 almost surely. There-

fore, the asymptotic tightness of Hn in (A.50), proved in Section A.4, implies the asymptotic

tightness of H⇤

n,q. By Theorem 1.5.4 in van der Vaart and Wellner (1996), together with the

weak convergence Hn  Z proved in Section A.4, we have that, for any Q � 2, as n ! 1,

(Hn, H
⇤

n,1, . . . , H
⇤

n,Q) (Z,Z1, . . . , ZQ) in {C([0, 1]2)}Q+1 ,

which validates (A.58) and completes the proof.

A.7 Proof of Theorem 4.3

Defining b�� = b�n � �⇤ and observing (3.1), (3.2) and (A.20), it follows that
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,

where we use the fact that DS�(�⇤) = id. Note that

kb��k2K =
��{b�� + Sn,�(�⇤)}� Sn,�(�⇤)

��2
K

= kSn,�(�⇤)k
2
K � 2hSn,�(�⇤), b�� + Sn,�(�⇤)iK + kb�� + Sn,�(�⇤)k
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K .
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Therefore, we deduce that

2nLn(�⇤) = I1,n + I2,n + I3,n + I4,n ,

where we use the notations that

I1,n = nkSn,�(�⇤)k
2
K ,

I2,n = �2n
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K
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(A.60)

We now discuss the term I`,n separately, starting with I1,n. In view of (3.2), we have
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where
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(A.62)

Observing (2.13), we have
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which gives

I1,1,n =
1

n

����
nX

i=1

⌧(Xi ⌦ "i)

����
2

K

=
1

n

X

k,`

1

1 + �⇢k`

⌧ nX

i=1

⌧(Xi ⌦ "i),'k`

�2

K

=
1

n

X

k,`

1

1 + �⇢k`

⇢ nX

i=1

⌦
⌧(Xi ⌦ "i),'k`

↵
K

�2

=
Wn

n
+

1

n

nX

i=1

W0,i , (A.64)

where Wn =
P
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For Wn in (A.64), we have
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by Assumption A2.

In order to show the asymptotic normality of Wn, we use Proposition 3.2 in de Jong

(1987) and show that
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are of order o(�4
Wn

) as n ! 1. Since E{h⌧(Xi1 ⌦ "i1),'k`iK} = 0 due to Assumption A3,

we have E(Wi1i2 |"i1 , Xi1) = 0 for i1 6= i2. From (B.9), we obtain E{h⌧(Xi ⌦ "i),'k`i
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which implies that
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Since E(W 2
i1i2W

2
i1i3)  E(W 4

i1i2), we have H2  cn3��2/D. Finally, for the term H3, we use

(B.8) and obtain,

E(Wi1i2Wi1i3Wi4i2Wi4i3)
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We therefore deduce that H3  cn4��1/(2D), which yields

H1 +H2 +H3 = O(n3��2/D + n4��1/(2D)) = o(�4
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)

since n�1/D ! 1. By Proposition 3.2 in de Jong (1987), it follows that
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Next, we examine the second term n�1
Pn

i=1 W0,i in (A.64). Note that theW0,i’s in (A.65)

are i.i.d. and satisfy
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where we used (B.8) in the last step. For the variance, by (B.9), E{h⌧(Xi ⌦ "i),'k`i
4
K}  c,

so that by Assumption A2,
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Therefore, the above equation and (A.67) yields that
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NOT-FOR-PUBLICATION APPENDIX 28

where we use Assumption A2, which yields E(W0,i)  c��1/2D. In view of (A.64), since we

have shown Wn/n = Op(��1/(4D)), we therefore deduce from the above equation that
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Moreover, since by Assumption A2,
P
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We now consider the term I1,2,n in (A.62). By Assumption A2, we obtain
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by the dominated convergence theorem. Since E{h⌧(Xi⌦ "i),W�(�⇤)iK} = 0, it follows from

(2.17) and Assumption A2 that
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For the term I1,3,n = nkW�(�⇤)k2K in (A.62), we use (A.71), the dominated convergence

theorem and the fact that
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2(�⇤,'k`) < 1, and obtain
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Therefore, combining (A.61), (A.69), (A.72) and (A.74), we find
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For the term I2,n in (A.60), by Lemma A.2 and Theorem 3.1, we find

|I2,n|  2n kb�� + Sn,�(�⇤)kK ⇥ kb��kK = Op(nvn)⇥Op
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�1/2 + n�1/2��1/(4D)

�
,
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where vn is defined in (A.34). For the term I3,n in (A.60), note that, in view of (3.2), for

Hn(·) defined in (A.14),

kDSn,�(�⇤)b�� �DS�(�⇤)b��kK = n�1/2
kHn(b��)kK = Op(vn) ,

where we used (A.33). Therefore, by Lemma A.2,
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For the term I4,n in (A.60), by (A.74) and Theorem 3.1,
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Combining (A.69), (A.72), (A.73) and the above convergence rates of I2,n, I3,n, I4,n, it follows

that I1,2,n + I1,3,n + I2,n + I3,n + I4,n = op(��1/(2D)). In addition, we use Assumption A2 and

Lemma B.2 to obtain that
P

k,`(1 + �⇢k`)�1
⇣ ��1/(2D) and

P
k,`(1 + �⇢k`)�2

⇣ ��1/(2D).

Therefore, in view of (A.69), (A.70),
⇢X

k,`

2

(1 + �⇢k`)2

��1/2✓
2nLn(�⇤)�

X

k,`

1

1 + �⇢k`

◆
d

�! N(0, 1) .

Since for un and �2
n in (4.11),

p
un =

P
k,`(1 + �⇢k`)�1

{
P

k,`(1 + �⇢k`)�2}1/2
;

�2
n

p
un

=

�P
k,`(1 + �⇢k`)�2

 1/2
P

k,`(1 + �⇢k`)�2
=

⇢X

k,`

1

(1 + �⇢k`)2

��1/2

,

the proof is therefore complete.

A.8 Proof of Corollary 4.1 and (4.17)

By assumption, we have n�1/2��(2a+1)/(4D) log(n�(2a+1)/(2D)) = o(1). Therefore, Corollary 4.1

is a consequence of Theorem B.1 in Dette and Kokot (2021a) and Theorem 3.3. For a proof

of (4.17), note that d1 < �,
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A.9 Proof of Theorem 4.4

We notice that, by the continuous mapping theorem, Theorem 3.3 and Lemma B.3 in Dette

et al. (2020), conditional on the data, the bootstrap statistic bT ⇤

E,n,q in (4.21) converges to TE

in (4.16), the same limit as
p
n�(2a+1)/(4D)(bd1 � d1). Hence, the assertion in Theorem 4.4

follows from arguments similar to the ones in the proof of (4.17) in Section A.8.

A.10 Proof of Theorem 4.5

By (3.6), we obtain, for the kernel CZ,x0 in (4.25),
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since it follows from the dominated convergence theorem and the Cauchy-Schwarz inequality,

uniformly in n � 1,
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By the definition of ⌧ in (2.17),
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where �t is the delta function at t 2 [0, 1]. We have,
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Observing (2.17), Assumption A2 and Lemma B.2, and the Cauchy-Schwarz inequality,

it follows
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Hence, by Theorem 3.1 and the Cauchy-Schwarz inequality,
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where vn is defined in (A.34).

In addition, since by assumption,
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Therefore, we obtain, for the term I2,n,
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Finally, using the representation ⌧(X ⌦ ") =
P

k,`(1 + �⇢k`)�1
hX ⌦ ",'k`iL2'k` (see

equation (B.7) in the proof of Lemma B.7 in Section B), we obtain

I3,n(t) = n�1/2�(2a+1)/(4D)
nX

i=1

⌦
⌧(Xi ⌦ "i), ⌧(x0 ⌦ �t)

↵
K

= n�1/2�(2a+1)/(4D)
nX

i=1

X

k,`

1

1 + �⇢k`
hXi ⌦ "i,'k`iL2h'k`, ⌧(x0 ⌦ �t)iK

= n�1/2�(2a+1)/(4D)
nX

i=1

X

k,`

1

1 + �⇢k`
hXi ⌦ "i,'k`iL2h'k`, x0 ⌦ �tiL2

= n�1/2�(2a+1)/(4D)
nX

i=1

X

k,`

hXi ⌦ "i,'k`iL2

1 + �⇢k`

Z 1

0

'k`(s, t)x0(s)ds . (A.79)

For 1  i  n, let

Ui(t) = n�1/2�(2a+1)/(4D)
⌦
⌧(Xi ⌦ "i), ⌧(x0 ⌦ �t)

↵
K

= n�1/2�(2a+1)/(4D)
X

k,`

hXi ⌦ "i,'k`iL2

1 + �⇢k`

Z 1

0

'k`(s, t)x0(s)ds ,

so that I3,n(t) =
Pn

i=1 Ui(t). Since E{hXi⌦"i,'k`iL2} = 0 for k, ` � 1, we have E{Ui(t)} = 0,

and observing (B.8), it follows that

cov{Ui(t1),Ui(t2)}
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= �(2a+1)/(2D)
X

k,`,k0,`0

1

(1 + �⇢k`)(1 + �⇢k0`0)
E
n
hX ⌦ ",'k`iL2 hX ⌦ ",'k0`0iL2

o

⇥

Z
'k`(s1, t1)x0(s1)ds1 ⇥

Z
'k`(s2, t2)x0(s2)ds2

= �(2a+1)/(2D)
X

k,`

1

(1 + �⇢k`)2

Z
'k`(s1, t1)x0(s1)ds1 ⇥

Z
'k`(s2, t2)x0(s2)ds2

= CZ,x0(t1, t2) + o(1) , as n ! 1 , (A.80)

where we used (A.75) in the last step.

In order to prove the weak convergence of the finite-dimensional marginal distributions

of bµx0 , by the Cramér-Wold device, we shall show that, for any q 2 N, (c1, . . . , cq)T 2 R
q

and t1, . . . , tq 2 [0, 1],

qX

j=1

cjbµx0(tj)
d.

�!

qX

j=1

cjZx0(tj) . (A.81)

In view of (A.77) and (A.78), we deduce that

qX

j=1

cjbµx0(tj) =
qX

j=1

cjI3,n(tj) +
qX

j=1

cj{In,1(tj) + In,2(tj)} =
nX

i=1

qX

j=1

cjUi(tj) + op(1) .

Observing (A.80), we have

var

⇢ nX

i=1

qX

j=1

cjUi(tj)

�
=

qX

j1,j2=1

cj1cj2CZ,x0(tj1 , tj2) + o(1)

as n ! 1. If
Pq

j1,j2=1 cj1cj2CZ,x0(tj1 , tj2) = 0,
Pq

j=1 cjZx0(tj) has a degenerate distribution

with a point mass at zero, so that (A.81) is a consequence of the Markov’s inequality. IfPq
j1,j2=1 cj1cj2CZ,x0(tj1 , tj2) 6= 0, we have var

�Pn
i=1

Pq
j=1 cjUi(tj)

 
=
Pq

j1,j2=1 cj1cj2CZ,x0(tj1 , tj2)+

o(1) = var
�Pq

j=1 cjZx0(tj)
 
+o(1). To prove (A.81), we shall check that the triangular array

of random variables {
Pq

j=1 cjUi(tj)}ni=1 satisfies Lindeberg’s condition. Let ⌃q =
Pq

j=1 |cj|.

We have ⌃q > 0 since ⌃q = 0 indicates
Pq

j1,j2=1 cj1cj2CZ,x0(tj1 , tj2) = 0. For any e > 0, by

the Cauchy-Schwarz inequality,

nX

i=1

E

����
qX

j=1

cjUi(tj)

����
2

⇥

⇢����
qX

j=1

cjUi(tj)

���� > e

��

= �(2a+1)/(2D) E

����
qX

j=1

cj
⌦
⌧(Xi ⌦ "i), ⌧(x0 ⌦ �tj)

↵
K

����
2

⇥

⇢����
qX

j=1

cjUi(tj)

���� > e

��

 c�(2a+1)/(2D) sup
t2[0,1]

E
n��⌦⌧(Xi ⌦ "i), ⌧(x0 ⌦ �t)

↵
K

��4
o 1

2
⇥ P

⇢����
qX

j=1

cjUi(tj)

���� > e

� 1
2

. (A.82)
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Using (A.76) and Lemma B.7 in Section B.1, it follows that

sup
t2[0,1]

E
��⌦⌧(Xi ⌦ "i), ⌧(x0 ⌦ �t)

↵
K

��4

 Ek⌧(Xi ⌦ "i)k
4
K ⇥ sup

t2[0,1]
k⌧(x0 ⌦ �t)k

4
K  c��(2a+2)/D . (A.83)

In addition, for some c0 > 0,

sup
t2[0,1]

����
X

k,`

hX ⌦ ",'k`iL2

1 + �⇢k`

Z 1

0

'k`(s, t)x0(s)ds

����

 kx0kL2 ⇥ kX ⌦ "kL2 ⇥

X

k,`

k'k`k
2
1

1 + �⇢k`
 c0�

�(2a+1)/(2D)
kXkL2 k"kL2 .

Hence, by arguments similar to the ones used in (A.43), by taking c1 > a(c"D)�1, for c" > 0

in Assumption A4, we find

P

⇢����
qX

j=1

cjUi(tj)

���� > e

�

= P

⇢
sup
t2[0,1]

����
X

k,`

hX ⌦ ",'k`iL2

1 + �⇢k`

Z 1

0

'k`(s, t)x0(s)ds

���� > e⌃�1
q

p
n��(2a+1)/(4D)

�

 P
n
kXkL2 k"kL2 > ec�1

0 ⌃
�1
q

p
n�(2a+1)/(4D)

o

 P
n
kXkL2 � ec�1

1 c�1
0 ⌃

�1
q

p
n�(2a+1)/(4D)/log(��1)

o
+ P

n
k"kL2 � c1log(�

�1)
o

 exp
�
� cXec

�1
1 c�1

0 ⌃
�1
q

p
n�(2a+1)/(4D)/ log(��1)

 
E{exp(cXkXkL2)}

+ �c1c"E{exp(c"k"kL2)}

= O
�
�cXec�1

1 c�1
0 ⌃�1

q {
p
n�(2a+1)/(4D)/ log2(��1)}

�
+O(�c1c") = o(�1/D) ,

where we used the assumption
p
n�(2a+1)/(4D)/ log2(��1) ! 1 in the last step. Therefore,

combining the above result with (A.82) and (A.83) yields

nX

i=1

E

����
qX

j=1

cjUi(tj)

����
2

⇥

⇢����
qX

j=1

cjUi(tj)

���� > e

��
 c�(2a+1)/(2D) ��(a+1)/D o(�1/(2D)) = o(1) .

By Lindeberg’s CLT,

qX

j=1

cjbµx0(tj) =
nX

i=1

qX

j=1

cjUi(tj) + op(1)
d

�! N

✓
0,

qX

j1,j2=1

cj1cj2CZ,x0(tj1 , tj2)

◆
d.
=

qX

j=1

cjZx0(tj) .

Next, we prove the asymptotic tightness of bµx0 . For any t1, t2 2 [0, 1], since E{I3,n(t1)�

I3,n(t2)} = 0, by (B.8) and the Cauchy-Schwarz inequality, we find

E|I3,n(t1)� I3,n(t2)|
2 = nE|Ui(t1)� Ui(t2)|

2
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= �(2a+1)/(2D)E

����
X

k,`

hXi ⌦ "i,'k`iL2

1 + �⇢k`

Z 1

0

{'k`(s, t1)� 'k`(s, t2)}x0(s)ds

����
2

= �(2a+1)/(2D)
X

k,`

1

(1 + �⇢k`)2

����
Z 1

0

{'k`(s, t1)� 'k`(s, t2)}x0(s)ds

����
2

 �(2a+1)/(2D)
kx0k

2
L2

X

k,`

1

(1 + �⇢k`)2

Z 1

0

|'k`(s, t1)� 'k`(s, t2)|
2ds .

By the assumption in (3.7), we have, for constants c0, # and b specified in Theorem 3.3,

E|I3,n(t1)� I3,n(t2)|
2
 c0�

(a�b)/D
kx0k

2
L2 |t1 � t2|

2#
 c�(a�b)/D

|t1 � t2|
2# .

Moreover, in view of (A.79), by the Cauchy-Schwarz inequality, Assumption A2, we deduce

that

sup
t2[0,1]

|Ui(t)|

 n�1/2�(2a+1)/(4D)
X

k,`

|hXi ⌦ "i,'k`iL2 |

1 + �⇢k`
⇥ sup

t2[0,1]

����
Z 1

0

'k`(s, t)x0(s)ds

����

 n�1/2�(2a+1)/(4D)
kXi ⌦ "ikL2kx0kL2

X

k,`

k'k`kL2

1 + �⇢k`
⇥ sup

t2[0,1]

⇢Z 1

0

|'k`(s, t)|
2ds

�1/2

 c n�1/2�(2a+1)/(4D)(log n)2
X

k,`

k'k`k
2
1

1 + �⇢k`

 c n�1/2�(2a+1)/(4D)(log n)2
X

k,`

(k`)2a

1 + �(k`)2D

 c n�1/2��(2a+1)/(4D)(log n)2 ,

almost surely, where we used Lemma B.2 and the fact that kX ⌦ "kL2  c(log n)2 almost

surely from Section A.4. Therefore, by arguments similar to the ones used in the proof of

Theorem 3.3, we find that, there exists a semi-metric d on [0, 1]2 such that, for any e > 0,

lim
�#0

lim sup
n!1

P

⇢
sup

d{(s1,t1),(s2,t2)}�
|I3,n(t1)� I3,n(t2)| > e

�
= 0 .

Combining the above result with (A.77) and (A.78),

lim
�#0

lim sup
n!1

P

⇢
sup

d{(s1,t1),(s2,t2)}�
|bµx0(t1)� bµx0(t2)| > e

�
= 0 .

Therefore, by applying Theorems 1.5.4 and 1.5.7 in van der Vaart and Wellner (1996), we

have shown that
p
n�(2a+1)/(4D)

{bµx0 � µx0} Zx0 in C([0, 1]2). By the continuous mapping

theorem,
p
n�(2a+1)/(4D) supt2[0,1] |bµx0(t)� µx0(t)|

d
�! maxt2[0,1] |Zx0(t)|.



NOT-FOR-PUBLICATION APPENDIX 35

B Auxiliary lemmas and technical details

B.1 Auxiliary lemmas for the proofs in Section A

Lemma B.1. For any �1, �2 2 H and x 2 L2([0, 1]), for ⌧ defined in (2.16),
⌧
⌧


x⌦

⇢Z 1

0

�1(s, ·)x(s)ds

��
, �2

�

K

=

⌧
⌧


x⌦

⇢Z 1

0

�2(s, ·)x(s)ds

��
, �1

�

K

=

Z

[0,1]3
�1(s1, t) �2(s2, t) x(s1) x(s2) ds1 ds2 dt .

Proof. By Fubini’s theorem and (2.17), direct calculation yields
⌧
⌧


x⌦

⇢Z 1

0

�1(s, ·)x(s)ds

��
, �2

�

K

=

Z 1

0

Z 1

0

x(s2)

⇢Z 1

0

�1(s1, t) x(s1) ds1

�
�2(s2, t) ds2 dt

=

Z

[0,1]3
�1(s1, t) �2(s2, t) x(s1) x(s2) ds1 ds2 dt

=

Z 1

0

Z 1

0

x(s1)

⇢Z 1

0

�2(s2, t) x(s2) ds2

�
�1(s1, t) ds1 dt

=

⌧
⌧


x⌦

⇢Z 1

0

�2(s, ·) x(s) ds

��
, �1

�

K

.

Lemma B.2. For D in Assumption A2, for any 0  ⌫ < D � 1/2, for 0 < � < 1 and for

either r = 1 or 2, there exist constants c1, c2 > 0 independent of � such that

c1 �
�(2⌫+1)/(2D)



X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r
 c2 �

�(2⌫+1)/(2D) . (B.1)

Proof. Using change of variables, we first notice that
Z

1

0

Z
1

0

x2⌫y2⌫

(1 + � x2Dy2D)r
dx dy = ��(2⌫+1)/(2D)

Z
1

0

Z
1

0

x2⌫y2⌫

(1 + x2Dy2D)r
dx dy .

Since 2D � 2⌫ > 1, we have
R

1

0

R
1

0 x2⌫y2⌫(1 + x2Dy2D)�rdxdy < 1.

Let m� = ��1/(2D)
{⌫/(rD�⌫)}1/(2D). Note that the function x2⌫/(1+�x2D) is increasing

on (0,m�), and is decreasing on (m�,1). For any real value x 2 R, let dxe denote the

smallest integer greater than or equal to x, and let bxc denote the largest integer smaller

than or equal to x. Let {·} denote the indicator function. For the left-hand side of the

inequality in (B.1), note that

X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r
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=
X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r
⇥

{k` < bm�c}+ {k` > dm�e}
⇤

+
X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r
{bm�c  k`  dm�e}



Z
1

0

Z
1

0

(xy)2⌫

{1 + �(xy)2D}r
dxdy +

X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r
{bm�c  k`  dm�e}



Z
1

0

Z
1

0

(xy)2⌫

{1 + �(xy)2D}r
dxdy +

dm�e
2⌫

(1 + �bm�c
2D)r

X

k,`�1

{bm�c  k`  dm�e}



Z
1

0

Z
1

0

(xy)2⌫

{1 + �(xy)2D}r
dxdy +

2dm�e
2⌫+1

(1 + �bm�c
2D)r



Z
1

0

Z
1

0

(xy)2⌫

{1 + �(xy)2D}r
dxdy + c��(2⌫+1)/(2D) ,

for some c > 0 that does not depend on �, where we used the fact that
P

k,`�1 {bm�c 

k`  dm�e}  2dm�e. This proves the right-hand side of (B.1).

For the left-hand side of the inequality in (B.1), by change of variables, we find

X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r

=
X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r
{k`  bm�c}+

X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r
{k` � dm�e}

�

Z
1

0

Z
1

0

(xy)2⌫

{1 + �(xy)2D}r
⇥

{xy  bm�c}+ {xy � dm�e}
⇤
dxdy

= ��(2⌫+1)/(2D)

Z
1

0

Z
1

0

(xy)2⌫

{1 + (xy)2D}r
⇥

{xy  �1/(2D)
bm�c}+ {xy � �1/(2D)

dm�e}
⇤
dxdy .

Note that there exists constants 0 < ec1 < ec2 independent of � such that 0 < ec1  �1/(2D)
bm�c

and �1/(2D)
dm�e  ec2 < 1. We therefore deduce from the above equation that

X

k,`�1

(k`)2⌫

{1 + �(k`)2D}r
� ��(2⌫+1)/(2D)

Z
1

0

Z
1

0

(xy)2⌫

{1 + (xy)2D}r
⇥

{xy > ec2}+ {xy  ec1}
⇤
dxdy ,

which completes the proof of (B.1).

Lemma B.3. Under Assumptions A1–A4, for � 2 H, we have, for some constant cK > 0,

k�kL2  cK�
�(2a+1)/(4D)

k�kK .

Proof. For any � 2 H and the reproducing kernel K in (2.14), we have �(s, t) = h�, K(s,t)iK ,

from which we deduce that |�(s, t)|  k�kK kK(s,t)kK , so that

k�k2L2  k�k2K

Z 1

0

Z 1

0

kK(s,t)k
2
K ds dt ,
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which yields

kK(s,t)k
2
K =

X

k,`

hK(s,t),'k`i
2
K

1 + �⇢k`
=
X

k,`

'2
k`(s, t)

1 + �⇢k`
. (B.2)

Therefore, we find
Z 1

0

Z 1

0

kK(s,t)k
2
K ds dt =

X

k,`

1

1 + �⇢k`
k'k`k

2
L2  c

X

k,`

k2a`2a

1 + � k2D`2D
 c��(2a+1)/(2D) ,

where we used the assumption that D > a + 1/2 in Assumption A2 and Lemma B.2 in the

last step.

Lemma B.4. Under Assumptions A1–A4, for any � 2 H,
����⌧

x⌦

⇢Z 1

0

�(s, ·)x(s)ds

������
K

 c1 �
�(2a+1)/(2D)

k�kK ⇥ kxk2L2 , (B.3)

E

����⌧

Xi ⌦

⇢Z 1

0

�(s, ·)Xi(s)ds

������
2

K

 c2 �
�1/D

k�k2K . (B.4)

Here, c1, c2 > 0 are absolute constants.

Proof. By the Cauchy-Schwarz inequality,
����⌧

x⌦

⇢Z 1

0

�(s, ·)x(s)ds

������
K

= sup
k�kK=1

����

⌧
⌧


x⌦

⇢Z 1

0

�(s, ·)x(s)ds

��
, �

�

K

����

= sup
k�kK=1

����
Z

[0,1]3
�(s1, t) �(s2, t) x(s1) x(s2) ds1 ds2 dt

����

 sup
k�kK=1

⇢Z

[0,1]3
�2(s1, t) x

2(s2) ds1 ds2 dt

�1/2

⇥

⇢Z

[0,1]3
�2(s2, t) x

2(s1) ds1 ds2 dt

�1/2

= sup
k�kK=1

k�kL2 ⇥ k�kL2 ⇥ kxk2L2

 cK �
(2a+1)/(4D)

k�kL2 ⇥ kxk2L2

 c2K �
(2a+1)/(2D)

k�kK ⇥ kxk2L2 ,

where we used Lemma B.3. This proves (B.3).

In order to prove (B.4), by Lemma B.1, we find

E

 ⌧
⌧


Xi ⌦

⇢Z 1

0

'k`(s, ·)Xi(s)ds

��
,'k0`0

�2

K

!
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= E

⇢Z

[0,1]3
Xi(s1)Xi(s2)'k`(s1, t)'k0`0(s2, t)ds1ds2dt

�2

= E

⇢Z

[0,1]3
Xi(s1)Xi(s2)xk`(s1)xk0`0(s1)ds1ds2

�2

⇥

⇢Z 1

0

⌘`(t)⌘`0(t)dt

�2

= E

"⇢Z 1

0

Xi(s1)xk`(s1)ds1

�2

⇥

⇢Z 1

0

Xi(s2)xk0`0(s2)ds2

�2
#
⇥

⇢Z 1

0

⌘`(t)⌘`0(t)dt

�2

.

Using the Cauchy-Schwarz inequality, by Assumptions A2 and A4, we deduce from the above

equation that, for the constant c0 > 0 in (3.4),

E

 ⌧
⌧


Xi ⌦

⇢Z 1

0

'k`(s, ·)Xi(s)ds

��
,'k0`0

�2

K

!



"
E

⇢Z 1

0

Xi(s1)xk`(s1)ds1

�4
# 1

2
"
E

⇢Z 1

0

Xi(s2)xk0`0(s2)ds2

�4
# 1

2

⇥ k⌘`k
2
L2 ⇥ k⌘`0k

2
L2

 c0 E

⇢Z 1

0

Xi(s1)xk`(s1)ds1

�2

⇥ E

⇢Z 1

0

Xi(s2)xk0`0(s2)ds2

�2

⇥ k⌘`k
2
L2 ⇥ k⌘`0k

2
L2

= c0

⇢Z

[0,1]2
CX(s1, s2)xk`(s1)xk`(s2)ds1ds2

�

⇥

⇢Z

[0,1]2
CX(s1, s2)xk0`0(s1)xk0`0(s2)ds1ds2

�
⇥ k⌘`k

2
L2 ⇥ k⌘`0k

2
L2

= c0 hCX(xk`), xk`iL2 hCX(xk0`0), xk0`0iL2 k⌘`k
2
L2 k⌘`0k

2
L2

= c0 V (xk` ⌦ ⌘`, xk` ⌦ ⌘`)V (xk0`0 ⌦ ⌘`0 , xk0`0 ⌦ ⌘`0)

= c0 V ('k`,'k`)V ('k0`0 ,'k0`0) = c0 .

In view of (A.63), the above equation implies that

E

����⌧

Xi ⌦

⇢Z 1

0

'k`(s, ·)Xi(s)ds

������
2

K

=
X

k0,`0

1

1 + �⇢k0`0
E

 ⌧
⌧


Xi ⌦

⇢Z 1

0

'k`(s, ·)Xi(s)ds

��
,'k0`0

�2

K

!

 c0
X

k0,`0

1

1 + �⇢k0`0
. (B.5)

Now, using (A.63) once again, by Lemma B.1 and Cauchy-Schwarz inequality,

E

�����⌧

Xi ⌦

⇢Z 1

0

�(s, ·)Xi(s)ds

�������

2

K
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=
X

k,`

1

1 + �⇢k`
E

 ⌧
⌧


Xi ⌦

⇢Z 1

0

�(s, ·)Xi(s)ds

��
,'k`

�2

K

!

=
X

k,`

1

1 + �⇢k`
E

 ⌧
⌧


Xi ⌦

⇢Z 1

0

'k`(s, ·)Xi(s)ds

��
, �

�2

K

!

 k�k2K ⇥

X

k,`

1

1 + �⇢k`
E

����⌧

Xi ⌦

⇢Z 1

0

'k`(s, ·)Xi(s)ds

������
2

K

.

Combining the above result and (B.5), by Assumption A2 and Lemma B.2, we find

E

�����⌧

Xi ⌦

⇢Z 1

0

�(s, ·)Xi(s)ds

�������

2

K

 c0 k�k
2
K ⇥

X

k,`

1

1 + �⇢k`
⇥

X

k0,`0

1

1 + �⇢k0`0

 c k�k2K ⇥

⇢X

k,`

1

1 + �(k`)2D

�2

 c��1/D
k�k2K ,

which proves (B.4).

Lemma B.5. Under Assumptions A1–A4, for the xk`’s in Assumption A2, for any � 2 H

and x̆ 2 L2([0, 1]),
����⌧

x̆⌦

⇢Z 1

0

�(s, ·)x̆(s)ds

������
2

K

 kx̆k2L2 k�k2L2

X

k,`

1

1 + �⇢k`
hx̆, xk`i

2
L2 k⌘`k

2
L2 . (B.6)

Proof. By Assumption A2, the representation �(s, t) =
P

k,` V (�,'k`)'k`(s, t) =
P

k,` V (�, xk`⌦

⌘`)xk`(s)⌘`(t) holds for any � 2 H, and the Cauchy-Schwarz inequality and Lemma B.1 yield

⌧
⌧


x̆⌦

⇢Z 1

0

�(s, ·)x̆(s)ds

��
,'k`

�2

K

=

����
Z

[0,1]3
'k`(s1, t) �(s2, t) x̆(s1) x̆(s2) ds1 ds2 dt

����
2

=

����
X

k0,`0

V (�, xk0`0 ⌦ ⌘`0)

Z

[0,1]3
xk`(s1) xk0`0(s2) x̆(s1) x̆(s2) ⌘`(t) ⌘`0(t)ds1 ds2 dt

����
2

=

����
Z 1

0

x̆(s1) xk`(s1) ds1

����
2

⇥

����
X

k0,`0

V (�, xk0`0 ⌦ ⌘`0)

Z 1

0

x̆(s2) xk0`0(s2) ds2

Z 1

0

⌘`(t) ⌘`0(t) dt

����
2

=

����
Z 1

0

x̆(s1) xk`(s1) ds1

����
2

⇥

����
Z

[0,1]2
�(s2, t) x̆(s2) ⌘`(t) ds2 dt

����
2

 k�k2L2 kx̆k2L2 k⌘`k
2
L2

⇢Z 1

0

x̆(s) xk`(s) ds

�2

= k�k2L2 kx̆k2L2 hx̆, xk`i
2
L2 k⌘`k

2
L2 .
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Therefore, in view of (A.63), we deduce from the above result that

����⌧

x̆⌦

⇢Z 1

0

�(s, ·)x̆(s)ds

������
2

K

=
X

k,`

1

1 + �⇢k`

⌧
⌧


x̆⌦

⇢Z 1

0

�(s, ·)x̆(s)ds

��
,'k`

�2

K

 k�k2L2 kx̆k2L2

X

k,`

1

1 + �⇢k`
hx̆, xk`i

2
L2 k⌘`k

2
L2 ,

which proves (B.6).

Recall from (A.17) that, for the {xk`}k,`�1 and {⌘`}`�1 in Assumption A2,

w2(Xi) = kXik
2
L2

X

k,`

1

1 + �⇢k`
hXi, xk`i

2
L2 k⌘`k

2
L2 , 1  i  n .

We have the following lemma regarding the second moment of w(X).

Lemma B.6. Under Assumptions A1–A4, we have E{w2(Xi)}  c��1/(2D), where w(Xi) is

defined in (A.17) and c > 0 is an absolute constant.

Proof. By Assumption A2, for k, ` � 1,

V ('k`,'k`) = k⌘`k
2
L2

Z
CX(s1, s2)xk`(s1)xk`(s2)ds1ds2 = 1 .

Using the Cauchy-Schwarz inequality and Assumption A4,

E{w2(Xi)} =
X

k,`

1

1 + �⇢k`
k⌘`k

2
L2E

"
kXik

2
L2

⇢Z 1

0

Xi(s) xk`(s) ds

�2
#



⇣
EkXik

4
L2

⌘1/2X

k,`

1

1 + �⇢k`
k⌘`k

2
L2

"
E

⇢Z 1

0

Xi(s) xk`(s) ds

�4
#1/2

 c
⇣
EkXik

4
L2

⌘1/2X

k,`

1

1 + �⇢k`
k⌘`k

2
L2 E

⇢Z 1

0

Xi(s) xk`(s) ds

�2

= c
⇣
EkXik

4
L2

⌘1/2X

k,`

1

1 + �⇢k`
k⌘`k

2
L2

Z
CX(s1, s2) xk`(s1) xk`(s2) ds1 ds2

= c
⇣
EkXik

4
L2

⌘1/2X

k,`

1

1 + �⇢k`
V ('k`,'k`)

= c
⇣
EkXik

4
L2

⌘1/2X

k,`

1

1 + �⇢k`
.
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Since EkXik
4
L2 is finite by Assumption A4, by Assumption A2 and Lemma B.2, we deduce

from the above equation that

E{w2(Xi)}  c
X

k,`

1

1 + �(k`)2D
 c��1/(2D) .

Lemma B.7. Under Assumptions A1–A4,

Ek⌧(X ⌦ ")k2K =
X

k,`

1

1 + �⇢k`
,

Ek⌧(X ⌦ ")k4K  c��1/D ,

where c > 0 is an absolute constant.

Proof. In view of (2.13) and (A.63), we have

⌧(X ⌦ ") =
X

k,`

h⌧(X ⌦ "),'k`iK

1 + �⇢k`
'k` =

X

k,`

hX ⌦ ",'k`iL2

1 + �⇢k`
'k` ,

k⌧(X ⌦ ")k2K =
X

k,`

h⌧(X ⌦ "),'k`i
2
K

1 + �⇢k`
=
X

k,`

hX ⌦ ",'k`i
2
L2

1 + �⇢k`
.

(B.7)

Recall from Assumption A3 that C"(s1, s2) = E{"(s1)"(s2)|X} = �(s1, s2) (we have assumed

�2
" = 1 without loss of generality; see the beginning of Section A.5). Observing the definition

of V in (2.9) and ⌧ in (2.17), we find, for k, k0, `, `0 � 1,

E
n⌦
⌧(X ⌦ "),'k`

↵
K

⌦
⌧(X ⌦ "),'k0`0

↵
K

o

= E
n⌦

X ⌦ ",'k`

↵
L2

⌦
X ⌦ ",'k0`0

↵
L2

o

= E

"⇢Z

[0,1]2
X(s)"(t)'k`(s, t) ds dt

�
⇥

⇢Z

[0,1]2
X(s0)"(t0)'k0`0(s

0, t0) ds0 dt0
�#

= E

 Z

[0,1]4
E{"(t)"(t0)|X}X(s)X(s0)'k`(s, t)'k0`0(s

0, t0) ds ds0 dt dt0
�

=

Z

[0,1]4
C"(t, t

0)CX(s, s
0)'k`(s, t)'k0`0(s

0, t0) ds ds0 dt dt0

=

Z

[0,1]3
CX(s, s

0)'k`(s, t)'k0`0(s
0, t) ds ds0 dt

= V ('k`,'k0`0) = �kk0 �``0 , (B.8)

where we used Assumption A2 in the last step. From the above equation we have obtained

E
⇣⌦

X ⌦ ",'k`

↵2
L2

⌘
= 1 .
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In view of (B.7),

Ek⌧(X ⌦ ")k2K =
X

k,`

E
�
hX ⌦ ",'k`i

2
L2

�

1 + �⇢k`
=
X

k,`

1

1 + �⇢k`
.

To show the order of Ek⌧(X ⌦ ")k4K we use Assumptions A2 and A4 to obtain

E
�
hX ⌦ ",'k`i

4
L2

�
= E

⇢Z 1

0

Z 1

0

X(s)"(t)'k`(s, t) ds dt

�4

= E

"⇢Z 1

0

X(s)xk`(s)ds

�4 Z

[0,1]4
E{"(t1)"(t2)"(t3)"(t4)|X}⌘`(t1)⌘`(t2)⌘`(t3)⌘`(t4)dt1dt2dt3dt4

#



✓Z

[0,1]4

h
E{"(t1)"(t2)"(t3)"(t4)|X}

i2
dt1dt2dt3dt4

◆1/2

⇥ k⌘`k
4
L2 ⇥

"
E

⇢Z 1

0

X(s)xk`(s)ds

�2
#2

= c

"
E

⇢Z 1

0

Z 1

0

CX(s1, s2)xk`(s1)xk`(s2)ds1ds2

�2
#2

= c {V (xk`, xk`)}
2 = c . (B.9)

Therefore, we deduce that

Ek⌧(X ⌦ ")k4K =
X

k1,`1,k2,`2

1

(1 + �⇢k1`1)(1 + �⇢k2`2)
E
⇣
hX ⌦ ",'k1`1i

2
L2hX ⌦ ",'k2`2i

2
L2

⌘



"
X

k,`

1

1 + �⇢k`

n
E
�
hX ⌦ ",'k`i

4
L2

�o1/2
#2

 c

⇢X

k,`

1

1 + �⇢k`

�2

 c��1/D .

The following lemma is a modified version of Lemma A.1 in Kley et al. (2016), which we

use to prove Theorem 3.3.

Lemma B.8. For any non-decreasing, convex function  : R+
! R

+ with  (0) = 0 and

for any real-valued random variable Z, let kZk = inf{c > 0 : E{ (|Z|/c)}  1} denote the

Orlicz norm. Let {H(s, t) : (s, t) 2 [0, 1]2} be a separable stochastic process with kH(s1, t1)�

H(s2, t2)k  c d{(s1, t1), (s2, t2)} for any (s1, t1), (s2, t2) 2 [0, 1]2 with d{(s1, t1), (s2, t2)} �

⌘/2 � 0 and for some constant c > 0. Let D(w, d) denote the packing number of the metric

space ([0, 1]2, d). Then, for any � > 0, ⌘ > ⌘, there exists a random variable S and a constant

K > 0 such that

sup
d{(s1,t1),(s2,t2)}�

|H(s1, t1)�H(s2, t2)|  S + 2 sup
d{(s1,t1),(s2,t2)}⌘

(s1,t1)2[0,1]2

|H(s1, t1)�H(s2, t2)|

and

kSk  K

 Z ⌘

⌘/2

 (�1)
{D(", d)}d"+ (� + 2⌘) (�1)

{D
2(⌘, d)}

�
,

where  (�1) is the inverse function of  , and the set [0, 1]2 contains at most D(⌘, d) points.
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B.2 An example for Assumption A2

In this section we provide a concrete example that satisfies Assumption A2. We use the

cosine basis of L2([0, 1]) defined by

⌘1(t) ⌘ 1 , ⌘`(t) =
p

2 cos{(`� 1)⇡t} ` = 2, 3, . . . (B.10)

Now, the derivatives of these functions are orthogonal with respect to the L2-inner product

h·, ·iL2 , that is, for any integer ✓ � 0 and `, `0 � 2, h⌘(✓)` , ⌘(✓)`0 iL2 = �``0 k⌘
(✓)
` k

2
L2 = �``0(` �

1)2✓⇡2✓; for any ✓ � 0 and ` � 2, h⌘(✓)1 , ⌘(✓)` iL2 = 0. Given {⌘`}`�1, the functions xk` are

defined as the solution of a series of integral-di↵erential equations whose parameters depend

on k⌘(✓)` k
2
L2 , such that (2.12) is satisfied. In particular, we have the following proposition,

which provides an example of an eigen-system that satisfies Assumption A2 and is proved

in Section B.3 using the theory of integro-di↵erential equations.

Proposition B.1. For each ` � 1, let {(⇢k`, exk`)}k�1 denote the eigenvalue-eigenfunction

pairs of the following integro-di↵erential equations with boundary conditions:

8
>><

>>:

⇢`

Z 1

0

CX(s, s
0)ex(s0)ds0 = (�1)mex(2m)(s) +

m�1X

✓=0

✓
m

✓

◆
(�1)✓{(`� 1)⇡}2m�2✓ex(2✓)(s) ,

ex(✓)(0) = ex(✓)(1) = 0 , for m  ✓  2m� 1 .

(B.11)

For the functions ⌘` defined in (B.10), let xk` = hCX(exk`), exk`i
�1/2
L2 exk` and 'k` = xk` ⌦ ⌘`,

where the operator CX is defined by (2.11). Suppose Condition B(r) below is satisfied for

some constant r � 0. Then, the pairs (⇢k`,'k`)k,` satisfy Assumption A2 with D = m+ r+1

and a = r + 1.

For a constant r � 0, we now state as follows Condition B(r) for Proposition B.1, which

was proposed in Shang and Cheng (2015). Let ⌦+ = {(s, t) 2 [0, 1] : s > t}, ⌦� = {(s, t) 2

[0, 1] : s < t} and let cl(A) denote the closure of A ⇢ [0, 1]2. Recall that CX defined in (2.10)

is the covariance function of X.

Condition B(r). Suppose that there exists a constant r � 0 such that one of the following

two assumptions is satisfied: (i) r = 0; (ii) r � 1, and for any j = 0, 1, . . . , r�1, C(j,0)
X (0, t) =

0, for any 0  t  1. Assume CX satisfies the following pseudo SY conditions of order r:

(1) L(s1, s2) := C(r,r)
X (s1, s2) is continuous on [0, 1]2. All the partial derivatives of L(s1, s2)

up to order 2m + 2r + 2 are continuous on ⌦+ [ ⌦�, and continuously extendable to

cl(⌦+) and cl(⌦+).

(2) a(s) := L(1,0)
� (s, s) � L(1,0)

+ (s, s) has a positive lower bound for any s 2 [0, 1], where

L(1,0)
� and L(1,0)

+ are two di↵erent extensions of L(1,0) to [0, 1]2 that are continuous on

cl(⌦�) and cl(⌦+), respectively.
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(3) L(2,0)
+ (s1, s2) is bounded over [0, 1]2, where L(2,0)

+ is the extension of L(2,0) to [0, 1]2 that

is continuous on cl(⌦+).

In addition, assume that the integro-di↵erential equations with the boundary conditions in

Proposition B.1 are regular in the the sense of Birkho↵ (1908b) (see Definition B.1 below).

Definition B.1 (Regular boundary conditions of even order; Birkho↵, 1908b). Consider the

linear di↵erential equation of order 2k in ': '(2k)(x) +
P2k�2

`=0 p`(x)'(`)(x) + �'(x) = 0

on an interval [a, b] with 2k linear homogeneous boundary conditions Wi(') = 0 in

'(a),'0(a),'(k�1)(a), . . . ,'(b),'0(b),'(k�1)(b), for 1  i  2k. Applying the linear

transformation on the Wi’s to obtain the normalized boundary conditions in the form

Wi(') = Wia(') + Wib(') = 0, where Wia(') = ai'(ji)(a) +
Pji�1

`=0 ai`'(`)(a), Wib(') =

bi'(ji)(b) +
Pji�1

`=0 bi`'(`)(b), and where j1 � . . . � jn are such that no successive three of

them are equal. Define ⇣0, ⇣1, ⇣2 2 C through the identity

⇣0 + ⇣1s+
⇣2
s

⌘

�����������

a1w
j1
1 · · · a1w

j1
k�1 (a1 + b1s)w

j1
k (a1 +

b1
s )w

j1
k+1 b1w

j1
k+2 · · · b1wj1

n

a2w
j2
1 · · · a2w

j2
k�1 (a2 + b2s)w

j2
k (a2 +

b2
s )w

j2
k+1 b2w

j2
k+2 · · · b2wj2

n

· · · · · · · · · · · · · · · · · · · · · · · ·

anw
jn
1 · · · anw

jn
k�1 (an + bns)w

jn
k (an +

bn
s )w

j2
k+1 bnw

jn
k+2 · · · bnwjn

n

�����������

,

where the wi’s are the 2k-th root of unity ordered according to Re(⇢w1) < Re(⇢w2) < · · · <

Re(⇢wn) and ⇢ = �1/(2k). Then, the boundary conditions W1('), . . . ,W2k(') are regular if

⇣1 6= 0 and ⇣2 6= 0.

B.3 Proof of Proposition B.1

We follow the proof of Proposition 2.2 in Shang and Cheng (2015) and we assume that a(·) in

Condition B(r) satisfies a ⌘ 1 without loss of generality. For the integro-di↵erential equation

(B.11), taking ` = 1 yields

8
><

>:

⇢1

Z 1

0

CX(s1, s2) x(s2) ds2 = (�1)m ex(2✓)(s1) ,

ex(✓)(0) = ex(✓)(1) = 0 , for m  ✓  2m� 1 .

This case was proved by Shang and Cheng (2015). We therefore focus on the case where

` � 2 in equation (B.11), which is equivalent to, for ` � 2,

8
>><

>>:

⇢`

Z 1

0

CX(s1, s2) x(s2) ds2 =
mX

✓=0

✓
m

✓

◆
(�1)✓{(`� 1)⇡}2m�2✓ ex(2✓)(s1) ,

ex(✓)(0) = ex(✓)(1) = 0 , for m  ✓  2m� 1 .

(B.12)
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By virtue of simple presentation, without loss of generality, we change the subscript of ⇢` to

`� 1 in (B.12) to write, for ` � 1,
8
>><

>>:

⇢`

Z 1

0

CX(s1, s2) x(s2) ds2 =
mX

✓=0

✓
m

✓

◆
(�1)✓(`⇡)2m�2✓ ex(2✓)(s1) ,

ex(✓)(0) = ex(✓)(1) = 0 , for m  ✓  2m� 1 .

(B.13)

In the sequel we show the results in Proposition B.1 based on (B.13). Let N(s1, s2) =

L(2,0)
+ (s1, s2) for L+ in Section B.2 and let M(s1, s2) denote its reciprocal kernel such that

the following reciprocal property (Tamarkin, 1927) is satisfied

M(s1, s2) +N(s1, s2) =

Z 1

0

M(s1, ⇠)N(⇠, s2)d⇠ =

Z 1

0

N(s1, ⇠)M(⇠, s2)d⇠ . (B.14)

For 0  ✓  m, let c✓ =
�
m
✓

�
(�1)✓⇡2m�2✓. For r in Condition B(r), we have (B.13) is

equivalent to the following equation
8
>>>>><

>>>>>:

mX

✓=0

c✓ `
2m�2✓ (2✓+r)(s1) = ⇢`

Z 1

0

CX(s1, s2) 
(r)(s2) ds2 ,

 (�)(0) =  (�)(1) = 0 , for m+ r  �  2m+ r � 1 ,

 (�)(1) = 0 , for 0  �  r � 1 .

(B.15)

That is, ex =  (r) being the solution to (B.13) is equivalent to  being the solution to (B.15).

From the first equation in (B.15), by integration by parts we find

mX

✓=0

c✓ `
2m�2✓ (2✓+r)(s1) = (�1)r⇢`

Z 1

0

C(0,r)
X (s1, s2) (s2) ds2 ,

due to the assumption that C(0,�)
X (s, 0) = 1 for 0  �  r � 1, and that  (�)(1) = 0, for

0  �  r � 1 in (B.15). Taking partial derivatives of the above equation yields that, for

0  �  r,

mX

✓=0

c✓ `
2m�2✓ (2✓+r+�)(s1) = (�1)r⇢`

Z 1

0

C(�,r)
X (s1, s2) (s2) ds2 ,

mX

✓=0

c✓ `
2m�2✓ (2✓+2r+1)(s1) = (�1)r⇢`

Z 1

0

L(1,0)(s1, s2) (s2) ds2 ,

mX

✓=0

c✓ `
2m�2✓ (2✓+2r+2)(s1) = (�1)r+1⇢`  (s1) + (�1)r⇢`

Z 1

0

L(2,0)
+ (s1, s2) (s2) ds2 ,

due to the fact that a(s) = 1 and
R 1

0 L(1,0)(s1, s2) (s2) ds2 =
R 1

s1
L(1,0)
� (s1, s2) (s2)ds2 +

R s1
0 L(1,0)

+ (s1, s2) (s2)ds2. Hence we find that (B.15) is equivalent to the following boundary
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value problem

8
>>>>>>>>>><

>>>>>>>>>>:

mX

✓=0

c✓ `
2m�2✓ (2✓+2r+2)(s1) + (�1)r⇢`

⇢
 (s1)�

Z 1

0

L(2,0)
+ (s1, s2) (s2)ds2

�
= 0 ,

 (�)(0) =  (�)(1) = 0 , for m+ r  �  2m+ r � 1 ,

 (�)(1) = 0 , for 0  �  r � 1 ,
mX

✓=0

c✓ `
2m�2✓ (2✓+r+�)(0) = (�1)r⇢`

Z 1

0

C(�,r)
X (0, s) (s)ds , 0  �  r + 1 .

(B.16)

Recall from the paragraph above (B.14) that N(s1, s2) = L(2,0)
+ (s1, s2). For the first

equation in (B.16), using the reciprocal property in (B.14),

(�1)r+1
mX

✓=0

c✓ `
2m�2✓

Z 1

0

M(⇠, s) (2✓+2r+2)(s)ds

= ⇢`

⇢Z 1

0

M(⇠, s) (s)ds�

Z 1

0

Z 1

0

M(⇠, s1)N(s1, s2) (s2)ds1ds2

�

= ⇢`

 Z 1

0

M(⇠, s) (s)ds�

Z 1

0

{M(⇠, s) +N(⇠, s)} (s)ds

�

= �⇢`

Z̆ 1

0

N(⇠, s) (s)ds = �⇢`

Z 1

0

L(2,0)
+ (⇠, s) (s) ds .

Combining the above equation with the first equation of (B.16) yields

⇢` (s1) = (�1)r+1
mX

✓=0

c✓ `
2m�2✓

⇢
 (2✓+2r+2)(s1)�

Z 1

0

M(s1, s2) 
(2✓+2r+2)(s2)ds2

�
. (B.17)

Combining (B.17) with the first equation of (B.16) and using the reciprocal property in

(B.14), we find

(�1)r+1
mX

✓=0

c✓ `
2m�2✓ (2✓+2r+2)(s1)

= ⇢` (s1)�

Z 1

0

N(s1, s2)

⇥

"
(�1)r+1

mX

✓=0

c✓ `
2m�2✓

⇢
 (2✓+2r+2)(s2)�

Z 1

0

M(s2, ⇠) 
(2✓+2r+2)(⇠)d⇠

�#
ds2

= ⇢` (s1)� (�1)r+1
mX

✓1=0

c✓ `
2m�2✓

Z 1

0

N(s1, s2) 
(2✓+2r+2)(s2)ds2

+ (�1)r+1
mX

✓=0

c✓ `
2m�2✓

Z 1

0

Z 1

0

N(s1, s2)M(s2, ⇠) 
(2✓+2r+2)(⇠)d⇠ds2
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= ⇢` (s1)� (�1)r+1
mX

✓=0

c✓ `
2m�2✓

Z 1

0

N(s1, s2) 
(2✓+2r+2)(s2)ds2

+ (�1)r+1
mX

✓=0

c✓ `
2m�2✓

Z 1

0

N(s1, ⇠) 
(2✓+2r+2)(⇠)d⇠

+ (�1)r+1
mX

✓=0

c✓ `
2m�2✓

Z 1

0

M(s1, ⇠) 
(2✓+2r+2)(⇠)d⇠

= ⇢` (s1) + (�1)r+1
mX

✓=0

c✓ `
2m�2✓

Z 1

0

M(s1, s2) 
(2✓+2r+2)(s2)ds2 .

Using integration by parts, we deduce from the above equation that

(�1)r+1
mX

✓=0

c✓ `
2m�2✓ (2✓+2r+2)(s1)

= ⇢` (s1) + (�1)r+1
mX

✓=0

c✓ `
2m�2✓

Z 1

0

M (0,2✓+2r+2)(s1, s2) (s2)ds2

+
mX

✓=0

2✓+2r+2X

j=1

(�1)r+jc✓ `
2m�2✓

n
M (0,j�1)(s1, 1) 

(2✓+2r+2�j)(1)�M (0,j�1)(s1, 0) 
(2✓+2r+2�j)(0)

o

= ⇢` (s1) + L` (s1) , (B.18)

if we define

L` (s1) = (�1)r+1
mX

✓=0

c✓ `
2m�2✓

Z 1

0

M (0,2✓+2r+2)(s1, s2) (s2)ds2 +
mX

✓=0

2✓+2r+2X

j=1

(�1)r+jc✓ `
2m�2✓

⇥

n
M (0,j�1)(s1, 1) 

(2✓+2r+2�j)(1)�M (0,j�1)(s1, 0) 
(2✓+2r+2�j)(0)

o
. (B.19)

For the last boundary value condition in (B.16), by (B.17) and integration by parts, we

find that, for 0  �  r + 1,

(�1)r
mX

✓=0

c✓ `
2m�2✓ (2✓+r+�)(0)

=

Z 1

0

C(r,�)
X (s1, 0)

"
(�1)r+1

mX

✓=0

c✓ `
2m�2✓

⇢
 (2✓+2r+2)(s1)�

Z 1

0

M(s1, s2) 
(2✓+2r+2)(s2)ds2

�#
ds1

= (�1)r+1
mX

✓=0

c✓ `
2m�2✓

⇢Z 1

0

C(r,�)
X (s1, 0) 

(2✓+2r+2)(s1)ds1

�

Z 1

0

Z 1

0

C(r,�)
X (s1, 0)M(s1, s2) 

(2✓+2r+2)(s2)ds2ds1

�

= (�1)r+1
mX

✓=0

c✓ `
2m�2✓

"Z 1

0

C(2✓+3r+2,�)
X (s1, 0) (s1)ds1
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�

Z 1

0

Z 1

0

C(r,�)
X (s1, 0)M

(0,2✓+2r+2)(s1, s2) (s2)ds2ds1

+
2✓+2r+2X

j=1

(�1)j�1

⇢
C(r+j�1,�)

X (1, 0) (2✓+2r+2�j)(1)� C(r+j�1,�)
X (0, 0) (2✓+2r+2�j)(0)

�  (2✓+2r+2�j)(1)

Z 1

0

C(r,�)
X (s1, 0)M

(0,j�1)(s1, 1)ds1

+  (2✓+2r+2�j)(0)

Z 1

0

C(r,�)
X (s1, 0)M

(0,j�1)(s1, 0)ds1

�#
.

For 0  �  r + 1 and 1  j  2m+ 2r + 2, if we denote

A`,�(s) =
mX

✓=0

c✓ `
2m�2✓

⇢
C(2✓+3r+2,�)

X (s, 0)�

Z 1

0

C(r,�)
X (⇠, 0)M (0,2✓+2r+2)(⇠, s)d⇠

�
;

aj,� = (�1)j
⇢
C(r+j�1,�)

X (0, 0)�

Z 1

0

C(r,�)
X (s, 0)M (0,j�1)(s, 0)ds

�
;

bj,� = (�1)j+1

⇢
C(r+j�1,�)

X (1, 0)�

Z 1

0

C(r,�)
X (s, 0)M (0,j�1)(s, 1)ds

�
, (B.20)

we have that for 0  �  r + 1,

mX

✓=0

2✓+2r+2X

j=1

c✓ `
2m�2✓

n
aj,�  

(2✓+2r+2�j)(0) + bj,�  
(2✓+2r+2�j)(1)

o

+
mX

✓=0

c✓ `
2m�2✓  (2✓+r+�)(0) +

Z
A`,�(s) (s)ds = 0 .

By assumption, we have C(j,0)
X (0, s) ⌘ 0 for 0  j  r � 1, so that C(q,�)

X (s, 0) =

C(�,q)
X (0, s) ⌘ 0 for 0  �  r � 1 and 1  q  2m + 3r + 2. Hence aj,� = bj,� = 0

and A`,�(s) ⌘ 0, for 0  j  r � 1 and 1  �  2✓ + 2r + 2. Therefore, in view of (B.18),

from the above calculations, if we let D = m+ r+1, we find that (B.13), (B.15) and (B.16)

are equivalent, and are equivalent to the following boundary value problem
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

 (2D)(s) + (�1)m
m�1X

✓=0

c✓ `
2m�2✓ (2D�2✓)(s) + (�1)m+r⇢` (s) + L` (s) = 0 ,

 (�)(0) = 0 , for m+ r  �  2m+ r � 1 ,

 (�)(1) = 0 , for 0  �  r � 1 and m+ r  �  2m+ r � 1 ,
mX

✓=0

2✓+2r+2X

j=1

c✓ `
2m�2✓

n
aj,�  

(2✓+2r+2�j)(0) + bj,�  
(2✓+2r+2�j)(1)

o

+
mX

✓=0

c✓ `
2m�2✓ (2✓+r+�)(0) +

Z
A`,�(s) (s)ds = 0 , for � = r, r + 1 .

(B.21)
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The auxiliary problem (cf. Tamarkin and Langer, 1928, p. 459) of (B.21) is
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

 (2D)(s) + (�1)m
m�1X

✓=0

c✓ `
2m�2✓ (2D�2✓)(s) + (�1)m+r⇢̆` (s) = 0 ,

 (�)(0) = 0 , for m+ r  �  2m+ r � 1 ,

 (�)(1) = 0 , for 0  �  r � 1 and m+ r  �  2m+ r � 1 ,
mX

✓=0

2✓+2r+2X

j=1

c✓ `
2m�2✓

n
aj,�  

(2✓+2r+2�j)(0) + bj,�  
(2✓+2r+2�j)(1)

o

+
mX

✓=0

c✓ `
2m�2✓ (2✓+r+�)(0) = 0 , for � = r, r + 1 .

(B.22)

The above boundary value problem in (B.22) is a linear di↵erential equation of the order of

2m+ 2r + 2 = 2D in  , with 2D linear homogeneous conditions on the  (j)(0) and  (j)(1),

for 0  j  2m+2r+1; furthermore, the coe�cients of the odd-order derivatives of  in the

first equation of (B.22) are all zero. The characteristic value (see Birkho↵, 1908b) of (B.22)

is (�1)m+r⇢̆`. Letting ⇢̆` = (�1)D+1` 2D%̆2D, we have the first equation in (B.22) is

 (2D)(s) +
mX

✓=1

cm�✓ `
2✓ (2D�2✓)(s) + ` 2D%̆2D  (s) = 0 , (B.23)

Let e (s) =  (s/`), so that e (�)(s) = `�� (�)(s/`), for 0  �  2D. The key of this proof

is that  (s) being the solution to (B.23) is equivalent to e (s) being the solution to the

following ordinary di↵erential equation corresponding to the characteristic value %2D that is

independent of `:

e (2D)(s) +
mX

✓=1

cm�✓
e (2D�2✓)(s) + %̆2D e (s) = 0 . (B.24)

In view of (B.22), together with the boundary conditions, e is the solution of the following

boundary value problem.
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

e (2D)(s) +
mX

✓=1

cm�✓
e (2D�2✓)(s) + %̆2D e (s) = 0 ,

e (�)(0) = 0 , for m+ r  �  2m+ r � 1 ,

e (�)(`) = 0 , for 0  �  r � 1 and m+ r  �  2m+ r � 1 ,
mX

✓=0

2✓+2r+2X

j=1

c✓ `
2D�j

n
aj,� e (2✓+2r+2�j)(0) + bj,� e (2✓+2r+2�j)(`)

o

+`2m+r+�
mX

✓=0

c✓ e (2✓+r+�)(0) = 0 , for � = r, r + 1 .

(B.25)
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Rearranging the last two boundary conditions in (B.25) yields that, for � = r + 1, r and for

aj,�, bj,� in (B.20),

mX

✓=0

2✓+2r+1X

j=0

c✓`
2m�2✓+j

n
a2✓+2r+2�j,�

e (j)(0) + b2✓+2r+2�j,�
e (j)(`)

o
+ `2m+r+�

mX

✓=0

c✓ e (2✓+r+�)(0)

= `2D�1

"
2m+2r+1X

j=0

n
eaj,�,` e (j)(0) +ebj,�,` e (j)(`)

o
+ `��r�1

mX

✓=0

c✓ e (2✓+r+�)(0)

#
= 0 .

For convenience of presentation, let aj,� = 0, for �2m + 1  j  0. For � = r, r + 1 and

0  j  2m+ 2r + 1, denote

eaj,�,` =
mX

✓=0

`j�2✓�2r�1c✓ a2✓+2r+2�j,� , ebj,�,` =
mX

✓=0

`j�2✓�2r�1c✓ b2✓+2r+2�j,� . (B.26)

Let

fW1( e ) =
2m+2r+1X

j=0

n
eaj,r+1,`

e (j)(0) +ebj,r+1,`
e (j)(`)

o
+

mX

✓=0

c✓ e (2✓+2r+1)(0)

fW2( e ) =
2m+2r+1X

j=0

n
eaj,r,` e (j)(0) +ebj,r,` e (j)(`)

o
+ `�1

mX

✓=0

c✓ e (2✓+2r)(0)

In view of (B.22), for the eaj,�,`’s and ebj,�,`’s in (B.26), e satisfies the following di↵erential

equation with normalized boundary conditions (Birkho↵, 1908b, p. 382) is
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

e (2D)(s) +
mX

✓=1

c✓ e (2D�2✓)(s) + %̆2D e (s) = 0

fW1( e ) =
2m+2r+1X

j=0

n
eaj,r+1,`

e (j)(0) +ebj,r+1,`
e (j)(`)

o
+

mX

✓=0

c✓ e (2✓+2r+1)(0) = 0 ,

fW2( e ) =
2m+2r+1X

j=0

n
eaj,r,` e (j)(0) +ebj,r,` e (j)(`)

o
+ `�1

mX

✓=0

c✓ e (2✓+2r)(0) = 0 ,

e (�)(0) = 0 , e (�)(`) = 0 , for m+ r  �  2m+ r � 1 ,

e (�)(`) = 0 , for 0  �  r � 1 .

(B.27)

Let fW3( e ), . . . ,fW2D( e ) denote left hand side of the boundary conditions in the rest of the

last two lines of the above equations. Now,  being the solution to (B.22) is equivalent to e 
being the solution to (B.27).

Next, we draw the conclusion of the growing rate of the characteristic value %̆2D in

(B.27). For %̆ 2 C, let ew1, . . . , ew2D denote the roots of w2D + 1 = 0, whose subscript is

ordered according to

Re(%̆ ew1)  Re(%̆ ew2)  · · ·  Re(%̆ ew2D) .
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By Birkho↵ (1908a) and Theorem III’ in Stone (1926), for any % 2 C, (B.24) has 2D linear

independent analytic solutions  ̆`,1, . . . ,  ̆`,2D in the form of

 ̆(�)
`,j (s) = (%̆ ewj)

� exp(%̆ ewjs)

⇢
1 +

M�1X

q=1

Bq,�,`(s)

(%̆ ewj)q
+

Ej,�,`(s, %̆)

%̆M

�
, (B.28)

for some uniformly bounded functions Bq,�,` and Ej,�,`. The condition that %2D is the char-

acteristic value of (B.27) is that

e� ⌘

�����������

fW1( ̆`,1) fW1( ̆`,2) · · · fW1( ̆`,2D)

fW2( ̆`,1) fW2( ̆`,2) · · · fW2( ̆`,2D)

· · · · · · · · · · · ·

fW2D( ̆`,1) fW2D( ̆`,2) · · · fW2D( ̆`,2D)

�����������

= 0 . (B.29)

In order to analyse the condition in (B.29), Birkho↵ (1908b) introduced the definition of

regular boundary conditions; see Birkho↵ (1908b), p. 382 and Definition B.1 in Section B.2.

For the eaj,�,`’s and ebj,�,`’s in (B.26), the boundary conditions in (B.27) is regular if ⇣0,`, ⇣1,`, ⇣2,`
defined through the following equation according to the boundary conditions in (B.27) is such

that ⇣1,` ⇣2,` 6= 0 for any ` � 1:

⇣0,` + ⇣1,`s+
⇣2,`
s

⌘

det

2

66666666666666666666664

(eaj,r+1,` + c0) ew2D�1
1 · · · (eaj,r+1,` + c0) ew2D�1

D�1 {(eaj,r+1,` + c0) +ebj,r+1,`s} ew2D�1
D {(eaj,r+1,` + c0) +

ebj,r+1,`

s } ew2D�1
D+1

ebj,r+1,` ew2D�1
D+2 · · · ebj,r+1,` ew2D�1

2D

eaj,r,` ew2D
1 · · · eaj,r,` ew2D

D�1 (eaj,r,` +ebj,r,`s) ew2D
D (eaj,r,` +

ebj,r,`
s ) ew2D

D+1
ebj,r,` ew2D

D+2 · · · ebj,r,` ew2D
2D

ew2m+r�1
1 · · · ew2m+r�1

D�1 ew2m+r�1
D ew2m+r�1

D+1 0 · · · 0

0 · · · 0 s ew2m+r�1
D

1
s ew

2m+r�1
D ew2m+r�1

D+2 · · · ew2m+r�1
2D

ew2m+r�2
1 · · · ew2m+r�2

D�1 ew2m+r�2
D ew2m+r�2

D+1 0 · · · 0

0 · · · 0 s ew2m+r�2
D

1
s ew

2m+r�2
D ew2m+r�2

D+2 · · · ew2m+r�2
2D

· · · · · · · · · · · · · · · · · · · · · · · ·

ewm+r
1 · · · ewm+r

D�1 ewm+r
D ewm+r

D+1 0 · · · 0

0 · · · 0 s ewm+r
D

1
s ew

m+r
D+1 ewm+r

D+2 · · · ewm+r
2D

0 · · · 0 s ewr�1
D

1
s ew

r�1
D+1 ewr�1

D+2 · · · bn ewr�1
2D

· · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · 0 s ew0
D

1
s ew

0
D+1 ew0

D+2 · · · bn ew0
2D

3
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.

Then, letting i =
p
�1, by the theorem in Birkho↵ (1908b), p. 383, we find that the eigenvalue

%k in (B.27) is of the following form:

%̆k = ±
2k⇡i

ewD
+

1

ewD
log

✓
�
⇣1,`
⇣2,`

◆
+

M0�1X

j=1

ej,`
%̆j

+
E`(%̆)

%̆M0
,

where ej,`(s) and E2,` are the coe�cients of the equal or higher order terms of %̆�1 from the

determinant e� in (B.29), and |ej,`|  c1 and |E`|  c2 uniformly in k, ` � 1 and %̆. Moreover,

c1  |⇣1,`/⇣2,`|  c2 for some c1, c2 > 0. Therefore, (�1)D+1%̆2Dk ⇣ k2D. In conclusion, the

eigenvalue of (B.22) is ⇢̆k` = (�1)D+1` 2D%̆2Dk ⇣ (k`)2D.
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Suppose %2D is a characteristic value of (B.21) and suppose  (s) = e (`s) is the solution

to the problem (B.21) corresponding to %2D. We rewrite the first equation in (B.21) that e 
satisfies. For the L` in (B.21) defined in (B.19), substituting  (s) by e (`s) yields

L` (s1) =
mX

✓=0

`�2✓�2r�2c✓

Z 1

0

M (0,2✓+2r+2)(s1, s2) e (`s2)ds2 +
mX

✓=0

2✓+2r+2X

j=1

(�1)m+r+j`�jc✓

⇥

n
M (0,j�1)(s1, 1) e (2✓+2r+2�j)(`)�M (0,j�1)(s1, 0) e (2✓+2r+2�j)(0)

o

=

Z 1

0

H`(s, ⇠) e (`⇠)d⇠ +
mX

✓=0

2✓+2r+2X

j=1

n
Aj,✓,`(s) e (2✓+2r+2�j)(`)�Bj,✓,`(s) e (2✓+2r+2�j)(0)

o
,

where, for 0  ✓  m and 1  j  2✓ + 2r + 2,

H`(s1, s2) =
mX

✓=0

`�2✓�2r�2c✓M
(0,2✓+2r+2)(s1, s2) ,

Aj,✓,`(s) = (�1)m+r+j`�jc✓M
(0,j�1)(s, 1) ,

Bj,✓,`(s) = (�1)m+r+j`�jc✓M
(0,j�1)(s, 0) .

We have |H`(s1, s2)|  c`�2r�2 uniformly in s1, s2 2 [0, 1]; |Aj,✓,`(s)|, |Bj,✓,`(s)|  c`�1 uni-

formly in s 2 [0, 1], for 0  ✓  m and 1  j  2✓ + 2r + 2. Therefore, for A`,� is as in

(B.20), we have that e (s) is the solution to the following equations

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

e (2D)(s) +
mX

✓=1

c✓ e (2D�2✓)(s) + %2D e (s) +
Z 1

0

H`(s, ⇠) e (`⇠)d⇠

+
mX

✓=0

2✓+2r+2X

j=1

n
Aj,✓,`(s) e (2✓+2r+2�j)(`)�Bj,✓,`(s) e (2✓+2r+2�j)(0)

o
= 0 ,

e (�)(0) = 0 , for m+ r  �  2m+ r � 1 ,

e (�)(`) = 0 , for 0  �  r � 1 and m+ r  �  2m+ r � 1 ,
mX

✓=0

2✓+2r+2X

j=1

`2D�jc✓
n
aj,� e (2✓+2r+2�j)(0) + bj,� e (2✓+2r+2�j)(`)

o

+
mX

✓=0

`2m+r+�c✓ e (2✓+r+�)(0) +

Z
A`,�(s) e (s)ds = 0 , for � = r, r + 1 .

(B.30)

Following the proof of Theorem 7 in Tamarkin (1927), the characteristic value %k of (B.30)

and the characteristic value %̆k of (B.27) have the same growing rate uniformly in `, so that

⇢k` ⇣ (k`)2D.

For the order of kxk`k1, Let e�k` = ⇢1/(2D)
k` 2 R and �k` = ie�k` exp{⇡i/(2D)}. We therefore

have �2kk` = (�1)m+r⇢k`, and Re(�k`) = �e�k` sin{⇡/(2D)}, and Im(�k`) = e�k` cos{⇡/(2D)}.
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Let wk`,1, . . . , wk`,2D 2
�
exp{(2⌫ � 1)⇡i/(2D)}

 
1⌫2D

denote the solution of w2D + 1 = 0,

of which the subscripts are assigned according to the order

Re(`�k`wk`,1)  Re(`�k`wk`,2)  · · ·  Re(`�k`wk`,2D) ,

so that Re(�k`wk`,j) < 0 when 1  j  D, and Re(�k`wk`,j) � 0 when D + 1  ⌫  2D.

Following Tamarkin and Langer (1928), pp. 467–469, the solution  (s) corresponding to the

eigenvalue ⇢k` in (B.21) is such that, for 0  �  2D � 1,

 (�)
k` (s) = ��k`

 DX

j=1

exp(�k`wk`,js)[Q`,jw
�
k`,j] +

2DX

j=D+1

exp{�k`wk`,j(s� 1)}[Q`,jw
�
k`,j]

�
,

(B.31)

where for z 2 C, [z] is such that |[z] � z| = O(k�1 + `�1), and Q`,1, . . . , Q`,2D are real-

valued constants that does not depend on k and are bounded, and at least one of these

2D constants is non-zero. Without loss of generality we may assume that Im(wk`,D) <

0 and Im(wk`,D+1) > 0, so that �k`wk`,D = �ie�k` and �k`wk`,D+1 = ie�k`; when j 6= D

and 2D, |Re(�k`wk`,j)| � e�k` sin(⇡/D). Now, since s 2 [0, 1], when 1  ⌫  D � 1,

| exp(�k`wk`,js)| = exp{Re(�k`wk`,j)s}  1; when D+2  ⌫  2D, | exp{�k`wk`,j(s� 1)}| =

exp{Re(�k`wk`,j)(s� 1)}  1; | exp(�k`wk`,Ds)| = | exp{�k`wk`,D+1(s� 1)}| = 1. Therefore,

from (B.31), we find that, for 0  ✓  m,

sup
s2[0,1]

�� (r+✓)
k` (s)

��

 |�k`|
r+✓ sup

s2[0,1]

 DX

j=1

| exp(�k`wk`,js)| |Q`,j|+
2DX

j=D+1

| exp{�k`wk`,j(s� 1)}| |Q`,j|+O(k�1)

�

 |�k`|
r+✓

⇢
sup
`�1

2DX

j=1

|Q`,j|+O(k�1)

�
⇣ (`k)r+✓ . (B.32)

Let

Zk`,✓,j(s) =

8
><

>:

exp(�k`wk`,js)[Q`,jw
r+✓
k`,j ] , for 1  j  D ,

exp{�k`wk`,j(s� 1)}[Q`,jw
r+✓
k`,j ] , for D + 1  j  2D ,

so that  (r+✓)
k` (s) = �r+✓k`

P2D
j=1 Zk`,✓,j(s). Note that for 1  j1  D � 1 and for 1  j2  2D,

��Zk`,✓,j1(s)Zk`,✓,j2(s)
�� 

�� exp(�k`wk`,j1s)
��⇥ |[Q`,j1 ]|⇥ |[Q`,j2 ]|+O(k�1)

= exp{Re(�k`wk`,j1)s}⇥ |Q`,j1Q`,j2 |+O(k�1)

 exp{�e�k` sin(⇡/D)s}⇥ |Q`,j1Q`,j2 |+O(k�1)
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 c` exp(�c0`ks) , (B.33)

for c`, c0` > 0. Hence, we deduce from the above equation that
R 1

0

��Zk`,✓,j1(s)Zk`,✓,j2(s)
��ds .

k�1. Likewise, for D + 2  j1  2D and for any 1  j2  2D,
��Zk`,✓,j1(s)Zk`,✓,j2(s)

�� 
�� exp{�k`wk`,j1(s� 1)}

��⇥ |[Q`,j1 ]|⇥ |[Q`,j2 ]|+O(k�1)

= exp{Re(�k`wk`,j1)(s� 1)}⇥ |Q`,j1Q`,j2 |+O(k�1)

 exp{e�k` sin(⇡/D)(s� 1)}⇥ |Q`,j1Q`,j2 |+O(k�1)

 c` exp{�c0`k(s� 1)} , (B.34)

for c`, c0` > 0. Hence, we find that
R 1

0

��Zk`,✓,j1(s)Zk`,✓,j2(s)
��ds . k�1. Recall that �k`wk`,D =

�ie�k` and �k`wk`,D+1 = ie�k`. We have
��Zk`,✓,D(s)

��2 = exp{2Re(�k`wk`,D)s}⇥ |Q`,D|
2 +O(k�1) = |Q`,D|

2 +O(k�1) .
��Zk`,✓,D+1(s)

��2 = exp{2Re(�k`wk`,D+1)(s� 1)}⇥ |Q`,D+1|
2 +O(k�1) = |Q`,D+1|

2 +O(k�1) .

Therefore,

k (r+✓)
k` k

2
L2 = |�k`|

2r+2✓
2DX

j1=1

2DX

j2=1

Z
Zk`,✓,j1(s)Zk`,✓,j2(s)ds

= |�k`|
2r+2✓

⇢Z ��Zk`,✓,D(s)
��2ds+

Z ��Zk`,✓,D+1(s)
��2ds+O(k�1)

�

= |�k`|
2r+2✓

n
|Q`,D|

2 + |Q`,D+1|
2 +O(k�1)

o
.

Now we show that in the above equation |Q`,D|
2 + |Q`,D+1|

2
6= 0, which can be proved by

contradiction. Suppose Q`,D = Q`,D+1 = 0. Then, in view of the boundary condition in

(B.22), for m+ r  �1  2m+ r � 1, and for �2 such that 0  �2  r � 1 or m+ r  �2 

2m+ r � 1,

0 =  (�1)
k` (0) = ��1k`

⇢D�1X

j=1

[Q`,jw
�1
k`,j] +

2DX

j=D+2

exp(��k`wk`,j)[Q`,jw
�1
k`,j] +O(k�1)

�
,

0 =  (�2)
k` (1) = ��2k`

⇢D�1X

j=1

exp(�k`wk`,j)[Q`,jw
�2
k`,j] +

2DX

j=D+2

[Q`,jw
�2
k`,j] +O(k�1)

�
.

Following the arguments in Shang and Cheng (2015b), pp. 7–9, letting k ! 1 yields Q`,j = 0

for all 1  j  2D, which contradicts with the fact that at least one of these 2D constants is

nonzero. Therefore, we deduce that |Q`,D|
2+ |Q`,D+1|

2
6= 0, so that k (r+✓)

k` k
2
L2 ⇣ |�k`|2r+2✓

⇣

(`k)2r+2✓, for 0  ✓  m. From this we deduce that

⌦
CX 

(r)
k` , 

(r)
k`

↵
L2 = ⇢�1

k`

mX

✓=0

✓
m

✓

◆
k⌘(m�✓)

` k
2
L2

�� (r+✓)
k`

��2
L2 ⇣ (k`)�2 .
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Recall that xk` = hCX( 
(r)
k` ), 

(r)
k` i

�1/2
L2  (r)

k` . Hence, from the above equation and (B.32) we

conclude that kxk`k1 = hCX( 
(r)
k` ), 

(r)
k` i

�1/2
L2 k (r)

k` k1 . (k`)r+1.

Since the cosine series {⌘`}`�1 is a complete basis of L2([0, 1]) (Theorem 2.4.18 in Hsing

and Eubank, 2015), by the argument similar to the ones in Shang and Cheng (2015b) p. 7,

we have {'k`}k,`�1 is complete in H, and any � 2 H admits the Fourier expansion � =P
k,` V (�,'k`)'k`.

In order to show (2.12), due to Assumption A1, VX(x1, x2) ⌘ hCXx1, x2iL2 defines an

inner product, for x1, x2 2 L2([0, 1]). For each ` � 1, we may orthonormalize the x̆k`’s,

k � 1, w.r.t. VX to obtain the xk`’s. That is, VX(xk`, xk0`) = �kk0 , for k, k0
� 1. Recall that

'k`(s, t) = xk`(s)⌘`(t), k, ` � 1. For V in (2.9),

V ('k`,'k0`0) =

Z

s1,s22[0,1]; t2[0,1]

CX(s1, s2)
�
xk`(s1)⌘`(t)

 �
xk0`0(s2)⌘`0(t)

 
ds1ds2dt

=

Z

[0,1]2
CX(s1, s2)xj`(s1)xk`0(s2)ds1ds2 ⇥

Z 1

0

⌘`(t)⌘`0(t) dt

=
⌦
CX(xk`), xk`0

↵
L2 ⇥ h⌘`, ⌘`0iL2 = VX(xk`, xk0`) �``0 = �kk0 �``0 .

For J in (2.6) and the ⌘` in (B.10), we have h⌘(✓)` , ⌘(✓)`0 iL2 = 0 for 0  ✓  m and ` � 1, so

that

J('k`,'k0`0) = J(xk` ⌦ ⌘`, xk0`0 ⌦ ⌘`0) =
mX

✓=0

✓
m

✓

◆⌦
x(✓)
k` , x

(✓)
k0`0

↵
L2

⌦
⌘(m�✓)
` , ⌘(m�✓)

`0

↵
L2

=
mX

✓=0

✓
m

✓

◆⌦
x(✓)
k` , x

(✓)
k0`0

↵
L2

⌦
⌘(m�✓)
` , ⌘(m�✓)

`0

↵
L2

= �``0
mX

✓=0

✓
m

✓

◆⌦
x(✓)
k` , x

(✓)
k0`0

↵
L2k⌘

(m�✓)
` k

2
L2 .

Using integration by parts and the boundary conditions, in view of (B.13), we deduce from

the above equation that

J('k`,'k0`0) = �``0
mX

✓=0

✓
m

✓

◆
(�1)✓

⌦
x(2✓)
k` , xk0`0

↵
L2 k⌘

(m�✓)
` k

2
L2

= �``0

*
mX

✓=0

✓
m

✓

◆
(�1)✓ k⌘(m�✓)

` k
2
L2 x

(2✓)
k0`0 , xk0`0

+

L2

= �``0

⌧
⇢k`

Z 1

0

CX(s1, s2) xk`0(s2) ds2 , xk0`0

�

L2

= �``0 ⇢k` VX(xj`, xk`0) = ⇢k` �kk0 �``0 ,

which completes the proof.
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