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Abstract

Diurnal fluctuations in volatility are a well-documented stylized fact of intraday price data. We

investigate how this intraday periodicity (IP) affects both finite sample as well as asymptotic

properties of several popular realized estimators of daily integrated volatility which are based on

functionals of M intraday returns. We demonstrate that most of the estimators considered in our

study exhibit a finite-sample bias due to IP, which can however get negligible if the number of

intraday returns diverges to infinity. We suggest appropriate correction factors for this bias based

on estimates of the IP. The adequacy of the new corrections is evaluated by means of a Monte

Carlo simulation study and an empirical example.
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1 Introduction

Measurement of daily integrated volatility (IV ) of financial risky assets is a task with much empirical

relevance. The class of realized volatility measures which are based on intraday high-frequency returns

allows to estimate daily IV with a high precision. During the last two decades many different types

and refinements of realized estimators have been suggested, mostly in order to resolve estimation

problems associated with jumps and market microstructure noise. The asymptotic properties of these

estimators are nowadays well understood if the number M of intraday returns satisfies M →∞. For

example, Jacod and Protter (2014) provide the laws of large numbers and central limit theorems for

a quite general class of such estimators.

In this paper we focus on another stylized fact of intraday returns, namely the intraday periodicity

(IP), and investigate its impact on various realized volatility measures. The assessment of IP in

realized volatility contexts was already investigated in the early papers of Andersen and Bollerslev

(1997) and Taylor and Xu (1997), however, this topic has also gained substantial attention recently,

see e.g. the contributions of Gabrys et al. (2013), Dette et al. (2016), Christensen et al. (2018),

Andersen et al. (2019), Dumitru et al. (2019).

In particular, Dette et al. (2016) is the first paper with analytical statements for quantifying a

(downward) IP bias in the well-known bipower variation (BV ) measure of daily IV . They compute a

closed form expression for this bias depending on the IP profile specification which could be of a quite

arbitrary functional form. Although this IP-bias in BV is negligible asymptotically for M → ∞,

it could make a substantial impact for finite M leading to underestimation of IV which is highly

undesired from the risk management perspective. Further, they derive expressions for IP-bias in

tri-power (TP ) and quad-power (QP ) variation which are popular measures for integrated quarticity

(IQ) required for statical inference on IV . In contrast to the BV case, the IP-bias in TP and QP

remains also visible in the case M → ∞. This happens because the presence of IP changes the

‘true’ value of IQ, i.e. when IQ = 1 in case of no IP, it would hold that IQ = ξ > 1 in case of

IP, see Theorem 1 in Dette et al. (2016). All this evidence underscores the importance of IP-bias
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quantification and correction in realized measures.

Extending the results of Dette et al. (2016), in this paper we provide a systematic investigation of the

IP bias correction methods for the most popular realized volatility estimators both analytically as well

as by means of Monte Carlo simulations. Our approach is based on computing a scalar IP-correction

factor as a function of the estimated IP profile for each type of realized volatility estimator. The

advantage of such an approach is that our scalar correction factor is a kind of average over IP profile

components which provides certain robustness properties. In particular, we derive the analytical

expression for IP-bias in the popular minRV RV estimator, and show how to compute correction

factors for the other considered realized estimators in simulations.

We analyze the performance of our approach in an extensive simulation study where we quantify IP-

biases for various realized IV estimators depending on the amount of IP curvature and the number

of intraday returns M . We also consider estimation of IP curvatures and compare our IP-correction

procedure with those of Boudt et al. (2011) which is based on IP-filtered returns. The latter approach

suggests an immediate correction of each intraday return by its corresponding IP component which

makes it more sensitive to IP profile misspecifications compared to the method proposed in this

paper. In general, we find that our IP-bias correction approach works well both in simulations and

empirically. As the procedure proposed by us appears to be in some sense more robust than the

approach of Boudt et al. (2011), we recommend it for practical applications.

The remaining part of this paper is organized as follows: in Section 2 we introduce the daily volatility

IV and its popular realized estimators based on intraday returns. In Section 3 we consider the

IP modeling, discuss and quantify the impact of IP on the estimators of IV , and introduce our

methodology for IP bias correction. The performance of our correction method is investigated in

Section 4 by means of a simulation study, whereas in Section 5 we provide an empirical illustration.

Section 6 concludes the paper, the proofs are placed in the Appendix.
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2 Daily integrated volatility (IV) and its realized estimators

2.1 Model setup

We assume that the log-price process of a risky financial asset is given as

p(t) = µ(t)dt+ σ(t)dW (t), (1)

where µ(t) is the drift, dW (t) is the increment of the Brownian motion and σ(t) is a cadlag process

under rather general assumptions (cf. Barndorff-Nielsen and Shephard, 2004), which can incorporate

for example stochastic volatility and intraday periodicity (IP). We do not consider jumps in this

setting as we are interested in isolating the finite sample bias caused by a deterministic IP, while

jumps constitute another (different) source of bias in realized measures (Andersen et al., 2012).

Our quantity of interest is the daily integrated volatility (IV )

IVt = σ2t =

t∫
t−1

σ2(u)du,

which needs to be estimated from discretized data, i.e. from high-frequency returns. In this paper

we consider several popular estimators of IVt, for which we quantify and correct the bias in these

estimators caused by IP.

To set up the finite sample analysis, we consider M log returns sampled from an evenly spaced

intraday time grid per each day t. Since our objective is the analysis of properties of IV-estimators

for finite M values, for the rest of the paper we exploit the discrete time model

rm,t = smνt,mzt,m, zt,m ∼ iidN (0, 1), m = 1, ...,M,

which is a standard representation in many recent studies (cf. Bekierman and Gribisch, 2020).

The deterministic diurnal IP-components sm summarized to the vector s := (s1, ..., sM )′ are allowed

to vary during the day, but are assumed to be stable for all days under consideration. We address the

issue of time invariance of IP profile s later in this paper. The assumptions about zt,m result from the
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continuous time framework above in (1). The (stochastic) volatility component νt,m could be either

constant or varying both inter- and intra-daily. As we focus on the effect of IP on IV estimation, we

set νt,m = σ2/M for the rest of the paper, which could be justified by analysis in Dette et al. (2016)

who show that the impact of persistent intraday stochastic volatility on realized measures is usually

of smaller order. In order to disentangle the diurnal part of volatility which causes IP, we impose the

common identification restriction (Boudt et al., 2011)

M∑
m=1

s2m = M,

hence, in our setting it holds that IVt = σ2.

2.2 Realized estimators of IV

Now we introduce several popular realized estimators for IV which are commonly used in empirical

research. Hereafter we skip day t index for the simplification of notation. Since our interest is to

quantify the effect of IP, we also consider some estimators that are not robust to jumps or microstruc-

ture noise. Note that even though microstructure noise is mainly a problem when M is very large

(e.g., in case of tick data or data sampled under ultra-high frequencies), it might also be relevant in

finite M situations when risky assets are not liquid enough.

The most simple realized volatility (RV) estimator is given by

RV =
M∑
m=1

r2m, (2)

whereby Barndorff-Nielsen and Shephard (2002) provide the asymptotic theory of RV if M → ∞.

While RV is the efficient estimator for IV , it becomes inconsistent when the price process exhibits

jumps during the day. As a remedy, Barndorff-Nielsen and Shephard (2004) suggest the class of

multipower variations which are based on products of adjacent returns. The most commonly used
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estimator of this class is the bipower variation (BV) defined by

BV =
M

M − 1

π

2

M∑
m=2

|rm||rm−1|. (3)

While BV is a consistent IV -estimator in the case of jumps, there is a finite sample bias caused by the

jumps especially when M is small. In an attempt to reduce this bias without much loss in efficiency,

Andersen et al. (2012) suggest the minimum RV (minRV ) and the median RV (medRV ) estimators

given by

minRV =
π

π − 2

M

M − 1

M∑
m=2

min(|rm|, |rm−1|)2, (4)

medRV =
π

6− 4
√

3 + π

M

M − 2

M∑
m=3

med(|rm|, |rm−1|, |rm−2|)2. (5)

The measures minRV and medRV can also been seen as special cases of the quantile-based RV

measures proposed by Christensen et al. (2010). Further extensions of these estimators are discussed

by Andersen et al. (2014), who consider general order statistics of functionals computed from blocks

of returns.

Besides jumps, market microstructure noise is another source for possible bias and inconsistency of

IV estimators which motivate further realized estimators of daily IV , such as the class of realized

kernel (RK) estimators suggested by Barndorff-Nielsen et al. (2008). Given a suitable kernel function

K(·), the RK estimator is given by

RK =
H∑

h=−H
K
(

h

H + 1

)
γh, γh =

M∑
m=|h|+1

rmrm−|h|. (6)

The choice of kernel function K(·) and of the bandwidth H are discussed in detail in Barndorff-Nielsen

et al. (2009). To obtain a measure which is robust against market microstructure noise, Jacod et al.

(2009) suggest an alternative approach based on pre-averaging of intraday returns which is usually

applied for intraday returns sampled at 30 seconds or even higher frequencies: Intraday returns are

first averaged over a local window of size K and then an estimate is computed from these pre-averaged
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returns. The pre-averaged RV (paRV ) measure is therefore given by

paRV =
M

M −K + 2

1

KψK2

M−K+1∑
m=0

r̄2m, r̄m =

K−1∑
j=1

g
(m
K

)
rm+j , (7)

where ψK2 = (1/K)
∑K−1

j=1 g2(j/K) with the function g(x) = min(x, 1 − x) and the usual choice

K = M1/2. Since neither RK nor paRV estimators are robust to jumps, Christensen et al. (2014)

further suggest a pre-averaged version of the bipower variation given by

paBV =
M

M − 2K + 2

π

2KψK2

M−2K+1∑
m=0

|r̄m||r̄m+K |, r̄m =
K−1∑
j=1

g
(m
K

)
rm+j , (8)

which is also consistent for IV in the presence of jumps. To summarize, we have reviewed seven

popular measures – RV , BV , minRV , medRV , RK, paRV and paBV – as estimators of daily IV .

Next we focus on the impact of IP profile s = (s1, ..., sM )′ on these estimators for finite M number

of intraday returns.

3 IP-bias in realized estimators of IV

The estimators of daily IV introduced in Section 2 are based on the sum of specified functionals of

intraday returns and could therefore be expressed in a general form as

ÎV =

M−k∑
m=j+1

h(rm−j , . . . , rm, . . . , rm+k). (9)

For a proper estimator-specific correction factor C(s) it should hold that

C(s) · E(ÎV ) = IV = σ2, (10)

whereby the scaling factor C(s) depends both on the functional h(·) characterizing each estimator

and on the specific IP profile s = (s1, ..., sM )′. Hence, for a particular estimator ÎV of the form (9)

the presence of IP could cause a bias which should be completely quantified and eliminated by a

multiplicative correction with the factor C(s). This means, two distinct profiles with s1 6= s2 which
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cannot be obtained from each other by a structure-preserving permutation could lead to the same

correction factors C(s1) = C(s2). This makes our IP-bias correction attractive from the empirical

applicability perspective, as it is only a scalar C(s) we need to compute for each estimator of IV .

Even in case of iid intraday returns an analytical expression for C(s) is possible only for some special

forms of the functional h(·). Already Andersen et al. (2014) note that closed form expressions can be

hardly obtained for more advanced functionals even in the iid case and point out the need to obtain

them by means of Monte Carlo simulations. Of course, in presence of IP calculation of C(s) becomes

more challenging as then the iid assumption is violated (cf. Andersen et al., 2014).

In the next proposition we provide the finite sample IP-biases under quite general conditions on the

IP form for some of the above-mentioned IV -estimators. We rewrite the normalized IP components

s2m for m = 1, ...,M as

s2m = g(m
M

)
/
gM , with gM =

1

M

M∑
m=1

g(m
M

), (11)

where g : [0, 1] 7→ R is a given continuously differentiable function.

Proposition 1. Assume that rm ∼ N (0, s2mσ
2/M) with

∑M
m=1 s

2
m = M , and the IP component as

in (11) for some function g : [0, 1] 7→ R. The estimator RV for IV is unbiased so that E(RV ) = σ2.

The estimators BV and minRV are biased for finite M such that

E(BV ) =
σ2

M − 1

M∑
m=2

smsm−1 (12)

= σ2

(
1− 1

M − 1

(1

2

∫ 1
0 g
′(x)dx∫ 1

0 g(x)dx
+

g(0)∫ 1
0 g(x)dx

)
· (1 + o(1))

)
,

E(minRV ) =
σ2

(π − 2)(M − 1)

M∑
m=2

(
πs2m − 2sm−1sm + 2 arctan (sm/sm−1) (s2m−1 − s2m)

)
(13)

= σ2

(
1 +

1

M
− g(0)

M
∫ 1
0 g(x)dx

)
− σ2

2M

∫ 1
0 g
′(x)dx∫ 1

0 g(x)dx
+O

(
1

M2

)
.

Consequently, if M →∞ it holds that E(BV )→ σ2 and E(minRV )→ σ2.

The results for RV and BV are derived by Dette et al. (2016) in their Proposition 1, whereas the
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proof for the expectation of minRV in (13) is provided in the Appendix. Based on these results we

obtain the closed form expressions for the IP-correction factors for BV and minRV as

C(s) = IV/E(ÎV ),

e.g., for the BV measure it is

C(s) = M

(
M∑
m=2

smsm−1

)−1
.

The focus of our paper is to quantify IP bias in realized measures of IV for a finite number of intraday

returns M . Dette et al. (2016) show that for M → ∞ the IP bias of the BV measure converges to

zero. As we show in the proof of Proposition 1, the same holds for minRV . In the simulation study

of this paper, we demonstrate that this seems also to be the case for the other estimators where no

analytical expression for the IP-bias is available. The values of M where the bias becomes negligible,

however, depend on the particular type of the realized estimator and on the form of the IP.

3.1 Estimation of IP

In practice the IP components s = (s1, ..., sM )′ are unknown and should be estimated from the

data. We denote the vector of IP estimates by ŝ = (ŝ1, ..., ŝM )′ and briefly discuss the issue of IP

estimation here. Basically, there are both parametric and non-parametric IP estimators. A non-

parametric estimator based on the inter-day standard deviation of returns was suggested by Taylor

and Xu (1997), however, this estimator appears to be not robust with respect to jumps. Robust

non-parametric procedures for IP estimation are discussed by Boudt et al. (2011), in particular, they

suggest the weighted standard deviation (WSD) estimator which offers a favorable trade-off between

efficiency and robustness and is therefore the preferred estimator in our study. A parametric approach

for IP estimation is proposed by Andersen and Bollerslev (1997), who use a flexible Fourier transform

to obtain the IP estimates. The latter approach is more efficient than the non-parametric alternatives

but is not robust with respect to jumps.

For any consistent estimators of s it holds that C(ŝ)
p→ C(s) for the estimation window T →∞; this
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result follows from the continuous mapping theorem (see e.g. Hamilton, 1994, p. 482-483) as long

as the function C(·) is sufficiently smooth. Additionally, we assume the stochastic independence of

C(ŝ) which is estimated from historical data, and of ÎV computed for the current day, as it is also

commonly done in the literature (cf. Boudt et al., 2011, Bekierman and Gribisch, 2020).

An important question for IP-estimation is the length T of the estimation window to use, e.g. one year

or ten years of daily data. There is an ongoing literature discussion whether IP remains constant over

time, see e.g. Andersen et al. (2001), Gabrys et al. (2013); the evidence in Figure 1 in our empirical

study supports the conjecture that IP could be time-varying. Hence, smaller estimation windows

based on more recent data might be preferable from this perspective. We investigate the effect of the

estimation window length T in our simulation study in Section 4.

3.2 Correction factors for IP bias

The analytical results as in Proposition 1 indicate that one could expect a bias due to IP in the

popular IV estimators discussed above with the exception of RV measure. Our strategy for IP bias

correction is based on the representation in (10) for the given IP profile s and various estimators ÎV .

Then given the basic setting IV = σ2 = 1, we compute the scalar correction factors C(s) such that

C(s) · E(ÎV ) = 1 or, alternatively, C(s)−1 = E(ÎV ).

For the estimated IP profile ŝ we obtain the explicit expressions for the correction factors for BV -

and minRV -estimators, which are given by

CBV (ŝ) =

(
1

M

M∑
m=2

ŝmŝm−1

)−1

, (14)

CminRV (ŝ) =

[
1

(π − 2)(M − 1)

M∑
m=2

(
πŝ2m − 2ŝm−1ŝm + 2 arctan

(
ŝm
ŝm−1

)
(ŝ2m−1 − ŝ2m)

)]−1

. (15)

Unfortunately, the expectations E(ÎV ) in case of IP are not known for the other realized estimators

of IV , so that there is no analytical expressions available for their correction factors. In particular,

finding a closed form expression is hardly possible for both realized kernel RK and pre-averaging

estimators, as it is technically challenging to take into account either different kernels or weighting
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functions. For these reasons we compute the bias correction factors C(s) within a Monte Carlo

simulation study as it is outlined in Section 4 by a numerical approximation of E(ÎV ) for the given

form of IP.

3.3 Using IP-filtered intraday returns

An alternative approach to IP bias correction is to use the estimated profile ŝ in order to remove

immediately the IP components from the intraday returns, so that IP-filtered returns are given by

r∗m = rm/ŝm, m = 1, ...,M . The filtered returns are then plugged into the IV estimators discussed

above instead of the original returns. Throughout this paper we denote by ÎV
∗

an estimator of IV

which is calculated based on IP-filtered intraday returns. This rescaling method is considered by

Andersen and Bollerslev (1997) and Boudt et al. (2011), but has not been analysed up to now in the

context of IP bias correction. Here we discuss the rescaling approach in more detail.

First, due to Jensen’s inequality, it holds for each squared return rescaled by the estimate ŝ2m that

E
(
(r∗m)2

)
= E

(
r2m
ŝ2m

)
≥ E(r2m)

E(ŝ2m)
=
σ2

M
,

so that, e.g. for the RV ∗ estimator of IV , it holds that E(RV ∗) ≥ IV . Hence, the rescaling of returns

would introduce some upward bias in case of the imprecisely estimated IP-profile component sm.

Remarkable, this upward bias would be present even in the IP-unbiased measure RV which is rather

undesired from the empirical perspective. We quantify this filtering bias in our simulation study in

Section 4.

Another important point is related to the fact that the estimation of the scalar correction factor C(s)

could be done more precisely than estimation of single profile components sm, m = 1, ...,M . As we

can observe in Proposition 1, our bias correction factors are based on averages with (1/M), so that

the central limit theorem arguments would apply in the case M → ∞. On the other hand, by the

estimation of the components of the IP profile s = (s1, ..., sM )′ which are required for filtering as in

Boudt et al. (2011), one could only rely on the asymptotics with respect to the number of days T used
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for the profile estimation. However, this could be a problem when the IP profile changes over time

and the estimation can only be performed from a small sample, see e.g. Figure 1 in our empirical

study.

Finally, note that immediate rescaling of returns is much more sensitive to (unexpected) changes in

IP compared to the correction proposed in this paper, as it is shown by Dette et al. (2016) in a similar

setup for BV measure. In particular, for the days of (unexpected) announcements the IP profile could

be very different from those IP estimates which one confronts in ‘ordinary’ days. On the contrary, as

long as the U -shape (or J-shape) is there, the IP-correction factors C(s) based on averages would be

numerically much less affected than single IP components sm. This robustness property is another

argument for using our approach for IP-bias corrections.

4 Monte Carlo simulation study

The aims of the Monte Carlo simulation study is to quantify biases induced by IP on selected realized

volatility measures as well as to evaluate the performance of different approaches for IP bias correction.

For this purpose we isolate the effect of IP on the realized measures by the design of our computational

procedure. We fix daily IV at σ2t = 1. The IP components sm for m = 1, ...,M are given by

s2m = fm/
M∑
m=1

fm, with fm =
[
c1 + c2(m−M/2)2

]2
, c1, c2 > 0, (16)

in order to mimic the empirically observed U -shaped IP-pattern. The parameter c1 modulates the

amount of curvature, with the most IP curvature for c1 → 0+, whereas the value c1 = 1 corresponds

to the case of no IP at all. We choose c1 ∈ {0.3, 0.5, 1}, whereas the value of c2 is obtained from the

equality
∑M

m=1 s
2
m = M for each given c1.

We generate intraday returns as rm ∼ N (0, s2m/M) for T days, and estimate the IP profile s =

(s1, ..., sM )′ using the robust WSD estimator of Boudt et al. (2011) with the estimates denoted

as ŝT . We do not allow for intraday stochastic volatility due to the evidence that its impact on

realized measures is negligible when the stochastic volatility process is sufficiently persistent, see for
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example Andersen et al. (2014), Dette et al. (2016).

In order to calculate the bias correction factors, we generate intraday returns for additional B days

and compute estimates ÎV t of realizations of the RV , BV , RK, medRV , minRV , paRV and paBV

measures for each day t = 1, ..., B. For the realized kernel, we use the Parzen kernel and the bandwidth

selection procedure as described in Barndorff-Nielsen et al. (2009). For the pre-averaging measures

paRV and paBV we set g(x) = min(x, 1− x). Then we obtain the Monte Carlo correction factor for

each particular realized estimator as

Ĉ(ŝT ) =

(
(1/B)

B∑
t=1

ÎV t

)−1
.

We investigate the choice of 15-, 10-, 5- and 1-minute returns corresponding to M ∈ {26, 39, 78, 390}

intraday returns for an 6.5-hours trading day. Although tick price observations are often available,

using 10- or 5-minute returns still remains a popular choice in many applications, especially when

risky assets under consideration are not very liquid (cf. Bekierman and Gribisch, 2020, Buccheri and

Corsi, 2020).

4.1 IP bias in IV measures

Now we quantify the impact of IP bias on realized volatility measures. We estimate IP based on

T = 104 days and repeat the procedure B = 104 times in order to get a very precise simulated

estimates of the IP bias, so that we can neglect estimation error in IP-profile s. Taking the reciprocal

of this bias leads to the IP-bias correction factors.

In Table 1, Block A, we show the relative bias in % of all considered estimators for different M and

c1 values. As expected, the RV measure is not biased in the presence of IP, whereas IP bias in RK is

negligible. For all other measures we observe a downward IP bias, which is rather undesired as then

IV would be underestimated in risk management applications. In line with the theory, we experience

that the bias decreases when the curvature of IP is less pronounced. Also, given a fixed curvature

parameter c1, the bias decreases as M increases. The measure BV has the lowest bias which almost
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disappears for M = 390. The bias of minRV is slightly higher but comparable to BV whereas the bias

of medRV is substantially larger. This suggests that there might be a trade-off between robustness to

jumps and IP robustness, as the medRV estimator is much less affected by jumps, see e.g. Andersen

et al. (2012). Mostly biased are the pre-averaged estimators paRV and paBV where even for M = 390

and c1 = 0.5 the downward IP-biases are about 10% and 20%, respectively.

To assess the impact of IP on the estimation efficiency, we report the mean squared error (MSE) of all

estimators in Table 1, Block B, where we observe that more pronounced IP leads to MSE increases for

all estimators. For a better visual assessment, we also report the ratios of MSEs with c1 ∈ {0.3, 0.5}

and without IP with c1 = 1 in Table 1, Block C. For RV , the ratios are the highest, which means

that the efficiency of RV suffers mostly in presence of IP. For other estimators the ratios are smaller,

however, they increase as M increases. Hence, the IP effect on the MSE does not disappear as M gets

larger, which is consistent with the theoretical findings of Dette et al. (2016) who show that a stronger

IP inflates the integrated quarticity IQ. Therefore, the impact of IP should be carefully taken into

account when conducting statistical inference about IV . However, as in our paper we focus on the

bias in the point estimators of IV , a detailed investigation of the IP impact on confidence intervals

is left for future research.

4.2 IP-correction factors

Next we consider IP estimates ŝT instead of the true IP profile s in order to investigate the feasibility

of our Monte Carlo simulation procedures for IP bias corrections and to compare it to the approach

of Boudt et al. (2011) which is based on IP-filtered intraday returns. We use the WSD estimator of

Boudt et al. (2011) with the estimation windows T of 63, 250, and 1000 days for the IP components,

which corresponds to roughly to one quarter, one year and four years of daily data.

First we provide the Monte Carlo simulated correction factors in Table 2. As the benchmark, we use

the reciprocal of the exact factors from Table 1 which are placed in the lines with T = 104. For each

choice of the IP curvature parameter c1 and number of intraday returns M , we compute correction

factors for three different estimation windows T and report the averages of the estimated correction
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factors over B = 104 simulation runs. In general, we can observe a rather quick convergence to the

true correction factor with increasing T , as already for T = 250 we can observe a small bias usually in

the range much less than 1%, whereby the bias mostly disappears for T = 1000. However, the choice

T = 63 leads to more substantial differences with the ‘true’ factors computed based on T = 104. As

the correction factors for paRV and paBV are still larger than one even for M = 390, we provide

additional simulation results for M ∈ {2340, 23400} corresponding to 10-second and 1-second returns

in Table 3. We can see that even for 1-second returns, the correction factors for paBV are still larger

than one, which suggests that IP correction should also be conducted for these measures when using

a very high sampling frequency.

Then we consider BV and minRV measures and compare in Table 4 their average correction factors

obtained from the simulation based method with those resulting from using the analytical expressions

in Eqns. (14) and (15) from Proposition 1. First we note that the analytical factors coincide with the

Monte Carlo simulated factors for T = 104 from Table 2. Second, we also observe a slight upward

bias even for an estimation window of T = 250 days which almost disappears for T = 1000. These

findings suggest that given the IP estimate ŝ, one could use the computational approach in cases

when an explicit expression for the IP bias is not readily available for a particular IV estimator.

Finally, in Table 5 we report the relative IP biases of the IV estimators when filtered returns r∗m

are used as in Boudt et al. (2011). First we note that the relative bias decreases as the estimation

window length T for ŝT increases. For the small estimation windows, we observe some upward biases.

Already for T = 250 this bias is never larger than 1%, with the exception of paBV ∗ estimator. As

also RV measure which is unaffected by IP exhibits a small upward bias when returns are filtered, we

recommend not to apply the filtering for RV estimator. In general, also this method of bias correction

works satisfactory for estimation windows about T = 250 when the IP profile is correctly specified.
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5 Empirical illustration

Now we illustrate our IP bias correction approach using the empirical data from U.S. stock market. We

consider log intraday returns of the S&P 500 index and four highly liquid stocks, namely Amazon,

American Express Company, Microsoft and Exxon Mobile. We sample returns at 15-, 10- and 5-

minute frequencies from January 1998 to December 2012 with 3773 days in total. For each day, we

compute the RV , BV , RK, medRV , minRV , paRV and paBV estimators of IV and apply either our

IP corrections or the correction based on filtered returns as in Boudt et al. (2011). To implement our

IP-corrections approach, we rely on the analytical expressions for BV and minRV and the simulation

based procedure for minRV , paRV and paBV to obtain the correction factors.

The IP components are estimated with the WSD estimator of Boudt et al. (2011) with a moving

window of T = 250 days, which is a reasonable choice according to the results of our Monte Carlo

simulation study. For this reason the first 250 days are reserved for computing the initial estimate

of the IP profile ŝT (t) for day t = 251. Based on these estimated profiles we compute for each new

day – either analytically or with Monte Carlo simulations – the IP correction factors for different

estimators of IV . In Figure 1 we visualize the time evolution of the analytical correction factors for

BV and simulated correction factors for medRV for different sampling frequencies.

In Figure 1 one could observe substantial fluctuations in IP correction factors both for BV and

medRV measures over the considered period. In general, the estimates become smaller in magnitude

as the sampling frequency increases, which is in line with both theoretical and simulation results.

The observed patterns are quite similar for all sampling frequencies and both measures. Remarkably,

the bias correction factors tend to increase with time, i.e. the issue of IP bias impact has gained in

importance recently.

Now we provide a comparison of our IP-bias correction methodology with those of Boudt et al.

(2011). To contrast these two different correction approaches empirically, we compute the mean

ratios of corrected and uncorrected IV -estimators for all sampling frequencies. We report the mean
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Figure 1: Time evolution of IP-correction factors based on returns sampled at 15-, 10-, 5-minutes:
the analytical correction for BV (above) and Monte Carlo simulated correction for medRV (below).

ratios for our approach and for the approach of Boudt et al. (2011) in Tables 6 and 7, respectively.

These ratios could be interpreted as a kind of full sample IP biases.

As RV and RK are not corrected in our approach, we refrain from putting ones for them in Table 6.

For all corrected measures the average ratio goes down with increasing sampling frequency, in line

with the theoretical results of Dette et al. (2016). The bias due to IP seem to the highest for Exxon

Mobile and American Express. The estimator BV is the least affected estimator while paBV has

the largest average correction factor, similarly to our simulation results. As all correction factors

are larger than one, the effect of IP should be accounted for when using these measures in empirical

applications.

In Table 7 we provide the results for the approach of Boudt et al. (2011) by reporting the mean ratios

for the measures computed from IP-filtered returns with those obtained from non-filtered returns.

Here we also report the results for the RV and RK estimators as those measures differ when obtained

from filtered or non-filtered data. First we note that the ratios are larger than one for RV and
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RK, so the filtering of returns introduces an upward bias – as we discuss in Section 3.3 – of up to

5 %, which decreases with increasing sampling frequency. Therefore all average ratios are all slightly

larger than those in Table 6 which could be due to the aforementioned bias. Another explanation

could be a certain non-robustness of pre-filtering at some non-typical days, e.g. those with special

announcements or unexpected events, as it is illustrated by Dette et al. (2016). Except for this, both

methods provide similar results as we also observe in the simulation study. For practical purposes,

these results suggest that our approach might be favorable both due to its robustness and because it

does not cause an upward bias in measures like RV and RK which do not need IP corrections.

6 Conclusions

For measuring daily integrated volatility IV , there are various realized estimators based on intraday

high-frequency information which are proposed in the literature. In this paper we focus on the impact

of the intraday periodicity (IP) in absolute intraday returns on several popular realized volatility

estimators. In particular, we show both analytically and in Monte Carlo simulations that realized

estimators based on adjacent returns exhibit downward bias for finite number of intraday returns

M which however disappears for M → ∞. We also propose a scalar factor for IP bias correction

for each of the considered realized estimators. Our correction approach is compared to the filtering

approach of Boudt et al. (2011) where intraday returns are immediately rescaled by the corresponding

IP-components. As our procedure shows certain robustness properties we recommend it for practical

purposes of IP bias corrections.

Appendix

For the proof of Proposition 1, we need the following lemma:

Lemma 1. For independent random variables X ∼ N (0, σ21) and Y ∼ N (0, σ22) we have

E[(min{|X|, |Y |})2] =
1

π
·
(
πσ21 − 2σ1σ2 + 2 arctan

(σ1
σ2

)
(σ22 − σ21)

)
. (17)
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Proof of Lemma 1. Without loss of generality we assume σ2 = 1, then we have

E[(min{|X|, |Y |})2] = A1 +A2, where (18)

A1 =
1

2πσ1

∫
R2

I{x2 ≤ y2}x2 e
− x2

2σ21
− y

2

2
dxdy

A2 =
1

2πσ1

∫
R2

I{x2 > y2}y2 e
− x2

2σ21
− y

2

2
dxdy.

The integrals are now evaluated separately using “polar coordinates”

x = σ1r cosϕ , y = r sinϕ.

This gives for the first term

A1 =
1

2πσ1

∫
[0,∞)×[0,2π)

I{σ21 cos2 ϕ ≤ sin2 ϕ}σ31r3 cos2 ϕe−r
2/2d(r, ϕ)

Observing that

{
ϕ ∈ [0, 2π)

∣∣ σ1| cosϕ| ≤ | sinϕ|
}

= [arctanσ1, π − arctanσ1] ∪ [π + arctanσ1, 2π − arctanσ1]

yields

A1 =
1

2πσ1

∞∫
0

π−arctanσ1∫
arctanσ1

σ31r
3 cos2 ϕ e−r

2/2drdϕ+
1

2πσ1

∞∫
0

2π−arctanσ1∫
π+arctanσ1

σ31r
3 cos2 ϕe−r

2/2drdϕ

= σ21

(
1− 2σ1

π(1 + σ21)
− 2

arctanσ1
π

)
.

Now a similar argument for the term A2 gives

A2 =
2

π

(
− σ1

1 + σ21
+ arctanσ1

)
,

and it follows from (18)

E[(min{|X|, |Y |})2 =
πσ21 − 2σ1 + 2 arctanσ1 · (1− σ21)

π
,
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which is the assertion (17) in the case σ2 = 1. �

Proof of Proposition 1.

As rm ∼ N (0, σ2 s
2
m
M ) and the random variables r1, . . . , rm are independent, a direct application of

Lemma 1 yields

E[(min{|rm|, |rm−1|})2 =
σ2

M

πs
2
m − 2sm−1sm + 2 arctan

(
sm
sm−1

)
(s2m−1 − s2m)

π

 .

Using the definition of minRV , we then immediately obtain

E[minRV ] =
σ2

π − 2

1

M − 1

M∑
m=2

{
πs2m − 2smsm−1 + 2 arctan

( sm
sm−1

)
· (s2m−1 − s2m)

}
.

To show that minRV is asymptotically unbiased, we first rewrite E(minRV ) as

E(minRV )

=
σ2

π − 2

1

M − 1

M∑
m=2

{
πs2m − 2sm−1sm + 2 arctan

(
sm
sm−1

)
(s2m−1 − s2m)

}

=
σ2

M − 1

M∑
m=2

s2m +
σ2

π − 2

2

M − 1

M∑
m=2

(sm − sm−1)

{
sm − arctan

(
sm
sm−1

)
(sm + sm−1)

}

=
σ2M

M − 1
− σ2

M − 1
s21 +

2σ2

(π − 2)(M − 1)

M∑
m=2

(sm − sm−1)

{
sm − arctan

(
sm
sm−1

)
(sm + sm−1)

}

= σ2

(
1 +

1− s21
M − 1

)
+

σ2

π − 2

2

M − 1

M∑
m=2

(sm − sm−1)

{
sm − arctan

(
sm
sm−1

)
(sm + sm−1)

}
.

Now we use the notation

s2m = g(m
M

)
/
gM , with gM =

1

M

M∑
m=1

g(m
M

),

where g is a continuously differentiable function per assumption. Then with sm =
√
g(m

M
)
/
gM and

gM =
∫ 1
0 g(x)dx+O(1/M) we get

(sm − sm−1)
{
sm − arctan

(
sm
sm−1

)
(sm + sm−1)

}
=

1∫ 1
0 g(x)dx

g′(m
M

)

2
√
g(m

M
)

1

M

{√
g(m

M
)− 2

√
g(m

M
) arctan 1

}(
1 +O

(
1

M

))
= − g′(m

M
)

4M
∫ 1
0 g(x)dx

(π − 2)

(
1 +O

(
1

M

))
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uniformly with respect to m ∈ {1, . . . ,M}, and, consequently,

E(minRV ) = σ2
(

1 +
1−s21
M

)
− σ2

π − 2

1

2M2

M∑
m=2

g′(m
M

)(π − 2)∫ 1
0 g(x)dx

+O

(
1

M2

)

= σ2

(
1 +

1

M
− g(0)

M
∫ 1
0 g(x)dx

)
− σ2

2M

∫ 1
0 g
′(x)dx∫ 1

0 g(x)dx
+O

(
1

M2

)
M→∞−→ σ2,

so that minRV is an asymptotically unbiased estimator of σ2. �
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Block A: relative bias in %
c1 RV BV RK medRV minRV paRV paBV

M = 26
0.3 -0.00 -11.59 -0.03 -22.32 -12.45 -36.64 -64.51
0.5 -0.00 -8.55 -0.09 -16.47 -9.06 -28.13 -46.93
1 -0.00 -0.00 0.04 -0.00 -0.00 0.01 6.23

M = 39
0.3 0.00 -7.84 -0.01 -15.31 -8.23 -32.06 -58.43
0.5 -0.00 -5.80 0.04 -11.32 -6.04 -24.44 -43.06
1 -0.00 -0.00 -0.02 -0.00 -0.00 -0.02 3.68

M = 78
0.3 0.00 -3.97 0.11 -7.86 -4.08 -24.18 -45.77
0.5 0.00 -2.94 0.10 -5.82 -3.00 -18.30 -33.97
1 -0.00 -0.00 0.08 0.00 0.00 -0.03 1.56

M = 390
0.3 -0.00 -0.80 0.07 -1.60 -0.81 -13.47 -26.12
0.5 -0.00 -0.60 0.06 -1.19 -0.60 -10.09 -19.46
1 0.00 -0.00 0.05 0.00 0.00 -0.00 0.29

Block B: MSE
c1 RV BV RK medRV minRV paRV paBV

M = 26
0.3 0.1730 0.1726 0.4380 0.1777 0.2472 0.3081 0.4615
0.5 0.1354 0.1420 0.3591 0.1453 0.2054 0.2586 0.3154
1 0.0769 0.1025 0.2470 0.1192 0.1502 0.2672 0.4101

M = 39
0.3 0.1146 0.1246 0.3326 0.1305 0.1804 0.2691 0.3947
0.5 0.0898 0.1011 0.2707 0.1061 0.1470 0.2244 0.2748
1 0.0513 0.0679 0.1769 0.0783 0.0993 0.2107 0.3002

M = 78
0.3 0.0571 0.0679 0.2510 0.0735 0.0989 0.2005 0.2777
0.5 0.0448 0.0542 0.2022 0.0590 0.0792 0.1639 0.1996
1 0.0256 0.0337 0.1288 0.0385 0.0492 0.1322 0.1749

M = 390
0.3 0.0114 0.0146 0.1337 0.0164 0.0213 0.1061 0.1364
0.5 0.0090 0.0115 0.1063 0.0129 0.0168 0.0847 0.1026
1 0.0051 0.0067 0.0642 0.0076 0.0098 0.0571 0.0708

Block C: Ratio of MSE compared to no IP case
c1 RV BV RK medRV minRV paRV paBV

M = 26
0.3 2.2493 1.6834 1.7729 1.4906 1.6463 1.1532 1.1252
0.5 1.7600 1.3856 1.4535 1.2183 1.3677 0.9677 0.7690

M = 39
0.3 2.2353 1.8361 1.8795 1.6676 1.8168 1.2773 1.3147
0.5 1.7520 1.4897 1.5299 1.3560 1.4809 1.0649 0.9153

M = 78
0.3 2.2267 2.0146 1.9479 1.9070 2.0088 1.5158 1.5880
0.5 1.7478 1.6097 1.5690 1.5303 1.6078 1.2394 1.1414

M = 390
0.3 2.2233 2.1780 2.0840 2.1520 2.1773 1.8571 1.9276
0.5 1.7458 1.7163 1.6564 1.6983 1.7161 1.4829 1.4494

Table 1: The impact of IP on realized measures of IV .
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M = 26

T BV medRV minRV paRV paBV

c1 = 0.3

63 1.1652 1.3673 1.1918 1.6557 3.0242
250 1.1339 1.2911 1.1473 1.5752 2.8148
1000 1.1312 1.2882 1.1429 1.5755 2.8149
104 1.1311 1.2874 1.1421 1.5782 2.8178

c1 = 0.5

63 1.1245 1.2645 1.1449 1.4555 2.0202
250 1.0960 1.2004 1.1041 1.3897 1.8820
1000 1.0947 1.1982 1.1013 1.3899 1.8838
104 1.0935 1.1971 1.0996 1.3915 1.8843

M = 39

T BV medRV minRV paRV paBV

c1 = 0.3

63 1.1142 1.2186 1.1342 1.5015 2.4466
250 1.0879 1.1850 1.0942 1.4703 2.3997
1000 1.0855 1.1814 1.0904 1.4709 2.4022
104 1.0851 1.1808 1.0897 1.4719 2.4055

c1 = 0.5

63 1.0890 1.1619 1.1049 1.3509 1.7848
250 1.0635 1.1310 1.0681 1.3223 1.7554
1000 1.0617 1.1281 1.0652 1.3229 1.7556
104 1.0615 1.1277 1.0642 1.3235 1.7561

M = 78

T BV medRV minRV paRV paBV

c1 = 0.3

63 1.0665 1.1124 1.0776 1.3456 1.9199
250 1.0436 1.0886 1.0465 1.3183 1.8432
1000 1.0415 1.0858 1.0430 1.3187 1.8434
104 1.0414 1.0853 1.0425 1.3190 1.8441

c1 = 0.5

63 1.0516 1.0853 1.0606 1.2480 1.5629
250 1.0327 1.0654 1.0352 1.2238 1.5141
1000 1.0311 1.0629 1.0322 1.2239 1.5142
104 1.0304 1.0618 1.0310 1.2240 1.5144

M = 390

T BV medRV minRV paRV paBV

c1 = 0.3

63 1.0222 1.0350 1.0294 1.1792 1.3771
250 1.0102 1.0195 1.0120 1.1549 1.3527
1000 1.0086 1.0171 1.0091 1.1554 1.3532
104 1.0081 1.0163 1.0081 1.1557 1.3535

c1 = 0.5

63 1.0190 1.0292 1.0258 1.1323 1.2612
250 1.0084 1.0156 1.0102 1.1120 1.2415
1000 1.0064 1.0127 1.0067 1.1121 1.2416
104 1.0060 1.0121 1.0060 1.1122 1.2417

Table 2: Mean of simulated correction factors with estimated IP
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M = 2340

T paRV paBV

c1 = 0.3

63 1.0608 1.1265
250 1.0590 1.1269
1000 1.0589 1.1259
104 1.0591 1.1260

c1 = 0.5

63 1.0435 1.0887
250 1.0419 1.0887
1000 1.0418 1.0881
104 1.0419 1.0883

M = 23400

T paRV paBV

c1 = 0.3

63 1.0167 1.0355
250 1.0165 1.0349
1000 1.0167 1.0353
104 1.0167 1.0354

c1 = 0.5

63 1.0118 1.0256
250 1.0115 1.0250
1000 1.0117 1.0254
104 1.0118 1.0255

Table 3: Mean of simulated correction factors with estimated IP
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M = 26

T BV minRV

c1 = 0.3

63 1.1652 1.1918
250 1.1339 1.1469
1000 1.1317 1.1433

analyt. 1.1311 1.1421

c1 = 0.5

63 1.1245 1.1449
250 1.0959 1.1039
1000 1.0941 1.1007

analyt. 1.0935 1.0996

M = 78

T BV minRV

c1 = 0.3

63 1.0665 1.0776
250 1.0438 1.0466
1000 1.0419 1.0435

analyt. 1.0414 1.0425

c1 = 0.5

63 1.0516 1.0636
250 1.0327 1.0351
1000 1.0310 1.0321

analyt. 1.0304 1.0310

M = 39

T BV minRV

c1 = 0.3

63 1.1142 1.1342
250 1.0875 1.0940
1000 1.0857 1.0908

analyt. 1.0851 1.0897

c1 = 0.5

63 1.0890 1.1049
250 1.0640 1.0685
1000 1.0621 1.0652

analyt. 1.0615 1.0642

M = 390

T BV minRV

c1 = 0.3

63 1.0222 1.0294
250 1.0104 1.0122
1000 1.0087 1.0091

analyt. 1.0081 1.0081

c1 = 0.5

63 1.0190 1.0258
250 1.0083 1.0100
1000 1.0066 1.0070

analyt. 1.0060 1.0060

Table 4: Comparison of simulation correction factors with analytic expressions for estimated IP
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M = 26

T RV ∗ BV ∗ RK∗ medRV ∗ minRV ∗ paRV ∗ paBV ∗

c1 = 0.3
63 3.57 2.64 3.61 2.22 1.94 3.68 9.82
250 0.90 0.66 0.85 0.59 0.49 0.89 7.12
1000 0.16 0.11 0.19 0.09 0.06 0.19 6.43

c1 = 0.5
63 3.67 2.74 3.64 2.30 2.01 3.72 9.86
250 0.91 0.67 0.84 0.58 0.50 0.85 7.05
1000 0.22 0.17 0.19 0.15 0.14 0.17 6.45

M = 39

T RV ∗ BV ∗ RK∗ medRV ∗ minRV ∗ paRV ∗ paBV ∗

c1 = 0.3
63 3.43 2.45 3.48 2.01 1.73 3.46 7.05
250 0.79 0.58 0.83 0.46 0.42 0.83 4.45
1000 0.18 0.14 0.23 0.10 0.11 0.24 3.93

c1 = 0.5
63 3.64 2.69 3.61 2.28 1.98 3.63 7.24
250 1.04 0.81 1.03 0.71 0.63 1.07 4.80
1000 0.22 0.18 0.21 0.12 0.14 0.19 3.86

M = 78

T RV ∗ BV ∗ RK∗ medRV ∗ minRV ∗ paRV ∗ paBV ∗

c1 = 0.3
63 3.50 2.56 3.61 2.13 1.87 3.50 4.94
250 0.84 0.62 0.96 0.51 0.44 0.83 2.42
1000 0.21 0.14 0.28 0.11 0.09 0.18 1.75

c1 = 0.5
63 3.68 2.72 3.81 2.29 2.01 3.70 5.21
250 0.93 0.70 0.96 0.59 0.53 0.86 2.45
1000 0.20 0.14 0.35 0.11 0.10 0.23 1.86

M = 390

T RV ∗ BV ∗ RK∗ medRV ∗ minRV ∗ paRV ∗ paBV ∗

c1 = 0.3
63 3.73 2.78 3.79 2.34 2.08 3.73 3.96
250 0.90 0.67 0.94 0.56 0.49 0.90 1.17
1000 0.22 0.16 0.30 0.14 0.11 0.24 0.52

c1 = 0.5
63 3.73 2.77 3.78 2.34 2.07 3.74 3.95
250 0.91 0.68 0.99 0.57 0.50 0.92 1.19
1000 0.23 0.17 0.29 0.15 0.12 0.24 0.53

Table 5: Relative bias in % of IV estimators calculated from IP filtered returns r∗t,m.
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S&P 500

Min BV medRV minRV paRV paBV

15 1.0370 1.0897 1.0440 1.1320 1.2615
10 1.0270 1.0767 1.0326 1.1511 1.2635
5 1.0190 1.0428 1.0250 1.0953 1.1864

Amazon

Min BV medRV minRV paRV paBV

15 1.0881 1.1826 1.0980 1.2699 1.4153
10 1.0657 1.1446 1.0725 1.2723 1.4139
5 1.0373 1.0815 1.0412 1.1952 1.3092

American Express

Min BV medRV minRV paRV paBV

15 1.1240 1.2246 1.1435 1.3143 1.4383
10 1.1067 1.1956 1.1234 1.3239 1.4363
5 1.0710 1.1276 1.0818 1.2435 1.3383

Microsoft

Min BV medRV minRV paRV paBV

15 1.0776 1.1601 1.0858 1.2403 1.3554
10 1.0597 1.1284 1.0660 1.2418 1.3492
5 1.0360 1.0740 1.0404 1.1689 1.2616

Exxon Mobile

Min BV medRV minRV paRV paBV

15 1.1078 1.1975 1.1249 1.2747 1.3768
10 1.0939 1.1716 1.1090 1.2798 1.3675
5 1.0617 1.1091 1.0715 1.2040 1.2757

Table 6: Ratio of means of estimators with correction factors and uncorrected estimators.
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S&P 500

Min RV BV RK medRV minRV paRV paBV

15 1.0244 1.0487 1.0110 1.0830 1.0475 1.1452 1.3010
10 1.0253 1.0414 1.0177 1.0612 1.0372 1.1277 1.2686
5 1.0314 1.0342 1.0235 1.0427 1.0275 1.0976 1.1980

Amazon

Min RV BV RK medRV minRV paRV paBV

15 1.0540 1.1135 1.0555 1.1866 1.1117 1.3400 1.5184
10 1.0497 1.0942 1.0445 1.1420 1.0904 1.2925 1.4615
5 1.0416 1.0639 1.0400 1.0877 1.0622 1.1946 1.3291

American Express

Min RV BV RK medRV minRV paRV paBV

15 1.0425 1.1518 1.0448 1.2317 1.1643 1.3323 1.5002
10 1.0333 1.1351 1.0336 1.1939 1.1472 1.3069 1.4582
5 1.0258 1.0963 1.0274 1.1370 1.1013 1.2350 1.3481

Microsoft

Min RV BV RK medRV minRV paRV paBV

15 1.0324 1.0952 1.0287 1.1508 1.0924 1.2489 1.4023
10 1.0307 1.0743 1.0280 1.1160 1.0733 1.2146 1.3584
5 1.0329 1.0502 1.0323 1.0685 1.0450 1.1540 1.2688

Exxon Mobile

Min RV BV RK medRV minRV paRV paBV

15 1.0431 1.1378 1.0035 1.2034 1.1474 1.2730 1.4248
10 1.0323 1.1274 1.0224 1.1710 1.1421 1.2466 1.3772
5 1.0281 1.0897 1.0260 1.1210 1.0945 1.1878 1.2852

Table 7: Ratio of means of estimators computed from IP-filtered and non-filtered returns.
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