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Abstract

Detecting structural changes in functional data is a prominent topic in statistical

literature. However not all trends in the data are important in applications, but only

those of large enough influence. In this paper we address the problem of identifying

relevant changes in the eigenfunctions and eigenvalues of covariance kernels of L2[0, 1]-

valued time series. By self-normalization techniques we derive pivotal, asymptotically

consistent tests for relevant changes in these characteristics of the second order structure

and investigate their finite sample properties in a simulation study. The applicability of

our approach is demonstrated analyzing German annual temperature data.
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1 Introduction

The analysis of functional data has gained increasing attention during the past decades, due to

recent advances in computing and data collecting technologies. This surging interest is testified

by a rapidly expanding scope of new statistical methods, as reviewed in the monographs of

Bosq (2000), Ramsay and Silverman (2005), Ferraty and Vieu (2010), Horváth and Kokoszka

(2012) and Hsing and Eubank (2015).

Applications of functional data analysis include such diverse topics as imaging, meteorology,

genomics, and economics. The analytical link between these fields lies in modelling observations

as random functions, whether they are temperature curves or stock prices. While this approach
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facilitates the data’s interpretation for users, it in exchange poses theoretical challenges, since

each observation is now an element of a complex function space.

Consequently dimension reducing procedures play a key role in this field, as they make func-

tional data amenable to the methods of finite dimensional statistics. Among these, functional

principal component analysis (fPCA) has taken the most prominent position. As principal com-

ponent analysis (PCA) for finite dimensions, fPCA is based on projecting the data on linear

subspaces that explain most of its variance. These spaces are spanned by the eigenfunctions of

the estimated covariance operator. An overview of the mathematical aspects of this procedure

can be found in the monographs of Ramsay and Silverman (2005) and Horváth and Kokoszka

(2012) and in the survey of Shang (2014). Recently, Aue et al. (2015) used functional principal

components for prediction in functional autoregressive models, Shang (2017) constructed fore-

casts with dynamic updating based on functional principal component regression and Gao et al.

(2019) proposed dynamic fPCA for forecasting mortality rates. Obviously dimension reducing

procedures rest upon the assumption of ”stable” eigensystems, i.e. that most of the variance of

all data is confined to the same, low-dimensional subspace. This insight has furnished interest

in methods to validate this assumption.

One option to investigate the stability of the eigensystem is change point analysis, where

one is monitoring a functional time series for structural breaks in the corresponding covariance

operators. In particular, Aston and Kirch (2012) and Stoehr et al. (2019) develop a powerful

methodology to detect changes in the covariance operator. Similarly changes in the cross-

covariance operator have been investigated by Rice and Shum (2019). However, with the

specific focus on fPCA it might be reasonable to conduct a refined analysis and to search

directly for changes in the eigenfunctions and eigenvalues of the covariance operator. Yet, not

much literature can be found in this direction.

The present paper contributes to this problem in two respects. On the one hand we develop

a new statistical methodology for change point analysis of the eigenvalues and eigenfunctions of

a covariance operator of a functional times series. While a test for a change in the spectrum of

the covariance operator has already been proposed by Aue et al. (2018), we are - to the best of

our knowledge - not aware of any procedure addressing the problem of change point detection

in the eigenfunctions corresponding to a sequence of functional data. On the other hand - in

contrast to the cited work, which has its focus on the “classical hypotheses” of strict equality-

we propose tests for “precise” hypotheses as introduced in Berger and Delampady (1987). This

means that we are NOT interested in asserting arbitrarily small differences in the eigensystem

before and after the change versus the hypothesis of exact equality. Rather, we try to detect

or reject changes of relevant magnitude.

For example, if {Xn}n=1,...,N is a functional time series and τ1,n denotes the maximal eigen-

value of the covariance operator of Xn, this means that - in contrast to Aue et al. (2018) - we

do not consider the null hypothesis τ1,1 = . . . = τ1,N , but develop a statistical methodology to
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test the hypothesis of no relevant deviation of the eigenvalue before and after the change point,

that is

H0 : |τ (1)1 − τ
(2)
1 |2 ≤ ∆τ vs. H1 : |τ (1)1 − τ

(2)
1 |2 > ∆τ .

Here τ
(1)
1 := τ1,1 = . . . = τ1,bNθ0c 6= τ1,bNθ0c+1 = . . . = τ1,N =: τ

(2)
1 for some θ0 ∈ (0, 1) and ∆τ is

a given threshold defined by the concrete application (under the null hypothesis the change is

considered as not relevant). The hypotheses regarding the other eigenvalues and eigenfunctions

are formulated similarly (see equations (2.4) and (2.5) for more details).

The consideration of relevant hypotheses in the context of change point detection has been

introduced in Dette and Wied (2016) and is motivated by the observation that in many appli-

cations one is not interested in small changes of a parameter. For example, in forecasting of

functional times series, it is not reasonable to use only part of the data if a structural break

in an eigenvalue (or eigenfunction) is detected, but the difference before and after the change

is rather small. In this case discarding the data before the change could admittedly reduce

the prediction bias, but come at the cost of a substantially increased variance due to a smaller

sample size used for prediction.

Relevant hypotheses have been considered in statistics to different degrees since the mid

20th century (see Hodges and Lehmann (1954)), and have been investigated intensively in

biostatistics, where tests for “bioequivalence” of certain drugs have nowadays become standard

(see for example Wellek (2010)). In the context of change point analysis for functional data

relevant hypotheses have recently been considered by Dette et al. (2019) for Banach-space

valued random variables and by Dette et al. (2018) in Hilbert spaces. The first named paper

concentrates on inference regarding the mean functions while Dette et al. (2018) developed

tests for a relevant structural break in the mean function and in the covariance operator.

The detection of structural breaks in the eigenvalues and eigenfunctions is a substantially more

difficult problem due to their implicit definition and statistical tests have mainly been developed

for the two sample case (see Zhang and Shao (2015), who consider classical hypotheses and

Aue et al. (2019), who discuss relevant hypotheses).

The aim of the present work is to develop statistical methodology for detecting relevant

changes in the eigensystem of a functional time series. In Section 2 we introduce the testing

problems, define corresponding test statistics and give the main theoretical results. Typically

in change point problems of this type estimation of the long run covariance structures is re-

quired, which is nearly intractable in the present context, because it involves all eigenvalues and

eigenfunctions of the covariance operators before and after the change point (see, for example,

Dauxois et al. (1982) or Hall and Hosseini-Nasab (2006) for an explicit representation of the

estimated eigenvalues and eigenfunctions in terms of the empirical covariance operator). We

propose a self-normalization approach which avoids this problem. In Section 3 we illustrate

our approach by virtue of a small simulation study, as well as the investigation of the German
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weather data. Finally, in Appendices A and B we provide the proofs of our findings and also

give some auxiliary results.

2 Testing for relevant changes

In this section we provide a precise outline of the testing problems considered in this paper

and subsequently present the main theoretical results. Let L2[0, 1] denote the Hilbert space of

square integrable functions f : [0, 1]→ R equipped with the common inner product

〈
f, g
〉

:=

∫ 1

0

f(t)g(t)dt f, g ∈ L2[0, 1].

The corresponding norm is denoted by ‖ · ‖. Notice that according to the induced metric,

functions that differ only on a set of Lebesgue mass 0 are identified.

Now suppose we observe a sample of N random functions X1, ..., XN ∈ L2[0, 1], where for

any n ∈ {1, ..., N}

(2.1) Xn :=

Xn = X
(1)
n , n ≤ θ0N

Xn = X
(2)
n , n > θ0N.

Here (X
(1)
n )n∈Z and (X

(2)
n )n∈Z are stationary sequences of centered, random functions in

L2[0, 1] and θ0 ∈ (0, 1) is a constant of proportionality. The assumption of vanishing expecta-

tions is made for the sake of a simple notation and all results presented in this paper hold in

the case EX(i)
1 = µ(i) for some µ(i) ∈ L2[0, 1] (i = 1, 2). For a more detailed discussion of this

case see Remark 2.7. A general definition of expectations of random functions in L2[0, 1] can

be found in Bücher et al. (2019). However in the subsequent discussion we will always assume

that

(2.2) E‖X(i)
1 ‖2 <∞, for i = 1, 2,

which implies that expectations can be defined point-wise (compare Horváth and Kokoszka

(2012), Section 2.2).

Under assumption (2.2) the covariance kernel c(i) of X
(i)
1 (i = 1, 2) is almost everywhere

defined and given by

c(i)(s, t) = E[X
(i)
1 (s)X

(i)
1 (t)].

Regarded as a function with two arguments it is an element of L2([0, 1] × [0, 1]), the space of

square integrable functions on the unit square, which can be isomorphically identified with the

tensor product Hilbert space L2[0, 1]⊗L2[0, 1] (for details see Weidmann (1980)). We will also

denote the induced norm of this space by ‖ · ‖, since it will always be clear from the context,
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which space we refer to. By Mercer’s theorem (see König (1986) p.145) the kernels c(1) and c(2)

permit the L2-expansions

c(i)(s, t) =
∑
j≥1

τ
(i)
j v

(i)
j (s)v

(i)
j (t), (i = 1, 2),

where v
(i)
1 , v

(i)
2 , ... ∈ L2[0, 1] are the eigenfunctions of the integral operator

(2.3) f 7→
∫ 1

0

c(i)(·, t)f(t)dt, f ∈ L2[0, 1]

and τ
(i)
1 , τ

(i)
2 , ... are the corresponding eigenvalues. For simplicity of reference we assume for

some fixed p ∈ N that the first p+ 1 eigenvalues are the largest and that they are arranged in

descending order, i.e. τ
(i)
1 ≥ ... ≥ τ

(i)
p+1. Furthermore the sets of eigenfunctions are supposed to

form orthonormal bases of the space L2[0, 1], which can always be enforced by adding further,

orthogonal functions (with corresponding eigenvalues 0).

Based on the sample of observations X1, ..., XN we want to investigate relevant changes in

the eigensystems corresponding to c(1) and c(2). More precisely, for some j ∈ {1, ..., p} we test

whether the difference of the j-th eigenvalues τ
(1)
j and τ

(2)
j or the j-th eigenfunctions v

(1)
j and

v
(2)
j exceeds a predetermined threshold. To be precise, we consider for a fixed index j ∈ {1, ..., p}

the hypotheses

(2.4) H0 : (τ
(1)
j − τ

(2)
j )2 ≤ ∆τ vs. H1 : (τ

(1)
j − τ

(2)
j )2 > ∆τ

and

(2.5) H0 : ‖v(1)j − v
(2)
j ‖2 ≤ ∆v vs. H1 : ‖v(1)j − v

(2)
j ‖2 > ∆v.

Here ∆τ and ∆v are prespecified constants, denoting the maximal values for which the distances

between the eigenvalues and eigenfunctions are still considered scientifically irrelevant. The

particular choice of ∆τ and ∆v depends on the concrete application. Note also that for ∆τ = 0

or ∆v = 0 the hypotheses (2.4) and (2.5) reduce to the classical change point detection problems

for eigenvalues and eigenfunctions respectively.

In order to decide whether a relevant change either in the eigenvalues or in the eigenfunctions

has occurred we first have to identify the change point θ0.

2.1 Change point estimation

The change point estimator is constructed by the CUSUM principle and defined by

(2.6) θ̂ :=
1

N
argmaxNε≤k≤N(1−ε)f(k),
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where the function f is given by

f(k) :=
k(N − k)

N2

∫ 1

0

∫ 1

0

[1

k

k∑
n=1

Xn(s)Xn(t)− 1

N − k

N∑
n=k+1

Xn(s)Xn(t)
]2
dsdt.

Note that in definition (2.6) we confine the maximization of f to a subset of {1, ..., N} to

obtain stable estimators. In practice this restriction is not an issue and even very small values

for ε can be used in (2.6). We refer to Section 3.3), where we demonstrate the stability of the

estimator with respect to the choice of the threshold ε by means of a simulation study. Before

we proceed we specify the basic assumptions required for the theoretical statements presented

in this paper.

Assumption 2.1. Let i = 1, 2.

1. The sequence of random functions (X
(i)
n )n∈Z consists of Bernoulli shifts, i.e.

X(i)
n = g(i)(εn, εn−1, ...)

for some measurable, non-random function g(i) : S∞ → L2[0, 1] and i.i.d. innovations

{εn}n∈Z with values in a measurable space S.

2. All random variables X
(i)
n (t, ω) are jointly measurable in (t, ω) for all n ∈ Z.

3. EX(i)
0 = 0 and E‖X(i)

0 ‖4+δ <∞, for some δ ∈ (0, 1).

4. The random functions X
(i)
n are m-approximable. In other words: for all m ∈ N there exist

i.i.d. copies {ε∗n,m,k}k∈Z of ε0, independent of {εj}j∈Z, such that the m-dependent random

functions X
(i)
n,m

(2.7) X(i)
n,m := g(i)(εn, ..., εn−m+1, ε

∗
n,m,n−m, ε

∗
n,m,n−m−1, ...)

satisfy

(2.8)
∑
m≥1

(E‖X(i)
n −X(i)

n,m‖4+δ)1/κ <∞,

for some δ ∈ (0, 1) and κ > 4 + δ.

Note that these assumptions match those in Berkes et al. (2013), who derived weak invari-

ance principles for m-approximable sequences. However, the stronger summability condition

(2.8) is imposed here, since we are not estimating mean functions, but covariance kernels. We

now state a first result concerning the convergence rate of the change point estimator defined

in (2.6). The proof follows by similar arguments as given in the proof of Proposition 3.1 in

Dette et al. (2018), which are omitted for the sake of brevity.
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Proposition 2.2. Suppose that Assumption 2.1 holds and that c(1) 6= c(2). If ε < min{θ0, 1−θ0},
then

θ̂ = θ0 + oP (1/
√
N).

In the next step we partition the data into two subgroups X1, ..., XNθ̂ and XNθ̂+1, ..., XN ,

which we then use to estimate the covariance kernels c(1) and c(2) respectively. To be precise,

we define for λ ∈ [0, 1] the estimators

ĉ(1)(λ, s, t) =
1

bNθ̂λc

bNθ̂λc∑
n=1

Xn(s)Xn(t)(2.9)

ĉ(2)(λ, s, t) =
1

b(N −Nθ̂)λc

Nθ̂+b(N−Nθ̂)λc∑
n=Nθ̂+1

Xn(s)Xn(t)(2.10)

and obtain ĉ(1)(·, ·) := ĉ(1)(1, ·, ·) and ĉ(2)(·, ·) := ĉ(2)(1, ·, ·) as estimators for c(1) and c(2) respec-

tively. In (2.9) and (2.10) the quantity λ ∈ [0, 1] denotes a parameter used for the subsequent

self-normalization. If the kernels are degenerate they are interpreted as 0-functions.

By Proposition 2.2 the amount of misspecified data is small and therefore we expect the

estimated kernels ĉ(1)(·, ·) and ĉ(2)(·, ·), and hence their eigensystems to be close to those of c(1)

and c(2).

2.2 Relevant changes in the eigenvalues

We now proceed to construct a test for the hypothesis (2.4) of a relevant change in the j-th

eigenvalue. For this purpose we define for i = 1, 2 and λ ∈ [0, 1] the eigenfunctions

(2.11) v̂
(i)
1,λ, v̂

(i)
2,λ, ...

and the eigenvalues

(2.12) τ̂
(i)
1,λ ≥ τ̂

(i)
2,λ ≥ ...

of the estimates ĉ(i)(λ, ·, ·) (defined in (2.9) and (2.10)). Finally we denote by

(2.13) τ̂
(i)
j := τ̂

(i)
j,1 ; v̂

(i)
j := v̂

(i)
j,1 j = 1, 2, . . .

the eigensystems of the estimated covariance operators of the full samples X1, . . . , XbNθ̂c (i = 1)

and XbNθ̂c+1, . . . , XN (i = 2). Note that the eigenfunctions are only determined up to a sign.

Additionally, we define the estimated squared difference of the j-th eigenvalues by

Êj,N(λ) := (τ̂
(1)
j,λ − τ̂

(2)
j,λ )2, λ ∈ [0, 1].
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In view of the testing problem in (2.4) the natural entity of interest is the statistic

Êj,N := Êj,N(1) =
(
τ̂
(1)
j − τ̂

(2)
j

)2
,

where τ̂
(i)
j is defined in (2.13). The null hypothesis (2.4) of no relevant change in the j-th

eigenvalue is now rejected for large values of Êj,N . To find critical values for such a test

we determine the asymptotic distribution of Êj,N , which presupposes the following standard

identifiability assumption (see e.g. Horváth and Kokoszka (2012), Hall and Hosseini-Nasab

(2006)).

Assumption 2.3. The first p + 1 eigenvalues of the covariance kernel c(i) satisfy τ
(i)
1 > ... >

τ
(i)
p+1 > 0 for i = 1, 2.

It will be shown in the Appendix that under the Assumptions 2.1 and 2.3 the statistic Êj,N
is asymptotically normal in the sense that

(2.14)
√
N
{
Êj,N − Ej

}
→D N (0, σ2

E),

where the symbol →D denotes weak convergence, Ej := (τ
(1)
j − τ

(2)
j )2 is the squared (unknow)

difference between the j-th eigenvalues of the kernels c(1) and c(2), and N (µ, σ2) denotes a

normal distribution with mean µ and variance σ2. In particular, if σ2 = 0 this distribution

is defined as the point measure with probability mass 1 at the point µ. The variance of the

normal distribution in (2.14) can be decomposed as

(2.15) σ2
E = 4|τ (1)j − τ

(2)
j |2

[
(σ

(1)
E )2θ0 + (σ

(2)
E )2(1− θ0)

]
,

where σ
(1)
E and σ

(2)
E are non-negative parameters depending in a very complicated way on the

long run variance of the time series {X(1)
n }n∈Z and {X(2)

n }n∈Z and the spectrum and eigenfunc-

tions of the covariance operators c(1) and c(2). A precise definition of these quantities can be

found in equations (A.16) and (A.20) in Appendix A. From these representations it can be

seen that σ
(1)
E and σ

(2)
E are notoriously difficult to estimate. We circumvent this problem using

self-normalization techniques. This concept has been introduced for change point detection in

a seminal paper by Shao and Zhang (2010) and since then been used by many authors. While

most of this literature concentrates on classical change point problems, Dette et al. (2018)

introduced a novel type of self-normalization for relevant hypotheses and used it to define a

self-normalized test for a relevant change in the mean of a time series. In the following we will

further develop this concept to detect relevant changes in the spectrum. For this purpose we

define a normalizing factor

(2.16) V̂j,N :=
[ ∫ 1

0

λ4
{
Êj,N(λ)− Êj,N(1)

}2
dν(λ)

]1/2
,
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where ν is a probability measure on the interval (0, 1). Even though the specific choice of ν

in (2.16) is generally not influential, it is numerically convenient to use a discrete measure in

applications rather than some mathematically more natural choice like the Lebesgue measure.

The next Proposition is the central building block to prove the feasability of the normaliza-

tion approach.

Proposition 2.4. Suppose that Assumptions 2.1 and 2.3 hold, that ε < min{θ0, 1 − θ0}, that

σ
(i)
E > 0 for i = 1, 2 and that τ

(1)
j 6= τ

(2)
j for some j ∈ {1, . . . , p}. Then the following weak

convergence holds

(2.17)
√
N(Êj,N − Ej, V̂j,N)→D

(
σEB(1), σE

[ ∫ 1

0

λ2(B(λ)− λB(1))2ν(dλ)
]1/2)

,

where B is a standard Brownian motion.

Combining the weak convergence in (2.17) with the continuous mapping Theorem yields that,

(2.18)
Êj,N − Ej
V̂j,N

→D W

where the random variable

(2.19) W :=
B(1){ ∫ 1

0
λ2[B(λ)− λB(1)]2ν(dλ)

}1/2
is a pivot. Some quantiles of the distribution of W can be found in Table 1 (where ν is a

discrete uniform distribution).

α = 0.01 α = 0.05 α = 0.1

K = 20 16.479 9.895 7.097

K = 30 16.248 9.925 7.149

Table 1: (1−α)-quantiles of the distribution of the statistic W in (2.19), where ν is the uniform

distribution on the set {l/K : l = 1, ..., K − 1}.

We can now construct an asymptotic level-α-test rejecting the null hypothesis in (2.4),

whenever

Êj,N −∆τ

V̂j,N
> q1−α,(2.20)

where q1−α is the asymptotic (1 − α)-quantile of the distribution of W . These considerations

are summarized in the following theorem.
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Theorem 2.5. Suppose that Assumptions 2.1 and 2.3 hold, that ε < min{θ0, 1− θ0}, and that

σ
(i)
E > 0 for i = 1, 2. Then for any j ∈ {1, . . . , p} the rejection rule (2.20) defines an asymptotic

level-α and consistent test for the hypothesis (2.4), that is

(2.21) P
(
Êj,N −∆τ

V̂j,N
> q1−α

)
→


0, Ej < ∆τ

α, Ej = ∆τ

1, Ej > ∆τ .

It should be noted that by the same arguments as above a test can be constructed for the

hypothesis of a relevant difference in the eigenvalues before and after the change point, that is

(2.22) H0 : Ej = (τ
(1)
j − τ

(2)
j )2 > ∆τ vs. H1 : (τ

(1)
j − τ

(2)
j )2 ≤ ∆τ .

The corresponding test rejects if

(2.23)
Êj,N −∆τ

V̂j,N
< qα

and the same arguments as in the proof of Theorem 2.5 show that this decision rule defines a

consistent and asymptotic level-α-test, that is

P
(
Êj,N −∆τ

V̂j,N
< qα

)
→


0, Ej > ∆τ

α, Ej = ∆τ

1, Ej < ∆τ .

The formulation of the hypothesis in the form (2.23) is useful if one wants to establish the

similarity between the eigenvalues at a controlled type-I-error. Hypotheses of the form (2.22)

are frequently investigated in biostatistics, in particular in bioequivalence studies (see, for

example, Wellek (2010)).

2.3 Relevant changes in the eigenfunctions

Similar techniques as in the preceeding section can be employed in the analysis of the hypothesis

(2.5) of no relevant change in the j-th eigenfunction. This task is slightly more intricate, as we

are now dealing with L2[0, 1]-functions instead of real numbers.

Recall the definition of the estimated eigenfunctions in (2.13). As we have already noticed

such functions are only determined up to a sign. Thus, to make comparisons meaningful, we

always assume that the inner products
〈
v
(1)
j , v

(2)
j

〉
,
〈
v
(1)
j , v̂

(1)
j,λ

〉
,
〈
v
(2)
j , v̂

(2)
j,λ

〉
and

〈
v̂
(1)
j,λ , v̂

(2)
j,λ

〉
are non-

negative for all λ ∈ [0, 1]. This assumption is solely made for the sake of a clear presentation. It

can be dropped if in the testing problem (2.5) and in the subsequently presented test statistic
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all occurring vector distances ‖v − v′‖ are replaced by the min(‖v − v′‖, ‖v + v′‖). This is also

how the statistic should be understood in applications.

We estimate the squared difference Dj := ‖v(1)j − v
(2)
j ‖2 by D̂j,N := D̂j,N(1), where the

statistic D̂j,N(λ) is defined by

D̂j,N(λ) = ‖v̂(1)j,λ − v̂
(2)
j,λ‖

2.

Recall that for λ ∈ [0, 1] v̂
(1)
j,λ and v̂

(2)
j,λ are defined as the eigenfunctions of the estimated covari-

ance operators from the samples

X1, ..., XbNθ̂λc and XNθ̂+1, ..., XNθ̂+b(N−Nθ̂)λc,

respectively (see (2.11)). We also introduce the the normalizing factor

(2.24) Ûj,N :=

(∫ 1

0

λ4
{
D̂j,N(λ)− D̂j,N(1)

}2

ν(dλ)

)1/2

.

We propose to reject the null hypothesis of no relevant change in the j-th eigenfunction in (2.5),

whenever

D̂j,N −∆v

Ûj,N
> q1−α,(2.25)

where q1−α is the upper α quantile of the distribution of W defined in (2.19). The following

result shows that this test has asymptotic level-α and is consistent. The proof can be found in

Section A.3 in the appendix.

Theorem 2.6. Suppose that Assumptions 2.1 and 2.3 hold, that ε < min{θ0, 1 − θ0}, that

j ∈ {1, . . . , p} and that the quantities σ
(1)
D , σ

(2)
D defined in (A.33) are positive. Then the test

defined in (2.25) has asymptotic level α and is consistent for the hypothesis (2.5), that is

(2.26) P
(D̂j,N −∆v

Ûj,N
> q1−α

)
→


0, Dj < ∆v

α, Dj = ∆v

1, Dj > ∆v.

We conclude this section with a brief remark, that extends our results to non-centered data.

This is of particular importance in applications such as presented in Section 3.4.

Remark 2.7. A careful inspection of the proofs in Appendix A shows that all results in this

section remain true if the sequences of random variables (X
(i)
n )n∈Z have non-zero expectation

µ(i) ∈ L2[0, 1] for i = 1, 2. In this case the estimators of the covariance kernels in (2.9) and

(2.10) have to be modified as follows

ĉ(1)(λ, s, t) :=
1

bNθ̂λc

bNθ̂λc∑
n=1

[
Xn(s)− µ̂(1)(s)

][
Xn(t)− µ̂(1)(t)

]
,

11



ĉ(2)(λ, s, t) :=
1

b(N −Nθ̂)λc

Nθ̂+b(N−Nθ̂)λc∑
n=Nθ̂+1

[
Xn(s)− µ̂(2)(s)

][
Xn(t)− µ̂(2)(t)

]
,

where µ̂(1) and µ̂(2) denote the empirical mean functions of the samples X1, ..., XbNθ̂c and

XbNθ̂c+1, ..., XN respectively.

3 Finite sample properties

In this section we investigate the performance of the new tests by means of a small simulation

study and illustrate potential applications in a data example. All simulations are based on

4000 simulation runs. We are interested in a test of the hypothesis of no relevant differences in

the eigenvalues and eigenfunctions as defined in (2.4) and (2.5), respectively. In the subsequent

results the measure ν in the statistics V̂j,N and Ûj,N is the uniform measure on the points

1/20, 2/20, ..., 19/20 (see Table 1, K = 20, for the critical values of the distribution of W ).

Furthermore we assume that the change point is located at bN/2c, that is θ0 = 1/2.

3.1 Relevant changes in the eigenvalues

We investigate the rejection probabilities of the test (2.25) for the hypothesis of no relevant

change in the first and second eigenvalue. To generate data we assume that the observed

functions are smoothed over the real Fourier basis of order T , which is defined for odd T as

(3.1)

{f1, ..., fT} =
{

1,
√

2 sin(2πx), ...,
√

2 sin(π(T − 1)x),
√

2 cos(2πx), ...,
√

2 cos(π(T − 1)x)
}
.

Following Aue et al. (2009) we set T = 21, even though higher dimensions are feasable.

We define the covariance kernels in terms of the Fourier basis as follows

c(1)(s, t) :=
T∑
k=1

τkfk(s)fk(t) and c(2)(s, t) := (1−
√
E)

4∑
k=1

τkfk(s)fk(t) +
T∑
k=5

τkfk(s)fk(t),

where τk := 1/k2 for k = 1, ..., T and the parameter E varies in the interval [0, 1]. Obviously

the squared difference of the j-th eigenvalues of c(1) and c(2) is Ej = E/j4 for j = 1, .., 4 and

subsequently 0.

As we have seen in Section 2, the square L2-distance between the kernels c(1) and c(2) is of

importance for the performance of the change point estimator (2.6). In the present case it is

given by ∫ 1

0

∫ 1

0

[
c(1)(s, t)− c(2)(s, t)

]2
dsdt = E

4∑
k=1

τ 2k = 1.07875 · E.

12



The simulated data is generated by randomly sampling sets of Fourier coefficients according

to the above kernels. First we generate (N + 1) i.i.d. random vectors εn := (ε1, ..., εT ) ∼
N (0, diag(τ1, ..., τT )), n = 0, ..., N + 1. To introduce potential dependence, we define a matrix

Ψ ∈ RT×T with i.i.d. normally distributed entries Ψl,k ∼ N (0, ψ) and consider the coefficients

an =
εn + Ψεn−1√

1 + ψ
, n = 1, ..., N.

For n = bNθ0c + 1, ..., N we downscale the first four components of an := (an,1, . . . , an,T )T by

a factor
√

1−
√
E. Finally the process {Xn}n=1,...,N is defined by

(3.2) Xn(s) =
T∑
k=1

an,kfk(s).

An immediate calculation reveals that for n = 1, ..., bNθ0c the random variable Xn has covari-

ance kernel c(1) and for n = bNθ0c + 1, ..., N the covariance kernel of Xn is given by c(2). The

dependence of the data is determined by the choice of ψ. For ψ = 0 we generate i.i.d. data and

for ψ > 0 an fMA(1)- process. In the later case we choose ψ, such that E‖Ψ‖L1 = 1. In each

simulation run we use a new realization of Ψ to generate the complete sample X1, . . . , XN .

In Figure 1 and 2 we display the rejection probabilities of the test (2.20) for the hypothesis

(2.4) of no relevant change in the first and second eigenvalue, with level α = 5%. The threshold

∆τ is given by 0.1 for j = 1 and 0.005 for j = 2 and the tuning parameter in the estimator

(2.6) is chosen as ε = 0.05.

Figure 1: Rejection probabilities of the test (2.20) for the hypothesis (2.4) of no relevant change

in the first eigenvalue, where ∆τ = 0.1. Data comes from an i.i.d. sequence (left) and an

fMA(1)-process (right). The vertical dashed line visualizes the 5% level.
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Figure 2: Rejection probabilities of the test (2.20) for the hypothesis (2.4) of no relevant change

in the second eigenvalue, where ∆τ = 0.005. Data comes from an i.i.d. sequence (left) and an

fMA(1)-process (right). The vertical dashed line visualizes the 5% level.

According to the theoretical discussion in Theorem 2.5 the test should have rejection prob-

abilities smaller, close and larger to α if Ej < ∆τ (interior of the null hypothesis), Ej = ∆τ

(boundary of the null hypothesis) and Ej > ∆τ (alternative), respectively. For the first eigen-

value (Figure 1) we observe a good approximation of the nominal level, at the boundary of the

null hypothesis even if the sample size is N = 200 and a reasonable power. For the second

eigenvalue (Figure 2) the test slightly conservative for N = 200 at the boundary of the null

hypothesis, but the level is close to α for N = 400 and N = 600. A comparison of the left

and right part in Figures 1 and 2 shows that dependence in the data has only a small impact

on both type I and type II error, even though a subtle increase is visible. Further simulations

with different distributions of the Fourier coefficients show that the results are stable in this

respect, although heavier tails lead to a loss of power. These results are not reported for the

sake of brevity.

3.2 Relevant changes in the eigenfunctions

To investigate the finite sample properties of the test (2.25) for the hypothesis of no relevant

change in the j-th eigenfunction in (3.1) we define the covariance kernels

(3.3) c(1)(s, t) :=
T∑
k=1

τkv
(1)
k (s)v

(1)
k (t) and c(2)(s, t) :=

T∑
k=1

τkv
(2)
k (s)v

(2)
k (t).

14



Here the eigenvalues of c(1) and c(2) are the same, that is

τk = 1/k2 for k = 1, ..., T,

and the respective eigenfunctions v
(i)
k are defined by

v
(1)
k (s) = fk(s) (k = 1, ..., T ), v

(2)
k (s) = fk(s) (k = 3, ..., T ),

and

v
(2)
1 (s) = cos(ϕ)f1(s) + sin(ϕ)f2(s), v

(2)
2 (s) = cos(ϕ)f2(s)− sin(ϕ)f1(s),

where the Fourier basis {f1, . . . , fT} is defined in (3.1). A simple calculation yields that the

L2-distance between the kernels is given by∫ 1

0

∫ 1

0

[
c(1)(s, t)− c(2)(s, t)

]2
dsdt =

5[1− cos(ϕ)]

2

and that the distance between the first and second eigenfunctions is

‖v(1)1 − v
(2)
1 ‖ = ‖v(1)2 − v

(2)
2 ‖ =

√
2− 2 cos(ϕ).

By construction the two kernels c(1) and c(2) in this example are very similar, and therefore the

estimation of the change point is a challenging task. Any further difference in the eigensystems

would increase the L2-distance of the kernels and thus facilitate the problem of change point

detection.

The data is generated as described in Section 3.1, where the coefficients an,k in the repre-

sentation (3.2) are given by the vectors

an =(an,1, . . . , an,T ) =
εn + Ψεn−1√

1 + ψ
, n = 1, ..., bNθ0c,

an =(an,1, . . . , an,T ) = R1,2(ϕ)
εn + Ψεn−1√

1 + ψ
, n = bNθ0c+ 1, ..., N.

Here R1,2(ϕ) is the rotation matrix of the first two components by an angle ϕ. Note that

for n = 1, ..., bNθ0c the random variable Xn in (3.2) has covariance kernel c(1) and for n =

bNθ0c+ 1, ..., N the covariance kernel of Xn is given by c(2).

In Figure 3 and 4 we display the rejection probabilities of the test (2.25) for the hypothesis

(2.5) of no relevant change in the first and second eigenfunction (threshold ∆v = 0.1), with

level α = 5%. The tuning parameter in the change point estimator (2.6) is given by ε = 0.05.
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Figure 3: Rejection probabilities of the test (2.25) for the hypothesis (2.5) of no relevant change

in the first eigenfunction. Data comes from an i.i.d. sequence (left) and an fMA(1)-process

(right). The vertical dashed line visualizes the 5% level.

Figure 4: Rejection probabilities of the test (2.25) for the hypothesis (2.5) of no relevant change

in the second eigenfunction. Data comes from an i.i.d. sequence (left) and an fMA(1)-process

(right). The vertical dashed line visualizes the 5% level.

We observe a good approximation of the nominal level at boundary of the null hypothesis

16



(Dj = ∆v) and the test detects alternatives with decent power. Similar to the investigation of

the eigenvalues, additional dependence has little impact on the results. An interesting difference

occurs in the consideration of the second eigenfunction. Whereas for the second eigenvalue the

self-normalized test (2.20) is slightly more conservative for small sample sizes, we observe that

for the second eigenfunction the test (2.25) becomes slightly more liberal in this case.

3.3 Choice of the tuning parameter in (2.6)

It is of interest to investigate the impact of the choice of the boundary parameter ε on the

performance of the tests. In practice the choice ε = 0.05 indicates only moderate knowledge,

but one might want to use even smaller values, or more rigorously put ε = 0. We therefore

consider the model of the preceding section, for the first eigenfunction with an i.i.d. sample,

of size N = 400 and investigate the impact of different choices ε = 0, 0.005, 0.01, 0.05 on the

performance of the test (2.25) for the hypothesis (2.5) of no relevant difference in the first

eigenfunction. The results are displayed in Figure 5a and indicate a high stability with respect

to the choice of ε. Whereas the power of the test is hardly influenced by the choice of ε, we

observe that the choice ε = 0 produces comparatively high rejection probabilities under the

null hypothesis, particularly for small values of Dj. This effect can be explained as follows.

Under the alternative the two samples X1, ..., Xbθ0Nc and Xbθ0Nc+1, ..., XN have quite distinct

covariance structures and so the change point estimator will perform well, regardless of the

choice of ε. However, if Dj is close to 0, the samples will be be nearly indistinguishable, such

that the change point θ0 is estimated less accurately. In such cases the test has larger rejection

probabilities.

This interpretation is visualized by Figure 5b where we display a histogram of the estimated

change points using the estimator (2.6) with ε = 0 and true distance of the eigenfunctions

Dj = 0. We observe that in this case the estimator frequently localizes the change point in the

first or last bin. For the problem of testing for relevant differences in the eigenvalues as consid-

ered in Section 3.1, similar effects can be observed, which are not reported to avoid redundancy.
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(a) Simulated rejection probabilities of the

test (2.25) for the hypothesis (2.5) of no

relevant change in the first eigenfunction

(∆v = 0.1). The sample size is N = 400 and

different choices of the tuning parameter ε

in the estimator (2.6) are considered.

(b) Histogram of 100.000 realizations of the change

point estimator (2.6) with tuning parameter ε = 0.

The sample size is N = 400.

Figure 5:

3.4 A data example

In this subsection we apply the new methodology to identify relevant changes in temperature

measurements in northern Germany. The data consists of daily temperature averages, published

by the national meteorological agency “Der Deutsche Wetterdienst” ( https://www.dwd.de/

DE/Home/home_node.html) in the state of Bremen (Lat=53.1◦, Long= 008.7◦) over the years

1890 to 2018. Due to incomplete data in the first years, as well as immediately after WWII,

the years 1890− 1893 as well as 1945− 1946 have been removed from the data. This leaves us

with 123 years of daily measurements.

We smooth this data over the Fourier basis defined in (3.1), for T = 41, a choice between

Fremdt et al. (2014) (T=49) and Aue et al. (2009) (T=21), which allows a reasonable approxi-

mation of the daily temperatures and still reflects general trends. However it is worth noticing

that our subsequent findings are quite robust with respect to different choices of T .

For the tuning in the change point estimator (2.6) we choose ε = 0.01, which yields Nθ̂ = 92

as an estimated change point. This corresponds to the year 1988 and we can calculate the re-

spective eigenfunctions and eigenvalues, before and after the change. Exemplarily we show in
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Figure 6 the first three eigenfunctions before and after the estimated change point. We observe

that the first eigenfunctions are quite similar, but larger differences can be found between the

second and third eigenfunctions (see lower panel in Figure 6).

Figure 6: Eigenfunctions of the estimated covariance operators from 1894-1988 (solid) and

1989-2018 (dotted). Upper panel: First eigenfunctions v̂
(1)
1 and v̂

(2)
1 . The curves differ only

slightly. Is this relevant? Middle panel: Second eigenfunctions v̂
(1)
2 and v̂

(2)
2 . The functions are

more dissimilar, reveiling very limited common trends. Lower panel: Third eigenfunctions v̂
(1)
3

and v̂
(2)
3 . These functions are rather different, close to orthogonality.
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For the first five eigenfunctions we have applied the test (2.25) for the hypothesis (2.5) of

no relevant change to see whether we can find relevant differences for varying sizes of ∆v. To

make our results more interpretable we translate the measure of similarity ∆v into an angle ϕ,

i.e., if the squared distance of two eigenfunctions differs by at least ∆v ≈ 0.58 the “geometric

angle” between them is at least ϕ = π/4. This is again due to the fact that the angle ϕ between

two eigenfunctions v, w determines their distance

‖v − w‖ =
√

2− 2 cos(ϕ).

In Table 2 we display the decisions of the test (2.25) for the hypothesis (2.5) of no relevant

changes in the eigenfunctions where different thresholds are considered. We observe that the test

does not detect relevant changes between the first and the second eigenfunctions. In contrast,

the eigenfunctions of larger order display significant differences, which confirms the visualization

in Figure 6. The test detects relevant changes in the third, fourth and fifth eigenfunctions for

nearly all thresholds (and the same holds true for eigenfunctions of larger order).

Eigenfunctions i = 1 i = 2 i = 3 i = 4 i = 5

ϕ = π/16 TRUE TRUE FALSE >99% FALSE>99% FALSE>99%

ϕ = π/8 TRUE TRUE FALSE>99% FALSE>95% FALSE>99%

ϕ = π/4 TRUE TRUE FALSE>99% FALSE>95% FALSE>99%

ϕ = 2π/5 TRUE TRUE FALSE>95% TRUE FALSE>90%

Table 2: Relevance of the differences of the first five eigenfunctions for different, relevant angles

ϕ. Acceptance of the null hypothesis in (2.5) with ∆ =
√

2− 2 cos(ϕ) is denoted by “TRUE”

(p-value > 10%), rejection by “FALSE”. For rejections, superindices indicate the probability of

a less extreme event under the null.

To fully appreciate these results we have to take the estimated eigenvalues into account.

The first five estimates before and after the change point are given by

τ̂
(1)
1 = 38.38, τ̂

(1)
2 = 0.56, τ̂

(1)
3 = 0.26, τ̂

(1)
4 = 0.24, τ̂

(1)
5 = 0.21

τ̂
(2)
1 = 41.15, τ̂

(2)
2 = 0.45, τ̂

(2)
3 = 0.40, τ̂

(2)
4 = 0.34, τ̂

(2)
5 = 0.29.

The rapid decay of the eigenvalues indicates, that most of the data’s variance -in fact about

90% for each sample- is explained by the first principal components. Due to the similarity of

the first eigenfunctions a low-dimensional representation of all data may be given, by projecting

on a common, low-dimensional function space, a process much facilitating subsequent analysis.

In contrast, due to great dissimilarities of the higher order eigenfunctions, finding a common

space that captures, say 95% of all variance will require much higher dimensions.
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Bejond such fPCA-related considerations, the eigenvalues encode further, valuable informa-

tion about the data. They indicate how strongly each eigenfunction contributes to the measured

functions. Displaying the eigenvalues 2− 12 (those still of larger order than 0.01) in the below

graphic reveals a striking trend: The estimated eigenvalues of the time period from 1894−1988

are decaying faster than those of 1989− 2018.

It should be noted that this trend persists if we base our estimates on a change point

earlier in time, even if we split the data in equally sized halfs. Of course contamination of the

second data set then leads to smaller differences, but the underlying trend of slower decay of

the eigenvalues from the earlier time period remains visible. This indicates that the observed

effects are not simply due to a suggestive change point selection.

Figure 7: Eigenvalues of order 2 − 12 of the estimated covariance operators from 1884-1988

(solid) and 1989-2018 (dotted).

To establish the relevance of these differences, we consider each eigenvalue with an individual

threshold of relevance, suited to its magnitude (proportional to the size of τ̂
(1)
j ) and apply the

test 2.20.

∆τ

j
1 2 3 4 5 6 7 8 9 10 11 12

τ̂
(1)
j /50

τ̂
(1)
j /100

τ̂
(1)
j /200

Table 3: Differences of the eigenvalues from the samples 1894 − 1988 and 1989 − 2018 for

varying sizes of ∆τ . Relevant differences with probability ≥ 95% are marked in gray and ≥ 99%

in black. White cells suggest no rejection (p-value > 10%).
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The visual inspection of the eigenvalues is consistent with the testing results. The eigenval-

ues of the covariance operators differ up to order 9, with decreasing relevance.

One practical interpretation of these differences may be as follows: The faster decay of the

eigenvalues of ĉ(1) compared to those of ĉ(2), indicates that the observations from 1894− 1988

are less influenced by higher order eigenfunctions, than those from 1989 − 2018. Given that

the eigenfunctions become more irregular with incresing order (compare Figure 6), this might

imply rougher data, i.e. more short term variability temperatures recently, than in the first

part of the 20th century.

A Proofs

For clarity of presentation we confine ourselves to the case j = 1, i.e. differences in the first

eigenfunction and eigenvalue. The general case follows by exactly the same arguments.

An important feature of the proofs is the replacement of the estimated change point θ̂, by

the deterministic, true change point θ0. If we knew the true change point, we could construct

the ideal, estimated covariance kernels by c̃(1)(1, s, t) and c̃(2)(1, s, t) where for λ ∈ [0, 1]

c̃(1)(λ, s, t) =
1

bbNθ0cλc

bbNθ0cλc∑
n=1

Xn(s)Xn(t),(A.1)

c̃(2)(λ, s, t) =
1

b(N − bNθ0c)λc

bNθ0c+b(N−bNθ0c)λc∑
n=Nθ0+1

Xn(s)Xn(t).

These kernels, as well as the corresponding eigensystems

ṽ
(i)
1,λ, ṽ

(i)
2,λ, ... and τ̃

(i)
1,λ ≥ τ̃

(i)
2,λ ≥ ...

for i = 1, 2, will be frequently referred to in the following section.

A.1 Proof of Proposition 2.4

Recall the definition of the eigenvalues τ̂
(i)
1,λ for i = 1, 2 of the estimated kernels ĉ(i)(λ, ·, ·) in

(2.9) and (2.10). In order to show the proposition, we establish the weak convergence

(A.2) {HN(λ)}λ∈[0,1] :=
{√

Nλ2[(τ̂
(1)
1,λ − τ̂

(2)
1,λ)2 − (τ

(1)
1 − τ

(2)
1 )2]

}
λ∈[0,1]

→D {λσEB(λ)
}
λ∈[0,1]

,

where B is a standard Brownian motion. The statement then follows by an application of the

continuous mapping Theorem, as

√
N(Ê1,N − E1, V̂1,N) =

(
HN(1),

[ ∫ 1

0

{HN(λ)− λ2HN(1)}2dν(λ)
]1/2)

.
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The proof of (A.2) consists of two steps.

Step 1: First we demonstrate that using the change point estimate θ̂ is asymptotically as good

as knowing the true location θ0 of the change point, or more precisely
√
Nλ2

[
(τ̃

(1)
1,λ − τ̃

(2)
1,λ)2 − (τ̂

(1)
1,λ − τ̂

(2)
1,λ)2

]
= oP (1)(A.3)

uniformly with respect to λ ∈ [0, 1]. To establish this equality we show

λ|τ̃ (1)1,λ − τ̂
(1)
1,λ | = oP (1/

√
N)(A.4)

uniformly in λ ∈ [0, 1]. Deducing (A.3) from (A.4) is then a simple calculation. To obtain

an upper bound on the left side of (A.4), we employ Lemma 2.2 from Horváth and Kokoszka

(2012), which yields

λ|τ̃ (1)1,λ − τ̂
(1)
1,λ | ≤ λ‖c̃(1)(λ, ·, ·)− ĉ(1)(λ, ·, ·)‖.(A.5)

For the difference of the kernels we obtain

λ
[
c̃(1)(λ, s, t)− ĉ(1)(λ, s, t)

](A.6)

=
1

bNθ0c

bbNθ0cλc∑
n=1

Xn(t)Xn(s)− 1

Nθ̂

bNθ̂λc∑
n=1

Xn(t)Xn(s) +OP (N−1)

=
sign(θ0 − θ̂)
bN(θ0 ∨ θ̂)c

bb(θ̂∨θ0)Ncλc∑
n=bb(θ̂∧θ0)Ncλc

Xn(t)Xn(s) +
( 1

bNθ0c
− 1

Nθ̂

) bb(θ̂∧θ0)Ncλc∑
n=1

Xn(t)Xn(s) +OP (N−1),

where the second equality follows by a straightforward rearrangement of the terms. Notice that

|1/θ̂ −N/bNθ0c| = oP (1/
√
N), which follows immediately by Proposition 2.2. An application

of the triangle inequality shows that the L2([0, 1]× [0, 1])-norm of the second term on right side

of (A.6) can be bounded by∣∣∣ N

bNθ0c
− 1

θ̂

∣∣∣ 1

N

N∑
n=1

‖Xn ⊗Xn‖ = oP (1/
√
N),

where we have applied Birkhoff’s Theorem. The L2([0, 1]× [0, 1])-norm of the first term on the

right of (A.6) is also of order oP (1/
√
N). Counting the summands we see that centering only

yields a further term of order oP (1/
√
N). We now use Theorem B.1 from Appendix B to get

sup
λ

{∫ 1

0

∫ 1

0

[sign(θ0 − θ̂)
bN(θ0 ∧ θ̂)c

bb(θ̂∨θ0)Ncλc∑
n=bb(θ̂∧θ0)Ncλc

[
Xn(t)Xn(s)− E[Xn(t)Xn(s)]

]]2
dsdt

}1/2

(A.7)
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=OP
( 1√

N
sup
λ

{∫ 1

0

∫ 1

0

[
ΓN(λb(θ̂ ∨ θ0)Nc/N, s, t)− ΓN(λb(θ̂ ∧ θ0)Nc/N, s, t)

]2
dsdt

}1/2)
,

where ΓN is a Gaussian process defined by

ΓN(x, s, t) :=
∑
l≥1

ΛlBl,N(x)Ψl(s, t),

{Bl,N : l ∈ N} are independent Brownian motions, {Λl : l ∈ N} are non-negative, square

summable values and {Ψl : l ∈ N} is an orthonormal basis of L2([0, 1] × [0, 1]). Enlarging the

set over which we maximize, we see that the supremum in (A.7) is bounded by

sup
|λ−µ|≤|θ̂−θ0|

(∫ 1

0

∫ 1

0

[
ΓN(λ, s, t)− ΓN(µ, s, t)

]2
dsdt

)1/2
,

and the definition of ΓN yields

sup
|λ−µ|≤|θ̂−θ0|

(∫ 1

0

∫ 1

0

[
ΓN(λ, s, t)−ΓN(µ, s, t)

]2
dsdt

)1/2
= sup
|λ−µ|≤|θ̂−θ0|

(∑
l≥1

Λ2
l

[
Bl,N(λ)−Bl,N(µ)

]2)1/2
.

Its expectation is bounded by(
E
[

sup
|λ−µ|≤|θ̂−θ0|

(B(λ)− B(µ))2
]∑
l≥1

Λ2
l

)1/2
,

where B is a standard Brownian motion. The expectation converges to 0 by application of the

dominated convergence Theorem together with the almost sure continuity of the paths of the

Brownian motion (see Billingsley, Section 37). These considerations yield (A.4) and hence (A.3).

Step 2: We now prove the weak convergence (A.2). Step 1 and straightforward calculations

yield
√
Nλ2[(τ̃

(1)
1,λ − τ̃

(2)
1,λ)2 − (τ

(1)
1 + τ

(2)
1 )2] =

√
Nλ2[τ̃

(1)
1,λ − τ̃

(2)
1,λ − τ

(1)
1 − τ

(2)
1 ]2

+2
√
Nλ2(τ

(1)
1 − τ

(2)
1 )(τ̃

(1)
1,λ − τ̃

(2)
1,λ − τ

(1)
1 + τ

(2)
1 )

= 2
√
Nλ2(τ

(1)
1 − τ

(2)
1 )(τ̃

(1)
1,λ − τ̃

(2)
1,λ − τ

(1)
1 + τ

(2)
1 ) + oP (1).

For further analysis of the quantityGN(λ) =
√
Nλ2(τ̃

(1)
1,λ−τ̃

(2)
1,λ−τ

(1)
1 +τ

(2)
1 ) we use Proposition

B.2, in Appendix B, which gives

GN(λ) =
√
Nλ2(τ̃

(1)
1,λ − τ̃

(2)
1,λ − τ

(1)
1 + τ

(2)
1 ) = R

(1)
N (λ) +R

(2)
N (λ) + oP (1) ,

where

R
(1)
N (λ) =

√
Nλ

bNθ0c

bbNθ0cλc∑
n=1

∫ 1

0

∫ 1

0

(X(1)
n (s)X(1)

n (t)− c(1)(s, t))v(1)1 (s)v
(1)
1 (t)dsdt
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R
(2)
N (λ) =

√
Nλ

bN(1− θ0)c

bbN(1−θ0)cλc+bNθ0c∑
n=bNθ0c+1

∫ 1

0

∫ 1

0

(X(2)
n (s)X(2)

n (t)− c(2)(s, t))v(2)1 (s)v
(2)
1 (t)dsdt.

Weak convergence of the process {GN(λ)}λ∈[0,1] now follows by an application of the continuous

mapping Theorem and the weak convergence of the vector valued process(
R

(1)
N (λ), R

(2)
N (λ)

)
λ∈[0,1].(A.8)

For a proof of this statement we show asymptotic tightness and convergence of the finite di-

mensional distributions. We therefore introduce the random variables

(A.9) Y (i)
n :=

∫ 1

0

∫ 1

0

[
X(i)
n (s)X(1)

n (t)− c(i)(s, t)
]
v
(i)
1 (s)v

(i)
1 (t)dsdt i = 1, 2

and

(A.10) Y (i)
n,m :=

∫ 1

0

∫ 1

0

[
X(i)
n,m(s)X(i)

n,m(t)− c(i)(s, t)
]
v
(i)
1 (s)v

(i)
1 (t)dsdt i = 1, 2,

where the random functions X
(i)
n,m are defined in (2.7). Asymptotic tightness can be shown

coordinate-wise, such that we verify it exemplarily for the first component. This can be rewrit-

ten as the process

(A.11)
(
R

(1)
N (λ)

)
λ∈[0,1] =

( √Nλ
bNθ0c

bbNθ0cλc∑
n=1

Y (1)
n

)
λ∈[0,1]

.

As tightness of a stochastic process (G(λ))λ∈[0,1] in `∞[0, 1] implies tightness of (λG(λ))λ∈[0,1],

it will suffice to show tightness of (R
(1)
N (λ)/λ)λ∈[0,1]. To prove this assertion we note

lim
δ→0

lim
N→∞

P
(

sup
|r−q|<δ

√
N

bNθ0c

∣∣∣ bbNθ0cqc∑
n=1

Y (1)
n −

bbNθ0crc∑
n=1

Y (1)
n

∣∣∣ > ε
)

(A.12)

≤ lim
δ→0

lim
N→∞

P
(

sup
|r−q|<δ

√
N

bNθ0c

∣∣∣ bbNθ0cqc∑
n=1

Y (1)
n,m −

bbNθ0crc∑
n=1

Y (1)
n,m

∣∣∣ > ε/2
)

+2 lim
N→∞

P
(

sup
q∈[0,1]

√
N

bNθ0c

∣∣∣ bbNθ0cqc∑
n=1

Y (1)
n − Y (1)

n,m

∣∣∣ > ε/4
)
.

Adapting the proof of Lemma 2.1 in Berkes et al. (2013) shows that under the assumptions

stated in Section 2

lim
m→∞

lim sup
N→∞

P
(

max
k=1,...,N

∥∥∥ 1√
N

k∑
n=1

(X(i)
n ⊗X(i)

n −X(i)
n,m ⊗X(i)

n,m)
∥∥∥ > x

)
= 0(A.13)
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for any x > 0. By this result and the Cauchy-Schwarz inequality, the second term on the right

side of (A.12) converges to 0 as m→∞.

For the first term we define for h = 1, ...,m

Q(h, T ) := {n ≤ T : nmodm = h}

and split the sample Y
(1)
1,m, ..., Y

(1)
bNθ0c,m in m groups of independent identically distributed random

variables, which gives

P
(

sup
|r−q|<δ

√
N

bNθ0c

∣∣∣ bbNθ0cqc∑
n=1

Y (1)
n,m −

bbNθ0crc∑
n=1

Y (1)
n,m

∣∣∣ > ε/2
)

=P
(

sup
|r−q|<δ

√
N

bNθ0c

∣∣∣ m∑
h=1

∑
n∈Q(h,bbNθ0cqc)

Y (1)
n,m −

∑
n∈Q(h,bbNθ0crc)

Y (1)
n,m

∣∣∣ > ε/2
)

≤P
(

sup
|r−q|<δ

m max
1≤h≤m

√
N

bNθ0c

∣∣∣ ∑
n∈Q(h,bbNθ0cqc)

Y (1)
n,m −

∑
n∈Q(h,bbNθ0crc)

Y (1)
n,m

∣∣∣ > ε/2
)

≤mP
(

sup
|r−q|<δ

√
N

bNθ0c

∣∣∣ ∑
n∈Q(1,bbNθ0cqc)

Y (1)
n,m −

∑
n∈Q(1,bbNθ0crc)

Y (1)
n,m

∣∣∣ > ε/(2m)
)
.

In the last step we have used that all sums are identically distributed and we have assumed

without loss of generality that bbNθ0cqc and bbNθ0crc are divisible by m (otherwise the re-

maining term, is asymptotically negligible). Taking the limit with respect to N we observe

that the right side converges to 0, which follows due to asymptotic tightness of partial sums of

independent random variables, as presented in van der Vaart and Wellner (1996).

The remaining part of this proof consists in verifying the marginal convergence of (A.8).

More precisely, we prove by an application of the Cramer-Wold device for a finite number of

parameters 0 ≤ λ1 ≤ ... ≤ λK ≤ 1 weak convergence of the random vector

[R
(1)
N (λ1), R

(2)
N (λ1), ..., R

(1)
N (λK), R

(2)
N (λK)].

Again (A.13) and the Cauchy-Schwarz inequality show that we can replace this vector by its

m-dependent version [R
(1)
N,m(λ1), R

(2)
N,m(λ1), ..., R

(1)
N,m(λK), R

(2)
N,m(λK)], where

(
R

(1)
N,m(λ), R

(2)
N,m(λ)

)
=
( √Nλ
bNθ0c

bbNθ0cλc∑
n=1

Y (1)
n,m,

√
Nλ

bN(1− θ0)c

bbN(1−θ0)cλc+bNθ0c∑
n=bNθ0c+1

Y (2)
n,m

)
λ∈[0,1]

.

Now let a1, ..., aK and b1, ..., bK be arbitrary real numbers and consider the sum

K∑
j=1

ajR
(1)
N,m(λj) + bjR

(2)
N,m(λj) =

√
N

K∑
j=1

{ bλjbNθ0cc∑
n=bλj−1bNθ0cc

Y (1)
n,m

λj
bNθ0c

j∑
l=1

al

}
(A.14)
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+
√
N

K∑
j=1

{ bλjN c+bNθ0c∑
n=bλj−1N c+bNθ0c

Y (2)
n,m

λj
bN(1− θ0)c

j∑
l=1

bl

}
(here we put λ0 = 0). To establish weak convergence we use the central limit theorem from Berk

(1973) for m-dependent triangular arrays of random variables. The only non-trivial assumption

of this theorem in our case is the convergence of the variance of (A.14), which will be established

next. As we can see the covariance of the two groups for i = 1, 2 converges to 0, since

1

N
Cov

( K∑
j=1

bλjbNθ0cc∑
n=λj−1bNθ0c

Y (1)
n,m

Nλj
bNθ0c

j∑
l=1

al,
K∑
j=1

bλjN c+bNθ0c∑
n=bλj−1N c+bNθ0c

Y (2)
n,m

Nλj
bN(1− θ0)c

j∑
l=1

bl

)

is of order o(1) due to m-dependence. Consequently, we can investigate the variance of each of

the two terms in (A.14) separately. Iterating the argument yields that we may confine ourselves

to the variance of the terms

√
N

bλjbNθ0cc∑
n=λj−1bNθ0c

Y (1)
n,m

λj
bNθ0c

j∑
l=1

al and
√
N

bλj′N c+bNθ0c∑
n=bλj′−1N c+bNθ0c

Y (2)
n,m

λj′

bN(1− θ0)c

j′∑
l=1

bl,

for j, j′ = 1, ..., K separately. The subsequent convergence arguments are now the same for all

remaining terms and we only exemplarily consider the first one and obtain

Var
{√

N

bλ1bNθ0cc∑
n=1

Y (1)
n,m

λ1
bNθ0c

a1

}
=
λ21Na

2
1

bNθ0c2
Var

{ bλ1bNθ0cc∑
n=1

Y (1)
n,m

}(A.15)

=
λ21bλ1bNθ0ccNa21

bNθ0c2
∑
|k|≤m

(1− |k|/bλ1bNθ0cc)Cov(Y
(1)
0,m, Y

(1)
k,m)→ λ31

a21
θ0

∑
|k|≤m

Cov(Y
(1)
0,m, Y

(1)
k,m).

Finally we have to show that for m→∞ the sum on the right-hand side converges to

(σ
(1)
E )2 = Var(Y (1)

0 ) + 2
∑
l≥1

Cov(Y
(1)
0 , Y

(1)
l ) > 0,(A.16)

which follows from

(A.17) Cm :=
∑
|k|≤m

[
Cov(Y

(1)
0 , Y

(1)
k )− Cov(Y

(1)
0,m, Y

(1)
k,m)

]
→ 0.

Note that σ
(1)
E is positive by assumption. To prove (A.17) consider the estimate

Cm ≤
∑
|k|≤m

∣∣Cov(Y
(1)
0 , Y

(1)
k − Y (1)

k,m)
∣∣+

∑
|k|≤m

∣∣Cov(Y
(1)
0,m − Y

(1)
0 , Y

(1)
k,m)

∣∣.
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Each term can be bounded according to Cauchy-Schwarz by

(A.18)
∑
|k|≤m

E[(Y
(1)
0,m − Y

(1)
0 )2]1/2E[(Y

(1)
0 )2]1/2 = mE[(Y

(1)
0 )2]1/2E[(Y

(1)
0,m − Y

(1)
0 )2]1/2.

The expectation on the right can be further analyzed plugging in the definitions of Y0 and Y0,m
(see (A.9), (A.10) ).

E
[
(Y

(1)
0,m − Y

(1)
0 )2

]1/2
=E
[{∫ 1

0

∫ 1

0

[X
(1)
0,m(s)X

(1)
0,m(t)−X(1)

0 (s)X
(1)
0 (t)]v

(1)
1 (s)v

(1)
1 (t)dsdt

}2]1/2
≤E
[
‖X0 ⊗X0 −X0,m ⊗X0,m‖2

]1/2
≤2‖E

[
‖X0 −X0,m‖2‖X0‖2 + ‖X0 −X0,m‖2‖X0,m‖2

]1/2
≤4E

[
‖X0 −X0,m‖4

]1/4E[‖X0‖4
]1/4

.

Using this estimate in (A.18) yields the upper bound

(A.19) Cm ≤ L(2m+ 1)E
[
‖X0 −X0,m‖4

]1/4
,

for some fixed constant L > 0. According to Assumption 2.1 there exists a sufficiently small

number η > 0, such that the sequence E
[
‖X0 −X0,m‖4

]1/4+η
is summable, and we obtain

lim
m→∞

(2m+ 1)E
[
‖X0 −X0,m‖4

]1/4
= 0.

Analogously to σ
(1)
E we define the long run variance for the random variables Y

(2)
n as

(A.20) (σ
(2)
E )2 = Var(Y (2)

0 ) + 2
∑
l≥1

Cov(Y
(2)
0 , Y

(2)
l ) > 0

(recall that σ
(2)
E is positive by assumption). We have now verified all conditions of the Theorem

in Berk (1973) and this implies convergence of the finite dimensional distributions. Conse-

quently it follows that( √Nλ
bNθ0c

bbNθ0cλc∑
n=1

Y (1)
n ,

√
Nλ

bN(1− θ0)c

bNθ0c+bbN(1−θ0)cλc∑
n=bNθ0c+1

Y (2)
n

)
λ∈[0,1]

→D

(
σ
(1)
E λB1(λ)/

√
θ0, σ

(2)
E λB2(λ)/

√
1− θ0

)
λ∈[0,1]

,

where B1 and B2 are independent, standard Brownian motions. Combining these considerations

with the continuous mapping theorem shows that{√
Nλ2[(τ̃

(1)
1,λ − τ̃

(2)
1,λ)2 − (τ

(1)
1 − τ

(2)
1 )2]

}
λ∈[0,1]

→D

(
2|τ (1)1 − τ

(2)
1 |λ[σ

(1)
E /
√
θ0B1(λ) + σ

(2)
E /
√

1− θ0B2(λ)]
)
λ∈[0,1]

,

which completes the proof. �
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A.2 Proof of Theorem 2.5

Recall that the probability of rejecting the null hypothesis in (2.5) is given by

P
(Ê1,N −∆τ

V̂1,N
> q1−α

)
= P

(Ê1,N − E1

V̂1,N
> q1−α +

∆τ − E1

V̂1,N

)
.

Suppose that E1 > 0 i.e. that the first eigenvalues of c(1) and c(2) are different. Then by

Proposition 2.2,

(A.21)
Ê1,N − E1

V̂1,N
→D W,

where the random variable W is defined in (2.19). The same result shows that V̂1,N is of order

oP (1) which implies that (∆τ −E1)/V̂1,N converges to +∞ if ∆τ > E1 and to −∞ if ∆τ < E1,

both in probability. This implies consistency and level α as stated in (2.21), in the case E1 > 0.

Now suppose that E1 = 0. In this case we show that Ê1,N and V̂1,N are of order oP (1).

Then, with probability converging to 1, Ê1,N/V̂1,N is asymptotically negligible compared to

∆τ/V̂1,N which converges to infinity. First, suppose that the kernels c(1) and c(2) are not equal.

Proposition 2.2 implies that we may replace the change point estimator in numerator Ê1,N and

denominator V̂1,N by the actual change point, only incurring asymptotically vanishing terms.

More precisely, the denominator in (A.21) equals

V̂1,N =
(∫ 1

0

λ4
[
(τ̃

(1)
1,λ − τ̃

(2)
1,λ)2 − (τ̃

(1)
1,1 − τ̃

(2)
1,1 )2

]2
ν(dλ)

)1/2
+ oP (1)

=
(∫ 1

0

λ4
[
(τ̃

(1)
1,λ − τ

(1)
1 + τ

(2)
1 − τ̃

(2)
1,λ)2 − (τ̃

(1)
1,1 − τ

(1)
1 + τ

(2)
1 − τ̃

(2)
1,1 )2

]2
ν(dλ)

)1/2
+ oP (1),

where we have used the equality of the eigenvalues. Now Proposition B.2 in Appendix B shows

that V̂1,N = oP (1). Finally, similar, but simpler arguments show that Ê1,N = oP (1).

In the case of equality c(1) = c(2) the estimator of the change point assumes some uninfor-

mative value inside the interval [ε, 1− ε] and we obtain

V̂ 2
1,N ≤4 sup

λ

(
λ2(τ̂

(1)
1,λ − τ

(1)
1 + τ

(2)
1 − τ̂

(2)
1,λ)2

)2
≤64 sup

λ

(
λ2(τ̂

(1)
1,λ − τ

(1)
1 )2

)2
+ 64 sup

λ

(
λ2(τ

(2)
1 − τ̂

(2)
1,λ)2

)2
.

Consider now the inequality(
λ2(τ̂

(1)
1,λ − τ

(1)
1 )2

)2
≤ sup

θ∈[ε,1−ε]

∥∥∥ 1

bNθc

bbNθcλc∑
n=1

(
Xn ⊗Xn − c(1)

)∥∥∥4 + oP (1)

which follows from Lemma 2.2 in Horváth and Kokoszka (2012). The above expression is of

order oP (1) uniformly in λ by Lemma B.1 in the supplementary material of Aue et al. (2018).

Applying the same argument to the second term yields that V̂1,N = oP (1). The corresponding

arguments for the estimate Ê1,N = oP (1) are similar and therefore again omitted. �
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A.3 Proof of Theorem 2.6

Recall the definition of the eigenfunctions v̂
(i)
1,λ of the estimated kernels ĉ(i)(λ, ·, ·) defined in

(2.9) and (2.10). Similarly as for the proof of Theorem 2.5 we prove the weak convergence

(A.22) {HN(λ)}λ∈[0,1] →D {λσDB(λ)}λ∈[0,1],

where the process {HN(λ)}λ∈[0,1] is defined by

HN(λ) :=
√
N
[ ∫ 1

0

(
v̂
(1)
1,λ(t)− v̂

(2)
1,λ(t)

)2
λ2dt−

∫ 1

0

(
v
(1)
1 (t)− v(2)1 (t)

)2
λ2dt

]
(A.23)

The result then follows by similar arguments as given in the proof of Theorem 2.5 and the

continuous mapping theorem, which implies the weak convergence of the tuple

(√
N(D̂1,N −D1),

√
NÛ1,N

)
=
(
HN(1),

[ ∫ 1

0

{HN(λ)− λ2HN(1)}2dν(λ)
]1/2)

.

First we replace the estimated by the true change point showing

√
N

[∫ 1

0

(
ṽ
(1)
1,λ(t)− ṽ

(2)
1,λ(t)

)2
λ2dt−

∫ 1

0

(
v̂
(1)
1,λ(t)− v̂

(2)
1,λ(t)

)2
λ2dt

]
= oP (1)(A.24)

uniformly in λ ∈ [0, 1]. To establish this equality we prove

λ2‖ṽ(1)1,λ − v̂
(1)
1,λ‖ = oP (1/

√
N)(A.25)

uniformly in λ ∈ [0, 1]. (A.25) then follows from (A.24) by a simple application of the Cauchy-

Schwarz inequality. Note that we may confine ourselves to considering λ ∈ (1/
√
N, 1), since for

λ ∈ (0, 1/
√
N) the left side of (A.25) is upper bounded by 2/N . To derive (A.25) for λ > 1/

√
N

we use Lemma 2.3 from Horváth and Kokoszka (2012) and obtain

λ2‖ṽ(1)1,λ − v̂
(1)
1,λ‖ ≤ λ2

2
√

2‖c̃(1)(λ, ·, ·)− ĉ(1)(λ, ·, ·)‖
τ̃
(1)
1,λ − τ̃

(1)
2,λ

,(A.26)

where τ̃
(1)
1,λ and τ̂

(1)
2,λ are the eigenvalues of covariance kernels c̃(1)(λ, ·, ·) defined in (A.1). We

now consider numerator and denominator separately.

Beginning with the denominator we first notice that by consistency of the estimated eigen-

values τ̃
(1)
1,λ and τ̃

(1)
2,λ we have τ̃

(1)
1,λ − τ̃

(1)
2,λ = τ

(1)
1 − τ

(1)
2 + oP (1). In particular, since τ

(1)
1 > τ

(1)
2

by Assumption 2.3 it is bounded away from 0 with probability converging to 1. To see the

consistency of the eigenvalues, we use the following upper bound

|τ̃ (1)1,λ − τ
(1)
1 | ≤ ‖c̃(1)(λ, ·, ·)− c(1)(·, ·)‖ = OP (N−1/4 log(N)),
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where the second equality follows from Lemma B.1 in the supplementary material of Aue et al.

(2018) and holds uniformly in λ ∈ (1/
√
N, 1). Applying the same argument to the second

eigenvalue yields also consistency of τ̃
(1)
2,λ,.

In the proof of Proposition 2.2 (step 1), we have already shown that the numerator on the

right side of (A.26) is of order oP (1/
√
N) and hence (A.24) follows.

We now turn to an investigation of the process

KN(λ) :=
√
N
[ ∫ 1

0

(
ṽ
(1)
1,λ(t)− ṽ

(2)
1,λ(t)

)2
λ2dt−

∫ 1

0

(
v
(1)
1 (t)− v(2)1 (t)

)2
λ2dt

]
,

for which a simple calculation shows

KN(λ) =
√
N
[ ∫ 1

0

(
ṽ
(1)
1,λ(t)− ṽ

(2)
1,λ(t)− v

(1)
1 (t) + v

(2)
1 (t)

)2
λ2dt

]
+ 2

√
N
[ ∫ 1

0

(
v
(1)
1 (t)− v(2)1 (t)

)(
ṽ
(1)
1,λ(t)− ṽ

(2)
1,λ(t)− v

(1)
1 (t) + v

(2)
1 (t)

)
λ2dt

]
(A.27)

= 2
√
N
[ ∫ 1

0

(
v
(1)
1 (t)− v(2)1 (t)

)(
ṽ
(1)
1,λ(t)− ṽ

(2)
1,λ(t)− v

(1)
1 (t) + v

(2)
1 (t)

)
λ2dt

]
+ oP (1).

For the second equality we have used Proposition 2.1 from Aue et al. (2019). In order to

determine the limiting behavior of this expression, we make several technically helpful trans-

formations beginning with a linearization.

Similar calculations as in the proof of Proposition 2.3 in Aue et al. (2019) yield the represen-

tation

KN(λ) = 2λ
√
N
( 1

bNθ0c

bbNθ0cλc∑
n=1

X̄(1)
n +

1

bN(1− θ0)c

bNθ0c+bbN(1−θ0)cλc∑
n=bNθ0c+1

X̄(2)
n

)
+ oP (1),(A.28)

where the random variables X̄
(1)
n and X̄

(2)
n are defined by

X̄(i)
n :=

∫ 1

0

X̃(i)
n (s, t)f (i)(s, t)dsdt i = 1, 2,(A.29)

X̃(i)
n (s, t) = X(i)

n (s)X(i)
n (t)− E[X(i)

n (s)X(i)
n (t)] i = 1, 2(A.30)

and

f (i)(s, t) = −v(i)1 (s)
∑
k≥2

v
(i)
k (t)

τ
(i)
1 − τ

(i)
k

∫ 1

0

v
(i)
k (u)v

(3−i)
1 (u)du.

Notice that f (i) ∈ L2[0, 1]. Weak convergence of the process {KN(λ)}λ∈[0,1] defined in (A.28)

follows from weak convergence of the two dimensional process

{ √Nλ
bNθ0c

bbNθ0cλc∑
n=1

X̄(1)
n ,

√
Nλ

bN(1− θ0)c

bNθ0c+bbN(1−θ0)cλc∑
n=bNθ0c+1

X̄(2)
n

}
λ∈[0,1]

(A.31)
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and the continuous mapping theorem.

Similar arguments as given in Aue et al. (2019) show that the components of (A.31)(
λ

√
N

bNθ0c

bbNθ0cλc∑
n=1

X̄(1)
n

)
λ∈[0,1]

and
(
λ

√
N

bN(1− θ0)c

bNθ0c+bbN(1−θ0)cλc∑
n=bNθ0c+1

X̄(2)
n

)
λ∈[0,1]

converge weakly to stochastic processes of the form σ
(1)
D

√
θ0λB1(λ) and σ

(2)
D

√
1− θ0λB2(λ) for

some suitable constants σ
(1)
D and σ

(2)
D (see equation A.33 below), where B1 and B2 are indepen-

dent, standard Brownian motions. In particular both processes are asymptotically tight and

consequently the vector in (A.31) is also asymptotically tight. To complete the proof of weak

convergence of (A.31), it therefore remains to prove the convergence of the finite dimensional

distributions.

For this purpose we replace the random variables X̃
(i)
n in (A.30) by their m-dependent

analogues

(A.32) X̄(i)
n,m :=

∫ 1

0

X̃(i)
n,m(s, t)f (i)(s, t)dsdt i = 1, 2

where

X̃(i)
n,m(s, t) := X(i)

n,m(s)X(i)
n,m(t)− E[X(i)

n,m(s)X(i)
n,m(t)] (i = 1, 2)

and the variables X
(i)
n,m are defined in (2.7). The norm of

1√
N

bλbNθ0cc∑
n=1

(X̄(1)
n − X̄(1)

n,m) =
1√
N

bλbNθ0cc∑
n=1

∫ 1

0

∫ 1

0

(X̃(1)
n (s, t)− X̃(1)

n,m(s, t))f (1)(s, t)dsdt

is bounded by

max
k=1,...,bNθ0c

∥∥∥ 1√
N

k∑
n=1

(
X(1)
n ⊗X(1)

n − EX(1)
n ⊗X(1)

n −X(1)
n,m ⊗X(1)

n,m + EX(1)
n,m ⊗X(1)

n,m

)∥∥∥‖f (1)‖

= max
k=1,...,bNθ0c

∥∥∥ 1√
N

k∑
n=1

(
X(1)
n ⊗X(1)

n −X(1)
n,m ⊗X(1)

n,m

)∥∥∥‖f (1)‖

and consequently converges to 0 in probability according to (A.13) if m→∞. The case i = 2

can be treated analogously. Therefore it is sufficient to prove the convergence of the finite

dimensional distributions of the vector( √
Nλ

bNθ0c

bbNθ0cλc∑
n=1

X̄(1)
n,m,

√
Nλ

bN(1− θ0)c

bNθ0c+bbN(1−θ0)cλc∑
n=bNθ0c+1

X̄(2)
n,m

)
λ∈[0,1]

,

which can be shown in the same way as in the proof of Step 2 in Proposition 2.4. Finally, we

define

(σ
(i)
D )2 = Var(X̄0

(i)
) + 2

∑
l≥1

Cov(X̄
(i)
0 , X̄

(i)
l ) > 0 (i = 1, 2)(A.33)
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(these quantities are positive by assumption) and obtain

( √Nλ
bNθ0c

bbNθ0cλc∑
n=1

X̄(1)
n ,

√
Nλ

bN(1− θ0)c

bNθ0c+bbN(1−θ0)cλc∑
n=bNθ0c+1

X̄(2)
n

)
λ∈[0,1]

→D

(
σ
(1)
D λB1(λ)/

√
θ0, σ

(2)
D λB2(λ)/

√
1− θ0

)
λ∈[0,1]

.

The continuous mapping theorem gives(√
N

[∫ 1

0

(
v̂
(1)
1,λ(t)− v̂

(2)
1,λ(t)

)2
λ2dt−

∫ 1

0

(
v
(1)
1 (t)− v(2)1 (t)

)2
λ2dt

])
λ∈[0,1]

→D

(
2[λσ

(1)
D /
√
θ0B1(λ) + λσ

(2)
D /
√

1− θ0B2(λ)]
)
λ∈[0,1]

.

Now the same steps as in the proof of Theorem 2.5 yield the desired result. �

B Technical details and supplementary results

B.1 Weak convergence of the covariance kernel

In this section we provide an adaption of Theorem 1.1 in Berkes et al. (2013) to the estimation

of covariance kernels. Let (Xn)n∈Z be a sequence of random functions satisfying Assumption

2.1 and consider the sequential process

(B.1) SN(x, s, t) :=
1√
N

bNxc∑
n=1

{Xn(s)Xn(t)− EXn(s)Xn(t)} .

Thus we are interested in a sum of random elements Xn ⊗ Xn ∈ L2([0, 1] × [0, 1]). These

products can be approximated by products of the m-dependent random functions Xn,m⊗Xn,m,

where the random variables Xn,m are defined in Assumption 2.1 (note that Xn and Xn,m have

the same distribution). Using Assumption 2.1 and the notation δ′ = δ/2 and κ′ = κ/2 we

obtain for a suitable constant K > 0∑
m≥1

(
E‖Xn ⊗Xn − EXn ⊗Xn −Xn,m ⊗Xn,m + EXn,m ⊗Xn,m‖2+δ

′
)1/κ′

=
∑
m≥1

(
E‖Xn ⊗Xn −Xn,m ⊗Xn,m‖2+δ

′
)1/κ′

≤ K
∑
m≥1

(
E‖Xn‖4+2δ′E‖Xn −Xn,m‖4+2δ′

)1/(2κ′)
+ K

∑
m≥1

(
E‖Xn,m‖4+2δ′E‖Xn −Xn,m‖4+2δ′

)1/(2κ′)
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= 2K
(
E‖X0‖4+2δ′

)1/(2κ′)∑
m≥1

(
E‖Xn −Xn,m‖4+2δ′

)1/(2κ′)
<∞.

This consideration demonstrates that we have the same approximation properties as required

in Berkes et al. (2013) for the random functions Xn ⊗Xn.

The corresponding “long run covariance kernel” for the sequence (Xn ⊗ Xn)n∈Z can be

defined as

C(q, r, s, t) := E[X0(q)X0(r)X0(s)X0(t)]+
∑
n≥1

E[X0(q)X0(r)Xn(s)Xn(t)]

+
∑
n≥1

E[Xn(q)Xn(r)X0(s)X0(t)].

By analogous arguments as presented in Lemma 2.2 of Berkes et al. (2013), it can be observed

that C is square integrable and thus defines a Hilbert-Schmidt operator (see e.g. Bump (1996)

p.168). It thus follows that there exists a spectral decomposition of the integral operator with

kernel C. Let us call its eigenfunctions Ψ1,Ψ2, ... and its corresponding eigenvalues Λ1,Λ2, ....

With this eigensystem we can define the Gaussian process

Γ(x, s, t) :=
∑
1≤l

ΛlBl(x)Ψl(s, t),

where Bl are independent Brownian motions for all l ≥ 1 and x ∈ [0, 1]. We now state an

analogue of Berkes’ Theorem 1.1. The proof runs along the same lines as in Berkes et al. (2013)

and is therefore omitted.

Theorem B.1. Suppose Assumptions 2.1 hold. Then there exists for every N a Gaussian

process ΓN =D Γ such that

sup
x

∫ 1

0

∫ 1

0

(SN(x, t, s)− ΓN(x, s, t))2 dsdt = oP (1).

B.2 Eigenvalue-expansion

In this section we investigate a stochastic linearization of the estimated eigenvalues of the

empirical covariance operator. For this purpose let (Xn)n∈Z be a stationary, functional time

series, with vanishing mean function, that complies to the Assumptions 2.1 and 2.3. We call the

corresponding covariance kernel c, its eigenvalues τ1 ≥ τ2 ≥ ... and its eigenfunctions v1, v2, ....

For the data sample X1, ..., XN we define the sequential estimator of the covariance kernel

(B.2) ĉ(λ, s, t) :=
1

bNλc

bNλc∑
n=1

Xn(s)Xn(t).

Its eigenvalues are denoted by τ̂1,λ ≥ τ̂2,λ ≥ ... and its eigenfunctions by v̂1,λ, v̂2,λ, ....
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Proposition B.2. Under the above assumptions we have for any j ∈ {1, ..., p}

sup
λ∈[0,1]

∣∣∣λ(τ̂j,λ − τj)−
1√
N

∫ 1

0

ẐN(s, t, λ)vj(s)vj(t)dsdt
∣∣∣ = oP (1/

√
N),(B.3)

where

ẐN(s, t, λ) :=
1√
N

bNλc∑
n=1

(Xn(s)Xn(t)− c(s, t)).

Furthermore, with κ defined in Assumption 2.1, 4. we have

(B.4) sup
λ∈[0,1]

|
√
λ(τ̂j,λ − τj)| = OP (log(N)1/κ/

√
N).

Proof. We begin by noticing that

(B.5) sup
λ∈[0,1]

∣∣∣bNλc
N

∫ 1

0

∫ 1

0

c(s, t)vj(s)vj(t)dsdt− λτj
∣∣∣ =

∣∣∣bNλc
N

τj − λτj
∣∣∣ = O(1/N).

Recalling the definition of ĉ(λ, s, t)as defined in (B.2), we use (B.5) to rewrite (B.3) as

sup
λ∈[0,1]

λ
∣∣∣τ̂j,λ − ∫ 1

0

∫ 1

0

ĉ(λ, s, t)vj(s)vj(t)dsdt
∣∣∣+OP (1/N)

= sup
λ∈[0,1]

λ
∣∣∣ ∫ 1

0

∫ 1

0

ĉ(λ, s, t)[v̂j,λ(s)v̂j,λ(t)− vj(s)vj(t)]dsdt
∣∣∣+OP (1/N)

≤ sup
λ∈[0,1]

λ
∣∣∣ ∫ 1

0

∫ 1

0

ĉ(λ, s, t)[v̂j,λ(s)v̂j,λ(t)− v̂j,λ(s)vj(t)]dsdt
∣∣∣

+ sup
λ∈[0,1]

λ
∣∣∣ ∫ 1

0

∫ 1

0

ĉ(λ, s, t)[v̂j,λ(s)vj(t)− vj(s)vj(t)]dsdt
∣∣∣+OP (1/N)

=A+B +OP (1/N),

where the last equality defines the terms A and B in an obvious way. We now investigate

the terms A and B separately. For the term A we observe that v̂j is the eigenfunction of the

integral operator associated with ĉ, which gives

A = sup
λ∈[0,1]

λ

∣∣∣∣τ̂j,λ ∫ 1

0

v̂j,λ(t)[v̂j,λ(t)− vj(t)]dt
∣∣∣∣

= sup
λ∈[0,1]

τ̂j,λ ‖v̂j,λ − vj‖2 λ/2 = oP (1/
√
N).

Here the second equality follows by the parallelogram law and in the last step we used the

estimate

(B.6) sup
λ∈[0,1]

‖v̂j,λ − vj‖2 λ = oP (1/
√
N)
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(see Proposition 2.1 in Aue et al. (2019)) and

sup
λ∈[0,1]

τ̂j,λ ≤ sup
λ∈[0,1]

(|τ̂j,λ − τj|+ τj) = OP (1),

according to Lemma B.1 in the supplementary material for (Aue et al., 2018). Turning to term

B we see that

B ≤ sup
λ∈[0,1]

λ
∣∣∣ ∫ 1

0

∫ 1

0

[ĉ(λ, s, t)− c(s, t)] vj(t)[v̂j,λ(s)− vj(s)]dsdt
∣∣∣

+ sup
λ∈[0,1]

λ
∣∣∣ ∫ 1

0

∫ 1

0

c(s, t)vj(t)[v̂j,λ(s)− vj(s)]dsdt
∣∣∣ =: R1 +R2,

where the last equality defines the random variables R1 and R2 in an obvious manner. For the

term R1 we obtain by the Cauchy-Schwarz inequality

R1 ≤ sup
λ∈[0,1]

√
λ ‖ĉ(·, ·, λ)− c‖ ‖vj‖(

√
λ‖v̂j,λ − vj‖).

Again by Lemma B.1 from the supplement of (Aue et al., 2018) we observe that

sup
λ∈[0,1]

√
λ ‖ĉ(·, ·, λ)− c‖ = O(log1/κ /

√
N).

(B.6) shows that R1 = oP (1/
√
N). We use similar arguments and obtain

R2 = sup
λ∈[0,1]

λτj

∣∣∣∣∫ 1

0

vj(t)[v̂j,λ(t)− vj(t)]dt
∣∣∣∣ = sup

λ∈[0,1]

(
λ‖v̂j,λ − vj‖2

)
τj/2 = oP (1/

√
N).

Combining these considerations proves the first assertion (B.3). For a proof of (B.4) we note

that

sup
λ∈[0,1]

|
√
λ(τ̂j,λ − τj)| ≤ sup

λ∈[0,1]

∥∥∥ √λbNλc
bNλc∑
n=1

Xn ⊗Xn − c
∥∥∥+OP (N−1) = OP (log(N)1/κN−1/2).

The first inequality follows from bounding the eigenvalue distance by the operator distance and

this again by the L2-distance of the kernels. The second one follows by a Lemma B.1 in the

supplementary material for (Aue et al., 2018).
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Fremdt, S., Horváth, L., Kokoszka, P., and Steinebach, J. (2014). Functional data analysis with an

increasing number of projections. Journal of Multivariate Analysis, 124:313–332.

Gao, Y., Shang, H. L., and Yang, Y. (2019). High-dimensional functional time series forecasting: An

application to age-specific mortality rates. Journal of Multivariate Analysis, 170:232 – 243. Special

Issue on Functional Data Analysis and Related Topics.

Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components. Journal of

the Royal Statistical Society, Ser. B, 68:109–126.

37



Hodges, J. and Lehmann, E. (1954). Testing the approximate validity of statistical hypotheses. Journal

of the Royal Statistical Society, Ser. B, 16(2):261–268.
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