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Abstract

In this note we consider the optimal design problem for estimating the slope of

a polynomial regression with no intercept at a given point, say z. In contrast to

previous work, which considers symmetric design spaces we investigate the model on

the interval [0, a] and characterize those values of z, where an explicit solution of the

optimal design is possible.
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1 Introduction

Consider the common polynomial regression model of degree n with no intercept

Yi = f>(xi)θ + εi = (xi, x
2
i , . . . , x

n
i )>θ + εi, i = 1, . . . , N, (1.1)

where ε1, . . . , εN denote independent random variables with E[εi] = 0; Var(εi) = σ2 > 0,

θ = (θ1, . . . , θn)> ∈ Rn is a vector of unknown parameters and the explanatory variables

x1, . . . , xN vary in the interval [0, a] for some a > 0. An approximate optimal design [in the

sense of Kiefer (1974)] minimizes an appropriate function of the (asymptotic) covariance

matrix of the statistic
√
Nθ̂, where the θ̂ denotes the least squares estimate of the parameter

θ in the regression model (1.1) [see Silvey (1980) or Pukelsheim (2006)].

In a recent paper Dette et al. (2020) considered model (1.1) on the symmetric interval [−1, 1]

and determined explicitly the approximate optimal design for estimating the derivative of

the regression function
d

dx
f>(x)θ

∣∣∣
x=z

=
n∑
j=1

jθjz
j−1

at the point z, which minimizes the variance of the best linear unbiased estimate of∑n
j=1 jθjz

j−1. The corresponding optimality criterion is a special case of the well known c-

optimality criterion [see, for example, Elfving (1952); Studden (1968) or Pukelsheim (2006),

Chapter 2].

In practice, however, polynomial regression models with no intercept are usually used on

a positive interval, where x corresponds, for example, to speed, concentration or time, and

the response at the initial point x = 0 is [see, for example, Huang et al. (1995); Li et al.

(2005)]. Therefore the goal of this note is to provide some optimal designs for estimating

the slope of polynomial regression model with no intercept in the case where the design

space is given by the interval [0, a]. In Section 2 we introduce the basic optimal design

problem and review a geometric characterization of c-optimal designs. The main result can

be found in Section 3 where the optimal designs for estimating the slope at the point in a

polynomial regression model with no intercept are determined explicitly and the theory is

illustrated by several examples.
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2 c-optimal designs

Consider the regression model (1.1) on the interval [0, a]. Following Kiefer (1974) we call

a discrete probability measure

ξ =

(
x1 · · · xm

ω1 · · · ωm

)
with support points x1, . . . , xm ∈ [0, a] and weights ω1, . . . , ωm an approximate design (on

the interval [0, a]). If N observations can be taken this means that the quantities Nωi

are rounded to integers, say ni, with
∑m

i=1 ni = N and ni observations are taken at each

experimental condition xi (i = 1, . . . ,m). For an approximate design ξ we denote by

M(ξ) =

∫
[0,a]

f(x)f>(x)ξ(dx)

its information matrix in the model (1.1), where f(x) = (x, . . . , xn)> is the vector regression

functions. The covariance matrix of the least squares estimate for the parameter θ, say

θ̂, can be approximated (if N → ∞, ni/N → ωi) by σ2/NM−1(ξ) and an optimal design

minimizes an appropriate real valued function of the matrix M−1(ξ). In this paper we

are interested in designs minimizimng the asymptotic variance of the best linear unbiased

estimate c>θ̂ of the linear combination c>θ for a given vector c ∈ Rn. To be precise, we

call a design ξ c-optimal in the regression model (1.1), if it minimizes the function

Φ(ξ) =

c>M−(ξ)c, if there exists a vectorv ∈ Rd such that c = M(ξ)v;

∞, otherwise,

where M−(ξ) is a generalized inverse for the matrix M(ξ). In the first case the design ξ is

called admissible for estimating the linear combination c>θ in the regression model (1.1)

and the value of the quadratic form does not depend on the choice of the generalized inverse

[see Pukelsheim (2006)]. The choice c = f ′(z) = (1, 2z, . . . , nzn−1)> for some z corresponds

to the minimization of the variance of the best unbiased prediction of the derivative of the

regression function θ>f(x) at the point z. The optimal design is called optimal design for

estimating derivative at the point z in this case.

A useful tool for the determination of c-optimal designs is a geometric characterization of

the c-optimal design and which is called Elfving’s theorem in the literature [see Elfving

(1952)]. We formulate it here in a slightly different form, which can be directly used to

check optimality of a given design [see Dette et al. (2004) for details].
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Theorem 2.1 An admissible design ξ∗ for estimating the linear combination c>θ with

support points x1, x2, . . . , xm ∈ X = [0, a] and weights ω1, ω2, . . . , ωm is c-optimal if and

only if there exists a vector p ∈ Rn and a constant h such that the following conditions are

satisfied:

(1) |p>f(x)| ≤ 1 for all x ∈ X ;

(2) |p>f(xi)| = 1 for all i = 1, 2, . . . ,m ;

(3) c = h
∑m

i=1 f(xi)ωip
>f(xi).

Moreover, in this case we have c>M−(ξ∗)c = h2 and the function p>f(x) is called extremal

polynomial.

3 Optimal designs for estimating the slope

For the linear model through the origin (that is n = 1) it is easy to see using Elfving’s

theorem that the optimal design for estimating the slope is unique and puts all mass at the

point a (independently of the point z). However, in the case n > 1 the situation is more

complicated. By Theorem 2.1 it follows that the support points of the optimal design are

extremal points of a polynomial of the form p>f(x) =
∑n

i=1 pix
i. In fact it is possible to

identify a candidate for this optimal polynomial explicitly. For this purpose let

Tn(x) = cos(n arccos(x))

denote the nth Chebyshev polynomial of the first kind [see Szegö (1975)] and consider the

polynomial

Sn(x) = Tn

(x
a

(1 + cos
π

2n
)− cos

π

2n

)
. (2.1)

It is easy to see that Sn(x) has exactly n extremal points s1 < s2 < · · · < sn on the interval

[0, a], which are given by

si = a ·
cos (i−1)π

n
+ cos π

2n

1 + cos π
2n

, i = 1, 2, . . . , n. (2.2)

For the statement of our main result we define L̄1, . . . , L̄n as the Lagrange basis interpola-

tion polynomials without intercept corresponding to the nodes s1, . . . , sn, that is

L̄i(z) =
z
∏

j 6=i(z − sj)
si
∏

j 6=i(si − sj)
, (2.3)
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and denote by L̄′i the derivative of L̄i (i = 1, . . . , n).

Theorem 3.1 Consider the polynomial regression model of degree n > 1 with no intercept

on the interval [0, a]. The optimal design ξ∗(z) for estimating the slope of this model at the

point z is supported at the points s1, . . . , sn defined in (2.2) if and only if

z ∈
n⋃
i=1

(ω1,i−1, ωn,i),

where −ω1,0 = ωn,n =∞ and ωi,k is k-th root of the function

ωi(z) =
|L̄′i(z)|∑n
j=1 |L̄′j(z)|

, i = 1, . . . , n, (2.4)

k = 1, . . . , n− 1, j = 1, . . . , n. Moreover, in this case the weight of the design ξ∗(z) at si is

given by ωi(z) (i = 1 . . . , n).

To prove this Theorem we use the following Lemma. The proof can be found in Sahm

(1998) or in Dette et al. (2020).

Lemma 3.2 Let P1(x) and P2(x) be polynomials of degree n with n distinct roots t(1,1) <

t(1,2) < . . . < t(1,n) and t(2,1) < t(2,2) < . . . < t(2,n), respectively. Assume that the roots are

interlacing in the following sense:

t(1,1) ≤ t(2,1) < t(1,2) ≤ t(2,2) < . . . < t(1,n) ≤ t(2,n) ,

where at least one of the inequalities t(`,1) ≤ t(`,2) (` = 1, . . . n) is strict. Then the roots

v(1,1) ≤ v(1,2) ≤ . . . ≤ v(1,n−1) and v(2,1) ≤ v(2,2) ≤ . . . ≤ v(2,n−1) of the derivatives P ′1(x) and

P ′2(x) are strictly interlacing, that is

v(1,1) < v(2,1) < . . . < v(1,n−1) < v(2,n−1).

Proof of Theorem 3.1.

We will check the optimality of the design ξ∗(z) by an application of Theorem 2.1. Note,

that the polynomial Sn(z) defined in (2.1) obviously satisfies to conditions (1) and (2) of

this theorem.
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It now remains to characterize those values of z such that the system of equations defined

by condition (3) in Theorem 2.1 admits a solution with nonnegative weights ωi satisfying∑m
i=1 ωi = 1. Note that condition (3) in Theorem 2.1 can be rewritten in the form

c = f ′(z) = (1, z, . . . , nzn−1)> = hFβ, (2.5)

where

F = ((sj)
i)ni,j=1 = (f(s1), . . . , f(sn)) ∈ Rn×n and βi = ωi(p

>f(si))

In order to investigate the system of equations defined by (2.5) note that the identity

F−1F = In (here In is the identity matrix) implies

e>i F
−1f(sj) = δij (i, j = 1, . . . , n),

where δij is the Kroneker symbol and ei = (0, . . . , 0, 1, 0, . . . , 0)> ∈ Rn the ith unit vector.

As these equations characterize the ith Lagrange basis interpolation polynomial L̄i(z) =

aTi f(z) with nodes s1, . . . , sn we have

e>i F
−1f(z) = L̄i(z), i = 1, . . . , n.

Differentiating both sides of the equation with respect to z yields

e>i F
−1f ′(z) = L̄′i(z), i = 1, . . . , n,

or equivalently

F−1f ′(z) = (L̄′1(z), . . . , L̄′n(z))>.

Therefore we obtain for the solution of (2.5)

hβ = (L̄′1(z), . . . , L̄′n(z))>

or equivalently (since βi = ωi(p
>f(si)))

hβi = hωi(−1)n−i = L̄′i(z) , i = 1, . . . , n. (2.6)

Consequently applying Lemma 3.2 to the pairs of polynomials L̄i(z), L̄i+1(z) from (2.3)

i = 1, . . . , n− 1 we obtain that the roots of functions L̄′i(z) are strictly interlacing, that is

ω(n,1) < . . . < ω(1,1) < ω(n,2) < . . . < ω(1,2) < . . . < ω(1,n−2) < ω(n,n−1) < . . . < ω(1,n−1).
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Figure 1: The extremal polynomial S4(x) on the interval [0, 1] (a = 1).

This immediately implies that each of the functions L̄′i(z) has only one root in the intervals

[ω(n,i), ω(1,i)] and has no roots in the intervals A1, . . . , An, where the set Ai is defined by

Ai = (ω1,i−1, ωn,i), i = 1, . . . , n. Moreover, for z ∈ An we have

sign((−1)n−iL̄′i(z)) = 1 , i = 1, . . . , n

(since sign(L̄′i(z)) = (−1)n−i), and for z ∈ Aj

sign((−1)n−iL̄′i(z)) = (−1)n+j , i, j = 1, . . . , n.

This implies that

|L̄′i(z)| = (−1)n+j(−1)n−iL̄′i(z) (i, j = 1, . . . , n)

for z ∈ Aj.
The proof is now completed observing (2.6), which implies that for z ∈ Aj, the weights are

given by

ωi(z) =
(−1)n−iL̄′i(z)

h
=

(−1)n+j|L̄′i(z)|
h

(i = 1, . . . , n)

with h = (−1)n+j
∑n

i=1 |L̄′i(z)|. �

Example 3.3 In this example we illustrate potential applications of Theorem 3.1 deter-

mining optimal designs for estimating the slope of a polynomial regression with no intercept

on the interval [0, 1].
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Figure 2: The functions L̄′i(z), z ∈ R for i = 1, 2, 3, 4 (n = 4, a = 1).

We start with the case of a quadratic regression model, that is n = 2. Here the extremal

points in (2.2) are given by s1 =
√

2 − 1, s2 = 1 and the derivatives of the polynomials in

(2.3) are calculated as

L̄′1(z) = −4 + 3
√

2

2
(2z − 1) , L̄′2(z) = −2 +

√
2

2
(−2z +

√
2− 1).

The corresponding roots of the functions (2.4) are obtained as

ω1,1 =
1

2
, ω2,1 =

1

2
(1−

√
2)

and the optimal design for estimating the slope of the polynomial regression without inter-

cept is supported at points
√

2− 1, 1 if and only if

z ∈
(
−∞, 1

2
(1−

√
2)
)
∪
(1

2
,∞
)

As a second example we consider the cubic regression model with no intercept, that is n = 3.

In this case the extremal points of the polynomial S3(x) are s1 = 3
√

3 − 5, s2 =
√

3 − 1,
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s3 = 1 and the derivatives of the Lagrange interpolation polynomials in (2.3) are given by

L̄′1(z) = 35.490z2 − 40.981z + 8.6607 , L̄′2(z) = −28.548z2 + 22.767z − 1.8680

L̄′3(z) = 13.933z2 − 8.6240z + .66745,

The roots of the roots of the functions (2.4) are obtained as

ω1,1 = 0.2785 , ω2,1 = 0.0935 , ω3,1 = 0.090 , ω1,2 = 0.8758 , ω2,2 = 0.7045 , ω3,2 = 0.528

By Theorem 3.1 the optimal design for estimating the slope of the polynomial regression

without intercept at the point z is supported at the points {3
√

3− 5,
√

3− 1, 1} if and only

if

z ∈ (−∞, 0.090) ∪ (0.2785, 0.528) ∪ (0.8758,∞)

Finally we consider model (1.1) with n = 4, where the extremal polynomial S4(x) is

displayed in Figure 1. The corresponding extremal points are given by s1 = 0.1127, s2 =

0.4802,, s3 = 0.8477 and s1 = 1. The derivatives of the polynomials in (2.3) are calculated

as

L̄′1(z) = −148.08z3 + 258.55z2 − 128.47z + 15.072,

L̄′2(z) = 118.63z3 − 174.42z2 + 62.631z − 2.8327

L̄′3(z) = −114.72z3 + 137.04z2 − 37.110z + 1.5517,

L̄′4(z) = 56.968z3 − 61.552z2 + 15.858z − 0.65327

and displayed in Figure 2. The roots of the functions (2.4) are given by

ω1,1 = 0.1696 , ω2,1 = 0.05268 , ω3,1 = 0.05102 , ω4,1 = 0.05071,

ω1,2 = 0.6432 , ω2,2 = 0.4872 , ω3,2 = 0.3232 , ω4,2 = 0.3175,

ω1,3 = 0.9332 , ω2,3 = 0.9305 , ω3,3 = 0.8205 , ω4,3 = 0.7123.

Therefore, by Theorem 3.1 the optimal design for estimating the slope of the polynomial re-

gression without intercept at the point z is supported at the points 0.1127, 0.4802, 0.8477, 1

if and only if

z ∈ (−∞, 0.05071) ∪ (0.1696, 0.3175) ∪ (0.6432, 0.7123) ∪ (0.9332,∞)
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