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Abstract. Classic difference-in-differences estimation relies on the validity of the “parallel

trends assumption” (PTA), which ensures that the evolution of the variable of interest in the

control group can be used to determine its counterfactual development in the treatment group

in the absence of treatment. The plausibility of the PTA is usually assessed by a test of the

null hypothesis that the difference between the means of both groups is constant over time

before the treatment. However, this procedure is problematic as failure to reject the null

hypothesis does not imply the absence of differences in time trends between both groups due

to low power to detect economically relevant differences. We provide three tests of equivalence

leading to a “common range” (CR) condition that replaces the PTA and which naturally reflects

differences between treatment and control. We combine the CR with standard confidence

intervals to capture both design and sampling uncertainty in the data and show that the

combined confidence intervals yield more reliable inference when the PTA is violated.

1. introduction

In the classic case, the Difference-in-Differences (DiD) framework consists of two groups

observed over two periods of time, where the “treatment group” is untreated in the initial period

and has received a treatment in the second period whereas the “control group” is untreated in

both periods. The key condition under which DiD estimators yields sensible point estimates of

the true effect of the treatment is known as the “parallel trends” or “parallel paths” assumption,

which states that in the absence of treatment on average both groups would have experienced

the same temporal trends in the outcome variable. If pre-treatment observations are available

for both groups, the plausibility of this assumption is typically assessed by plots accompanied

by a formal testing procedure showing that there is no evidence in favor of differences in trends

over time between the treatment and the control group. However, this procedure is problematic

as traditional pre-tests suffer from low power to detect violations of the PTA (Kahn-Lang and

Lang, 2019). Thus, finding no evidence of differences in trends in finite samples does not imply

that there are no differences in trends in the population. More concerningly, Roth (2020)

points out that if differences in trends exist, conditional on not detecting violations of parallel

trends at the pre-testing stage, the bias of DiD-estimators may be greatly amplified. This is in

line with Ioannidis, Stanley, and Doucouliagos (2017), who argue that lack of statistical power
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is not only making it difficult to find evidence for relationships that exist in the population

but may also lead to an increase in the rates of false positives, where statistical evidence is

reported for non-existent relationships. In summary, while finding evidence for differences in

trends in pre-treatment periods is a strong argument against exactly parallel trends, failure to

detect different trends is an insufficient justification for the use of the standard DiD estimation

procedure.

Given the severe consequences of falsely accepting the PTA, we propose that instead of

testing the null hypothesis of no differences in trends between the treatment and the control

group in the pre-treatments periods, one should apply a test for statistical “equivalence”.1 We

provide three distinct types of equivalence that impose bounds on the maximum, the average

and the “least squares” change over time in the group mean difference between treatment

and control in the pre-treatment periods. These bounds thus form a “common range” for the

changes in group mean differences between treatment and control over time. We then proceed

by relaxing the usual parallel trends assumption by assuming that in the absence of treatment

differences in trends between treatment and control in the post-treatment period are bounded

by the common range. This naturally implies that the average treatment effect on the treated

(ATT) is no longer point-identified but lies within a range that naturally reflects the (dis-)

similarities between both groups. We finally combine the usual confidence interval around the

treatment effect estimate (measuring sampling uncertainty) with the common range (measuring

design uncertainty) to obtain simple intervals that capture both sources of uncertainty. This

procedure has several advantages over the current standard pre-test. First, it reverses the

burden of proof since the data has to provide evidence in favor of similar trends in the treatment

and the control group, which is arguably more appropriate for an assumption as crucial to the

DiD-framework as the comparability of treatment and control in the absence of treatment.

Second, due to our reversal of the standard null hypothesis, we are able to quantify the extend

to which the two groups are comparable in the pre-treatment periods, as differences are bounded

by the common range with probability of at least 1−α for a given level of significance α. Third,

the width of the common range constitutes a measure of the plausibility of the underlying

assumption that the counterfactual time trend in the treatment group can be extrapolated

from the respective trend in the control group, since a large common range (corresponding to a

low level of plausibility) yields a wide range for the true value of the ATT.2 Furthermore, for our

1In Public Health, the DiD design is also known as “nonequivalent control group pretest design” (Wing,

Simon, and Bello-Gomez, 2018), where “nonequivalent” indicates that the group composition is not a result

of randomization controlled by the researcher. In our framework, “equivalence” is used when referring to a

particular type of null-hypothesis discussed in Section 3.
2The idea of computing and reporting the smallest common range has been suggested in Political Science

by Hartman and Hidalgo (2018). However, their focus is less specific to the Difference-in-Difference framework,

hence they do not provide a detailed analysis or simulations on the performance of the approach. Moreover, we
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procedure based on equivalence tests, the power to reject the null hypothesis of a difference is

increasing with the sample size (also see Hartman and Hidalgo, 2018). This improves upon the

current practice of testing the null hypothesis of “no difference”, since large samples increase

the chances of rejecting the null hypothesis (and thus seemingly making the DiD framework

inapplicable), even if the true difference between treatment and control may be negligible in the

given context. Finally, our equivalence test statistics make use of the standard OLS estimator

and can thus easily be implemented in practice.

Our method can be related to several approaches in the literature on the plausibility of the

PTA. For instance, Abadie, Diamond, and Hainmueller (2010) introduce a systematic way of

choosing a control group as a linear combination of untreated individuals. It is then demon-

strated graphically (e.g. in Abadie et al., 2010, Abadie, Diamond, and Hainmueller, 2015 or

Abadie and Gardeazabal, 2003) that trends in the pre-treatment periods show a high level of

similarity between the treatment and the synthetic control group. Other methods tackle the

identifying assumption of parallel trends with a conditional DiD approach based on match-

ing methods on observable covariates (e.g. Heckman, Ichimura, and Todd, 1997, Heckman,

Ichimura, Smith, and Todd, 1998 or Abadie, 2005). A common feature of these approaches

is that a control group is constructed such that the PTA holds exactly so that the ATT is

point identified, which differs from our main approach. As we use equivalence tests, our paper

is closely related to Bilinski and Hatfield (2020), who provide a discussion on the benefits of

using equivalence or non-inferiority tests when testing for violations of modeling assumptions.

Their “one-step-up” approach is based on a non-inferiority test of treatment effect estimates

obtained from a standard DiD model and from a model augmented with a particular violation

of the parallel trends assumption (e.g. a linear trend). Unlike them, we do not necessarily focus

on a particular violation of the PTA. Moreover, we incorporate uncertainty about the appro-

priateness of the DiD design via set-identification of the average treatment effect. Other papers

allow for certain deviations from exactly parallel trends. For instance, Roth and Ashesh (2020)

relax the PTA by imposing restrictions based on economic knowledge which can be expressed as

a set of linear inequalities on the potential differences in trends between treatment and control.

They then proceed by deriving confidence sets that are valid conditional on the restriction on

trend differences. While our equivalence test based procedure also allows for pre-specifying an

equivalence threshold based on economic intuition, we focus on finding upper bounds for the

differences in trends that are consistent with the pre-treatment data (and thus do not require

specifying restrictions a priori). Chan and Kwok (2018) allow for certain violations of exactly

parallel trends by augmenting the usual two-way fixed effects framework by a factor structure

of the unobserved effect. However, our method is arguably more closely related to Manski and

suggest novel testing procedures that are specifically designed for the DiD pre-testing framework and different

from the “equivalence confidence interval” of Hartman and Hidalgo (2018).
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Pepper (2018), who consider a set of “bounded variation” assumptions that impose determinis-

tic constraints on unobservable counterfactual outcomes. As a consequence, the true treatment

effect is no longer point- but set-identified. Manski and Pepper then examine the sensitivity

of DiD results when relaxing the PTA while imposing bounds on the “DiD Variation” (i.e. the

change in group mean differences over time). A key difference to our paper is that there is

no sampling uncertainty in their paper due to the use of data on the state level. Following

Abadie, Athey, Imbens, and Wooldridge (2020), the remaining uncertainty in DiD estimates is

thus “design based” rather “sampling based”. Since there is no sampling uncertainty in Manski

and Pepper (2018), selecting bounds on the DiD variation that are internally consistent with

observed pre-treatment data is rather straightforward. In contrast, our paper focuses on a set-

ting in which both design and sampling uncertainty are present and proposes a strategy that

accounts for both sources of uncertainty. Finally, our paper also contributes to the literature

on inference in DiD designs (e.g. Bertrand, Duflo, and Mullainathan, 2004, Donald and Lang,

2007). A key difference to previous approaches who focus on the correct measurement of the

statistical insecurity in the DiD estimate (i.e. on the correct choice of standard errors) when

the PTA is assumed to hold is that we focus on incorporating a measure for the uncertainty of

the validity of the PTA assumption into the usual confidence intervals.

2. Pre-testing in the Difference-in-Differences framework

We focus on a repeated cross-section setup in which we observe nt ∈ N individuals indexed

by i in period t ∈ {1, . . . , T+1}. We refer to individual i as “treated” or being in the “treatment

group” if the treatment indicator Gi = 1 and as being “non-treated” or in the “control group”

if Gi = 0. Moreover, periods 1, ..., T correspond to pre-treatment periods while T + 1 denotes

the post-treatment period.3 The potential outcome of unit i when treated is denoted as Y 1
i ,

whereas Y 0
i denotes the potential outcome of unit i in the absence of treatment.4 The observed

outcome is then given by Yi = Y 0
i + (Y 1

i − Y 0
i )Gi × Di,T+1, where Di,l denotes an indicator

that takes the value 1 if unit i is observed in period l ∈ {1, ..., T + 1} and zero otherwise. Our

object of interest is the average treatment effect on the treated

πATT := E[Y 1
i − Y 0

i |Gi = 1, Di,T+1 = 1, Xi],

where Xi denotes a p-dimensional column vector of observed covariates. Since the counterfac-

tual E[Y 0|Gi = 1, Di,T+1 = 1, Xi] is not observed, πATT cannot be identified without further

assumptions. The PTA, which ensures that in the absence of treatment both the treatment and

3To keep our notation simple, we pool the post-treatment periods into a single time period. We further

rule out differences in treatment timing (for a discussion on differential treatment times see, for instance,

Goodman-Bacon, 2018, Callaway and Sant’Anna, 2019 or Abraham and Sun, 2018).
4In panel data sets, the same individual may be observed in different states and periods. We demonstrate

how our methodology can be applied in a panel data setting in Section 6
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the control group would have experienced the same time trends between the post-treatment

period T + 1 and the “reference” period T , is given by ∆T+1(0)−∆T (0) = 0, where

∆l(0) := E[Y 0
i |Gi = 1, Di,l = 1, Xi]− E[Y 0

i |Gi = 0, Di,l = 1, Xi], l = 1, ..., T + 1, .

In most applications, it is however not considered plausible that group trends are parallel

between periods T and T +1 but not between period l ∈ {1, ..., T −1} and T . In the rest of the

paper, we therefore refer to the PTA in its “augmented” version (see Callaway and Sant’Anna,

2019) given by

∆l(0)−∆l(0) = 0, l = 1, ..., T − 1. (2.1)

Under (2.1), we can write the ATT as πATT = ∆T+1 −∆T , where

∆l := E[Yi|Gi = 1, Di,l = 1, Xi]− E[Yi|Gi = 0, Di,l = 1, Xi]

denotes the population group mean difference in period l conditional on observed characteris-

tics. Notice that under the PTA πATT solely consists of observable quantities.

A popular model specification (see, e.g., Angrist and Pischke, 2008, p.177) that yields both

an estimator of the ATT and a pre-testing procedure is

Yi = c+Giα +
T+1∑
l=1
l 6=T

Di,lγl +
T+1∑
l=1
l 6=T

βlDi,l ×Gi +X ′iµ+ εi , i = 1, . . . , n , (2.2)

where c denotes a constant and µ is a p-dimensional parameter. Importantly, the group dummy

Gi is time-invariant whereas the effect of the time dummies does not depend on group mem-

bership. A simple linear regression then yields estimates β̂l, l ∈ {1, . . . , T − 1, T + 1}, where

πATT is estimated by β̂T+1. The remaining β̂0, . . . , β̂T−1 referring to leads of the treatment

effect are used for a “Granger-type causality test” (Wing et al., 2018). If the trends in the

average outcome of interest in treatment and control are indeed “parallel”, changes in treat-

ment status occurring in period T + 1 should not affect the outcome in prior periods. Under

strict exogeneity, i.e. E[εi|Gi, Di,1, ..., Di,T−1, Di,T+1, Xi] = 0, we should therefore expect βl = 0

for every l ∈ {1, ..., T − 1}. To find evidence against the plausibility of parallel trends, one

could thus test for simultaneous significance of the parameters corresponding to pre-treatment

periods, i.e.

H0 : β1 = ... = βT−1 = 0 vs. H1 : ∃ l ∈ {1, . . . , T − 1} : βl 6= 0. (2.3)

As noted for instance in Roth (2020), it is however more common in applied economic research

to test for individual significance, i.e. for every l ∈ {1, ..., T − 1} we test

H0 : βl = 0 vs. H1 : βl 6= 0. (2.4)
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If the null hypothesis is rejected in a pre-treatment period, the PTA is deemed unreasonable,

and consequently the DiD framework is often regarded as unsuitable in the corresponding con-

text. This procedure has several shortcomings. For instance, the DiD framework is sometimes

used even when H0 in (2.4) is rejected, as some statistically significant differences are deemed

negligible in a given context. Usually however, a potential threshold that quantifies what con-

stitutes a negligible effect is insufficiently discussed. A further problematic common practice

is to treat failure to reject the null hypothesis in (2.3) or (2.4) as evidence in favor of H0, i.e.

one proceeds as if the null hypothesis was true and as if the PTA held. From a statistical point

of view, this practice is incorrect as it neglects the error of type II. In some cases, there may

be differences in trends between both groups in the population that cannot be detected with

traditional test of (2.3) or (2.4) due to a lack of statistical power. Since the DiD framework

is applied as if the PTA was true, one will then typically obtain biased estimates of the ATT.

Roth (2020) further points out that since the group mean difference of the reference period is

involved both in the pre-test and in the estimate of πATT , the bias is more severe conditional on

not detecting an existing difference in trends. The latter aspect raises additional concerns of a

“publication bias” as articles using a DiD identification argument are more likely to be deemed

publishable when a test of (2.3) or (2.4) could not detect evidence against the PTA. Finally,

the current approach does not make full use of the information present in the data. Commonly,

the DiD framework is not applied if H0 in (2.4) is rejected in at least one pre-treatment period

since a violation of the PTA and consequentially a bias in the estimated ATT seems likely.

If one however knew an “upper bound” for the extend to which the trends in treatment and

control differ, one could use this information to correct the bias and thus recover useful infor-

mation from a DiD analysis. As we argue in the next section, the plausibility of the PTA as the

fundamental modeling assumption of the DiD framework can be more convincingly assessed

using statistical equivalence tests, as these tests address all of the above shortcomings of the

current standard testing procedure.

3. Testing for equivalence

Equivalence testing is well known in biostatistics (see Berger and Hsu, 1996 or Wellek,

2010). While it has recently been considered in the statistical literature for the analysis of

structural breaks (e.g. Dette and Wied, 2014, Dette and Wu, 2019, Dette, Kokot, and Aue,

2020 or Dette and Wu, 2020), it is less frequently used in econometrics. To illustrate this

concept in the present context, first notice that βl = ∆l − ∆T , i.e. βl measures the change

in group mean differences between period l and the reference period conditional on a set of

observed covariates. Thus, βl = 0 signifies the absence of temporary shocks in periods l and T

that only affect either treatment or control after controlling for observed regressors. Conversely,

βl 6= 0 signals that the control group may not be an optimal comparison group for the treatment
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group, as there may be unobserved differences between both. In that sense, β1, ..., βT−1 may

provide a measure of comparability of treatment and control. Thus, instead of assuming that

treatment and control are perfectly comparable (i.e. βl = 0, l = 1, ..., T − 1) unless there is

strong evidence against this assumption, we suggest three testing procedure that explicitly

require finding evidence in favor of the comparability of both groups. Each of the tests yields

an upper bound U ≥ 0 for changes in the group mean differences in the pre-treatment periods

relative to the reference period. There are two ways in which one can make use of the upper

bound U. First, as in the “classic” use of equivalence tests, one can specify a threshold T

below which changes in the group mean differences over time are deemed negligible. On then

applies our equivalence testing procedures and compares the corresponding upper bounds to

the pre-specified threshold. Rejecting an equivalence test for U ≤ T at α level of significance

then implies that deviations from parallel trends in the pre-treatment periods are negligible

relative to the threshold T with probability 1−α. Since the PTA in the pre-treatment periods

is now supported by sufficient evidence, this provides a justification for the PTA post-treatment

so that the true ATT can again be point-identified. This procedure improves upon the current

use of the Granger-causality test as it requires an explicit rationalization of the threshold T and

sufficient data to support the assumption of negligible violations of the PTA pre-treatment.

However, in contrast to studies in other fields such as biology or medicine where previous

experience based on clinical trials may be available to justify a threshold T, such knowledge

is rarely at hand in economic studies. It is therefore often difficult to objectively argue that

a certain extend of violations of the PTA can be ignored in practice. In the remainder of

the paper, we thus use the new procedures for testing equivalence developed in this paper

to find the smallest upper bound U∗ for pre-treatment changes in group mean differences.

Under the assumption that the same upper bound also holds for the change in group mean

differences between the reference and the post-treatment period, we can set-identify the true

ATT. Formalizing this idea, we thus replace the assumption of exactly parallel trends in the

absence of treatment by a “common range” assumption, i.e.

|∆T+1(0)−∆T (0)| ≤ U∗. (3.1)

Note that this is clearly a weaker requirement than that of exactly parallel trends.5 Since the

counterfactual difference in group means is no longer given by a single number, we consequently

obtain an interval of possible values of the true ATT. From (3.1), it follows that πATT ∈ IU
∗

ATT =

(πLATT , π
U
ATT ), where πLATT := ∆T+1 −∆T − U∗ and πUATT := ∆T+1 −∆T + U∗, so that IU

∗
ATT is

5As both assumptions refer to an unobservable counterfactual outcome, it is unfortunately not possible to

test either assumption directly. Hence, the plausibility of exactly parallel trends or a common range has to be

determined depending on the context.
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an interval of length 2U∗.6 If the PTA does not hold or its plausibility cannot be justified due

to insufficient data, the uncertainty about the comparability of treatment and control in the

absence of treatment is directly reflected by a wide interval of possible values of the true ATT.7

We develop three methods for determining a plausible upper bound U∗. We start with a

discussion of the maximum absolute change of the group mean difference in the pre-treatment

periods relative to the reference period. More precisely, for a given level of significance α we

find the smallest value δ > 0 denoted as δ∗ such that the null hypothesis in

H0 : max
l∈{1,...,T−1}

|βl| > δ vs. H1 : max
l∈{1,...,T−1}

|βl| ≤ δ (3.2)

is rejected. Since we are now controlling the type I error, this implies that with probability

of at least 1 − α, an upper bound for the absolute change in group mean differences in the

pre-treatment periods relative to the reference period is given by δ∗. If sufficient pre-treatment

periods are considered, it is natural to assume that δ∗ also provides an upper bound for the

absolute change from the group mean difference in the post-treatment period in the absence of

treatment to the group mean difference in the reference period. A potential drawback of testing

(3.2) is that the common range tends to be wide and thus the procedure is rather conservative in

practice.8 In order to mitigate this problem, we consider two further alternatives of finding an

upper bound. For instance, if many pre-treatment time periods are available, it may be sensible

to consider the average deviation from the group mean difference in the reference period

β̄ :=
1

T − 1

T−1∑
t=1

βt. (3.3)

Instead of testing (3.2), one may then find bounds on the average deviation from the group

mean difference in the reference period by testing

H0 : |β̄| > τ vs. H1 : |β̄| ≤ τ (3.4)

and choosing the bound τ ∗ as the smallest τ for which H0 in (3.4) is rejected. As compared

to (3.2), testing the hypothesis in (3.4) can have multiple advantages in certain situations of

interest. For instance, adding time periods in (3.2) can only yield wider intervals for the possible

values of the true ATT. While this leads to plausible bounds on the ATT, the procedure may

6In some contexts, the direction of the effect may be known. In such instances, the identified set can be

expressed as IU
∗

ATT = (πL
ATT , βT+1) or IU

∗

ATT = (βT+1, π
R
ATT )

7In Manski and Pepper (2018), the “DiD-variation” is bounded such that the bound is consistent with the

pre-treatment data. However, their analysis uses data on the state level which removes sampling variation so

that the upper bounds can be made consistent with pre-treatment data in a rather straightforward way. We

similarly choose the bounds on changes in the group mean differences consistent with the pre-treatment data

in a setting that includes both design and sampling uncertainty.
8Related criticism of equivalence tests can for instance be found in Bilinski and Hatfield (2018).
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become too conservative for many pre-treatment periods. One reason is that the tests for

(3.2) presented here are based on the intersection-union principle, which leads to increasingly

conservative tests as the number of parameters (= T − 1) increases. Since averaging reduces

the dimension of the parameter to be tested to one irrespective of the number of pre-treatment

time periods, this problem is overcome by (3.4). On the other hand, β and thus τ ∗ can be small

in situations in which the summands βt in (3.3) are large in absolute value but have different

signs. In practice, one should therefore be conscious about potential cancellation effects in β

whenever one suspects temporary shocks to the treatment or control group that switch direction

between time periods.

Therefore, as a further alternative to (3.4), we consider the average squared deviation from

the group mean difference in the reference period

β̄sq :=
1

T − 1

T−1∑
t=1

β2
t .

One then tests the hypotheses

H0 : β̄sq > η vs. H1 : β̄sq ≤ η (3.5)

and chooses η∗ as the smallest η for which H0 in (3.5) can be rejected. As we illustrate in our

simulations, this test typically yields narrow intervals for the true ATT when the PTA holds

and sufficient data is available. Thus, in cases in which the PTA is plausible due to theoretical

considerations, following our procedure using (3.5) is a simple way of capturing the remaining

uncertainty in the data about the comparability of treatment and control without sacrificing

too much informative value about the true ATT due to overly conservative common ranges.

Moreover, our test procedures can be useful in analyzing the nature of potential violations of

the PTA, as we illustrate in our examples and simulations.

3.1. Implementing equivalence tests. We now focus on developing the test statistics for

the hypotheses in (3.2), (3.4) and (3.5) which can be applied in model (2.2). To formalize the

necessary assumptions, we first introduce the random vector

Wi :=
(
1, Gi, Di,1, . . . , Di,T−1, Di,T+1, G1 ×Di,1, . . . , Gi ×Di,T−1, Gi ×Di,T+1, X

>
i

)>
(i = 1, . . . , n) and the parameter

θ := (c, α, γ1, ..., γT−1, γT+1, β1, ..., βT−1, βT+1, µ
>)> ∈ R2T+2+p. (3.6)

With these notations we can write model (2.2) in the form Yi = W>
i θ+εi, and the least squares

estimator θ̂ is given by

θ̂ = (
1

n

n∑
i=1

WiW
>
i )−1 1

n

n∑
i=1

WiYi = θ + (
1

n

n∑
i=1

WiW
>
i )−1 1

n

n∑
i=1

Wiεi. (3.7)
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For the asymptotic analysis we make the following assumptions.

Assumption 3.1.

(1) Gi is a Bernoulli distributed random variable with parameter p ∈ (0, 1) specifying the

probability of individual i being treated.

(2) The vector (Di,1, . . . , Di,T+1)> has a multinomial distribution with a single trial and proba-

bilities p1, . . . , pT+1, where pj ∈ (0, 1) specifies the probability that individual i is observed

in period j and
∑T+1

j=1 pj = 1.

(3) W1, . . . ,Wn and ε1 . . . , εn are independent samples of independent identically distributed

random variables.

(4) The matrix Γ = E[WiW
T
i ] exists and is positive definite. E[εi] = E[ε2

i ] exists and is positive.

Under these assumptions, standard arguments show that the estimate θ̂ in (3.6) is consistent

for θ. Let further β̂ := (β̂1, ..., β̂T−1, β̂T+1)> denote the OLS estimator of the parameter β :=

(β1, ..., βT−1, βT+1)> in model (2.2), then it follows that

√
n(β̂ − β)→ N(0,Σ), (3.8)

where N(0,Σ) denotes a T -dimensional normal distribution with mean vector 0 ∈ RT and

covariance matrix Σ = (Σij)i,j=1,...,T and n :=
∑T+1

t=1,t6=T nt denotes the total sample size. Note

that β = (0, . . . , 0, πATT )> if and only if the PTA is satisfied. Based on the asymptotic normality

of the OLS estimator in (3.8), we test the three different hypotheses of equivalence as follows.9

(1) To describe the test for the hypotheses in (3.2) we first consider the case T = 2 so that

our objective is to test whether a single parameter β1 exceeds a certain threshold. As

β̂1 is approximately distributed as N1(β1,Σ11/n), we can reject the null hypothesis

H0 : |β1| > δ vs. H1 : |β1| ≤ δ

for small values of |β̂1|. To be precise, recall that for a normally distributed random

variable Z ∼ N(µ, σ2) the distribution of |Z| is called folded normal distribution, i.e.

|Z| ∼ NF (µ, σ2). We now propose to reject the null hypothesis in (3.2), whenever

|β̂1| ≤ QNF (δ,Σ̂11/n)(α), (3.9)

where QNF (δ,σ2)(α) denotes the α quantile of the folded normal distribution with mean

δ and variance σ2 and where Σ̂ = (Σ̂ij)i,j=1,...,T is the common estimator of the matrix

Σ in (3.8). It is shown in Appendix A that this test is consistent, has asymptotic level

α and is (asymptotically) uniformly most powerful for testing the hypothesis in (3.2)

9As discussed in Remark 3.2 below, our methodology also works under alternative assumptions which for

instance allow for serial dependence in the model errors or panel data as in Section 6.
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in the case T = 2. For T > 2, we apply the idea of intersection-union tests outlined in

Berger and Hsu (1996) and reject the null hypothesis in (3.2), whenever

|β̂t| ≤ QNF (δ,Σ̂tt/n)(α) ∀t ∈ {1, . . . , T − 1}. (3.10)

As pointed out before, it is well-known that testing procedures based on the intersection-

union principle tend to be rather conservative (see Berger and Hsu, 1996, among others),

which is further confirmed by Table 1 in Section 5.

(2) Next, we consider the hypothesis in (3.4) for some fixed τ > 0. Writing β̂(T−1) :=

(β̂1, . . . , β̂T−1)> so that β̂(T−1) denotes the sub-vector which extracts the coordinates

in the positions T + 2, . . . , 2T from the vector θ̂, a test can be constructed by first

computing the statistic

¯̂
β(T−1) :=

1

T − 1

T−1∑
t=1

β̂t = 1
>β̂(T−1)/(T − 1),

where 1 = (1, . . . , 1)> ∈ RT−1. Note that it follows from (3.8) that
√
n1>(β̂(T−1) − β(T−1))→ N(0,1>Σ1)).

Consequently, based on the discussion in the previous paragraph, we propose to reject

the null hypothesis in (3.4), whenever

| ¯̂β(T−1)| ≤ QNF (τ,σ̂2)(α), (3.11)

where σ̂2 = 1
>Σ̂1/(n(T − 1)2). While this test maintains its nominal level for every

T ≥ 2, a potential downside (as mentioned before) of the hypothesis (3.4) is that

vectors with large absolute entries and opposite signs are classified through the mean

β̄ as small. In practice, it can therefore be informative to combine this test with a test

for the hypotheses in (3.5) which does not encounter this issue.

(3) In order to construct a pivot test for the hypotheses (3.5), recall the definition of the

OLS estimator θ̂ in (3.7) and let, with a slight abuse of notation, ε > 0 denote a small

positive constant. For λ ∈ [ε, 1], define

θ̂(λ) =
( 1

n

bnλc∑
i=1

WiW
>
i

)−1 1

n

bnλc∑
i=1

WiYi

as the OLS estimator for the parameter θ in (3.6) from the sample (W1, Y1), . . . , (Wbnλc, Ybnλc),

such that for sufficiently large sample sizes θ̂(λ) is well defined. Next, define

β̂(T−1)(λ) = (β̂1(λ), . . . , β̂T−1(λ))>

as a sub-vector of θ̂(λ) extracting the coordinates in the positions T + 2, . . . , 2T + 2.

Further notice that β̂(T−1)(1) is the OLS estimator of β(T−1) based on the full sample,
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i.e. β̂(T−1)(1) = β̂(T−1). We now define

M̂n :=
1

T−1
‖β̂(T−1)(1)‖2 − 1

T−1
‖β(T−1)‖2

V̂n
, (3.12)

where ‖ · ‖ denotes the euclidean norm on RT−1,

V̂n =
1

T − 1

(∫ 1

ε

(‖β̂(T−1)(λ)‖2 − ‖β̂(T−1)(1)‖2)2ν(d λ)
)1/2

(3.13)

and ν denotes a measure on the interval [ε, 1]. The following result is proved in the

Appendix.

Theorem 3.1. If Assumption 3.1 is satisfied and β(T−1) 6= 0, then the statistic M̂n

defined in (3.12) converges weakly with a non-degenerate limit distribution, that is

M̂n
d→W :=

B(1)( ∫ 1

ε
(B(λ)/λ− B(1))2ν(dλ)

)1/2
, (3.14)

where {B(λ)}λ∈[ε,1] is a Brownian motion on the interval [ε, 1].

It follows from the proof of Theorem 3.1 that the statistic 1
T−1
‖β̂(T−1)‖2 is a consistent

estimator of βsq = 1
T−1
‖β(T−1)‖2. Therefore, we propose to reject the null hypothesis

H0 in (3.5), whenever

1

T − 1

∥∥β̂(T−1)(1)
∥∥2

=
1

T − 1

T−1∑
t=1

β̂2
t ≤ η + QW(α)V̂n, (3.15)

where QW(α) is the α-quantile of the distribution of the random variable W on the right-

hand side of (3.14). Note that these quantiles can be easily obtained by simulation.

The following result shows that this decision rule defines a valid test for the hypotheses

in (3.5).

Theorem 3.2. If Assumption 3.1 is satisfied, then the test defined by (3.15) is a con-

sistent asymptotic level α-test for the hypothesis in (3.5), that is

lim
n→∞

Pβ̄sq
( 1

T − 1
‖β̂(T−1)(1)‖2 ≤ η +QW(α)V̂n

)
=


0, if β̄sq > η

α, if β̄sq = η

1, if β̄sq < η

Remark 3.1. Notice that in practice one chooses ν as a discrete distribution which

makes the evaluation of the integrals in (3.13) and in the denominator of the random

variable W very easy. For example, if ν denotes the uniform distribution on {1
5
, 2

5
, 3

5
, 4

5
},

then the statistics V̂ 2
n in (3.13) simplifies to

1

4

5∑
k=1

(∥∥β̂(T−1)(k
5
)
∥∥2 −

∥∥β̂(T−1)(1)
∥∥2
)2

.



13

This measure is also used in the simulation study in Section 5, where we analyze the

finite sample properties of the different procedures.

Remark 3.2. The statements made in this section remain valid under more general or alter-

native assumptions and we exemplary mention here two such cases.

(1) In Assumption 3.1 it is postulated that the random variables (W1, ε1), . . . , (Wn, εn)

are independent. However, a careful inspection of the proofs in Section A.2 shows

that similar results can be obtained in the case of dependent data. More precisely,

for a symmetric d × d matrix A let vech(A) denote the d(d + 1)/2-dimensional vector

that stacks the columns of the matrix A below the diagonal in a vector, where d :=

2T + 2 + p. Let K denote a non-singular d × d-matrix and let B be a d-dimensional

vector of independent Brownian motions. The d-dimensional time series {(Wi, ε1)}ni=1

is stationary and the sequential process{
√
n

(
1
bnλc

∑bnλc
i=1 Wiεi

vech( 1
bnλc

∑bnλc
i=1 WiW

T
i − Γ)

)}
λ∈[ε,1]

 
{
K

B(λ)

λ

}
λ∈[ε,1]

(3.16)

converges weakly in the space (`∞[ε, 1])d of all d-dimensional bounded functions on

the interval [ε, 1], then the results stated in this section remain valid. Results of the

form (3.16) have been proved for many dependence concepts in the literature (such as

different types of mixing or physical dependence; see, for instance, Merlevède, Peligrad,

and Utev, 2006 and the references in therein).

(2) Similarly, note that 3.1(b), which reflects the fact that each individual is only ob-

served at exactly one time period, can be replaced by other assumptions, modeling

alternative observation schemes. For example, in the situation of panel data with no

missing observations, the vector Di = (Di,1, . . . , Di,T+1)> is not random and given by

(1, . . . , 1)>. Moreover, panel data with missing observation can be also modeled using

a random vector Di = (Ui,1, . . . , Ui,T−1, Ui,T+1)> where Ui,1, . . . , Ui,T−1, Ui,T+1 are inde-

pendent Bernoulli variables with success probabilities p1, . . . , pT−1, pT+1, respectively

(here 1 − pt represents the probability that an observation for the i-th object is not

available for time t).

4. Equivalence testing in practice

We begin this section with reviewing the credibility of the PTA in situations of applied

interest. We then proceed by discussing the effect of violations of the PTA on our equivalence

tests. Moreover, we present a simple approach of obtaining confidence intervals that take

into account the two sources of uncertainty about the treatment effect estimate, namely the

sampling variation of the usual DiD estimator and the uncertainty about the DiD design as

epressed by the common range defined by our equivalence tests.
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4.1. Failure of the PTA. As shown in Lechner (2011), the PTA is only credible if variables

that lead to unconditional differences between the composition of treatment and control are

conditioned on. As Lechner further points out, the presence of omitted variables however

does not necessarily lead to biased estimates of the ATT. The latter nonetheless requires some

strong restrictions on the type of omitted variable. For instance, a variable U can be ignored if

the PTA would hold conditional on U and the distribution of U does not depend upon group

membership. Moreover, the unobserved variable may safely be ignored when its effect on the

potential outcomes varies across groups but is constant over time.

In practice, both cases are often too restrictive. As noted for instance in Heckman and Smith

(1999), DiD estimation of treatment effects may be problematic in the presence of self-selection

into treatment that is not accounted for in the estimation procedure. Moreover, estimated

treatment effects may be biased if individuals adapt their behavior in anticipation of future

treatment (Lechner, 2011). Ashenfelter (1978) further observed that participants in public

training programs often suffer from a larger pre-treatment drop in earnings as compared to

non-participants, a phenomenon now known as “Ashenfelter’s dip”. As pointed out in Heckman

and Smith (1999), a pre-program dip may lead to overstated or understated treatment effects,

depending on the nature of the decline in pre-treatment earnings.

4.2. Testing for equivalence under violations of the PTA. In order to formalize the

violations of the PTA discussed in the previous paragraph, we now consider the model in (2.2)

with the crucial difference that the model error may contain a vector of unobserved covariates

that lead to unobserved differences between the two groups, thus making the control group

an imperfect comparison group for the treatment group. For instance, the variable Zi may

represent group-specific transitory shocks leading to a pre-program-dip or other unobserved

individual characteristics (e.g. the sector of last employment) that affect the mean difference

of the outcome of interest between the two groups. The data generating process is thus given

by

Yi = c+Giα +
T+1∑
l=1
l 6=T

Di,l γl +
T+1∑
l=1
l 6=T

βlDi,l ×Gi +X>i µ+ ε̃i, i = 1, . . . , n (4.1)

where ε̃i = Z>i ν + εi and εi satisfies Assumption 3.1(1). The OLS estimator now becomes

θ̂ = θ + (
1

n

n∑
i=1

WiW
>
i )−1 1

n

n∑
i=1

WiZ
>
i ν + (

1

n

n∑
i=1

WiW
>
i )−1 1

n

n∑
i=1

Wiεi.

As E[Wiεi] = 0 under Assumption 3.1, it is easy to see that the OLS estimator is only consistent

as n→∞ if E[WiZ
>
i ] = 0. Notice that in the presence of Zi we have βl = ∆l−∆T−(∆Z

l −∆Z
T ),

where

∆Z
l := E[Zi|Gi = 1, Di,l = 1, Xi]− E[Zi|Gi = 0, Di,l = 1, Xi]
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Thus, in the presence of unobserved covariates that affect the group means of treatment and

control differently, the OLS estimator is biased and estimates θ + ρ, where

ρ = Γ−1E[WiZ
>
i ν]

is the omitted variable bias and the matrix Γ is defined in Assumption 3.1. Therefore, when

the true effect of the treatment prior to the treatment is zero, i.e.βl = 0 for l = 1, ..., T − 1,

our equivalence tests implicitly yield an upper bound for the omitted variable bias ρ, which in

certain situations (see for instance Example 4.1 below) can be used to correct the estimate of

the true treatment effect π̂ATT .

4.3. Examples. We now consider possible scenarios in which the PTA is violated due to the

presence of unobserved covariates that have a differential effect on both groups. To simplify

the exposition, we assume that the unobserved variable only affects the treatment group while

the control group is unaffected.

Example 4.1. (Pre-program dip)

As a first example, we model Ashenfelter’s dip through the presence of a temporary shock

denoted as Zi that affects one group but not the other. We assume that the data is generated

by the model in (4.1) with Zi = Di,T ×Gi × Vi, where Vi, i = 1, ..., n, denotes i.i.d draws of a

random variable with mean v > 0 and bounded variance independent of state and time. We

further assume that the treatment itself does not have an effect before the treatment takes

place so that β1, ..., βT−1 = 0. The OLS estimator of πATT , which still corresponds to the

usual change in mean difference of the outcome variable from the post-treatment period to the

reference period then becomes

∆T+1 −∆T = βT+1 + ∆Z
T+1 −∆Z

T = βT+1 − ν,

since ∆Z
T+1 = 0 and ∆Z

T = ν. Therefore, we cannot recover the true ATT βT+1 due to the

omitted variable bias ρ = −ν. However, a similar argument shows that β̂l converges to βl−v =

−v for l ∈ {1, ..., T −1} which differs from the true β1 by the same amount in absolute terms as

the probability limit of the estimated treatment effect differs from the true treatment effect. A

similar result holds if more than one pre-treatment period is available, since plimn→∞ β̂l = −ν1

for all l = 1, ..., T − 1. Thus, the maximum change in the group mean differences between

the pre-treatment periods and the reference period equals the average change. Consequently,

testing the null hypotheses in (3.2) and (3.4) at level of significance α using the statistics in

(3.10) and (3.11) respectively yields an upper bound on the absolute value of the omitted

variable bias that holds with probability 1− α.

Example 4.2. (Unobserved covariate with time trend) We now consider the DGP in (4.1)

when the unobserved variable Zi follows a time trend. More precisely, the unobserved variables
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is modeled as Zi = ψ × Gi × Di,l × l, where ψ represents the slope of the time trend which

only affects the treatment group and l ∈ {1, . . . , T + 1}. In this setup, ∆T+1−∆T = βT+1 +ψ,

since ∆Z
T+1 − ∆Z

T = (T + 1)ψ − Tψ = ψ. Therefore, the change in the (conditional) mean

difference between the groups from the post-treatment period relative to the reference period

differs from the true ATT by ψ. Moreover, δl−∆T = βl +ψ(l−T ) = ψ(l−T ), so that |β̂l| will

typically increase with |l− T |. Thus, δ∗, τ ∗ and η∗ will typically increase accordingly with the

number of pre-treatment periods available. While δ∗ increases with T even in the absence of an

underlying time trend, the increase in τ ∗ and η∗ can be regarded as evidence against the PTA

and temporary shocks to the group mean difference (as in Ashenfelter’s dip) and may thus be

useful in identifying a permanent time trend.

4.4. Accounting for design uncertainty. Our approach is targeted at applications in which

the estimate of the true ATT contains two sources of uncertainty. The first source is the

usual statistical variation of the OLS estimator, which can be taken into account by using

appropriate estimators of the standard errors (Bertrand et al., 2004).10 The second source

is the uncertainty about the appropriateness of the DiD design, which is usually assessed by

testing (2.4) but assumed away if H0 cannot be rejected. Instead of ignoring the second source

of uncertainty, we propose a simple method to construct confidence intervals that take into

account both the sampling and the design uncertainty. Let CIβ̂T+1 = (CI
β̂T+1

L ,CI
β̂T+1

R ) where

CI
β̂T+1

L and CI
β̂T+1

R denote the left and right endpoint of the confidence interval obtained by

inverting the usual t-statistic with the appropriately chosen standard error. The interval IU
∗

ATT

with U∗ ∈ {δ∗, τ ∗, η∗} provides a measure of “confidence” in the PTA as indicated by our

equivalence tests. A simple confidence interval that includes both the design and the sampling

uncertainty can be obtained by combining the two previous intervals by considering the interval

C̃I
U∗

= (C̃I
U∗

L , C̃I
U∗

R ) with C̃I
U∗

L := πLATT − CI
β̂T+1

L and C̃I
U∗

R := πRATT + CI
β̂T+1

R . Naturally, the

“combined confidence interval” C̃I
φ∗

is a more conservative confidence interval as compared

to CIβ̂T+1 as taking into account the design uncertainty can only lead to wider confidence

intervals. It is however demonstrated in Section 5 below that when the PTA is violated, CIβ̂T+1

can severely undercover πATT while the coverage probability of πATT of C̃I
U∗

is closer to the

nominal level and may thus yield a more reliable confidence interval for πATT . In this simple

way, we obtain a confidence interval that is “honest” in the sense described in Roth and Ashesh

(2020) as long as the common range assumption (3.1) holds and the appropriate standard errors

are chosen (Bertrand et al., 2004). When conducting significance tests, p-values that account

10Our approach is not appropriate for applications based on “aggregate data” (Abadie et al., 2010) on the

population level such as for instance in Manski and Pepper (2018), as our tests are designed to yield likely

upper bounds for differential trends on the aggregate level from non-aggregate data.
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for both sources of uncertainty can be computed in the same spirit by considering the usual

t-statistic with β̂T+1 in the numerator being replaced by the appropriate endpoint of IU
∗

ATT .

5. Simulations

In order to investigate the small sample properties of our procedure, we conduct a simulation

study in R. For that, we create a data set of repeated cross sections, where the number of pre-

treatment periods is T ∈ {2, 4, 8, 12} and the number of individuals observed in each period nt
is either 100 or 1000. Thus, the total sample size n is given by

∑T+1
t=1 nt. In all our simulations

we set pG = 1
2

and pDl
= 1

T+1
so that the treatment and the control group consist each of

roughly half of the individuals and about the same number of individuals is observed in each

period. We set the group dummy α = 2 and draw the time dummies γl and the model error εi
independently from a standard normal distribution. The data for Xi is independently drawn

from a normal distribution with mean 1 and standard deviation 2. The number of Monte Carlo

iterations is 50000 in all simulation results reported.

In an initial step, we investigate the level of each of the three tests we propose. To do so,

we choose the level of significance α = 5% and let βt = 1 for t = 1, ..., T − 1. We then set

δ = τ = η = 1, where δ, τ and η are the respective equivalence bounds in (3.10), (3.11) and

(3.15). The results are presented in Table 1.

In the following scenarios, we report δ∗, τ ∗ and η∗ as the smallest values such that the

corresponding null hypothesis in (3.2), (3.4) and (3.5) can be rejected at level α = 5%. Further,

we consider empirical frequencies for the true treatment effect to lie in the intervals discussed in

Section 4.4. We report the usual 95% confidence interval CIβ̂T+1 , which captures the sampling

uncertainty in β̂T+1, the “common range” CIU
∗

= (−U∗,U∗) with U∗ ∈ {δ∗, τ ∗, η∗} obtained by

testing (3.2), (3.4) and (3.5) at 5% level of significance capturing the design uncertainty and the

combined confidence interval C̃I
U∗

capturing both sampling and design uncertainty. Finally,

we report the width of the common ranges defined by each of our three test procedures relative

to the width of the confidence interval of the estimated ATT as =R(CIU
∗
) := 2U∗/(CI

β̂T+1

R −
CI

β̂T+1

L ). This helps assessing the relative increase in uncertainty about the ATT when taking

into account the uncertainty about the appropriateness of the DiD methodology. In all our

scenarios we set βT+1 = 0 so that the treatment has no effect. We then investigate how often

a non-existing effect is detected with our methodology as compared to the usual confidence

interval that ignores design uncertainty.

Tables 3 and 4 show the effect of our approach on the estimation of the treatment effect

under the PTA. While Table 3 presents the results for all simulated cases, Table 4 focuses on

only those cases in which β̂l is statistically insignificant at 5% level for every l = 1, ..., T − 1.

We further simulate scenarios in which the PTA is violated due to the presence of unobserved

covariates that affect the treatment group but not the control group. Our first setup is Example
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4.1 augmented by an additionally observed covariate Xi. The unobserved variable is modeled

as Zi = Gi×Di,T ×Vi, where Vi denotes a random draw from a normal distribution with mean

∈ {1
4
, 1

2
} and variance 1. The results are given in Table 5 and 6. The second setup includes a

linear time trend as in Example 4.2, i.e. Zi = ψ × t × Di,t × Gi with ψ ∈ {0.025, 0.05}. The

results are presented in Tables 7 and 8.

5.1. Simulation results. As shown in Table 1, the test in (3.2) maintains its nominal level

for T = 2 but becomes conservative for larger values of T . This phenomenon is well-known

for tests constructed with the union-intersection principle (Berger and Hsu, 1996). The test in

(3.4) approximately keeps the desired level for every T even for small samples, whereas the test

in (3.5) is slightly over-rejecting when nt = 100 but keeps its nominal level in larger samples.

nt = 100 nt = 1000

Test T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

(3.2) 0.0503 0.0051 0.0007 0.0003 0.0477 0.0050 0.0008 0.0002

(3.4) 0.0503 0.0496 0.0503 0.0504 0.0477 0.0484 0.0483 0.0501

(3.5) 0.0994 0.0797 0.0773 0.0739 0.0607 0.0571 0.0570 0.0572

Table 1. Rejection frequencies of the tests in (3.2), (3.4) and (3.5) for βt = 1,

t = 1, ..., T − 1 and δ = γ = η = 1 at nominal level of significance α = 5%.

The fact that the test in (3.2) becomes very conservative may explain why δ∗ is increasing

in T for all sample sizes and in all simulation setups. As can be seen from Table 3, the latter

is true even when the PTA holds. One of the reasons for this behavior is that due to its

construction, the value of δ∗ is largely determined by the maximal variation in the components

of (β̂1, ..., β̂T−1). Naturally, CIδ
∗

and particularly C̃I
δ∗

contains the true ATT in almost 100% of

all cases, especially as T increases. However, as is indicated by R(CIδ
∗
), this comes at the cost of

a much larger total confidence interval for the ATT, as under the PTA CIβ̂T+1 keeps the nominal

level of 95%. For instance, taking into account the uncertainty about the appropriateness of

the DiD framework using (3.2) more that doubles the width of the usual confidence interval for

the ATT for every value of T . In comparison, the tests in (3.4) and (3.5) perform much better

when the sample is sufficiently large. As can be seen in Tables 3 and 4, the values for τ ∗ and

η∗ tend to decrease with T . In particular the test procedure in (3.5) performs very well, as the

width of the usual confidence interval is increased by less that a third when taking into account

the uncertainty about the DiD framework. Nevertheless, the total confidence interval based on

η∗ still covers the true ATT in more than 98% of all cases. Further notice that even when the
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PTA holds, the practice of rejecting the DiD framework when β̂l is statistically insignificant

for at least one l ∈ {1, ..., T − 1} is clearly inefficient as is shown by the first row of Table 4, as

an increase in available pre-treatment periods increases the chance of incorrectly rejecting the

DiD framework under the PTA. Thus, instead of rejecting a DiD analysis in an application the

PTA is well-founded due to a significant pre-treatment parameter estimate, one could adapt

the total confidence interval approach based on η∗ without much loss of precision. A similar

observation can be made in the presence of a linear time trend as shown in Tables aaa. Here,

even when the empirical coverage rate of the usual confidence interval is only slightly lower

than the nominal level, the DiD framework is rejected in a large number of cases.

When the PTA is violated due to a temporary shock as in Ashenfelter’s dip, β̂T+1 is biased

and the usual confidence interval CIβ̂T+1 may severely undercover the true ATT, as can be seen

from Table 6. Notice that the bias corresponds to the negative of the mean of the temporary

shock to the treatment group, as is expected by the analysis in Example 4.1. Again, δ∗ increases

in T , whereas τ ∗ and η∗ remain stable or slightly decrease in T , as variation in the pre-treatment

components of β̂ is “smoothed out” with more pre-treatment periods available. Unlike under

the PTA, R(CIτ
∗
) and R(CIη

∗
) are rather large due to the (correctly detected) uncertainty

about the DiD framework that is larger than the uncertainty about the precision of β̂T+1.

Taking this uncertainty into account, C̃I
τ∗

covers the ATT in all simulated cases, whereas C̃I
η∗

covers πATT in more than 85% of all simulated cases, which vastly improves upon the coverage

of CIβ̂T+1 of less than 0.1%.

When the PTA is violated due to a permanent linear time trend that affects only the

treatment group, the bias of β̂T+1 corresponds to the slope of the trend. Again, when the

sample is large (an thus when the width of CIβ̂T+1 is small), CIβ̂T+1 contains the true ATT in

less than 95% of the cases. If the slope of the time trend is small, the coverage of CIβ̂T+1 is

however close to its nominal level, as is shown in Table 7. As expected, the coverage gets worse

with a more pronounced slope of the time trends (Table 8).11 Our methodology can be useful

in two ways: First, it can help identifying the presence of a linear time trend, as τ ∗ and η∗

tend do decrease with T under the PTA or when the violation of the PTA is only temporary,

whereas under the presence of a linear trend, they increase with T (as is expected by Example

4.2). Second, once a time trend has been identified, C̃I
τ∗

and C̃I
η∗

may still provide useful

(although rather conservative) total confidence intervals of the ATT, as the empirical coverage

probabilities exceed the nominal coverage level, whereas CIβ̂T+1 can severely undercover πATT .

11As shown in Example 4.2, the bias of β̂T+1 also increases in the time distance between the post-treatment

period to the reference period.
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6. Empirical illustration

In this section, we illustrate our approach by re-considering Difference-in-Differences anal-

ysis in Di Tella and Schargrodsky (2004). They use a shock to the allocation of police forces as

a consequence of a terrorist attack on a Jewish institution as a natural experiment to study the

the effect of police on crime. The data consists of monthly averages of the number of car thefts

between April and December 1994 in each out of 876 Buenos Aires city blocks out of which 37

blocks hosted Jewish institutions and thus received additional protection after the attack. The

difficulty of obtaining credible causal estimates from a DiD design is highlighted by Donohue,

Ho, and Leahy (2013), who question the credibility of the analysis of Di Tella and Schargrodsky

(2004) as the terrorist attack may also have affected the control group (i.e. blocks without Jew-

ish institutions) therefore contaminating the DiD estimates. Instead of focusing on the validity

of DiD in the post-treatment periods, we re-examine the data for differences between treat-

ment and control before the treatment in order to understand what causal estimates could in

principle be obtained by comparing the treatment and control groups in the data at hand. The

main specification in Di Tella and Schargrodsky (2004) is given by Yit = αi + γt + βDit, where

Yit denotes the number of car thefts in block i and month t and Dit = 1 if block i is treated

and t refers to a post-treatment period and Dit = 0 otherwise. Finally, αi and γt are block-

and time-specific fixed effects. By using this specification, the pre- and post-treatment periods

are pooled together so that the estimated treatment effect compares the post-treatment differ-

ence in car thefts between treated and non-treated blocks to the corresponding pre-treatment

difference. To analyze group mean differences in the pre-treatment periods, we adapt (2.2)

by pooling the post-treatment periods in two different specifications. First, as in the original

paper, we include block-specific effects and cluster on the block level.12 Secondly, we replace

the block-specific dummies by a single group dummy and compute heteroscedasticity-robust

standard errors.13 Finally, we run separate regressions for each of the potential reference peri-

ods (i.e. for each of the pre-treatment periods) and compute the corresponding smallest upper

bounds for the tests in (3.2), (3.4) and (3.5).14 The results are summarized in Table 2 below.15

12Cluster-robust standard errors are computed using the R function cluster.vcov on the block level.
13White standard errors are computed using the R function vcovHC with the option “HC1”.
14Notice that the test in (3.5) does not require an estimator of the asymptotic variance. Thus, it is not

affected by the choice of standard errors.
15According to Assumption 3.1, if the sample size is sufficiently large, each subsample contains individuals

from all time periods and groups. In practice, many data sets are “ordered” (e.g. by time) such that the first

bλnc observations may not contain individuals observed in later time periods. Since this is the case for the

data provided by Di Tella and Schargrodsky (2004), it is thus not possible to apply the test in (3.5) directly. In

order to circumvent this issue, we implement our test by drawing random samples of size bλnc instead of using

the bλnc first observations. To mitigate dependence on a particular draw, we repeat the procedure B = 500

times and report the average smallest upper bound η∗.
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````````````````̀Estimates

Reference period
April May June July

π̂ATT −0.081 −0.058 −0.121 −0.049

p-value 0.067 0.192 0.006 0.269

(3.2) (clustered) 0.147 0.128 0.158 0.104

(3.4) (clustered) 0.042 0.091 0.144 0.076

(3.2) (White) 0.127 0.158 0.158 0.135

(3.4) (White) 0.07 0.093 0.136 0.056

(3.5) 0.037 0.024 0.034 0.02

Table 2. Treatment effect estimates with corresponding p-values and upper

bounds based on the test procedures in (3.2), (3.4) and (3.5) for different choices

of the reference period.

While we should not expect large differences in the treatment effect estimates under perfectly

parallel trends, we find that the choice of the reference period has a substantial effect on π̂ATT .

Indeed, the pooled effect reported by Di Tella and Schargrodsky (2004) seems to be largely

driven by a large change in differences between treated and untreated blocks between June

and the post-treatment periods, whereas the corresponding changes between the remaining

pre-treatment periods and the post-treatment periods are at most marginally significant.16 We

further find rather small differences between the standard errors of ˆπATT obtained from the

two specifications (0.044 (White) and 0.042 (clustered) independent of the reference period).

Thus, Table 2 illustrates that the combined confidence intervals C̃I
δ∗

, C̃I
τ∗

and C̃I
η∗

almost

always contain zero, so that “no effect” is a plausible explanation for the observed data after

accounting for design and sampling uncertainty.17 These findings are in line with Donohue et al.

(2013), who find that pre-treatment crime levels differ substantially between the neighborhood

containing the majority of treated blocks and the remaining two neighborhoods. It is thus not

surprising that our equivalence tests find little support for the comparability of treatment and

control.

7. Conclusion

We have shown a way of accounting for potentially non-parallel trends by replacing the usual

assumptions of exactly parallel paths by a common range based on three distinct equivalence

16The estimates obtained in Di Tella and Schargrodsky (2004, Table 3) by pooling the pre-treatment periods

are significant and range between −0.058 and −0.081.
17In fact the only total confidence interval for which “no effect” is not plausible is taking June as reference

period and accounting for design uncertainty through the “least squared” test in (3.5).
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tests. Our tests capture the maximum, average and squared average change in group mean

differences relative to the reference period and thus measure similarity between treatment and

control groups. We further provide a simple way of accounting for both design and sampling

uncertainty which, as compared to the standard confidence interval, is shown to yield more

reliable inference when the parallel trends assumption does not hold. To illustrate our approach,

we finally apply our methodology to the data provided by Di Tella and Schargrodsky (2004)

and conclude that when design uncertainty is taken into account using our equivalence tests,

there is no significant treatment effect.
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Appendix A. Mathematical proofs

A.1. Properties of the test (3.9). For sufficiently large sample sizes the quantile fα :=

QNF
(δ, Σ̂11/n) satisfies

α = P
(
| NF (δ, Σ̂11/n) |≤ QNF

(δ, Σ̂11/n)
)
≈ Φ

(fα − δ
Σ11

)
− Φ

(−fα − δ
Σ11

)
(A.1)

where Φ is the cdf of the standard normal distribution. Consequently, we obtain for the

probability of rejection

Pβ1(|β̂1| ≤ fα) ≈ Φ
(fα − β1

Σ11

)
− Φ

(−fα − β1

Σ11

)
. (A.2)

It is well known that the right-hand side of (A.2) (with the quantile fα defined by (A.1)) is

the power function of the uniformly most powerful unbiased test (see Example 1.1 in Romano

et al. (2005)).

A.2. Proof of Theorem 3.1. Recall that θ̂(λ) is the OLS for the parameter θ in model (4.1)

from the observations (W1, Y1), . . . , (Wbnλc, Ybnλc), that is

θ̂(λ) = Γ−1
bnλc

1

bnλc

bnλc∑
i=1

WiYi = θ + Γ−1
bnλc

1

bnλc

bnλc∑
i=1

Wiεi,

where the matrix Γk is defined by

Γ̂k =
1

k

k∑
i=1

WiW
>
i

As

sup
λ∈[ε,1]

‖Γ̂bnλc − Γ‖ = oP(1)

and the matrix Γ is non-singular, it follows that

√
n(θ̂(λ)− θ) = Γ−1

√
n

bnλc

bnλc∑
i=1

Wiεi + oP(1)

uniformly with respect to λ ∈ [ε, 1]. Consequently, we obtain from the Cramer-Wold device

and Theorem 2.12.1 in van der Vaart and Wellner (1996) that{√
n(θ̂(λ)− θ)

}
λ∈[ε,1]

 
{τΓ−1/2

λ
B(λ)

}
λ∈[ε,1]

(A.3)

where B is a 2T + 2 + p-dimensional vector of independent Brownian motions τ 2 = Var(εi) and

the symbol means weak convergence in space (`∞[ε, 1])2T+2+p of all (2T +2+p)-dimensional



27

bounded functions on the interval [ε, 1]. As the projections of θ on its coordinates are continuous

mappings the weak convergence (A.3) and the continuous mapping theorem imply{√
n(β̂(T−1)(λ)− β(T−1))

}
λ∈[ε,1]

 
{1

λ
DB(λ)

}
λ∈[ε,1]

,

where D is a (T − 1)× (2T + 2 + p) matrix of full rank. Therefore it follows that

Hn(λ) =
√
n
(
‖β̂(T−1)(λ)‖2 − ‖β(T−1)‖2

)
=
√
n{‖β̂(T−1)(λ)− β(T−1)‖2 + 2(β̂(T−1)(λ)− β(T−1))>β(T−1)

= 2
√
n(β̂(T−1)(λ)− β(T−1))>β(T−1) + oP(1)

uniformly with respect to λ ∈ [ε, 1], and a further application of the continuous mapping

theorem yields {
Hn(λ)

}
λ∈[ε,1]

 
{

2(β(T−1))>D
B(λ)

λ

}
λ∈[ε,1]

in `∞([ε, 1]). It is easy to see that for (β(T−1)) 6= 0 the process on the right-hand side equals in

distribution {
∆
B1(λ)

λ

}
λ∈[ε,1]

where B1 is a one-dimensional Brownian motion and ∆ > 0 an appropriate constant. Recalling

the definition of the statistic M̂n in (3.12) and a further application of the continuous mapping

theorem shows that

M̂n =
1

T−1
‖β̂(T−1)(1)‖2 − 1

T−1
‖β(T−1)‖2

Vn

=
‖β̂(T−1)(1)‖2 − ‖β(T−1)‖2( ∫ 1

ε
(‖β̂(T−1)(λ)‖2 − ‖β̂(T−1)(1)‖2)2ν(dλ)

)1/2

=
Hn(1)( ∫ 1

ε
(Hn(λ)−Hn(1))2ν(dλ)

)1/2

→ W =
B1(1)( ∫ 1

ε
(B1(λ)/λ− B1(1))2ν(dλ)

)1/2
,

which proves the assertion.

A.3. Proof of Theorem 3.2. Observing the definition of M̂T in (3.12) we obtain

Pβ̄sq
( 1

T − 1
‖β̂(1)(T−1)‖2 ≤ η +QW(α)V̂n

)
= P

(
M̂T ≤

η − β̄sq
V̂n

+QW(α)
)
.

It follows from the proof of Theorem 3.1 that V̂n = OP(1/
√
n). Consequently, if β̄sq > 0,

assertion (3.1) follows by a simple calculation considering the three cases separately. On the

other hand, if β̄sq = 0, the proof of Theorem 3.1 also shows that ‖β̂(T−1)(1)‖2 = OP( 1
n
) and the

assertion is obvious.
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Appendix B. Simulation results

nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

β̂T+1 0.0000 −0.0001 0.0005 0.0008 0.0002 0.0005 -0.0002 0.0001

CIβ̂T+1 0.9487 0.9512 0.9475 0.9504 0.9488 0.9496 0.9512 0.9511

δ∗ 0.6428 0.8245 0.9242 0.9681 0.2018 0.2587 0.2881 0.3027

τ ∗ 0.6428 0.5242 0.4878 0.4747 0.2018 0.1650 0.1524 0.1489

η∗ 0.6404 0.5713 0.5472 0.5366 0.0585 0.0520 0.0494 0.0488

CIδ
∗

0.9097 0.9959 0.9995 0.9997 0.9110 0.9958 0.9995 0.9998

CIτ
∗

0.9097 0.8889 0.8780 0.8746 0.9110 0.8900 0.8792 0.8742

CIη
∗

0.7488 0.7960 0.8156 0.8270 0.3934 0.3844 0.3807 0.3767

C̃I
δ∗

0.9985 1.0000 1.000 1.0000 0.9987 1.0000 1.0000 1.0000

C̃I
τ∗

0.9985 0.9993 0.9994 0.9995 0.9987 0.9992 0.9996 0.9995

C̃I
η∗

0.9969 0.9987 0.9991 0.9994 0.9864 0.9874 0.988 0.9887

R(CIδ
∗
) 1.1456 1.4712 1.6503 1.7294 1.1497 1.4744 1.6417 1.7246

R(CIτ
∗
) 1.1456 0.9350 0.8704 0.8473 1.1497 0.9400 0.8683 0.8484

R(CIη
∗
) 1.1405 1.0179 0.9758 0.9572 0.3334 0.2966 0.2817 0.2781

Table 3. Estimation and test performance under the PTA at nominal level of

significance α = 5%.
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nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

#insig/M 0.9504 0.8755 0.7723 0.6967 0.9493 0.8737 0.7688 0.6971

β̂T+1 0.0001 -0.0008 -0.0005 0.0013 0.0000 -0.0003 -0.0003 0.0001

CIβ̂T+1 0.9561 0.9642 0.9737 0.9785 0.9568 0.9648 0.9739 0.9763

δ∗ 0.6182 0.7807 0.8545 0.8862 0.1937 0.2443 0.2672 0.2769

τ ∗ 0.6182 0.4864 0.4304 0.4055 0.1937 0.1523 0.1350 0.1276

η∗ 0.6028 0.5331 0.5023 0.4990 0.0538 0.0477 0.0452 0.0443

CIδ
∗

0.9077 0.9954 0.9994 0.9997 0.9085 0.9956 0.9992 0.9997

CIτ
∗

0.9077 0.8752 0.8547 0.8412 0.9085 0.8775 0.8539 0.8408

CIη
∗

0.7356 0.7844 0.8187 0.8403 0.3806 0.3836 0.3926 0.3972

C̃I
δ∗

0.9986 1.0000 1.000 1.0000 0.9987 1.0000 1.0000 1.0000

C̃I
τ∗

0.9986 0.9989 0.9995 0.9993 0.9987 0.9991 0.9996 0.9992

C̃I
η∗

0.9967 0.9985 0.9993 0.9995 0.9860 0.9899 0.9927 0.9940

R(CIδ
∗
) 1.1011 1.3918 1.5248 1.5820 1.1036 1.3921 1.5230 1.5780

R(CIτ
∗
) 1.1011 0.8668 0.7673 0.7233 1.1036 0.8676 0.7694 0.7271

R(CIη
∗
) 1.0717 0.9491 0.8951 0.8896 0.3067 0.2715 0.2577 0.2522

Table 4. Estimation and test performance under the PTA at nominal level of

significance α = 5% conditional on all pre-treatment betas being insignificant at

5% level of significance.
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nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

β̂T+1 −0.2505 −0.2547 −0.2503 −0.2465 −0.2506 −0.2513 −0.2516 −0.2511

CIβ̂T+1 0.8589 0.8496 0.8405 0.8386 0.2687 0.2572 0.2361 0.2367

δ∗ 0.8066 1.0036 1.0989 1.1430 0.4136 0.4687 0.5022 0.5161

τ ∗ 0.8066 0.7226 0.6913 0.6786 0.4136 0.3914 0.3847 0.3818

η∗ 0.9263 0.8532 0.8086 0.7900 0.1941 0.1778 0.1744 0.1725

CIδ
∗

0.9243 0.9981 0.9998 0.9999 0.9629 0.9976 0.9997 0.9999

CIτ
∗

0.9243 0.9331 0.9300 0.9317 0.9629 0.9692 0.9743 0.9732

CIη
∗

0.7730 0.8229 0.8338 0.8315 0.2625 0.2032 0.1853 0.1833

C̃I
δ∗

0.9986 1.0000 1.000 1.0000 0.9995 1.0000 1.0000 1.0000

C̃I
τ∗

0.9986 0.9997 0.9996 0.9999 0.9995 1.0000 1.0000 1.0000

C̃I
η∗

0.9963 0.9994 0.9987 0.9988 0.8828 0.8684 0.8640 0.8578

R(CIδ
∗
) 1.3326 1.7079 1.9114 2.0039 2.1817 2.5463 2.7857 2.8867

R(CIτ
∗
) 1.3326 1.2296 1.2017 1.1893 2.1817 2.1265 2.1342 2.1355

R(CIη
∗
) 1.5287 1.4503 1.4047 1.3839 1.0238 0.9659 0.9674 0.9651

Table 5. Estimation and test performance under violation of the PTA due to

a temporary group-specific shock (Zist = Gi × DT × Vi with Vi
i.i.d∼ N(1

4
, 1)) at

nominal level of significance α = 5% with true ATT βT+1 = 0.
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nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

β̂T+1 −0.4979 −0.4990 −0.4962 −0.4988 −0.4996 −0.5031 −0.4998 −0.5004

CIβ̂T+1 0.6287 0.6093 0.5990 0.5827 0.0004 0.0004 0.0008 0.0003

δ∗ 1.0203 1.2028 1.3045 1.3538 0.6633 0.7204 0.7501 0.7659

τ ∗ 1.0203 0.9465 0.9215 0.9115 0.6633 0.6433 0.6327 0.6315

η∗ 1.3089 1.1785 1.1329 1.1432 0.4959 0.4696 0.4521 0.4496

CIδ
∗

0.9512 0.9958 0.9998 0.9999 0.9637 0.9975 0.9994 0.9997

CIτ
∗

0.9512 0.9600 0.9656 0.9623 0.9637 0.9708 0.9768 0.9740

CIη
∗

0.8099 0.8435 0.8501 0.8501 0.4180 0.3410 0.2982 0.2856

C̃I
δ∗

0.9990 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000

C̃I
τ∗

0.9990 1.0000 1.000 0.9999 1.0000 1.0000 1.0000 1.0000

C̃I
η∗

0.9952 0.9983 0.9990 0.9988 0.8714 0.8629 0.8517 0.8498

R(CIδ
∗
) 1.6834 2.0472 2.2686 2.3746 3.5009 3.9143 4.1603 4.2836

R(CIτ
∗
) 1.6834 1.6105 1.6021 1.6031 3.5009 3.4951 3.5090 3.5321

R(CIη
∗
) 2.1568 2.0040 1.9680 2.0033 2.6171 2.5517 2.5074 2.5146

Table 6. Estimation and test performance under violation of the PTA due to

a temporary group-specific shock (Zist = Gi × DT × Vi with Vi
i.i.d∼ N(1

2
, 1)) at

nominal level of significance α = 5% with true ATT βT+1 = 0.
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nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

#insig/M 0.9491 0.8673 0.7088 0.5454 0.9434 0.7839 0.2996 0.0297

β̂T+1 0.0254 0.0239 0.0250 0.0251 0.0260 0.0255 0.0247 0.0255

CIβ̂T+1 0.9501 0.9490 0.9487 0.9494 0.9390 0.9398 0.9422 0.9405

δ∗ 0.6415 0.8224 0.9420 1.0227 0.2052 0.2762 0.3653 0.4607

τ ∗ 0.6415 0.5251 0.5046 0.5199 0.2052 0.1807 0.2114 0.2580

η∗ 0.5781 0.5175 0.5121 0.5275 0.0598 0.0569 0.0695 0.0935

CIδ
∗

0.9070 0.9955 0.9991 0.9994 0.9039 0.9899 0.9978 0.9996

CIτ
∗

0.9070 0.8867 0.8741 0.8762 0.9039 0.8727 0.9007 0.9472

CIη
∗

0.71486 0.7744 0.8018 0.8214 0.3931 0.4071 0.4996 0.6217

C̃I
δ∗

0.9986 1.0000 1.000 1.0000 0.9982 1.0000 1.0000 1.0000

C̃I
τ∗

0.9986 0.9991 0.9988 0.9986 0.9982 0.9979 0.9962 0.9972

C̃I
η∗

0.9963 0.9980 0.9986 0.9985 0.9810 0.9816 0.9833 0.9859

R(CIδ
∗
) 1.1477 1.4801 1.6969 1.8430 1.1692 1.5742 2.0820 2.6253

R(CIτ
∗
) 1.1477 0.9450 0.9090 0.9369 1.1692 1.0297 1.2044 1.4705

R(CIη
∗
) 1.0366 0.9305 0.9219 0.9502 0.3406 0.3241 0.3960 0.5327

Table 7. Estimation and test performance under violation of the PTA due to

a time trend with slope 0.025 (Zi = 0.025 × t × Di,t × Gi) at nominal level of

significance α = 5% with true ATT βT+1 = 0.
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nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

#insig/M 0.9448 0.8433 0.5492 0.2342 0.9148 0.5291 0.0068 0.0000

β̂T+1 0.0483 0.0508 0.0520 0.0527 0.0504 0.0500 0.0496 0.0499

CIβ̂T+1 0.9475 0.9469 0.9466 0.9452 0.9132 0.9141 0.9157 0.9145

δ∗ 0.6436 0.8388 1.0182 1.1939 0.2148 0.3221 0.5168 0.7172

τ ∗ 0.6436 0.5400 0.5640 0.6423 0.2148 0.2200 0.3109 0.4088

η∗ 0.5866 0.5336 0.5666 0.6590 0.0640 0.0718 0.1281 0.2206

CIδ
∗

0.9088 0.9936 0.9979 0.9992 0.8822 0.9823 0.9995 1.0000

CIτ
∗

0.9088 0.8793 0.8746 0.8993 0.8822 0.8737 0.9656 0.9945

CIη
∗

0.7293 0.7785 0.8210 0.8613 0.3909 0.4657 0.6945 0.8776

C̃I
δ∗

0.9983 1.0000 1.000 1.0000 0.9948 1.0000 1.0000 1.0000

C̃I
τ∗

0.9983 0.9985 0.9978 0.9967 0.9948 0.9926 0.9986 0.9998

C̃I
η∗

0.9964 0.9976 0.9978 0.9982 0.9651 0.9686 0.9822 0.9951

R(CIδ
∗
) 1.1556 1.5091 1.8339 2.1516 1.2235 1.8354 2.9450 4.0875

R(CIτ
∗
) 1.1556 0.9714 1.0158 1.1574 1.2235 1.2536 1.7717 2.3297

R(CIη
∗
) 1.0517 0.9591 1.0201 1.1873 0.3643 0.4093 0.7297 1.2570

Table 8. Estimation and test performance under violation of the PTA due to

a time trend with slope 0.05 (Zi = 0.05 × t × Di,t × Gi) at nominal level of

significance α = 5% with true ATT βT+1 = 0.


