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Abstract

This article studies the problem whether two convex (concave) regression functions

modelling the relation between a response and covariate in two samples differ by a shift

in the horizontal and/or vertical axis. We consider a nonparametric situation assuming

only smoothness of the regression functions. A graphical tool based on the derivatives

of the regression functions and their inverses is proposed to answer this question and

studied in several examples. We also formalize this question in a corresponding hy-

pothesis and develop a statistical test. The asymptotic properties of the corresponding

test statistic are investigated under the null hypothesis and local alternatives. In con-

trast to most of the literature on comparing shape invariant models, which requires

independent data the procedure is applicable for dependent and non-stationary data.

We also illustrate the finite sample properties of the new test by means of a small

simulation study and a real data example.

AMS subject classification: 62G08, 62G10, 62G20
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1 Introduction

A common problem in statistical analysis is the comparison of two regression models that

relate a common response variable to the same covariates for two different groups. If the two

regression functions coincide such statistical inference can be performed on the basis of the

pooled sample and therefore it is of interest to test hypotheses of this type. More formally,

let

Yi,1 = m1(ti,1) + ei,1 , i = 1, . . . , n1 (1.1)

Yj,2 = m2(tj,2) + ej,2 , j = 1, . . . , n2 (1.2)

denote two regression models with real valued responses and predictors t`,k and random errors

ei,1 and ej,2. Statistical methodology addressing the question, if the two regression functions

m1 and m2 coincide, has been investigated by many authors, and there exists an enormous

amount of literature addressing this important testing problem [see, for example Hall and

Hart (1990); Dette and Munk (1998); Dette and Neumeyer (2001); Neumeyer and Dette

(2003) for some early and Vilar-Fernández et al. (2007); Neumeyer and Pardo-Fernández

(2009); Maity (2012); Degras et al. (2012); Durot et al. (2013); Park et al. (2014) for some

more recent references among many others].

Another interesting question in this context is the comparison of the regression curves up

to a certain parametric transformation. Such parametric relationship between two regression

curves often can be fitted into various real life examples; for instance, as it is mentioned in

Härdle and Marron (1990), the growth curves of children may have a simple parametric

relationship between them. It may happen that those curves are realizations of one curve

but differ in the time and the vertical axes, and consequently, the difference among those

set of regression curves can be measured by two unknown quantities, namely, the horizontal

shift (i.e., along the covariate axis) and the vertical scale (i.e., along the response axis).

Many authors have worked on this problem. Exemplary we mention the early work

by Härdle and Marron (1990); Carroll and Hall (1993); Rønn (2001) and the more recent

references Gamboa et al. (2007); Vimond (2010); Collier and Dalalyan (2015) among others.

Several authors proposed tests for the hypotheses that the regression curves coincide up to

a certain parametric relationship. The proposed methodology is based on the estimation of

the parametric form from the given data. In this article we contribute to this literature and
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propose a simple method to test the hypothesis

H0 : m1(x) = m2(x+ c) + d for some constants c, d , (1.3)

where m1 and m2 are convex (or concave) functions. The assumption of a convex or concave

regression function is well justified in several applications. For example, production functions

are often assumed to be concave [see Varian (1984)], economic theory implies that utility

functions are concave [see Matzkin (1991)] or in finance theory restricts call option prices to

be convex [see Ait-Sahalia and Duarte (2003)].

We will show in Section 2 that under the null hypothesis (1.3) the functions ((m′1)−1)′

and ((m′2)−1)′ coincide (here and throughout this paper f ′ denotes the derivative of the

function f and f−1 its inverse). This fact is utilized to develop a graphical device to check

the assumption (2.2) by estimating the difference ((m′1)−1)′ − ((m′2)−1)′. For this purpose,

we use ideas of Dette et al. (2006) who proposed a very simple estimator of the inverse

regression function say f based on a kernel density estimation of the random variable f(U),

where U is uniformly distributed random variable on the interval (0, 1), and f is either m′1
or m′2.

The second contribution of this paper is a formal test for the hypothesis (1.3) in the

context of dependent and non-stationary data, which is based on a suitable distance be-

tween estimates of the functions ((m′1)−1)′ and ((m′2)−1(t))′. More precisely, we investigate

an L2-norm of a smooth estimator of the difference ((m′1)−1)′ − ((m′1)−1)′ and derive the

asymptotic distribution of the corresponding test statistic under the null hypotheses and

local alternatives. The challenges in deriving these results are twofold. First - in contrast

to most of the literature - we allow for a very complex dependence structure of the errors in

models (1.1) and (1.2). In particular they can be time dependent and non stationary [see,

for example Dahlhaus (1997), Mallat et al. (1998), Ombao et al. (2005), Nason et al. (2000),

Zhou and Wu (2009), Vogt (2012) for various definitions of non-stationary time series]. A

particular difficulty consists in the proof of the asymptotic distribution of the estimated inte-

grated squared difference, which is (after appropriate standardization) normal, but involves

higher order derivatives of the regression functions. As these quantities are very difficult to

estimate we develop a bootstrap test, which has very good finite sample properties and is

based on a Gaussian approximation used in the proof of the weak convergence of the test

statistic.

The rest of the article is organized as follows. Section 2 describes the basic methodology

adopted in this article. A new graphical device is proposed for comparing two non-parametric
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regression functions up a to shift in the covariate and response in Section 2.1. The formal

testing problem is considered in Section 2.2, while we give some theoretical justification for

these tools in Section 3. A small simulation study is carried out in Section 4, illustrating the

finite sample properties of the proposed method and an application is discussed in Section

4.3. Finally, all proofs except of the proof of Lemma 2.1, which justifies our approach, are

given in an appendix in Section 5.

2 Methodology

Throughout this paper we consider two data sets {Yi,1}i=1,..,n1 and {Yi,2}i=1,..,n2 that can be

modelled as

Yi,s = ms

( i

ns

)
+ ei,s, i = 1, . . . , ns, s = 1, 2 , (2.1)

the error random variables {ei,1}i=1,...,n1 and {ei,2}i=1,...,n2 are locally stationary process sat-

isfying some technical conditions that will be described later in Section 3.1, and m1 and

m2, are unknown sufficiently smooth regression functions. We assume that m1 and m2 are

convex (the case of concave regression functions can be treated in a similar manner) and are

interested to investigate in a hypothesis

H0 :

{
there exists constants c ∈ (0, 1) and d ∈ R such that

m1(t) = m2(t+ c) + d, for all t ∈ (0, 1− c)
(2.2)

Notice that we assume that information about the sign of a potential vertical shift can be

obtained by visible inspection of the data. A corresponding hypothesis with a vertical shift

by a negative constant c can be formulated and treated in a similar way, but the details are

omitted for the sake of brevity. A key observation is that under the null hypothesis (2.2) we

have

((m′1)−1(t))′ − ((m′2)−1(t))′ = 0, (2.3)

and this fact motivates us to propose a test statistic and a graphical device based on the the

estimate of ((m′1)−1(t))′ − ((m′2)−1(t))′.

Lemma 2.1 Assume that the regression functions m1 and m2 in (2.1) have a strictly increas-

ing first order derivative on the interval [0, 1], then the following statements are equivalent.
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(1) There exists a constant c ∈ (0, 1) such that m1(t) = m2(t+ c) + d for all t ∈ (0, 1− c).

(2) Equation (2.3) holds for all u ∈ (m′1(0),m′1(1− c)).

Proof. If condition (1) holds, then

m′1(t) = m′2(t+ c)

for all t ∈ (0, 1 − c). Now consider the equation m′1(x) = m′2(x + c) = u for some fixed

u ∈ (m′(0),m′(1 − c)) and note that both derivatives are strictly increasing. Consequently

we obtain for a solution in the interval for (0, 1− c)

x = (m′1)−1(u) ; x+ c = (m′2)−1(u) .

In particular, this yields (subtracting both equations)

c = (m′2)−1(u)− (m′1)−1(u) (2.4)

for any u ∈ (m′1(0),m′1(1 − c)). Taking derivatives on both sides of (2.4) gives (2.3) and

shows that (1) implies (2).

On the other hand, if condition (2) holds, it follows∫ s

m′1(0)

((m′1)−1)′(u)du =

∫ s

m′1(0)

((m′2)−1)′(u)du,

any s ∈ (m′1(0),m′1(1− c)), which yields

(m′2)−1(s) = (m′1)−1(s) + c

for s ∈ (m′1(0),m′1(1− c)), where

c = (m′2)−1(m′1(0)).

Applying the function m′2 on both sides finally gives

m′2((m′1)−1(s) + c)) = s = m′1((m′1)−1(s))

for s ∈ (m′1(0),m′1(1 − c)). Using the notation (m′1)−1(s) = t and integrating with respect

to t shows that this is equivalent to (1), which completes the proof of Lemma 2.1. 2
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2.1 Graphical Device

According to Lemma 2.1, under null hypothesis, the points

{(t, f1(t)− f2(t)) | t ∈ (m′1(0),m′1(1− c))}

lie on the horizontal axis. In order to construct a graphical device, let f̂1 and f̂2 denote

suitably chosen uniformly consistent estimates of the functions f1 = ((m′1)−1)′ and f2 =

((m′2)−1)′, respectively, let m̂′1 denote an estimate of the derivative m′1, and let ĉ be an

estimate of the vertical shift c. We now consider a collection of points

Cn1,n2 = {(t`, f̂1(t`)− f̂2(t`)) : t` ∈ (â+ η, b̂− η); ` = 1, . . . , L}, (2.5)

where â = m̂′1(0) and b̂ = m̂′1(1− ĉ) are estimates of m′1(0) and m′1(1− c), respectively, η is

a small positive constant and L is a positive integer. Under the null hypothesis, the points

of Cn1,n2 should cluster around the horizontal axis.

Here the necessary estimates can be constructed in various ways. For example, f̂1 and f̂2

can be obtained using a smooth nonparametric estimate of the derivative of the regression

function and calculating the derivative of its inverse. The inversion of the nonparametric

estimates of the derivatives m1 and m2 might be difficult as these functions are usually not

monotone. Possible solutions are to construct isotone (smooth) nonparametric estimates of

the derivatives as proposed in Mammen (1991) and Hall and Huang (2001) among others

and then calculate the inverse. Here we use a more direct approach related to the work of

Dette et al. (2006) who proposed methodology for nonparametric estimation of a monotone

regression function based on monotone rearrangements.

To be precise, let K denote a kernel function, bn,1, bn,2 two bandwidths and define the

estimate of the regression function ms and its derivative m′s for t ∈ [bn,s, 1− bn,s] by

(m̂s(t), bn,sm̂
′
s(t))

> = argmin
β0,β1

n∑
i=1

(
Yi,s − β0 − β1

( i

ns
− t
))2

K
(i/ns − t

bn,s

)
, s = 1, 2,(2.6)

and m̂′s(t) = m̂′s(bn,s) for 0 ≤ t ≤ bn,s, while m̂′s(t) = m̂′s(1− bn,s) for 1− bn,s ≤ t ≤ 1. Let Kd

be a kernel function, hd a sufficiently small bandwidth and N a large positive integer (note
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that this is not the sample size). We define the estimates

f̂1(t) =
1

Nhd,1

N∑
i=1

Kd

(m̂′1( i
N

)− t
hd,1

)
, (2.7)

f̂2(t) =
1

Nhd,2

N∑
i=1

Kd

(m̂′2( i
N

)− t
hd,2

)
. (2.8)

for f1(t) = ((m′1)−1)′(t) and f2(t) = ((m′2)−1)′(t), respectively. For the motivation of this

definition note that, if the estimates m̂′s are consistent for m′s (s = 1, 2), then we can replace

for a sufficiently large sample size the estimates by the unknown regression functions, and

obtain by a Riemann approximation (if N →∞, hd → 0)

f̂s(t) ≈
1

Nhd

N∑
i=1

Kd

(m′s( i
N

)− t
hd

)
≈ 1

hd

∫ 1

0

Kd

(m′s(x)− t
hd

)
dx

=

∫ (m′s(1)−t))/hd

(m′s(0)−t))/hd
Kd(u)((m′s)

−1)′(t+ uhd)du ≈ ((m′s)
−1)′(t)1{m′s(0) < t < m′s(1)}.

where 1(A) denotes the indicator functions of the set A and we have used the fact that m′`
is non-decreasing (see Dette et al. (2006) for more details). Finally, the estimate of (m′2)−1

can be obtained by integration, that is

ĝ2(x) =

∫ x

m′2(0)

f̂2(t)dt

and using (2.4) we obtain an estimate

ĉ =
1

1− c̃

∫ (1−c̃)

0

(ĝ2(m̂′1(u))− u)du. (2.9)

of the vertical shift c. Here m̂′1 is the estimate of the derivative of m1 defined in (2.6) and

c̃ = ĝ2(m̂′1(0)).

is a preliminary consistent estimator of c. The resulting estimates for a = m′1(0) and b =

m1(1− c) are then given by

â = m̂′1(0) , b̂ = m̂′1(1− ĉ)

(note that we assume that c > 0). We will prove in Theorem 3.1 below that under the null
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hypothesis (2.2) the points of the set Cn1,n2 will concentrate around the horizontal axis when

the sample sizes are sufficiently large. Therefore we propose a graphical device that plots

the points of the set Cn1,n2 .

Example 2.1 We consider the regression models (2.1) with independent standard normal

distributed errors and different regression functions where the sample sizes are n1 = n2 =

100. In this numerical study, N = 100, hd,N = N−1/3, and bandwidths bn1,1 and bn2,2 are

chosen as described in Section 4. The set Cn1,n2 consists of L = 1000 equally spaced points

from the interval (â + η, b̂− η), where η = 0.01. To compute the local linear estimators we

use the R package named ‘locpol’. The following models are considered in this example:

m1(x) = (x− 0.4)2 and m2(x) = (x− 0.3)2 − 0.2, (2.11)

m1(x) = (x− 0.4)2 and m2(x) = x3, (2.12)

m1(x) = sin(−πx) and m2(x) = sin(−π(x+ 0.1)) +
1

4
, (2.13)

m1(x) = sin(−πx) and m2(x) = − cos(πx). (2.14)

Note that examples (2.11) and (2.13) correspond to the null hypothesis, while (2.12) and

(2.14) represent alternatives. The corresponding plots of the set Cn1,n2 are shown in Figure

2.1, where the the left panels clearly support the null hypothesis of a vertical and horizontal

shift between the regression functions (the points are clustered around the x-axis). On the

other hand, the panels on the right give clear evidence that the null hypothesis (2.2) is not

true.

2.2 Investigating shifts in the regression functions by testing

The graphical device discussed in the previous section provides a simple tool of visual exam-

ination of the null hypothesis (2.2), but does not give any information about the statistical

uncertainty of a decision. In this section we will add to this tool a statistic which can be

used to rigorously test the null hypothesis (2.2) at a controlled type I error. Recalling the

definition of the estimates (2.7) and (2.8) of ((m′1)−1)′(t) and ((m′2)−1)′(t), we propose to

reject the null hypothesis (2.2) for large values of the statistic

Tn1,n2 =

∫ (
f̂1(t)− f̂2(t)

)2
ŵ(t)dt, (2.15)
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Figure 1: Plots of the set Cn1,n2 for different examples. The panels on the left correspond to
the models (2.11) and (2.13) (null hypothesis) and the panels on the right correspond to the
models (2.12) and (2.14) (alternative).
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where the weight function is defined by

ŵ(t) = 1(â+ η ≤ t ≤ b̂− η),

η is a small positive constant and â and b̂ are defined in (2.10). In fact, ŵ(t) is a consistent

estimator of the deterministic weight function

w(t) = 1(a+ η ≤ t ≤ b− η), (2.16)

where a = m′1(0), b = m′1(1− c).

Remark 2.1 For the construction of the test statistic, other distances between the functions

((m̂′1)−1)′(t) and ((m̂′2)−1)′(t) could be considered as well. For the L2 distance, the derivation

of the asymptotic distribution of the statistic Tn1,n2 is already very complicated (see Section

5 for details), but we can make use of a central limit theorem for random quadratic forms [see

de Jong (1987)]. Other distances such as the supremum or L1 distance could be considered

as well with additional technical arguments.

3 Asymptotic properties

Before stating the asymptotic distribution of Tn1,n2 , a few concepts and assumptions are

stated for model (2.1). For the dependence structure, we use a common concept non-

stationarity, which will be described first.

3.1 Locally stationary processes and basic assumptions

Recall the definition of model (2.1) and denote by {ei}i∈N = {(εi,1, εi,2)>}i∈N the vector of

errors. Note that {ei}i∈N defines a triangular array although this is not reflected in our

notation. In particular we assume {ei}i∈N is a locally stationary process in the sense of Zhou

and Wu (2009) such that it has the form

ei = G(i/n,F i) = ((G1(i/n,Fi), G2(i/n,Gi)>), 1 ≤ i ≤ n, (3.1)

where G : [0, 1]×R∞ → R2 is a measurable nonlinear filter, F i = (..., εi−1, εi) is a filtration

and {εi = (εi,1, εi,2)>}i∈N a sequence of independent identically distributed random variables.

In (3.1) G1 and G2 are the marginal filters and Fi = (...., εi−1,1, εi,1), Gi = (..., εi−1,2, εi,2).
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Moreover for any p-dimensional vector v = (v1, ..., vp)
> we define |v| =

√∑p
i=1 v

2
i , ‖v‖4 =

(E(|v|4))1/4 and make the following basic assumptions.

Assumption 3.1

(a) E(G(t,F0)) = 0 for t ∈ [0, 1], and sup
t∈[0,1]

‖G(t,F0)‖4 <∞.

(b) sup
0≤t<s≤1

‖G(t,F0)−G(s,F0)‖4 <∞.

(c) Let {ε∗i }i∈N denote an independent copy of {εi}i∈N and define the filtration F∗i =

(ε−∞, ..., ε−1, ε
∗
0, ..., εi). There exists a constant ρ ∈ (0, 1) such that for any k ≥ 0,

δ4(k) := sup
t∈[0,1]

‖G(t,Fk)−G(t,F∗k)‖4 = O(ρk) .

(d) There exists a constant ν0 > 0 such that the 2×2 matrix Σ2(t)−ν0I2 is strictly positive

definite for any t ∈ [0, 1], where I2 is the 2 × 2 identity matrix, and Σ2(t) is the long

run variance of the locally stationary process defined as

Σ2(t) =
∞∑
s=0

E
(
G(t,F0)G(t,F s)

>) .
(e) Σ2(t) is a diagonal matrix with entities σ2

1(t) and σ2
2(t) (the long-run variances of process

G1(·,Fi) and G2(·,Gi)).

Note that it follows from the definition of δ4(k) that δ4(k) = 0 for k ≤ 0. Assumptions (d)

and (e) ensure that σ2
1(t) and σ2

2(t) are non-degenerate such that inf
t∈[0,1]

σ2
s(t) > 0 (s = 1, 2).

Recalling the definition of the local linear estimator for the derivatives m′1 and m′2 in

(2.6) we make the following assumptions.

Assumption 3.2

(a) The kernel K is a symmetric and twice differentiable function with compact support,

say [−1, 1]. Furthermore,
∫ 1

−1
K(x)dx = 1

(b) The kernel Kd is an even density with compact support, say [−1, 1].

Assumption 3.3
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(a) m1,m2 ∈ C2,1[0, 1], where C2,1[0, 1] represents the set of twice continuously differentiable

functions, whose second order derivative is Lipschitz continuous on the interval [0, 1].

Assumption 3.4 For s = 1, 2 let

πn,s =
log n√
nbn,sbn,s

+
n1/4 log2 n

nb2
n,s

+ b2
n,s , π′n,s =

n1/4 log2 n

nb2
n,s

+ b2
n,s

and assume that πn,s = o(hd,n) (s = 1, 2). Further, assume that

nb2
n,s →∞ , nb4

n,s log n
(π′n,s
bn,s

+
π3
n,s

h3
d

+ hd +
1

Nhd

)2

= o(1),

ω̄nb
−1/2
n,s log2 n = o(1) ,

where

ω̄n,s =
log n√
nbn,sbn,s

+
n1/4 log2 n

nb2
n,s

+ bn,s , s = 1, 2. (3.2)

3.2 Asymptotic properties of Cn1,n2

The following theorem describes the asymptotic properties of the set Cn1,n2 defined in (2.5)

if it is used with the local linear estimates (2.6) for the derivatives m′1 and m′2. It basically

gives a theoretical justification for the use of the graphical device proposed in Section 2.1.

The proof can be found in Section 5.2.

Theorem 3.1 Define for ε > 0 the set

L(ε, g) = {(x, y) : x ∈ [m′1(0) + η,m′1(1− c)− η], |y − g(x)| ≤ ε}.

where g = ((m′1)−1)′ − ((m′2)−1)′. If Assumptions 3.1–3.4 are satisfied, then we have

lim
n1,n2→∞

P[Cn1,n2 ⊂ L(ε, g)] = 1.

Under the null hypothesis we have g ≡ 0 and

L(ε) := L(ε, 0) = {(x, y) : x ∈ [m′1(0) + η,m′1(1− c)− η], |y| ≤ ε}.

Theorem 3.1 shows, that for large sample size the points in the set Cn1,n2 cluster around the
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horizontal axis if and only if the null hypothesis holds.

3.3 Weak convergence of the test statistic

In this section, we derive the asymptotic distribution of the statistic Tn1,n2 . For this purpose,

we define

K◦(x) =
K(x)x∫ 1

−1
K(x)x2dx

, (3.3)

and obtain the following result. The proof is complicated and can be found in Section 5.3.

Theorem 3.2 Suppose that Assumption 3.1-3.4 hold, n2/n1 → c2 for some constant c2 ∈
(0,∞) and assume additionally that

bn,1
bn,2
→ r2 ∈ (0,∞).

Consider local alternatives of the form

((m′1)−1)′(t)− ((m′2)−1)′(t) = ρng(t) + o(ρn),

where g ∈ C[a, b], ρn = (n1b
9/2
n,1 )−1/2 and the order o(ρn) of the remainder holds uniformly

with respect to t. Then as n1, n2 →∞,

n1b
9/2
n,1Tn1,n2 −Bn(g)⇒ N (0, VT ), (3.4)

where the asymptotic bias and variance are given by

Bn(g) =
(
∫ 1

−1
vK ′d(v)dv)2√
bn,1

((K◦)′ ∗ (K◦)′(0))
2∑
s=1

csr
5
s

∫
R
σ2
s(u)w(m′s(u))(m′′s(u))−3du

+

∫ 1

0

g2(t)w(t)dt,

VT = 2
(∫ 1

−1

vK ′d(v)dv
)4

2∑
s=1

c2
sr

9
s

∫
R
((K◦)′ ∗ (K◦)′(z))2dz

∫
R
(σ2

s(u)w(m′s(u))(m′′s(u))−3)2du

c1 = 1, r1 = 1 respectively, and (K◦)′ ∗ (K◦)′ denotes the convolution of the functions (K◦)′

and (K◦)′.
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Remark 3.1 Under the null hypothesis, we have g ≡ 0 and Theorem 3.2 can be used to

construct a consistent asymptotic level α test for the hypotheses in (2.2). More precisely,

the null hypothesis is rejected whenever

Tn1,n2 >
B̂n(0) + z1−αV̂

1
2
T

n1b
9
2
n,1

,

where z1−α is the corresponding (1 − α)-th quantile, and B̂n(0) and V̂T are appropriate

estimates of the asymptotic bias (for g(t) ≡ 0) and variance, respectively. Moreover, Theorem

3.2 also shows that this test is able to detect alternatives converging to the null hypothesis

at a rate ρn = (n1b
9/2
n,1 )1/2. In this case, the asymptotic power of the test is approximately

given by

Φ
(∫ g2(t)w(t)dt

V
1/2
T

− z1−α

)
,

where Φ is the cumulative distribution function of the standard normal distribution,

In the case where the sample sizes n1 and n2 are equal Theorem 3.2 directly leads to the

following corollary.

Corollary 3.1 If the assumptions of Theorem 3.2 are satisfied, the sample sizes and band-

widths are equal (i.e. n1 = n2 bn,1 = bn,2 = bn ), the weak convergence in (3.4) holds with

Bn(g) =
(
∫
vK ′d(v)dv)2

√
bn

((K◦)′ ∗ (K◦)′)(0)
2∑
s=1

∫
R
σ2
s(u)w(m′s(u))(m′′s(u))−3du

−
∫ 1

0

g2(t)w(t)dt

VT = 2
(∫ 1

−1

vK ′d(v)dv
)4

2∑
s=1

∫
R
((K◦)′ ∗ (K◦)′(z))2dz

∫
R
(σ2

s(u)w(m′s(u))(m′′s(u))−3)2du.

4 Implementation and simulation study

We begin with some details regarding the implementation of the test. The calculation of

the test statistic requires the specification of the bandwidths and we use the general Cross

Validation (GCV) method proposed in Zhou and Wu (2010). Specifically, let m̂s(·, b) denote
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the estimate of the regression function ms with bandwidth b, then we consider

b̂ns,s = argminb
n−1
s

∑ns

i=1(Yi,s − m̂s(i/ns, b))
2

(1−K(0)(nsb)−1)2
.

As pointed out by Dette et al. (2006), the choice of hd,s has a negligible impact on the the

estimators (2.7) and (2.8) (and the corresponding test) as long as it is chosen sufficiently

small. As a rule of thumb, we choose hd,s as n
−1/3
s .

For the estimation of the the long-variance we define for s = 1, 2 the partial sum Sk,r,s =∑r
i=k Yi,s, for some m ≥ 2

∆j,s =
Sj−m+1,j,s − Sj+1,j+m,s

m
,

and for t ∈ [m/n, 1−m/n]

σ̂2
s(t) =

n∑
j=1

m∆2
j,s

2
ω(t, j), s = 1, 2, (4.1)

where for some bandwidth τn,s ∈ (0, 1),

ω(t, i) = H
(i/ns − t

τn,s

)
/

n∑
i=1

H
(i/ns − t

τn,s

)
.

Here H is a symmetric kernel function with compact support [−1, 1] and
∫
H(x)dx = 1. For

t ∈ [0,m/ns) and t ∈ (1 −m/ns, 1] we define σ̂2
s(t) = σ̂2

s(m/ns) and σ̂2(t) = σ̂2(1 −m/ns),
respectively. The consistency of these estimators has been shown in Theorem 4.4 of Dette

and Wu (2019).

4.1 Bootstrap

Although Theorem 3.2 is interesting from a theoretical point of view, it cannot be easily

implemented for testing the hypothesis (2.2). The asymptotic bias and variance depend on

the long run variances σ2
1, σ2

2 and the first and second derivative of the regression functions

m1(·) and m2(·). In general, these quantities are difficult to estimate. Furthermore, it is

well known, that - even in the case of independence - the convergence rate of statistics as

considered in Theorem 3.2 is slow (note that the bias in Theorem 3.2 is of order 1/
√
bn,1). As

an alternative we therefore propose a bootstrap test which does not require the estimation

of the derivatives and addresses the problem of slow convergence rate.
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The bootstrap procedure is motivated by technical arguments used in the proof of The-

orem 3.2 in Section 5. There we show (see equations (5.12) and (5.13)) that under the null

hypothesis, the statistic Tn1,n2 can be approximated by the statistic∫
R
U2
n(t)w(t)dt,

where

Un(t) =
1

nNb2
n,1h

2
d,1

n1∑
j=1

N∑
i=1

K◦
(j/n1 − i/N

bn,1

)
K ′d

(m′1(i/N)− t
hd,1

)
σ1

( j
n1

)
Vj,1

− 1

nNb2
n,2h

2
d,2

n2∑
j=1

N∑
i=1

K◦
(j/n2 − i/N

bn,2

)
K ′d

(m′2(i/N)− t
hd,2

)
σ2

( j
n2

)
Vj,2

and {Vj,1, j ∈ Z}, {Vj,2, j ∈ Z}, are sequences of independent standard normal distributed

random variables.

Algorithm 4.1

(a) Estimate m′1 and m′2 by (2.6) and estimate the long run variances σ2
1 and σ2

2 by (4.1).

(b) Generate B copies of standard normal distributed random variables {V (B)
j,1 }

n1
j=1, {V (B)

j,2 }
n2
j=1

and calculate the statistic

WB =

∫
R

( 1

nNb2
n,1h

2
d,1

Ξ
(B)
1 (t)− 1

nNb2
n,2h

2
d,2

Ξ
(B)
2 (t)

)2

w(t)dt,

where

Ξ
(B)
1 (t) =

n1∑
j=1

N∑
i=1

K◦
(j/n1 − i/N

bn,1

)
K ′d

(m̂′1(i/N)− t
hd,1

)
σ̂1

( j
n1

)
V

(B)
j,1 ,

Ξ
(B)
2 (t) =

n2∑
j=1

N∑
i=1

K◦
(j/n2 − i/N

bn,2

)
K ′d

(m̂′2(i/N)− t
hd,2

)
σ̂2

( j
n2

)
V

(B)
j,2 .

(c) Let W(1) ≤ W(2) ≤ . . . ≤ W(B) be the ordered statistics of {Ws, 1 ≤ s ≤ B}. We reject

the null hypothesis (2.2) at level α, whenever

Tn1,n2 > W(bB(1−α)c). (4.2)

The p-value of this test is given by 1−B∗/B. where B∗ = max{r : W(r) ≤ Tn1,n2}.
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4.2 Simulated level and power

In this section we illustrate the finite sample properties of the test (4.2) by means of a small

simulation study. All presented results are based on 1000 runs and B = 500 bootstrap

replications. We consider equal sample sizes n1 = n2 = n = 100, 200 and 500. Throughout

this article, the Epanechnikov kernel (e.g., see Silverman (1998)) is considered for all kernels

appearing in the test procedure, and we use N = n in (2.7) and (2.8). Besides, hd,N = n−1/3,

and bn1 and bn2 are chosen as described at the beginning of Section 4.

For s = 1 and 2, we consider model (2.1) with the error process

Gs(t,Fi) = 0.6(t− 0.3)2G(t,Fi−1,s) + ηi,s, (4.3)

where Fi,s = (..., ηi−1,s, ηi,s). We assume that ηi,1 are i.i.d standard normal random variables,

and ηi,2 are i.i.d. copies of the random variable t5/
√

5/3, where t5 denotes the t-distribution

with 5 degrees of freedom. For the regression functions we consider the models

m1(x) = (x− 0.4)2 and m2(x) = (x− 0.3)2 − 0.2, (4.4)

m1(x) = sin(−πx) and m2(x) = sin(−π(x+ 0.1)) +
1

4
. (4.5)

In Table 1 we display the rejection probabilities of the test (4.2), where the level of significance

is 5% and 10%. The results show a good approximation of the nominal level in all cases

under consideration.

model n = 100 n = 200 n = 500
(4.4) 0.057 0.054 0.051
(4.5) 0.059 0.057 0.054

(4.4) 0.111 0.108 0.104
(4.5) 0.116 0.112 0.103

Table 1: The estimated size of the test (4.2) for different sample sizes n1 = n2 = n. The
level of significance is 5% (upper part) and 10% (lower part).

In order to study the power of the test (4.2) we consider the same error processes as in

(4.3) and used the regression functions
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m1(x) = (x− 0.4)2 and m2(x) = x3, (4.6)

m1(x) = sin(−πx) and m2(x) = − cos(πx). (4.7)

The simulated power is displayed in Table 2 and the results indicate that the test detects

the alternatives reasonably well.

model n = 100 n = 200 n = 500
(4.6) 0.563 0.647 0.778
(4.7) 0.617 0.744 0.822

(4.6) 0.722 0.847 0.899
(4.7) 0.777 0.868 0.971

Table 2: The estimated power of the test (4.2) for different sample sizes n1 = n2 = n. The
level of significance is 5% (upper part) and 10% (lower part).

4.3 Real data analysis

In this section, we use the test (4.2) and the graphical device described in Section 2.1 to

investigate the validity of assertion (2.2) for growth data of male and female infants. This

data set is available from https://www.cdc.gov/growthcharts/html_charts/lenageinf.

htm#males and consists of the monthly growth of length of male and female infants in the

first three years (here n1 = n2 = 37). The data is depicted in Figure 2 and indicates that

the relation between length and age in both groups might be concave. Therefore we model

the negative values of this data by two regression models of the form (2.1) with convex

regression functions, where group 1 represents the male and group 2 the female infants. For

this data, we obtain ĉ = 0.046 as estimate for the horizontal shift using the statistic (2.9)

and d̂ = m̂1(0)− m̂2(ĉ) = 0.087 as estimate of the vertical shift d.

We begin illustrating the application of the graphical device described in Section 2.1. In

Figure 3 we plot the points of the set Cn1,n2 in (2.5) using L = 1000 equally spaced points in

the interval (â+ η, b̂− η), where â = m̂
′
1(0) = 0.112, b̂ = m̂

′
1(1− ĉ) = 1.362, and η = 0.001 is

chosen (the smoothing parameters are chosen as described in Section 4). The figure clearly

indicates the existence of a vertical and horizontal shift between the regression functions as
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Figure 2: Plots of the length of the male (right part) and female (left parts) infants for
different age.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-4
-2

0
2

4

t

Figure 3: Plots of Cn1,n2 for the real data described in Section 4.3.
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formulated in the null hypothesis (2.2).

Finally, we also investigate the performance of the test (4.2) for this data set, where all

parameters required for the bootstrap test are chosen as described in Section 4. For B = 500

bootstrap replications, we obtain the p-value 0.781, which gives no indication to reject the

null hypothesis and is consistent with the conclusion made by graphical inspection.

5 Appendix : Proofs

5.1 Preliminaries

In this section, we state a few auxiliary results, which will be used later in the proof. We

begin with Gaussian approximation. A proof of this result can be found in Wu and Zhou

(2011).

Proposition 5.1 Let

Si =
i∑

s=1

ei,

and assume that the Assumption 3.1 is satisfied. Then on a possibly richer probability space,

there exists a process {S†i}i∈Z such that

{S†i}ni=0
D
= {Si}ni=0

(equality in distribution), and a sequence of independent 2-dimensional standard normal

distributed random variables {Vi}i∈Z, such that

max
1≤j≤n

∣∣∣ j∑
i=1

S†i −
j∑
i=1

Σ(i/n)Vi

∣∣∣ = op(n
1/4 log2 n),

where Σ(t) is the square root of the long-run variance matrix Σ2(t) defined in Assumption

3.1.

Proposition 5.2 Let Assumption 3.1 and 3.2 be satisfied.

(i) For s = 1, 2 we have

sup
t∈[bn,s,1−bn,s]

∣∣∣m̂′s(t)−m′s(t)− 1

nsb2
n,s

ns∑
i=1

K◦
(i/ns − t

bn,s

)
ei,s

∣∣∣ = OP

( 1

nsb2
n,s

+ b2
n,s

)
(5.1)

20



where the kernel K◦ is defined in (3.3).

(ii) For s = 1, 2

sup
t∈[bn,s,1−bn,s]

∣∣∣ 1

nsb2
ns

ns∑
i=1

K◦
(i/ns − t

bn,s

)(
ei,s − σs(i/n)Vi,s

)∣∣∣ = op

( log2 ns

n
3/4
s b2

n,s

)
, (5.2)

where {Vi,s, i = 1, . . . , ns, s = 1, 2} denotes a sequence of independent standard normal

distributed random random variables.

(iii) For s = 1, 2 we have

sup
t∈[bn,s,1−bn,s]

|m̂′s(t)−m′s(t)| = Op

( log ns√
nsbn,sbn,s

+
log2 ns

n
3/4
s b2

n,s

+ b2
n,s

)
. (5.3)

(iv) For s = 1, 2 we have

sup
t∈[0,bn,s]∪[1−bn,s,1]

|m̂′s(t)−m′s(t)| = Op

( log ns√
nbn,sbn,s

+
log2 ns

n
3/4
s b2

n,s

+ bn,s

)
. (5.4)

Proof:

(i): Define for s = 1, 2 and l = 0, 1, 2

Rn,s,l(t) =
1

nsbn,s

ns∑
i=1

Yi,sK
(i/n− t

bn,s

)(i/ns − t
bn,s

)l
,

Sn,s,l(t) =
1

nsbn,s

ns∑
i=1

K
(i/ns − t

bn,s

)(i/ns − t
bn,s

)l
Straightforward calculations show that

(m̂s(t), bn,sm̂
′
s(t))

> = S−1
n,s(t)Rn,s(t) (s = 1, 2),

where

Rn,s(t) =

(
Rn,s,0(t)

Rn,s,1(t)

)
, Sn,s(t) =

(
Sn,s,0 Sn,s,1

Sn,s,1 Sn,s,2.

)
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Note that Assumption 3.2 gives

Sn,s,0(t) = 1 +O
( 1

nsbs

)
, Sn,s,1(t) = O

( 1

nsbn,s

)
, Sn,s,2(t) =

∫ 1

−1

K(x)x2dx+O
( 1

nsbn,s

)
uniformly with respect to t ∈ [bn,s, 1− bn,s]. The first part of the proposition now follows by

a Taylor expansion of Rn,s,l(t).

(ii): The fact asserted in (5.2) follows from (5.1), Proposition 5.1, the summation by parts

formula and similar arguments to derive equation (44) in Zhou (2010).

(iii) + (iv): Following Lemma 10.3 of Dette and Wu (2019), we have

sup
t∈[bn,s,1−bn,s]

∣∣∣ 1

nsbn,s

ns∑
i=1

K◦
(i/ns − t
nsbn,s

)(
σs(

i

ns
)Vi,s

)∣∣∣ = Op

( log ns√
nsbn,s

)
. (5.5)

Finally, (5.3) and (5.4) follow from (5.1) (5.2) and (5.5), which completes the proof of

Proposition 5.2. 2

5.2 Proof of Theorem 3.1

We only prove the result in the case g ≡ 0. The general case follows by the same arguments.

Under Assumptions 3.1 and 3.2, it follows from the proof of Theorem 4.1 in Dette and Wu

(2019) that

sup
t∈(a+η,b−η)

[(
f̂1(t)− f̂2(t)

)
−
(
((m′1)−1(t))′ − ((m′2)−1)′(t)

)]
→ 0

in probability, where f̂−1
1 (t) and f̂2(t) are defined in (2.7) and (2.8), respectively. Next, since

under the null hypothesis (2.2), ((m′1)−1(t))′− ((m′2)−1)′(t) = 0 for all t ∈ (a+ η, b− η), (See

Lemma 2.1) we have under the null hypothesis,

sup
t∈(a+η,b−η)

[
f̂1(t)− f̂2(t)

]
→ 0

in probability. In other words, under H0, for any ε > 0, we have

lim
n→∞

P
[

sup
t∈(a+η,b−η)

∣∣f̂1(t)− f̂2(t)
∣∣ < ε

]
= 1,

and hence, under the null hypothesis g ≡ 0, we have P[Cn1,n2 ⊂ L(ε)] = 1. 2
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5.3 Proof of Theorem 3.2

To simplify the notation, we prove Theorem 3.2 in the case of equal sample sizes and equal

bandwidths. The general case follows by the same arguments with an additional amount of

notation. In this case c2 = r2 = 1 and we omit the subscript in bandwidths if no confusion

arises, for example we write n1 = n2 = n, bn,1 = bn,2 = bn and use a similar notation for other

symbols depending on the sample size. In particular, we write Tn for Tn1,n2 if n = n1 = n2.

Define the statistic

T̃n =

∫ (
f̂1(t)− f̂2(t)

)2

w(t)dt

which is obtained from Tn by replacing the weight function ŵ in (2.15) by its deterministic

analogue (2.16). We shall show Theorem 3.2 in two steps proving the assertions

nb9/2
n T̃n −Bn(g)⇒ N (0, VT ) (5.6)

nb9/2
n (Tn − T̃n) = op(1). (5.7)

5.3.1 Proof of (5.6)

By simple algebra, we obtain the decomposition

T̃n =

∫
(I1(t)− I2(t) + II(t))2w(t)dt,

where for s = 1, 2

Is(t) =
1

Nhd

N∑
i=1

(
Kd

(m̂′s(i/N)− t
hd

)
−Kd

(m′s(i/N)− t
hd

))
, (5.8)

II(t) =
1

Nhd

N∑
i=1

(
Kd

(m′1(i/N)− t
hd

)
−Kd

(m′2(i/N)− t
hd

))
. (5.9)

Observing the estimate on page 471 of Dette et al. (2006) it follows

1

Nhd

N∑
i=1

Kd

(m′s(i/N)− t
hd

)
=
(

((m′s)
−1(t))′ +O

(
hd +

1

Nhd

))
,
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(s = 1, 2) which yields the estimate

II(t) = ((m′1)−1(t))′ − ((m′2)−1(t))′ +O
(
hd +

1

Nhd

)
(5.10)

uniformly with respect to t ∈ [a+η, b−η]. For the two other terms we use a Taylor expansion

and obtain the decomposition

Is(t) = Is,1(t) + Is,2(t) (s = 1, 2),

where

Is,1(t) =
1

Nh2
d

N∑
i=1

K ′d

(m′s(i/N)− t
hd

)
(m̂′s(i/N)−m′s(i/N)),

Is,2(t) =
1

2Nh3
d

N∑
i=1

K ′′d

(m′s(i/N)− t+ θs(m̂
′
s(i/N)−ms(i/N))

hd

)
(m̂′s(i/N)−m′s(i/N))2

for some θs ∈ [−1, 1] (s = 1, 2). By part (iii) and (iv) of Proposition 5.2 and the same

arguments that were used in the online supplement of Dette and Wu (2019), to obtain the

bound for the term ∆2,N in the proof of their Theorem 4.1 it follows that

Is,2(t) = Op

(π2
n

h3
d

(hd + πn)
)

= Op

(π3
n

h3
d

)
(s = 1, 2), (5.11)

uniformly with respect to t ∈ [a+η, b−η]. Here we used the fact that the number of non-zero

summands in Is,2(t) is of order O(hd + πn).

Next, for the investigation of the difference I1,1(t)− I2,1(t), we define m′ = (m1,m2) and

consider the vector

K ′d

(m′(i/N)− t
hd

)
=
(
K ′d

(m′1(i/N)− t
hd

)
,−K ′d

(m′2(i/N)− t
hd

))>
.

By part (i) and (ii) of Proposition 5.2, it follows that there exists independent 2-dimensional

standard normal distributed random vectors Vi such that

I1,1(t)− I2,1(t) =
1

nNb2
nh

2
d

n∑
j=1

N∑
i=1

K◦
(j/n− i/N

bn

)
(K ′d)

T
(m′(i/N)− t

hd

)
Σ(j/n)Vj

+Op(π
′
nh
−1
d ).
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uniformly with respect to t ∈ [a + η, b − η]. Combining this estimate with equations (5.10)

and (5.11), it follows

Tn =

∫ (
Un(t) + ((m′1)−1(t))′ − ((m′2)−1(t))′ +R†n(t)

)2
w(t)dt, (5.12)

where

Un(t) =
1

nNb2
nh

2
d

n∑
j=1

N∑
i=1

K◦
(j/n− i/N

bn

)
(K ′d)

>
(m′(i/N)− t

hd

)
Σ(j/n)Vj, (5.13)

and the remainder R†n(t) can be estimated as follows

sup
t∈[a+η,b−η]

|R†n(t)| = Op

(π′n
hd

+
π3
n

h3
d

+ hd +
1

Nhd

)
. (5.14)

We now study the asymptotic properties of to the quantities

nb9/2
n

∫
(Un(t))2w(t)dt, (5.15)

nb9/2
n

∫
Un(t)((m−1

1 (t))′ − (m−1
2 (t))′)w(t)dt, (5.16)

nb9/2
n

∫
Un(t)R†n(t)w(t)dt, (5.17)

which determine the asymptotic distribution of Tn since the bandwidth conditions yield

under local alternatives in the case (m−1
1 (t))′ − (m−1

2 (t))′ = ρng(t),

nb9/2
n

∫
ρ2
n(t)w(t) =

∫
g2(t)w(t)dt, (5.18)

and the other parts of the expansion are negligible, i.e.,

nb9/2
n

∫
(R†n(t))2w(t)dt = o(1), (5.19)

nb9/2
n

∫
ρng(t)R†n(t)w(t)dt = o(1). (5.20)

Asymptotic properties of (5.15): To address the expressions related to Un(t) in (5.15)

- (5.17) note that

Un(t) = Un,1(t)− Un,2(t),
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where

Un,s(t) =
1

nNb2
nh

2
d

n∑
j=1

N∑
i=1

K◦
(j/n− i/N

bn

)
K ′d

(
m′s(i/N)− thd

)
σs(j/n)Vj,s

for s = 1, 2, and {Vj,s} are independent standard normal distributed random variables. In

order to simplify the notation, we define the quantities

Un,s(t) =
n∑
j=1

G(m′s(·), j, t)Vj,s (s = 1, 2),

where

G(m′s(·), j, t) =
1

nNb2
nh

2
d

N∑
i=1

K◦
(j/n− i/N

bn

)
K ′d

(m′s(i/N)− t
hd

)
σs(j/n).

A straightforward calculation (using the change of variable v = (m′s(u)− t)/hd) shows that

G(m′s(·), j, t) =
1

nb2
nh

2
d

∫ 1

0

K◦
(
j/n− u
bn

)
K ′d

(
m′s(u)− t

hd

)
σs(j/n)du+O (δn)

=
1

nb2
nhd

σs(j/n)

∫
As(t)

K ′d(v)((m′s)
−1(t+ hdv))′K◦

(
j/n− (m′s)

−1(t+ hdv)

bn

)
dv

+O (δn) ,

where the interval As(t) is defined by

As(t) =
(m′s(0)− t

hd
,
m′s(1)− t

hd

)
,

the remainder is given by

δn = O
(( 1

nb2
nh

2
dN

)
1
(∣∣∣j/n− (m′s)

−1(t)

bn +Mhd

∣∣∣ ≤ 1
))
,
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and 1(A) denote the indicator function of the set A. As the kernel K ′d(·) has a compact

support and is symmetric, it follows by a Taylor expansion for any t with w(t) 6= 0∫
As(t)

K ′d(v)((m′s)
−1(t+ hdv))′K◦

(j/n− (m′s)
−1(t+ hdv)

bn

)
dv

= −hd
bn

(((m′s)
−1(t))′)2(K◦)′

(j/n− (m′s)
−1(t)

bn

)∫
K ′d(v)vdv

(
1 +O

(
bn +

h2
d

b2
n

))
With the notation

G̃(m′s(·), j, t) =
−1

nb3
n

(K◦)′
(j/n− (m′s)

−1(t)

bn

)
σs(j/n)(((m′s)

−1)′(t))2

∫
vK ′d(v)dv

(s = 1, 2) we thus obtain the approximation

∫
U2
n(t)w(t) =

2∑
s=1

n∑
j=1

V 2
j,s

∫
G2(m′s(·), j, t)2w(t)dt (5.21)

+
2∑
s=1

∑
1≤i 6=j≤n

Vi,sVj,s

∫
G(m′s(·), i, t)G(m′s(·), j, t)w(t)dt

− 2
∑

1≤i≤n

Vi,1Vi,2

∫
G(m′1(·), i, t)G(m′2(·), i, t)w(t)dt

=
2∑
s=1

n∑
j=1

V 2
j,s

(∫
G̃2(m′s(·), j, t)2w(t)dt(1 + ri,s)

)

+
2∑
s=1

∑
1≤i 6=j≤n

Vi,sVj,s

(∫
G̃(m′s(·), i, t)G̃(m′s(·), j, t)w(t)dt(1 + ri,j,s)

)
− 2

∑
1≤i≤n

Vi,1Vi,2

(∫
G̃(m′1(·), i, t)G̃(m′2(·), i, t)w(t)dt(1 + r′i,s)

)
,

where the remainder satisfy

max

(
max
i,j,s=1,2

(|ri,j,s|), max
i,s=1,2

(|ri,s|), max
i,s=1,2

(|r′i,s|)
)

= o(1).

Let us now consider the statistcis Ũn,s(t) =
∑n

j=1 G̃(m′s(·), j, t)Vj,s (s = 1, 2), and

Ũn(t) = Ũn,1(t)− Ũn,2(t), (5.22)
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then, by the previous calculations, it follows that

nb9/2
n

(∫
U2
n(t)w(t)dt−

∫
Ũ2
n(t)w(t)dt

)
= oP (1), (5.23)

and therefore, we investigate the weak convergence of the statistic nb
9/2
n

∫
Ũ2
n(t)w(t)dt in the

following. For this purpose we use a similar decomposition as in (5.21) and obtain

∫
Ũ2
n(t)w(t)dt =

2∑
s=1

∫
(Ũn,s(t))

2w(t)dt− 2

∫
(Ũn,1(t)Ũn,2(t))w(t)dt

=
2∑
s=1

n∑
j=1

V 2
j,s

∫
G̃2(m′s(·), j, t)2w(t)dt

+
2∑
s=1

∑
1≤i 6=j≤n

Vi,sVj,s

∫
G̃(m′s(·), i, t)G̃(m′s(·), j, t)w(t)dt

− 2
∑

1≤i≤n

Vi,1Vi,2

∫
G̃(m′1(·), i, t)G̃(m′2(·), i, t)w(t)dt

:= D1 +D2 +D3, (5.24)

where the last equation definesD1, D2 andD3 in an obvious manner. Elementary calculations

(using a Taylor expansion and the fact that the kernels have compact support) show that

E(D1) =
2∑
s=1

n∑
j=1

∫ (−1

nb3
n

(K◦)′
(j/n− (m′s)

−1(t)

bn

)
σs(j/n)(((m′s)

−1)′(t))2

∫
vK ′d(v)dv

)2

w(t)dt

=
2∑
s=1

n∑
j=1

∫ ( 1

nb3
n

(K◦)′
(j/n− (m′s)

−1(t)

bn

)
σs((m

′
s)
−1(t))(((m′s)

−1)′(t))2

∫
vK ′d(v)dv

)2

× w(t)dt(1 +O(bn)). (5.25)

Using the estimate

1

nbn

n∑
j=1

(
(K◦)′

(j/n− (m′s)
−1(t)

bn

))2

=

∫
((K◦)′(x))2dx

(
1 +O

( 1

nbn

))
, (5.26)
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(uniformly with respect to t ∈ [a+ η, b− η]), (5.25) and (5.26) gives

E(D1) =
1

nb5
n

2∑
s=1

∫
((K◦)′(x))2dx

∫ (
σs((m

′
s)
−1(t))(((m′s)

−1(t))′)2

∫
vK ′d(v)dv

)2

w(t)dt

×
(

1 +O
(
bn +

1

nbn

))
,

which implies

E(nb9/2
n D1) = Bn(0) +O

(√
bn +

1

nb
3/2
n

)
, (5.27)

where Bn(g) is defined in Theorem 3.2 (and we use the notation with the function g ≡
0). Here we used the change of variable (m′s)

−1(t) = u, and afterwards, ((m′s)
−1)′(t) =

1
m′′s ((m′s)−1(t))

. Similar arguments establish that

Var(D1) = O
( 2∑
s=1

n∑
j=1

(

∫
G̃2(m′s(·), j, t)2w(t)dt)2

)
= O

( nb2
n

n4b12
n

)
= O

( 1

n3b10
n

)
,

where the first estimate is obtained from the fact that
∫
G2(m′s(·), j, t)w(t)dt = O(bn/(nb

3
n)).

This leads to the estimate

Var(nb9/2
n D1) = O

( 1

nbn

)
. (5.28)

For the term D3 in the decomposition (5.24) it follows that

E(D2
3) = 4

∑
1≤i≤n

(∫
G̃(m′1(·), i, t)G̃(m′2(·), i, t)w(t)dt

)2

=
4(
∫
vK ′d(v)dv)4

n4b12

∑
i

(∫
(((m′1)−1)′)2(t)(((m′2)−1)′(t)(K◦)′

(i/n− (m′1)−1(t)

bn

)
(K◦)′

(i/n− (m′2)−1(t)

bn

)
w(t)dt

)2

σ2
1(i/n)σ2

2(i/n) = O((n3b11
n )−1)

Hence,

nb9/2
n D3 = Op

(( 1

nb2
n

)1/2)
. (5.29)

Finally we investigate the term D2 using a central limit theorem for quadratic forms [see

de Jong (1987)]. For this purpose define the terms (note that (K◦)′(·) is symmetric and has
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bounded support)

Vs,n =
∑

1≤i 6=j≤n

(
(K◦)′

(i/n− (m′s)
−1(t)

bn

)
(K◦)′

(j/n− (m′s)
−1(t)

bn

)
σs(

i

n
)σs(

j

n
)(((m′s)

−1)′(t))4w(t)dt
)2

= n2

∫ 1

0

∫ 1

0

(∫
R
(K◦)′

(u− (m′s)
−1(t)

bn

)
(K◦)′

(v − (m′s)
−1(t)

bn

)
σs(u)σs(v)(((m′s)

−1)′(t))4w(t)dt
)2

× dudv(1 + o(1))

= n2b2
n

∫ 1

0

∫ 1

0

(∫
R
(K◦)′(y)(K◦)′(

v − u
bn

+ y)σ2
s(u)w(m′s(u))(m′′s(u))−3dy

)2

dudv(1 + o(1))

= n2b3
n

∫
((K◦)′ ∗ (K◦)′(z))2dz

∫
(σ2

s(u)w(m′s(u))(m′′s(u))−3)2du(1 + o(1)) ,

then limn→∞ Vs,n/(n
2b3
n) exists (s = 1, 2) and

lim
n→∞

2(
∫
vK ′d(v)dv)4n2b9

n

(nb3
n)4

(V1,n + V2,n) = VT ,

where the asymptotic variance VT is defined in Theorem 3.2. Now similar arguments as used

in the proof of Lemma 4 in Zhou (2010) show that

nb9/2
n D2 ⇒ N(0, VT ),

Combining this statement with (5.23), (5.24), (5.27), (5.28), and (5.29) finally gives

nb9/2
n

∫
U2
n(t)w(t)dt−Bn(0)⇒ N(0, VT ). (5.30)

Asymptotic properties of (5.16): Note that∫
Un(t)((m−1

1 )′ − (m−1
2 )′)w(t)dt =

∫
(Un,1(t)− Un,2(t))((m−1

1 )′ − (m−1
2 )′)w(t)dt,

where∫
(Un,s(t)((m

−1
1 )′ − (m−1

2 )′)w(t)dt =
n∑
j=1

Vj,s

∫
G(m′s(·), j, t)(ρng(t) + o(ρn))w(t)dt

= Op

((nb2
nρ

2
n

n2b6
n

)1/2)
= Op

( ρn
(nb4

n)1/2

)
.
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Observing that ∫
G(m′s(·), j, t)ρng(t)w(t)dt = O(ρnbn/(nb

3
n)),

the bandwidth conditions and the definition of ρn give for s = 1, 2,

nb9/2
n

∫
(Un,s(t)((m

−1
1 )′ − (m−1

2 )′)w(t)dt = Op(b
1/4
n ). (5.31)

Asymptotic properties of (5.17): Note that it follows for the term (5.17)

∣∣∣ ∫ Un,s(t)R
†
n(t)w(t)dt

∣∣∣ ≤ sup
t
|R†n(t)|

∫
sup
t

∣∣∣ n∑
j=1

Vj,sG(m′s(·), j, t)
∣∣∣w(t)dt.

Observing that
∑
j

G2(m′s(·), j, t) = O(nbn/(nb
3
n)2) we have

sup
t

∣∣∣ n∑
j=1

Vj,sG(m′s(·), j, t)
∣∣∣ = Op

( log1/2 n

n1/2b
5/2
n

)
,

and the conditions on the bandwidths and (5.14) yield

nb9/2
n

∣∣∣ ∫ (Un,s(t)(R
†
n(t))w(t)dt

∣∣∣
= Op

( log1/2 n

n1/2b
5/2
n

(π′n
hd

+
π3
n

h2
d

+ hd +
1

Nhd

)
nb9/2

n

)
= op(1). (5.32)

The proof of assertion (5.6) is now completed using the decomposition (5.12) and the results

(5.18), (5.19), (5.20), (5.30), (5.31) and (5.32).

5.3.2 Proof of (5.7)

From the proof of (5.6) we have the decomposition

Tn − T̃n =

∫
(I1(t)− I2(t) + II(t))2(ŵ(t)− w(t))dt

=

∫ (
Un(t) + ((m′1)−1(t))′ − ((m′2)−1(t))′ +R†n(t)

)2
(ŵ(t)− w(t))dt,
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where quantities Is, II, Un(t) and R†n(t) are defined in (5.8), (5.9), and (5.13). By the proof

of (5.6), it then suffices to show that

nb9/2
n

∫
(Un(t))2(ŵ(t)− w(t))dt = op(1).

Using the same arguments as given in the proof of (5.6), this assertion follows from

nb9/2
n

∫
(Ũn(t))2(ŵ(t)− w(t))dt = op(1).

where Ũn(t) is defined in (5.22). Recalling the definition of a, b in (2.16) it then follows (using

similar arguments as given for the derivation of (5.5)) that

sup
t∈[a,b]

|Ũn(t)| = Op

(
log n√
nbnb2

n

)
.

Furthermore, together with part (iii) of Proposition 5.2 it follows that∫
(Ũn(t))2(ŵ(t)− w(t))dt ≤ sup

t∈[a,b]

|Ũn(t)|)2

∫
|ŵ(t)− w(t)|dt = Op

(
ω̄n log2 n

nb5
n

)
,

where ω̄n is defined in (3.2). Thus by our choices of bandwidth nb
9/2
n

ω̄n log2 n
nb5n

= o(1), from

which result (ii) follows.

Finally, the assertion of the Theorem 3.2 follows from (5.6) and (5.7). 2
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